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Abstract

The vertical distribution of wildfire smoke aerosols is important in determining its environmental impacts but existing observa-

tions of smoke heights generally do not possess the temporal resolution required to fully resolve the diurnal behavior of wildfire

smoke injection. We use Weather Surveillance Radar-1988 Doppler (WSR-88D) dual polarization data to estimate injection

heights of Biomass Burning Debris (BBD) generated by fires. We detect BBD as a surrogate for smoke aerosols, which are often

collocated with BBD near the fire but are not within the size range detectable by these radars. Injection heights of BBD are

derived for 2-10 August 2019, using radar reflectivity (Z[?]10 dBZ) and dual polarization correlation coefficients (0.2<C.C.<0.9)

to study the Williams Flats Fire event. Results show the expected diurnal cycles with maximum injection heights present during

the late afternoon period when the fire’s intensity and convective mixing are maximized. Radar and airborne lidar injection

height comparisons reveal that this method is sensitive to outliers and generally overpredicts maximum heights by 40%, though

mean and median heights are better captured (<20% mean error). Radar heights between the 75th and 90thpercentile seem

to accurately represent the maximum, with the exception of heights estimated during the occurrence of pyro-cumulonimbus.

Location specific mapping of radar and lidar injection heights reveal that they diverge further away from the fire due to BBD

settling. Most importantly, radar-derived injection height estimates provide near continuous smoke height information, allowing

for the study of diurnal variability of smoke injections.
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Abstract 21 

The vertical distribution of wildfire smoke aerosols is important in determining its environmental 22 

impacts but existing observations of smoke heights generally do not possess the temporal 23 

resolution required to fully resolve the diurnal behavior of wildfire smoke injection. We use 24 

Weather Surveillance Radar-1988 Doppler (WSR-88D) dual polarization data to estimate 25 

injection heights of Biomass Burning Debris (BBD) generated by fires. We detect BBD as a 26 

surrogate for smoke aerosols, which are often collocated with BBD near the fire but are not 27 

within the size range detectable by these radars. Injection heights of BBD are derived for 2-10 28 

August 2019, using radar reflectivity (𝑍 ≥ 10 dBZ) and dual polarization correlation coefficients 29 

(0.2 < 𝐶. 𝐶 < 0.9) to study the Williams Flats Fire event. Results show the expected diurnal 30 

cycles with maximum injection heights present during the late afternoon period when the fire’s 31 

intensity and convective mixing are maximized. Radar and airborne lidar injection height 32 

comparisons reveal that this method is sensitive to outliers and generally overpredicts maximum 33 

heights by 40%, though mean and median heights are better captured (<20% mean error). Radar 34 

heights between the 75th and 90th percentile seem to accurately represent the maximum, with the 35 

exception of heights estimated during the occurrence of pyro-cumulonimbus. Location specific 36 

mapping of radar and lidar injection heights reveal that they diverge further away from the fire 37 

due to BBD settling. Most importantly, radar-derived injection height estimates provide near 38 

continuous smoke height information, allowing for the study of diurnal variability of smoke 39 

injections.   40 

Plain Language Summary 41 

Wildfire smoke aerosols injected into the atmosphere pose a serious threat to human health and 42 

the environment. Once in the atmosphere, aerosols travel long distances and affect air quality in 43 

regions much farther away. These ‘long distances’ are strongly correlated with the maximum 44 

heights aerosols can reach near their source, making it important to observe these ‘injection 45 

heights’. However, existing observations of injection heights are limited temporally, making it 46 

difficult to study their diurnal and day-to-day variability. Here, we use weather radar data to 47 

estimate injection heights of Biomass Burning Debris (BBD), which is assumed to be collocated 48 

with aerosols that are too small to be detected by radars. Injection heights are estimated for the 49 

Williams Flats Fire event in Washington for 2-10 August 2019. Results show that daily 50 
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maximum injection heights occur in the late afternoon, when the wildfire’s intensity is strongest. 51 

Further, radar-derived heights are compared to airborne lidar-derived heights for the same fire, 52 

revealing that the maximums are overpredicted but intermediate values like the mean are well 53 

represented. Radar-derived injection height estimates allow for near continuous smoke heights, 54 

making it relevant for future studies.   55 

1 Introduction 56 

The issue of air quality is a pressing concern due to the rapidly developing global 57 

economy and increased industrialization and urbanization (Manisalidis et al., 2020). Not only is 58 

the deterioration of air quality significant due to its environmental and ecological impacts, but 59 

also due to the health risk it poses for humans (Gakidou et al., 2017). Wildfires contribute to this 60 

burden on human health by emitting smoke aerosols into the atmosphere (Balmes, 2020), which 61 

is a rising concern as the number of catastrophic wildfires worldwide are increasing with climate 62 

change (Deb et al., 2020; Higuera & Abatzoglou, 2021). Furthermore, wildfire smoke aerosols 63 

injected into the atmosphere above the boundary layer can travel long distances and affect 64 

surface air quality in downwind regions (Buchholz et al., 2022; Hung et al., 2020). The injection 65 

heights of these aerosols in the atmosphere are closely related to the residence time of aerosols in 66 

the atmosphere and the distance they are transported (Schum et al., 2018), implying that greater 67 

injection heights could lead to more widespread impacts on air quality, making it important to 68 

better observe the vertical distribution of these smoke aerosols. 69 

According to prior studies, smoke injection heights have been estimated in multiple ways. 70 

Multiple space-based estimation techniques exist, including the vertical profiles of aerosol and 71 

cloud backscatter provided by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) 72 

instrument (Amiridis et al., 2010; Winker et al., 2004) and using the smoke height products 73 

retrieved from various passive remote sensing instruments such as the Multi-angle Imaging 74 

SpectroRadiometer (MISR) (M. Val Martin et al., 2010; Maria Val Martin et al., 2018), the 75 

Tropospheric Monitoring Instrument (TROPOMI) (Chen et al., 2021; Michailidis et al., 2022; 76 

Veefkind et al., 2012), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the 77 

Visible Infrared Imaging Radiometer Suite (VIIRS) (Hsu et al., 2019; Lee et al., 2015; Loría-78 

Salazar et al., 2021; Sayer et al., 2019). However, these retrievals are limited by the fact that the 79 

sun-synchronous orbits of all these satellites only allow for one or two overpasses in a given day 80 
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(Maria Val Martin et al., 2018). Though stereo imaging from a pair of geostationary (GEO) 81 

satellites with overlapping coverage is able to overcome the aforementioned limitation, this 82 

method has not been extensively validated and is only available during the daytime (Carr et al., 83 

2020; Hasler, 1981). Thus, there is a need to develop and evaluate smoke injection height 84 

estimates that cover full diurnal cycles and have the potential to provide real-time measurements. 85 

Here, we explore the use of the weather surveillance radar, an under-utilized tool for 86 

studying wildfires (McCarthy et al., 2019). Since smoke aerosols are often collocated with lofted 87 

debris in the vicinity of the fire, the radar can be used to retrieve the injection heights of Biomass 88 

Burning Debris (BBD) produced from wildfires as a possible surrogate for the injection heights 89 

of smoke aerosol plumes (Jones & Christopher, 2009). The significance of this approach lies in 90 

the fact that it posseses adequate spatial and temporal coverage and allows for the retrieval of a 91 

complete time series of plume injection heights and depicts day-to-day variability of the same 92 

(Jones & Christopher, 2009). While radar estimates of wildfire plume structure are being used to 93 

evaluate models (Shamsaei et al., 2023), they have not been thoroughly compared to more 94 

established observations of smoke plume height. Drawing inspiration from Jones & Christopher 95 

(2009), who have previously provided injection heights with an hourly resolution over a 2-day 96 

period, we retrieved plume injection heights for the whole lifetime of a fire and performed an 97 

evaluation of these retrievals. In the following study, we describe the methods used to derive 98 

smoke injection heights from radars, show results for the 2019 Williams Flats Fire, and evaluate 99 

them using airborne lidar data from the Fire Influence on Regional to Global Environments and 100 

Air Quality (FIREX-AQ) field campaign (Warneke et al., 2023). Conclusions and future 101 

directions are outlined in the sections to follow.  102 

2 Data and methods 103 

2.1 Weather Surveillance Radar-1988 Doppler (WSR-88D) 104 

The WSR-88D network spread through the United States currently consists of 160 S-105 

Band (10 cm) precipitation radars operated by the National Oceanic and Atmospheric 106 

Administration National Weather Service (Crum & Alberty, 1993; Holleman et al., 2022). 107 

Doppler Radars in the WSR-88D network alternate between two modes (i.e., clear-air mode and 108 

precipitation mode) and characterize echoes through reflectivity, correlation coefficient, radial 109 

velocity, and spectrum width, i.e., the base radar products (Crum & Alberty, 1993). In either 110 
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clear-air and precipitation mode, the radar is operated in one of many Volume Coverage Patterns 111 

(VCPs), which consists of the radar antenna making a series of 360° scans of the surrounding 112 

atmosphere for pre-determined, increasing elevation angles (Crum & Alberty, 1993; Kingfield & 113 

French, 2022; NOAA National Weather Service et al., 2023).  114 

The localized instability and increased buoyancy produced by the heat of the fire may 115 

result in lofting of significant amounts of debris, ash, and other particulate matter several 116 

kilometers into the atmosphere (Kingsmill et al., 2023; Rodriguez et al., 2020; Thurston et al., 117 

2017). It is important to note that the Doppler Radar is not sensitive to smoke particles (diameter 118 

𝐷 < 100 𝜇m), rather they are sensitive to BBD (diameter 𝐷 > 1 mm) that are large enough to be 119 

detected by the weather radars (Banta et al., 1992; McCarthy et al., 2019).  120 

2.2 Data collected: reflectivity and correlation coefficient characteristics 121 

To estimate the plume injection heights of BBD for the 2019 Williams Flats Fire event in 122 

northeast Washington, ~216 hours of data was obtained (from 00:04:38 on 2 August 2019 to 123 

00:04:47 on 11 August 2019) of Level II WSR-88D data from Doppler Radar KOTX 124 

(DOC/NOAA/NWS/ROC, 1991), which is approximately 80 km from the fire. During this 125 

period, the Doppler Radar operated in two modes: VCP-35 (clear-air mode) and VCP-215 126 

(precipitation mode). When operated in VCP-35, radar data is collected at 9 elevation angles 127 

(0.5°, 0.9°, 1.3°, 1.8°, 2.4°, 3.1°, 4.0°, 5.1°, and 6.4°) approximately every 7 minutes, whereas in 128 

VCP-215, data is collected for 15 elevation angles (VCP-35 angles, 8.0°, 10.0°, 12.0°, 14.0°, 129 

16.7°, and 19.5°) approximately every 6 minutes (NOAA National Weather Service et al., 2023). 130 

The WSR-88D is designed to detect atmospheric targets or precipitation-sized 131 

hydrometeors (diameter 𝐷 > 100 𝜇m) from backscattered electromagnetic energy in the 132 

microwave spectrum and the returned energy is used to determine the reflectivity (measured in 133 

dBZ) (Donald Burgess & Peter S. Ray, 1986). The Doppler Radar is also designed to detect how 134 

similarly the horizontally and vertically polarized pulses (of returned energy) are behaving; this 135 

similarity is quantified using the correlation coefficient (Doviak et al., 2000). Atmospheric 136 

targets that are highly variable in size and shape (such as debris or birds) will likely have less 137 

similarly behaving horizontal and vertical pulses, leading to lower correlation coefficient values 138 

(Melnikov et al., 2008; Zrnic et al., 2020); targets that are more uniform in size and shape (such 139 
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as rain droplets or snow) will have more similarly behaving horizontal and vertical pulses, 140 

leading to higher correlation coefficient values (Liu & Chandrasekar, 2000).  141 

Radar reflectivity and correlation coefficient data were passed through the injection 142 

height estimation algorithm (details provided in Section 2.3) and hence used to estimate the 143 

injection heights of smoke aerosols.  144 

2.3 Injection height estimation algorithm 145 

The following injection height estimation algorithm uses Py-ART, a Python module 146 

developed for parsing weather radar data (Helmus & Collis, 2016). The radar data (i.e., the 147 

reflectivity and correlation coefficient data) was re-gridded into cartesian coordinates using Py-148 

ART and then passed through the injection height estimation algorithm developed for this study. 149 

The algorithm works by analyzing a pre-determined, three-dimensional grid around a fire. Here, 150 

we studied the 2019 Williams Flats Fire (located at 47.98°N latitude, -118.624°E longitude) 151 

(Peterson et al., 2022; Ye et al., 2021, 2022), with the pre-determined grid defined to extend 152 

from 47.85°N to 48.05°N latitude and -118.70°E to -118.20°E longitude. The horizontal grid 153 

spacing is considered to be ~1000 m, similar to the range resolution described in National 154 

Research Council (2002). The radar vertical resolution can be approximated by the difference 155 

between the height of the center of the beams at consecutive angles, which at 80 km distance is 156 

500-700m for the first four angles (0-2.5 km altitude) and increases from there (e.g., ~1 km 157 

resolution at ~4 km altitude, ~2 km resolution at 9-11 km altitude). Thus, the vertical resolution 158 

of the grid was set 500 m to get the most the radar vertical resolution at the lower levels. At each 159 

timestamp, the algorithm searches for vertical regions of continguous reflectivity exceeding or 160 

equal to a defined minimum reflectivity threshold, returning the maximum injection height if the 161 

reflectivity value falls below the minimum threshold (Figure 1a). For each (𝑥, 𝑦) position within 162 
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the pre-determined grid, the algorithm can search up to a height of 14727 m in 500 m increments 163 

(Note that the height of the radar is 727 m above sea level).  164 

 165 

Figure 1. Upper panel (a): Diagrammatic representation of initial version of the injection height 166 

estimation algorithm. (Left) The algorithm searches upwards for each grid square within the pre-167 

determined grid for regions of contiguous reflectivity, (Middle) the algorithm searches upwards 168 

iteratively if the current region satisfies the reflectivity threshold, (Right) the algorithm returns 169 

the last height for which the reflectivity threshold was satisfied if 2 ‘bad’ reflectivity values are 170 

retrieved. The algorithm allows a buffer of 2 ‘bad’ reflectivity values before retrieving the 171 

maximum height; case A depicts a contiguous reflectivity situation whereas case B depicts a 172 

(likely rare) discontiguous reflectivity situation. Lower panel (b): Similar to (a) but for the 173 

modified version of the injection height estimation algorithm. (Left) For each grid square, the 174 

algorithm iteratively searches upwards, (Middle) moving upwards if the reflectivity and 175 

correlation coefficient conditions are satisfied. (Right) The algorithm allows a buffer of 2 ‘bad’ 176 

reflectivity or correlation coefficient values before retrieving the maximum injection height.  177 

In previous studies, scientists utilized polarimetric data to identify smoke plumes, 178 

observing reflectivity values on the range of 10-25 dBZ (Lang et al., 2014; Zrnic et al., 2020). 179 

Therefore, drawing inspiration from existing literature, reflectivity threshold values for lofted 180 
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debris were tested in a range of 5-20 dBZ (Figure 2a). We considered 10 dBZ to be an 181 

appropriate minimum threshold as a 5 dBZ threshold generated heights that likely did not 182 

correspond to the smoke top since fire activity was very low between 14-19 UTC and thresholds 183 

of 15 dBZ and 20 dBZ tended to produce significantly lower heights for the more active fire 184 

period after 20 UTC (Ye et al., 2021). The 10 dBZ threshold is also consistent with the 185 

assumptions made in previous work (Jones & Christopher, 2009). 186 

 187 

Figure 2. Injection heights estimated on 2 August 2019 (UTC). (a) Heights estimated using 188 

different lower bounds of reflectivity values: 5 dBZ, 10 dBZ, 15 dBZ, and 20 dBZ. The 189 

appropriate minimum threshold chosen was 10 dBZ. (b) Heights estimated using minimum 190 
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reflectivity threshold of 10 dBZ and different upper reflectivity thresholds: 25 dBZ, 40 dBZ, and 191 

55 dBZ. (c) Initial (grey) and modified (orange) algorithms. The extremely high injection heights 192 

(upwards of 10 km above sea level) occur around the time the Williams Flats Fire began (dotted, 193 

blue vertical line), leading to the conclusion that the initial algorithm was likely picking up on 194 

the hydrometeors from the early-morning thunderstorm in the Colville Reservation, WA. The 195 

correlation coefficient constraint within the modified algorithm successfully reduces the heights 196 

retrieved. 197 

The Williams Flats Fire, first reported at 10:23 UTC on 2 August 2019, was ignited by 198 

lightning strikes associated with the thunderstorm ~80 km northwest of the Doppler Radar 199 

(KOTX) (Ye et al., 2021). Therefore, the initial algorithm (Figure 1a) ran the risk of retrieving 200 

heights of atmospheric targets whose reflectivity exceeded the minimum threshold of 10 dBZ 201 

and were likely not BBD, but instead were more likely the hydrometeors present in the 202 

thunderstorm that initiated the fire. Attempts were made to discriminate between BBD and 203 

hydrometeors by setting an upper bound on the reflectivity values (Figure 2b), but this did not 204 

help in discriminating between BBD and the hydrometeors from the thunderstorm. Hence, other 205 

approaches were tested. A correlation coefficient constraint was embedded within the algorithm 206 

to curb the possible overestimation of injection heights; heights were only retrieved if both the 207 

reflectivity and correlation coefficient conditions were met to improve the injection height 208 

retrievals when rain or snow is present (Figure 1b). Based on existing literature, the correlation 209 

coefficient values inside smoke plumes tend to be below 0.8 (Melnikov et al., 2008; Zrnic et al., 210 

2020) and rain or drizzle tends to have values above 0.9 (Liu & Chandrasekar, 2000), and thus a 211 

range of 0.2-0.9 was assumed for detecting BBD. Results from this modification are discussed in 212 

Sections 3 and 4. This modification proved to be effective in discerning between debris and 213 

hydrometeors as the injection heights retrieved for 2 August 2019 with the modified algorithm 214 

successfully eliminated the convective system (Figure 2c). 215 

2.4 Datasets used as reference for evaluation 216 

 The Differential Absorption Lidar (DIAL) – High Spectral Resolution Lidar (HSRL) 217 

(Hair et al., 2018) from DC-8 aircraft during the FIREX-AQ field campaign was used as 218 

reference. The DC-8 sampled the Williams Flats Fire plume on 3, 6, and 7 August 2019 (PST), 219 

capturing multiple phases of the fire. Images of eleven transects overpassing the Williams Flats 220 

Fire on these days can be found in Ye et al. (2021). The DIAL-HSRL system is capable of 221 
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providing measurements of aerosol depolarization (355, 532, 1064 nm), aerosol/cloud extinction 222 

(532 nm), and backscatter coefficients (355, 532, 1064 nm) above and below flight height at a 223 

temporal resolution of 10 seconds. Maximum smoke injection heights were derived based on the 224 

vertical gradients of 532 nm backscatter coefficients, and are used in this study (Ye et al., 2021). 225 

It should be noted that while the lidar footprint is narrow, the measuring strategy implemented in 226 

FIREX-AQ consisted on doing an overpass at altitude across the axis of the plume, followed by 227 

several plume crossings at increasing distances downwind of the fire (Warneke et al., 2023). 228 

Since DIAL-HSRL detects aerosols that do not settle immediately (as is likely the case with 229 

BBD), the measurement strategy allows us to say with confidence that the retrieved heights are 230 

an accurate representation of the whole plume.  231 

 Geostationary satellite imagery produced specifically for FIREX-AQ by the Florida State 232 

University team was used to provide context regarding smoke and aircraft location (Warneke et 233 

al., 2023). Airborne lidar and satellite imagery are available in the FIREX-AQ data repository 234 

(NASA/LARC/SD/ASDC, 2020).  235 

3 Results 236 

 3.1 Time series of injection heights 237 

 Using the injection height estimation algorithm (detailed in Section 2.3), an extended 238 

time series of the plume injection heights was retrieved for the 2019 Williams Flats Fire event 239 

(Figure 3). It should be noted that the time series captures the typical diurnal cycle of fires, with 240 

daily maximums occurring during the latter half of the day when the fire’s intensity and 241 

convective mixing is maximized (Jones & Christopher, 2009; Zrnic et al., 2020). We also note 242 

that despite regular retrievals of radar data, there are visible gaps in the extended time series. 243 

This is likely due to the weak reflectivity observed during the morning period, as such we may 244 

conclude that the buoyancy flux of the fire was not strong enough to lift sufficient BBD to meet 245 

the reflectivity threshold or the correlation coefficient constraint (Rodriguez et al., 2020; Tory et 246 

al., 2018). The time series also shows large differences between intermediate heights (i.e., 247 

heights within the 25-75th percentile range) and the maximum heights during the most intense 248 

periods of the diurnal cycles, sometimes reaching >6 km differences, which needs to be further 249 
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assessed with reference observations. 250 

 251 

Figure 3. Box and whisker plots depicting an extended time series of radar-derived smoke 252 

injection heights (2-10 August 2019) aggregrated over 3-hour intervals. Central, solid lines 253 

indicate the median, circles indicate the mean, boxes indicate the lower and upper quartiles, 254 

whiskers indicate the upper and lower deciles, and the crosses connected with solid lines indicate 255 

the maximums. The time series captures the diurnal cycle of fires, displaying that the daily 256 

maximum injection heights are present during the late afternoon period. Visible gaps in the time 257 

series occur when the reflectivity and correlation coefficient conditions are not satisfied or when 258 

there were less than 10 samples in each time interval.  259 

 3.2 Comparison to injection heights retrieved from airborne lidar data 260 

 To evaluate the algorithm’s accuracy in retrieving injection heights of BBD, they were 261 

compared to the injection heights derived from airborne lidar data from the 2019 FIREX-AQ 262 

campaign. The flight path of the aircraft (with the airborne lidar) tended to sample the whole 263 

extent of the plume, going beyond the pre-determined grid used to retrieve the radar-derived 264 

injection heights (the red box(es) in Figures 4a-c). Hence, the lidar-derived injection heights 265 

outside the pre-determined grid were removed for this comparison as BBD is expected to settle 266 

quickly and is therefore unlikely to match the smoke heights further away from the fire. Figure 5 267 

shows distributions of injection heights for 3, 6, and 7 August 2019 (PST), which include the 268 



manuscript submitted to JGR: Atmospheres 

 

days when the aircraft was sampling this fire. 269 

 270 

Figure 4. Left panels (a) (c) (e): FIREX-AQ flight paths (solid yellow lines) and pre-271 

determined grid (red box) for flights on August 3, 6, and 7; Imagery from GOES-17 satellite 272 

imagery. The blue star represents the aircraft location at the time. Right panels (b) (d) (f): Maps 273 

of maximum injection heights derived from the radar data for the corresponding times.  274 
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 275 
Figure 5. Box and whisker plots (similar to Figure 3) of the injection heights derived from both 276 

radar (blue) and airborne lidar (red) data for each hour (local time) on (a) 3 August 2019, (b) 6 277 

August 2019, and (c) 7 August 2019. The number of data points for each hour is shown at the top 278 

of each panel, color-coded according to the corresponding box and whisker plot(s). For further 279 

details, see Table 1.  280 

Table 1. Distribution of hourly maximum (𝑅𝑚𝑎𝑥, 𝐿𝑚𝑎𝑥), mean (𝑅𝑚𝑒𝑎𝑛, 𝐿𝑚𝑒𝑎𝑛), and median 281 

(𝑅𝑚𝑒𝑑𝑖𝑎𝑛, 𝐿𝑚𝑒𝑑𝑖𝑎𝑛) injection heights derived from both radar and lidar data (in meters). The 282 

heights in the following table correspond to the maximum heights retrieved at the time the 283 

aircraft was airborne. Lidar-derived heights are retrieved according to the flight path and radar-284 

derived heights are retrieved within the pre-determined grid. All values are rounded to 3 285 

significant figures.  286 

Date 

(PST) 

Time 

(PST) 

𝑅𝑚𝑎𝑥  

(m) 

𝐿𝑚𝑎𝑥  

(m) 

𝑅𝑚𝑒𝑎𝑛 

(m) 

𝐿𝑚𝑒𝑎𝑛 

(m) 

𝑅𝑚𝑒𝑑𝑖𝑎𝑛  

(m) 

𝐿𝑚𝑒𝑑𝑖𝑎𝑛 

(m) 

𝑅75𝑡ℎ_𝑝 

(m) 

𝐿75𝑡ℎ_𝑝 

(m) 

𝑅90𝑡ℎ_𝑝 

(m) 

𝐿90𝑡ℎ_𝑝 

(m) 

14:00 5410 3310 3590 3020 3860 3010 4380 3220 5410 3310 
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3 Aug 

2019 

15:00 6450 4450 3480 3000 3340 3000 4380 3160 5410 3280 

17:00 5930 4450 3800 3220 3860 3100 4380 3420 4890 4000 

18:00 6450 4420 3280 3470 3340 3430 3860 3620 4380 4270 

19:00 5410 3940 3710 3230 3860 3070 4380 3550 4890 3910 

6 Aug 

2019 
14:00 5410 3970 3270 3280 3340 3250 3860 3470 4380 3700 

7 Aug 

2019 

16:00 9040 7090 5210 5230 5410 5130 6450 5770 6970 6890 

18:00 9560 7420 5420 5250 5410 5500 5930 5930 6970 6970 

19:00 9040 6340 4630 5330 4380 5320 5410 5530 6450 6040 

Mean bias [m] 1920 151 221 596 820 

Mean % bias 40.0% 5.7% 8.5% 17.1% 22.7% 

Mean error 

[m] 
1920 356 470 622 820 

Mean % error 40.0% 10.0% 13.3% 17.5% 22.7% 

 287 

 From Figure 5, it can be concluded that the distribution of maximum injection heights 288 

derived from radar data is significantly wider than the injection heights derived from the lidar 289 

data. The maximum injection heights retrieved from the radar are overpredicted by ~2000 m, a 290 

40% difference on average (Table 1). However, the mean, median, 75th and 90th percentiles seem 291 

to agree better with the injection heights derived from airborne lidar data (350-820 m mean 292 

error), though a general overprediction of heights persists (given the assumption that the airborne 293 

lidar data is the reference). Figure 5 also shows that the radar data is capable of capturing the 294 

increase in top injection heights from the 3rd and 6th of August to the 7th, thus capturing the day-295 

to-day variability. As mentioned above, the time series of heights derived from radar data has 296 

gaps when fire intensity is not strong enough, but shallow smoke aerosol injections into the 297 

boundary layer could still occur during these periods (as seen during 18-20 UTC on 6 August 298 

2019). On the other hand, each time free-tropospheric injections were detected by the lidar, the 299 

radar shows strong diurnal signals (Figure 5a, c). Thus, for applications using radar data to inject 300 

smoke into models, a fair assumption for injection when the radar signal is not available would 301 

be to place it within the boundary layer.  302 

 The overprediction by the injection height estimation algorithm (using radar data) could 303 

be occurring for several reasons. One potential reason for the overprediction is that the algorithm 304 

is retrieving maximum injection heights for each timestamp within the pre-determined grid 305 

whereas the lidar-derived injection heights are retrieved according to the flight path. Therefore, 306 

there is a possibility that the radar and lidar-derived injection heights are being retrieved for 307 

different locations. Hence, to make this comparison more robust, a location-specific injection 308 

height mapping was used. The injection heights were derived using the algorithm at the latitude-309 
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longitude position of the aircraft. Reflectivity cross-sections over the flight track with the 310 

associated injection heights were plotted accordingly (Figure 6).  311 

 312 

Figure 6. Left panels: Temporal cross-sections of reflectivity according to portions of the flight 313 

paths on (a) 3 August 2019 and (b) 7 August 2019. Injection heights are super-imposed on the 314 

cross-section. Radar derived injection heights are highlighted in red for both plots. Lidar-derived 315 

injection heights within the pre-determined grid are highlighted as yellow triangles. All other 316 

lidar-derived heights are shown as white dots. Right panels: Similar to Figure 5, but using radar 317 

data mapped according to the flight track instead for (a) 3 August 2019, (b) 6 August 2019, and 318 

(c) 7 August 2019.  319 

Table 2. Further details on Figure 6. Similar to Table 1, but with radar data mapped according to 320 

the flight track for the appropriate days.  321 

Date 

(PST) 

Time 

(PST) 

𝑅𝑚𝑎𝑥  

(m) 

𝐿𝑚𝑎𝑥  

(m) 

𝑅𝑚𝑒𝑎𝑛 

(m) 

𝐿𝑚𝑒𝑎𝑛   
(m) 

𝑅𝑚𝑒𝑑𝑖𝑎𝑛   
(m) 

𝐿𝑚𝑒𝑑𝑖𝑎𝑛   
(m) 

𝑅75𝑡ℎ_𝑝  
(m) 

𝐿75𝑡ℎ_𝑝  
(m) 

𝑅90𝑡ℎ_𝑝  
(m) 

𝐿90𝑡ℎ_𝑝  
(m) 

3 Aug 

2019 

14:00 4380 3310 3550 3020 3860 3010 3990 3220 4380 3310 

15:00 3860 4450 3170 3000 3600 3000 3860 3160 3860 3280 

17:00 5930 4450 3310 3220 3340 3100 3860 3420 4060 4000 

18:00 2300 4420 2300 3470 2300 3430 2300 3620 2300 4270 

19:00 3340 3940 2730 3230 2820 3070 3340 3550 3340 3910 
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6 Aug 

2019 
14:00 

2820 3970 2300 3280 2300 3250 2820 3470 2820 3700 

7 Aug 

2019 

16:00 6450 7090 5000 5230 4890 5130 5410 5770 5930 6890 

18:00 9040 7420 6230 5250 5930 5500 6970 5930 8110 6970 

19:00 7490 6340 4460 5330 3340 5320 5410 5530 6810 6040 

Mean bias [m] 24.4 -220 -270 32.2 -84.4 

Mean % bias -1.0% -6.1% -5.4% 0.8% -2.0% 

Mean error 

[m] 1160 613 741 623 889 

Mean % error 24.4% 16.1% 19.6% 16.2% 19.9% 

  322 

 After the location-specific mapping, we note that the maximum heights are much closer 323 

together within the pre-determined grid around the fire (Table 2), with the mean error dropping 324 

to 1160 m and near 0 bias. While bias is reduced, similar errors perist for other metrics (mean, 325 

median, and percentiles) (610-890 m). We also note that there are still some instances where the 326 

maximum injection height is largely overpredicted (e.g., 00 UTC on 4 August 2019, 01-02 UTC 327 

on 8 August 2019 in Figure 3). Previously mentioned in Section 2, the maximum injection 328 

heights for the whole domain should not substantially deviate from the lidar-derived injection 329 

heights due to the sampling strategy and the relatively low settling velocities of smoke aerosols. 330 

Thus, we hypothesize that the overprediction of maximum injection heights observed by the 331 

radar is due to outliers that are present throughout the time period of the fire. A reason for this 332 

could be the coarse vertical resolution of the radar which is 1-2 km for these heights (Section 333 

2.3). Thus, using the mean, median, 75th percentile, and 90th percentile heights appears to be a 334 

more reliable use of radar data as resulting errors and biases are well within the expected radar 335 

resolution.  336 

 Figure 6 also shows that BBD (which is much larger and heavier than other intermediate 337 

particles) is settling or sinking much faster as opposed to the smoke particles that are likely to 338 

remain suspended for much longer, which could create differences in the injection heights 339 

recorded for downwind regions and contribute to the errors. Another minor note is that the radar 340 

records data approximately every 6-7 minutes for extended period of time, but the airborne lidar 341 

records data continuously for shorter periods of time–the time comparison is not exact, 342 

introducing some uncertainty in this comparison. Also important to note is that the grid spacing 343 

of ~1000 m within the pre-determined grid could be impacting radar-derived results and that the 344 
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radar itself may have outliers and artifacts that contribute to discrepencies in this comparison, 345 

adding to the overprediction of heights.  346 

Overall, usage of these retrievals is only recommended in the vicinity of the fire, for 347 

which the overall, average percentage difference difference was small (Table 2). Further, to 348 

capture the maximum injection heights of a fire with radar retrievals over the whole grid, an 349 

appropriate percentile (of the radar-derived heights) would need to be determined. Mean and bias 350 

metrics were computed using data from Table 1 using the lidar-derived maximum heights and 351 

the 75th-90th percentiles of radar-derived heights, resulting in ~600 m mean error and bias 352 

ranging from -2% to 13%. Hence, radar-derived heights within the 75th-90th percentile range 353 

would appropriately capture the maximum injection heights, given the >1 km expected 354 

resolution at these heights.  355 

One characteristic of the 2019 Williams Flats Fire event was the occurrence of fire-356 

generated thunderstorms (pyro-cumulonimbus or ‘pyroCb’ for short) around 06 UTC on 8 357 

August 2019 and 00 UTC on 9 August 2019 (Peterson et al., 2022). The DC-8 aircraft flew on 8 358 

August 2019 and sampled the latter pyroCbs. Lidar retrievals for these flights were not included 359 

in the analysis given that the aircraft sampled smoke and anvils mostly downwind of the pre-360 

determined grid, primarily due to safety issues. However, the radar-derived heights can be 361 

compared to the anvil heights derived in Ye et al., (2021), which are between 9-10 km during 00-362 

03 UTC on 9 August 2019. Shown in Figure 3, the maximum heights for this temporal range are 363 

~13 km, showing a similar overprediction as the other days. However, the heights in the 75th-90th 364 

percentiles are within the 5-8 km range, below the maximum injection heights. Thus, a larger 365 

percentile may need to be used to better capture the top injection heights for pyroCbs.  366 

4 Conclusions 367 

 We have shown that it is possible to fully resolve the diurnal and day-to-day behavior of 368 

wildfires using WSR-88D dual polarization data to estimate the injection heights of smoke 369 

plumes using BBD as a surrogate for smoke aerosol particles around the source of the fire. The 370 

injection height estimation algorithm, which was constructed with the help of previous 371 

observations of polarimetric data characteristic to smoke plumes (i.e., Reflectivity 𝒁 ≥ 𝟏𝟎 dBZ 372 

and correlation coefficient 𝟎. 𝟐 < 𝑪. 𝑪. < 𝟎. 𝟗), was able to estimate the injection heights of BBD 373 
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at regular time intervals for the whole life-span of a fire. These extended time series of injection 374 

heights derived from the radar data depicted a strong diurnal variability of injection heights, with 375 

the deepest smoke injection during the latter half of the day. 376 

 To validate the injection height estimation algorithm, the derived injection heights were 377 

compared to injection height retrievals from airborne lidar data. For a given time, the radar data 378 

was used to retrieve the maximum injection heights within the pre-determined grid whereas the 379 

lidar data was retrieved along the flight path. Results indicate that that statistical metrics such as 380 

the mean, median, 75th percentile, and 90th percentile heights were well captured (350-820 m 381 

mean error). However, the maximum injection heights were consistently over predicted (40% on 382 

average) likely due to outliers resulting from the coarsening of the radar vertical resolution with 383 

higher altitude. Reflectivity profiles were plotted over time according to the flight path of the 384 

aircraft; these location-specific injection height retrievals within the vicinity of the fire yielded 385 

better results for maximum injection heights but similar errors for other metrics. Results show 386 

that the true maximum smoke injection heights are generally correspond to the radar heights 387 

between the 75th and 90th percentile, except for pyroCbs for which a larger percentile value may 388 

need to be determined.  389 

 While radars allow for the retrieval of real-time smoke injection measurements and for 390 

the analyses of the diurnal behavior of smoke plumes, several sources of uncertainty persist. 391 

Location-specific comparisons of injection heights derived from both radar and lidar data seem 392 

to indicate that as distance from the source of the fire increases, the accuracy of the injection 393 

heights (estimated form the radar data) decreases. Further work may involve combining data 394 

from several Doppler Radars and accounting for how debris particles are likely to behave when 395 

suspended in the atmosphere using numerical models. Another source of uncertainty would be 396 

whether the reflectivity and correlation coefficient thresholds are optimal for the accurate 397 

estimation of injection heights. Currently, these values have been chosen using prior 398 

observations of polarimetric data, however since reflectivity and correlation coefficient values 399 

vary from fire to fire, other classifiers need to be explored. Future work will also need to 400 
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evaluate the skill of estimating injections from radar data against other methods of estimating 401 

injection heights, such as those from satellites that use passive remote sensing.  402 

 While having inherent uncertainties, the close to full-time coverage of radar-derived 403 

smoke injection heights from operational weather radars has strong potential to help monitor the 404 

conditions of fires in a real-time manner. Additionally, it can be used in a variety of applications 405 

including the evaluation of smoke injection approacjes in the context of air quality and 406 

atmospheric composition modeling (Thapa et al., 2022; Ye et al., 2021), supporting the 407 

identification of pyroconvection (Peterson et al., 2022), and assessing historical trends of smoke 408 

injection (Wilmot et al., 2022).  409 
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Service (NWS) Radar Operations Center, 1991), was used in the algorithm described in this 418 

manuscript. Also used within the algorithm to process and interpret the WSR-88D data, is the 419 

Python ARM Radar Toolkit, Py-ART version 1.11.6 (Helmus & Collis, 2016).  420 

The FIREX-AQ data, used to evaluate the results of the algorithm described in the 421 

manuscript, is archived by the National Aeronautics and Space Administration, U.S. Government 422 

(NASA/LARC/SD/ASDC, 2020). GOES-17 satellite imagery (used in some figures) is also 423 

available in the FIREX-AQ repository.  424 

The code for the algorithm, figures, tables, and data analysis are written in Python 425 

(Python version 3.9.7), available under the license https://www.python.org and MATLAB 426 

version R2020b (The MathWorks Inc., 2020), available at https://www.mathworks.com. The 427 

Python code is written with the help of several libraries, including NumPy version 1.21.2 (Harris 428 

et al., 2020) under the license https://numpy.org, Matplotlib version 3.4.3 (Hunter, 2007) under 429 

the license https://www.matplotlib.org, SciPy version 1.2.1 (Virtanen et al., 2020) under the 430 
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help of Microsoft PowerPoint version 16.75 (Microsoft Corporation, 2023), Keynote version 433 

13.1 (Apple Inc, 2023), and Adobe Illustrator 2023 version 27.4.1 (Adobe Inc., 2023). Code 434 

associated with this manuscript is published on GitHub 435 

(https://github.com/mansakrishna23/Injection_Height_Estimation_Algorithm) and Zenodo 436 
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Abstract 21 

The vertical distribution of wildfire smoke aerosols is important in determining its environmental 22 

impacts but existing observations of smoke heights generally do not possess the temporal 23 

resolution required to fully resolve the diurnal behavior of wildfire smoke injection. We use 24 

Weather Surveillance Radar-1988 Doppler (WSR-88D) dual polarization data to estimate 25 

injection heights of Biomass Burning Debris (BBD) generated by fires. We detect BBD as a 26 

surrogate for smoke aerosols, which are often collocated with BBD near the fire but are not 27 

within the size range detectable by these radars. Injection heights of BBD are derived for 2-10 28 

August 2019, using radar reflectivity (𝑍 ≥ 10 dBZ) and dual polarization correlation coefficients 29 

(0.2 < 𝐶. 𝐶 < 0.9) to study the Williams Flats Fire event. Results show the expected diurnal 30 

cycles with maximum injection heights present during the late afternoon period when the fire’s 31 

intensity and convective mixing are maximized. Radar and airborne lidar injection height 32 

comparisons reveal that this method is sensitive to outliers and generally overpredicts maximum 33 

heights by 40%, though mean and median heights are better captured (<20% mean error). Radar 34 

heights between the 75th and 90th percentile seem to accurately represent the maximum, with the 35 

exception of heights estimated during the occurrence of pyro-cumulonimbus. Location specific 36 

mapping of radar and lidar injection heights reveal that they diverge further away from the fire 37 

due to BBD settling. Most importantly, radar-derived injection height estimates provide near 38 

continuous smoke height information, allowing for the study of diurnal variability of smoke 39 

injections.   40 

Plain Language Summary 41 

Wildfire smoke aerosols injected into the atmosphere pose a serious threat to human health and 42 

the environment. Once in the atmosphere, aerosols travel long distances and affect air quality in 43 

regions much farther away. These ‘long distances’ are strongly correlated with the maximum 44 

heights aerosols can reach near their source, making it important to observe these ‘injection 45 

heights’. However, existing observations of injection heights are limited temporally, making it 46 

difficult to study their diurnal and day-to-day variability. Here, we use weather radar data to 47 

estimate injection heights of Biomass Burning Debris (BBD), which is assumed to be collocated 48 

with aerosols that are too small to be detected by radars. Injection heights are estimated for the 49 

Williams Flats Fire event in Washington for 2-10 August 2019. Results show that daily 50 
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maximum injection heights occur in the late afternoon, when the wildfire’s intensity is strongest. 51 

Further, radar-derived heights are compared to airborne lidar-derived heights for the same fire, 52 

revealing that the maximums are overpredicted but intermediate values like the mean are well 53 

represented. Radar-derived injection height estimates allow for near continuous smoke heights, 54 

making it relevant for future studies.   55 

1 Introduction 56 

The issue of air quality is a pressing concern due to the rapidly developing global 57 

economy and increased industrialization and urbanization (Manisalidis et al., 2020). Not only is 58 

the deterioration of air quality significant due to its environmental and ecological impacts, but 59 

also due to the health risk it poses for humans (Gakidou et al., 2017). Wildfires contribute to this 60 

burden on human health by emitting smoke aerosols into the atmosphere (Balmes, 2020), which 61 

is a rising concern as the number of catastrophic wildfires worldwide are increasing with climate 62 

change (Deb et al., 2020; Higuera & Abatzoglou, 2021). Furthermore, wildfire smoke aerosols 63 

injected into the atmosphere above the boundary layer can travel long distances and affect 64 

surface air quality in downwind regions (Buchholz et al., 2022; Hung et al., 2020). The injection 65 

heights of these aerosols in the atmosphere are closely related to the residence time of aerosols in 66 

the atmosphere and the distance they are transported (Schum et al., 2018), implying that greater 67 

injection heights could lead to more widespread impacts on air quality, making it important to 68 

better observe the vertical distribution of these smoke aerosols. 69 

According to prior studies, smoke injection heights have been estimated in multiple ways. 70 

Multiple space-based estimation techniques exist, including the vertical profiles of aerosol and 71 

cloud backscatter provided by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) 72 

instrument (Amiridis et al., 2010; Winker et al., 2004) and using the smoke height products 73 

retrieved from various passive remote sensing instruments such as the Multi-angle Imaging 74 

SpectroRadiometer (MISR) (M. Val Martin et al., 2010; Maria Val Martin et al., 2018), the 75 

Tropospheric Monitoring Instrument (TROPOMI) (Chen et al., 2021; Michailidis et al., 2022; 76 

Veefkind et al., 2012), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the 77 

Visible Infrared Imaging Radiometer Suite (VIIRS) (Hsu et al., 2019; Lee et al., 2015; Loría-78 

Salazar et al., 2021; Sayer et al., 2019). However, these retrievals are limited by the fact that the 79 

sun-synchronous orbits of all these satellites only allow for one or two overpasses in a given day 80 
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(Maria Val Martin et al., 2018). Though stereo imaging from a pair of geostationary (GEO) 81 

satellites with overlapping coverage is able to overcome the aforementioned limitation, this 82 

method has not been extensively validated and is only available during the daytime (Carr et al., 83 

2020; Hasler, 1981). Thus, there is a need to develop and evaluate smoke injection height 84 

estimates that cover full diurnal cycles and have the potential to provide real-time measurements. 85 

Here, we explore the use of the weather surveillance radar, an under-utilized tool for 86 

studying wildfires (McCarthy et al., 2019). Since smoke aerosols are often collocated with lofted 87 

debris in the vicinity of the fire, the radar can be used to retrieve the injection heights of Biomass 88 

Burning Debris (BBD) produced from wildfires as a possible surrogate for the injection heights 89 

of smoke aerosol plumes (Jones & Christopher, 2009). The significance of this approach lies in 90 

the fact that it posseses adequate spatial and temporal coverage and allows for the retrieval of a 91 

complete time series of plume injection heights and depicts day-to-day variability of the same 92 

(Jones & Christopher, 2009). While radar estimates of wildfire plume structure are being used to 93 

evaluate models (Shamsaei et al., 2023), they have not been thoroughly compared to more 94 

established observations of smoke plume height. Drawing inspiration from Jones & Christopher 95 

(2009), who have previously provided injection heights with an hourly resolution over a 2-day 96 

period, we retrieved plume injection heights for the whole lifetime of a fire and performed an 97 

evaluation of these retrievals. In the following study, we describe the methods used to derive 98 

smoke injection heights from radars, show results for the 2019 Williams Flats Fire, and evaluate 99 

them using airborne lidar data from the Fire Influence on Regional to Global Environments and 100 

Air Quality (FIREX-AQ) field campaign (Warneke et al., 2023). Conclusions and future 101 

directions are outlined in the sections to follow.  102 

2 Data and methods 103 

2.1 Weather Surveillance Radar-1988 Doppler (WSR-88D) 104 

The WSR-88D network spread through the United States currently consists of 160 S-105 

Band (10 cm) precipitation radars operated by the National Oceanic and Atmospheric 106 

Administration National Weather Service (Crum & Alberty, 1993; Holleman et al., 2022). 107 

Doppler Radars in the WSR-88D network alternate between two modes (i.e., clear-air mode and 108 

precipitation mode) and characterize echoes through reflectivity, correlation coefficient, radial 109 

velocity, and spectrum width, i.e., the base radar products (Crum & Alberty, 1993). In either 110 
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clear-air and precipitation mode, the radar is operated in one of many Volume Coverage Patterns 111 

(VCPs), which consists of the radar antenna making a series of 360° scans of the surrounding 112 

atmosphere for pre-determined, increasing elevation angles (Crum & Alberty, 1993; Kingfield & 113 

French, 2022; NOAA National Weather Service et al., 2023).  114 

The localized instability and increased buoyancy produced by the heat of the fire may 115 

result in lofting of significant amounts of debris, ash, and other particulate matter several 116 

kilometers into the atmosphere (Kingsmill et al., 2023; Rodriguez et al., 2020; Thurston et al., 117 

2017). It is important to note that the Doppler Radar is not sensitive to smoke particles (diameter 118 

𝐷 < 100 𝜇m), rather they are sensitive to BBD (diameter 𝐷 > 1 mm) that are large enough to be 119 

detected by the weather radars (Banta et al., 1992; McCarthy et al., 2019).  120 

2.2 Data collected: reflectivity and correlation coefficient characteristics 121 

To estimate the plume injection heights of BBD for the 2019 Williams Flats Fire event in 122 

northeast Washington, ~216 hours of data was obtained (from 00:04:38 on 2 August 2019 to 123 

00:04:47 on 11 August 2019) of Level II WSR-88D data from Doppler Radar KOTX 124 

(DOC/NOAA/NWS/ROC, 1991), which is approximately 80 km from the fire. During this 125 

period, the Doppler Radar operated in two modes: VCP-35 (clear-air mode) and VCP-215 126 

(precipitation mode). When operated in VCP-35, radar data is collected at 9 elevation angles 127 

(0.5°, 0.9°, 1.3°, 1.8°, 2.4°, 3.1°, 4.0°, 5.1°, and 6.4°) approximately every 7 minutes, whereas in 128 

VCP-215, data is collected for 15 elevation angles (VCP-35 angles, 8.0°, 10.0°, 12.0°, 14.0°, 129 

16.7°, and 19.5°) approximately every 6 minutes (NOAA National Weather Service et al., 2023). 130 

The WSR-88D is designed to detect atmospheric targets or precipitation-sized 131 

hydrometeors (diameter 𝐷 > 100 𝜇m) from backscattered electromagnetic energy in the 132 

microwave spectrum and the returned energy is used to determine the reflectivity (measured in 133 

dBZ) (Donald Burgess & Peter S. Ray, 1986). The Doppler Radar is also designed to detect how 134 

similarly the horizontally and vertically polarized pulses (of returned energy) are behaving; this 135 

similarity is quantified using the correlation coefficient (Doviak et al., 2000). Atmospheric 136 

targets that are highly variable in size and shape (such as debris or birds) will likely have less 137 

similarly behaving horizontal and vertical pulses, leading to lower correlation coefficient values 138 

(Melnikov et al., 2008; Zrnic et al., 2020); targets that are more uniform in size and shape (such 139 



manuscript submitted to JGR: Atmospheres 

 

as rain droplets or snow) will have more similarly behaving horizontal and vertical pulses, 140 

leading to higher correlation coefficient values (Liu & Chandrasekar, 2000).  141 

Radar reflectivity and correlation coefficient data were passed through the injection 142 

height estimation algorithm (details provided in Section 2.3) and hence used to estimate the 143 

injection heights of smoke aerosols.  144 

2.3 Injection height estimation algorithm 145 

The following injection height estimation algorithm uses Py-ART, a Python module 146 

developed for parsing weather radar data (Helmus & Collis, 2016). The radar data (i.e., the 147 

reflectivity and correlation coefficient data) was re-gridded into cartesian coordinates using Py-148 

ART and then passed through the injection height estimation algorithm developed for this study. 149 

The algorithm works by analyzing a pre-determined, three-dimensional grid around a fire. Here, 150 

we studied the 2019 Williams Flats Fire (located at 47.98°N latitude, -118.624°E longitude) 151 

(Peterson et al., 2022; Ye et al., 2021, 2022), with the pre-determined grid defined to extend 152 

from 47.85°N to 48.05°N latitude and -118.70°E to -118.20°E longitude. The horizontal grid 153 

spacing is considered to be ~1000 m, similar to the range resolution described in National 154 

Research Council (2002). The radar vertical resolution can be approximated by the difference 155 

between the height of the center of the beams at consecutive angles, which at 80 km distance is 156 

500-700m for the first four angles (0-2.5 km altitude) and increases from there (e.g., ~1 km 157 

resolution at ~4 km altitude, ~2 km resolution at 9-11 km altitude). Thus, the vertical resolution 158 

of the grid was set 500 m to get the most the radar vertical resolution at the lower levels. At each 159 

timestamp, the algorithm searches for vertical regions of continguous reflectivity exceeding or 160 

equal to a defined minimum reflectivity threshold, returning the maximum injection height if the 161 

reflectivity value falls below the minimum threshold (Figure 1a). For each (𝑥, 𝑦) position within 162 
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the pre-determined grid, the algorithm can search up to a height of 14727 m in 500 m increments 163 

(Note that the height of the radar is 727 m above sea level).  164 

 165 

Figure 1. Upper panel (a): Diagrammatic representation of initial version of the injection height 166 

estimation algorithm. (Left) The algorithm searches upwards for each grid square within the pre-167 

determined grid for regions of contiguous reflectivity, (Middle) the algorithm searches upwards 168 

iteratively if the current region satisfies the reflectivity threshold, (Right) the algorithm returns 169 

the last height for which the reflectivity threshold was satisfied if 2 ‘bad’ reflectivity values are 170 

retrieved. The algorithm allows a buffer of 2 ‘bad’ reflectivity values before retrieving the 171 

maximum height; case A depicts a contiguous reflectivity situation whereas case B depicts a 172 

(likely rare) discontiguous reflectivity situation. Lower panel (b): Similar to (a) but for the 173 

modified version of the injection height estimation algorithm. (Left) For each grid square, the 174 

algorithm iteratively searches upwards, (Middle) moving upwards if the reflectivity and 175 

correlation coefficient conditions are satisfied. (Right) The algorithm allows a buffer of 2 ‘bad’ 176 

reflectivity or correlation coefficient values before retrieving the maximum injection height.  177 

In previous studies, scientists utilized polarimetric data to identify smoke plumes, 178 

observing reflectivity values on the range of 10-25 dBZ (Lang et al., 2014; Zrnic et al., 2020). 179 

Therefore, drawing inspiration from existing literature, reflectivity threshold values for lofted 180 
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debris were tested in a range of 5-20 dBZ (Figure 2a). We considered 10 dBZ to be an 181 

appropriate minimum threshold as a 5 dBZ threshold generated heights that likely did not 182 

correspond to the smoke top since fire activity was very low between 14-19 UTC and thresholds 183 

of 15 dBZ and 20 dBZ tended to produce significantly lower heights for the more active fire 184 

period after 20 UTC (Ye et al., 2021). The 10 dBZ threshold is also consistent with the 185 

assumptions made in previous work (Jones & Christopher, 2009). 186 

 187 

Figure 2. Injection heights estimated on 2 August 2019 (UTC). (a) Heights estimated using 188 

different lower bounds of reflectivity values: 5 dBZ, 10 dBZ, 15 dBZ, and 20 dBZ. The 189 

appropriate minimum threshold chosen was 10 dBZ. (b) Heights estimated using minimum 190 
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reflectivity threshold of 10 dBZ and different upper reflectivity thresholds: 25 dBZ, 40 dBZ, and 191 

55 dBZ. (c) Initial (grey) and modified (orange) algorithms. The extremely high injection heights 192 

(upwards of 10 km above sea level) occur around the time the Williams Flats Fire began (dotted, 193 

blue vertical line), leading to the conclusion that the initial algorithm was likely picking up on 194 

the hydrometeors from the early-morning thunderstorm in the Colville Reservation, WA. The 195 

correlation coefficient constraint within the modified algorithm successfully reduces the heights 196 

retrieved. 197 

The Williams Flats Fire, first reported at 10:23 UTC on 2 August 2019, was ignited by 198 

lightning strikes associated with the thunderstorm ~80 km northwest of the Doppler Radar 199 

(KOTX) (Ye et al., 2021). Therefore, the initial algorithm (Figure 1a) ran the risk of retrieving 200 

heights of atmospheric targets whose reflectivity exceeded the minimum threshold of 10 dBZ 201 

and were likely not BBD, but instead were more likely the hydrometeors present in the 202 

thunderstorm that initiated the fire. Attempts were made to discriminate between BBD and 203 

hydrometeors by setting an upper bound on the reflectivity values (Figure 2b), but this did not 204 

help in discriminating between BBD and the hydrometeors from the thunderstorm. Hence, other 205 

approaches were tested. A correlation coefficient constraint was embedded within the algorithm 206 

to curb the possible overestimation of injection heights; heights were only retrieved if both the 207 

reflectivity and correlation coefficient conditions were met to improve the injection height 208 

retrievals when rain or snow is present (Figure 1b). Based on existing literature, the correlation 209 

coefficient values inside smoke plumes tend to be below 0.8 (Melnikov et al., 2008; Zrnic et al., 210 

2020) and rain or drizzle tends to have values above 0.9 (Liu & Chandrasekar, 2000), and thus a 211 

range of 0.2-0.9 was assumed for detecting BBD. Results from this modification are discussed in 212 

Sections 3 and 4. This modification proved to be effective in discerning between debris and 213 

hydrometeors as the injection heights retrieved for 2 August 2019 with the modified algorithm 214 

successfully eliminated the convective system (Figure 2c). 215 

2.4 Datasets used as reference for evaluation 216 

 The Differential Absorption Lidar (DIAL) – High Spectral Resolution Lidar (HSRL) 217 

(Hair et al., 2018) from DC-8 aircraft during the FIREX-AQ field campaign was used as 218 

reference. The DC-8 sampled the Williams Flats Fire plume on 3, 6, and 7 August 2019 (PST), 219 

capturing multiple phases of the fire. Images of eleven transects overpassing the Williams Flats 220 

Fire on these days can be found in Ye et al. (2021). The DIAL-HSRL system is capable of 221 
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providing measurements of aerosol depolarization (355, 532, 1064 nm), aerosol/cloud extinction 222 

(532 nm), and backscatter coefficients (355, 532, 1064 nm) above and below flight height at a 223 

temporal resolution of 10 seconds. Maximum smoke injection heights were derived based on the 224 

vertical gradients of 532 nm backscatter coefficients, and are used in this study (Ye et al., 2021). 225 

It should be noted that while the lidar footprint is narrow, the measuring strategy implemented in 226 

FIREX-AQ consisted on doing an overpass at altitude across the axis of the plume, followed by 227 

several plume crossings at increasing distances downwind of the fire (Warneke et al., 2023). 228 

Since DIAL-HSRL detects aerosols that do not settle immediately (as is likely the case with 229 

BBD), the measurement strategy allows us to say with confidence that the retrieved heights are 230 

an accurate representation of the whole plume.  231 

 Geostationary satellite imagery produced specifically for FIREX-AQ by the Florida State 232 

University team was used to provide context regarding smoke and aircraft location (Warneke et 233 

al., 2023). Airborne lidar and satellite imagery are available in the FIREX-AQ data repository 234 

(NASA/LARC/SD/ASDC, 2020).  235 

3 Results 236 

 3.1 Time series of injection heights 237 

 Using the injection height estimation algorithm (detailed in Section 2.3), an extended 238 

time series of the plume injection heights was retrieved for the 2019 Williams Flats Fire event 239 

(Figure 3). It should be noted that the time series captures the typical diurnal cycle of fires, with 240 

daily maximums occurring during the latter half of the day when the fire’s intensity and 241 

convective mixing is maximized (Jones & Christopher, 2009; Zrnic et al., 2020). We also note 242 

that despite regular retrievals of radar data, there are visible gaps in the extended time series. 243 

This is likely due to the weak reflectivity observed during the morning period, as such we may 244 

conclude that the buoyancy flux of the fire was not strong enough to lift sufficient BBD to meet 245 

the reflectivity threshold or the correlation coefficient constraint (Rodriguez et al., 2020; Tory et 246 

al., 2018). The time series also shows large differences between intermediate heights (i.e., 247 

heights within the 25-75th percentile range) and the maximum heights during the most intense 248 

periods of the diurnal cycles, sometimes reaching >6 km differences, which needs to be further 249 
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assessed with reference observations. 250 

 251 

Figure 3. Box and whisker plots depicting an extended time series of radar-derived smoke 252 

injection heights (2-10 August 2019) aggregrated over 3-hour intervals. Central, solid lines 253 

indicate the median, circles indicate the mean, boxes indicate the lower and upper quartiles, 254 

whiskers indicate the upper and lower deciles, and the crosses connected with solid lines indicate 255 

the maximums. The time series captures the diurnal cycle of fires, displaying that the daily 256 

maximum injection heights are present during the late afternoon period. Visible gaps in the time 257 

series occur when the reflectivity and correlation coefficient conditions are not satisfied or when 258 

there were less than 10 samples in each time interval.  259 

 3.2 Comparison to injection heights retrieved from airborne lidar data 260 

 To evaluate the algorithm’s accuracy in retrieving injection heights of BBD, they were 261 

compared to the injection heights derived from airborne lidar data from the 2019 FIREX-AQ 262 

campaign. The flight path of the aircraft (with the airborne lidar) tended to sample the whole 263 

extent of the plume, going beyond the pre-determined grid used to retrieve the radar-derived 264 

injection heights (the red box(es) in Figures 4a-c). Hence, the lidar-derived injection heights 265 

outside the pre-determined grid were removed for this comparison as BBD is expected to settle 266 

quickly and is therefore unlikely to match the smoke heights further away from the fire. Figure 5 267 

shows distributions of injection heights for 3, 6, and 7 August 2019 (PST), which include the 268 
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days when the aircraft was sampling this fire. 269 

 270 

Figure 4. Left panels (a) (c) (e): FIREX-AQ flight paths (solid yellow lines) and pre-271 

determined grid (red box) for flights on August 3, 6, and 7; Imagery from GOES-17 satellite 272 

imagery. The blue star represents the aircraft location at the time. Right panels (b) (d) (f): Maps 273 

of maximum injection heights derived from the radar data for the corresponding times.  274 
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 275 
Figure 5. Box and whisker plots (similar to Figure 3) of the injection heights derived from both 276 

radar (blue) and airborne lidar (red) data for each hour (local time) on (a) 3 August 2019, (b) 6 277 

August 2019, and (c) 7 August 2019. The number of data points for each hour is shown at the top 278 

of each panel, color-coded according to the corresponding box and whisker plot(s). For further 279 

details, see Table 1.  280 

Table 1. Distribution of hourly maximum (𝑅𝑚𝑎𝑥, 𝐿𝑚𝑎𝑥), mean (𝑅𝑚𝑒𝑎𝑛, 𝐿𝑚𝑒𝑎𝑛), and median 281 

(𝑅𝑚𝑒𝑑𝑖𝑎𝑛, 𝐿𝑚𝑒𝑑𝑖𝑎𝑛) injection heights derived from both radar and lidar data (in meters). The 282 

heights in the following table correspond to the maximum heights retrieved at the time the 283 

aircraft was airborne. Lidar-derived heights are retrieved according to the flight path and radar-284 

derived heights are retrieved within the pre-determined grid. All values are rounded to 3 285 

significant figures.  286 

Date 

(PST) 

Time 

(PST) 

𝑅𝑚𝑎𝑥  

(m) 

𝐿𝑚𝑎𝑥  

(m) 

𝑅𝑚𝑒𝑎𝑛 

(m) 

𝐿𝑚𝑒𝑎𝑛 

(m) 

𝑅𝑚𝑒𝑑𝑖𝑎𝑛  

(m) 

𝐿𝑚𝑒𝑑𝑖𝑎𝑛 

(m) 

𝑅75𝑡ℎ_𝑝 

(m) 

𝐿75𝑡ℎ_𝑝 

(m) 

𝑅90𝑡ℎ_𝑝 

(m) 

𝐿90𝑡ℎ_𝑝 

(m) 

14:00 5410 3310 3590 3020 3860 3010 4380 3220 5410 3310 
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3 Aug 

2019 

15:00 6450 4450 3480 3000 3340 3000 4380 3160 5410 3280 

17:00 5930 4450 3800 3220 3860 3100 4380 3420 4890 4000 

18:00 6450 4420 3280 3470 3340 3430 3860 3620 4380 4270 

19:00 5410 3940 3710 3230 3860 3070 4380 3550 4890 3910 

6 Aug 

2019 
14:00 5410 3970 3270 3280 3340 3250 3860 3470 4380 3700 

7 Aug 

2019 

16:00 9040 7090 5210 5230 5410 5130 6450 5770 6970 6890 

18:00 9560 7420 5420 5250 5410 5500 5930 5930 6970 6970 

19:00 9040 6340 4630 5330 4380 5320 5410 5530 6450 6040 

Mean bias [m] 1920 151 221 596 820 

Mean % bias 40.0% 5.7% 8.5% 17.1% 22.7% 

Mean error 

[m] 
1920 356 470 622 820 

Mean % error 40.0% 10.0% 13.3% 17.5% 22.7% 

 287 

 From Figure 5, it can be concluded that the distribution of maximum injection heights 288 

derived from radar data is significantly wider than the injection heights derived from the lidar 289 

data. The maximum injection heights retrieved from the radar are overpredicted by ~2000 m, a 290 

40% difference on average (Table 1). However, the mean, median, 75th and 90th percentiles seem 291 

to agree better with the injection heights derived from airborne lidar data (350-820 m mean 292 

error), though a general overprediction of heights persists (given the assumption that the airborne 293 

lidar data is the reference). Figure 5 also shows that the radar data is capable of capturing the 294 

increase in top injection heights from the 3rd and 6th of August to the 7th, thus capturing the day-295 

to-day variability. As mentioned above, the time series of heights derived from radar data has 296 

gaps when fire intensity is not strong enough, but shallow smoke aerosol injections into the 297 

boundary layer could still occur during these periods (as seen during 18-20 UTC on 6 August 298 

2019). On the other hand, each time free-tropospheric injections were detected by the lidar, the 299 

radar shows strong diurnal signals (Figure 5a, c). Thus, for applications using radar data to inject 300 

smoke into models, a fair assumption for injection when the radar signal is not available would 301 

be to place it within the boundary layer.  302 

 The overprediction by the injection height estimation algorithm (using radar data) could 303 

be occurring for several reasons. One potential reason for the overprediction is that the algorithm 304 

is retrieving maximum injection heights for each timestamp within the pre-determined grid 305 

whereas the lidar-derived injection heights are retrieved according to the flight path. Therefore, 306 

there is a possibility that the radar and lidar-derived injection heights are being retrieved for 307 

different locations. Hence, to make this comparison more robust, a location-specific injection 308 

height mapping was used. The injection heights were derived using the algorithm at the latitude-309 



manuscript submitted to JGR: Atmospheres 

 

longitude position of the aircraft. Reflectivity cross-sections over the flight track with the 310 

associated injection heights were plotted accordingly (Figure 6).  311 

 312 

Figure 6. Left panels: Temporal cross-sections of reflectivity according to portions of the flight 313 

paths on (a) 3 August 2019 and (b) 7 August 2019. Injection heights are super-imposed on the 314 

cross-section. Radar derived injection heights are highlighted in red for both plots. Lidar-derived 315 

injection heights within the pre-determined grid are highlighted as yellow triangles. All other 316 

lidar-derived heights are shown as white dots. Right panels: Similar to Figure 5, but using radar 317 

data mapped according to the flight track instead for (a) 3 August 2019, (b) 6 August 2019, and 318 

(c) 7 August 2019.  319 

Table 2. Further details on Figure 6. Similar to Table 1, but with radar data mapped according to 320 

the flight track for the appropriate days.  321 

Date 

(PST) 

Time 

(PST) 

𝑅𝑚𝑎𝑥  

(m) 

𝐿𝑚𝑎𝑥  

(m) 

𝑅𝑚𝑒𝑎𝑛 

(m) 

𝐿𝑚𝑒𝑎𝑛   
(m) 

𝑅𝑚𝑒𝑑𝑖𝑎𝑛   
(m) 

𝐿𝑚𝑒𝑑𝑖𝑎𝑛   
(m) 

𝑅75𝑡ℎ_𝑝  
(m) 

𝐿75𝑡ℎ_𝑝  
(m) 

𝑅90𝑡ℎ_𝑝  
(m) 

𝐿90𝑡ℎ_𝑝  
(m) 

3 Aug 

2019 

14:00 4380 3310 3550 3020 3860 3010 3990 3220 4380 3310 

15:00 3860 4450 3170 3000 3600 3000 3860 3160 3860 3280 

17:00 5930 4450 3310 3220 3340 3100 3860 3420 4060 4000 

18:00 2300 4420 2300 3470 2300 3430 2300 3620 2300 4270 

19:00 3340 3940 2730 3230 2820 3070 3340 3550 3340 3910 
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6 Aug 

2019 
14:00 

2820 3970 2300 3280 2300 3250 2820 3470 2820 3700 

7 Aug 

2019 

16:00 6450 7090 5000 5230 4890 5130 5410 5770 5930 6890 

18:00 9040 7420 6230 5250 5930 5500 6970 5930 8110 6970 

19:00 7490 6340 4460 5330 3340 5320 5410 5530 6810 6040 

Mean bias [m] 24.4 -220 -270 32.2 -84.4 

Mean % bias -1.0% -6.1% -5.4% 0.8% -2.0% 

Mean error 

[m] 1160 613 741 623 889 

Mean % error 24.4% 16.1% 19.6% 16.2% 19.9% 

  322 

 After the location-specific mapping, we note that the maximum heights are much closer 323 

together within the pre-determined grid around the fire (Table 2), with the mean error dropping 324 

to 1160 m and near 0 bias. While bias is reduced, similar errors perist for other metrics (mean, 325 

median, and percentiles) (610-890 m). We also note that there are still some instances where the 326 

maximum injection height is largely overpredicted (e.g., 00 UTC on 4 August 2019, 01-02 UTC 327 

on 8 August 2019 in Figure 3). Previously mentioned in Section 2, the maximum injection 328 

heights for the whole domain should not substantially deviate from the lidar-derived injection 329 

heights due to the sampling strategy and the relatively low settling velocities of smoke aerosols. 330 

Thus, we hypothesize that the overprediction of maximum injection heights observed by the 331 

radar is due to outliers that are present throughout the time period of the fire. A reason for this 332 

could be the coarse vertical resolution of the radar which is 1-2 km for these heights (Section 333 

2.3). Thus, using the mean, median, 75th percentile, and 90th percentile heights appears to be a 334 

more reliable use of radar data as resulting errors and biases are well within the expected radar 335 

resolution.  336 

 Figure 6 also shows that BBD (which is much larger and heavier than other intermediate 337 

particles) is settling or sinking much faster as opposed to the smoke particles that are likely to 338 

remain suspended for much longer, which could create differences in the injection heights 339 

recorded for downwind regions and contribute to the errors. Another minor note is that the radar 340 

records data approximately every 6-7 minutes for extended period of time, but the airborne lidar 341 

records data continuously for shorter periods of time–the time comparison is not exact, 342 

introducing some uncertainty in this comparison. Also important to note is that the grid spacing 343 

of ~1000 m within the pre-determined grid could be impacting radar-derived results and that the 344 
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radar itself may have outliers and artifacts that contribute to discrepencies in this comparison, 345 

adding to the overprediction of heights.  346 

Overall, usage of these retrievals is only recommended in the vicinity of the fire, for 347 

which the overall, average percentage difference difference was small (Table 2). Further, to 348 

capture the maximum injection heights of a fire with radar retrievals over the whole grid, an 349 

appropriate percentile (of the radar-derived heights) would need to be determined. Mean and bias 350 

metrics were computed using data from Table 1 using the lidar-derived maximum heights and 351 

the 75th-90th percentiles of radar-derived heights, resulting in ~600 m mean error and bias 352 

ranging from -2% to 13%. Hence, radar-derived heights within the 75th-90th percentile range 353 

would appropriately capture the maximum injection heights, given the >1 km expected 354 

resolution at these heights.  355 

One characteristic of the 2019 Williams Flats Fire event was the occurrence of fire-356 

generated thunderstorms (pyro-cumulonimbus or ‘pyroCb’ for short) around 06 UTC on 8 357 

August 2019 and 00 UTC on 9 August 2019 (Peterson et al., 2022). The DC-8 aircraft flew on 8 358 

August 2019 and sampled the latter pyroCbs. Lidar retrievals for these flights were not included 359 

in the analysis given that the aircraft sampled smoke and anvils mostly downwind of the pre-360 

determined grid, primarily due to safety issues. However, the radar-derived heights can be 361 

compared to the anvil heights derived in Ye et al., (2021), which are between 9-10 km during 00-362 

03 UTC on 9 August 2019. Shown in Figure 3, the maximum heights for this temporal range are 363 

~13 km, showing a similar overprediction as the other days. However, the heights in the 75th-90th 364 

percentiles are within the 5-8 km range, below the maximum injection heights. Thus, a larger 365 

percentile may need to be used to better capture the top injection heights for pyroCbs.  366 

4 Conclusions 367 

 We have shown that it is possible to fully resolve the diurnal and day-to-day behavior of 368 

wildfires using WSR-88D dual polarization data to estimate the injection heights of smoke 369 

plumes using BBD as a surrogate for smoke aerosol particles around the source of the fire. The 370 

injection height estimation algorithm, which was constructed with the help of previous 371 

observations of polarimetric data characteristic to smoke plumes (i.e., Reflectivity 𝒁 ≥ 𝟏𝟎 dBZ 372 

and correlation coefficient 𝟎. 𝟐 < 𝑪. 𝑪. < 𝟎. 𝟗), was able to estimate the injection heights of BBD 373 
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at regular time intervals for the whole life-span of a fire. These extended time series of injection 374 

heights derived from the radar data depicted a strong diurnal variability of injection heights, with 375 

the deepest smoke injection during the latter half of the day. 376 

 To validate the injection height estimation algorithm, the derived injection heights were 377 

compared to injection height retrievals from airborne lidar data. For a given time, the radar data 378 

was used to retrieve the maximum injection heights within the pre-determined grid whereas the 379 

lidar data was retrieved along the flight path. Results indicate that that statistical metrics such as 380 

the mean, median, 75th percentile, and 90th percentile heights were well captured (350-820 m 381 

mean error). However, the maximum injection heights were consistently over predicted (40% on 382 

average) likely due to outliers resulting from the coarsening of the radar vertical resolution with 383 

higher altitude. Reflectivity profiles were plotted over time according to the flight path of the 384 

aircraft; these location-specific injection height retrievals within the vicinity of the fire yielded 385 

better results for maximum injection heights but similar errors for other metrics. Results show 386 

that the true maximum smoke injection heights are generally correspond to the radar heights 387 

between the 75th and 90th percentile, except for pyroCbs for which a larger percentile value may 388 

need to be determined.  389 

 While radars allow for the retrieval of real-time smoke injection measurements and for 390 

the analyses of the diurnal behavior of smoke plumes, several sources of uncertainty persist. 391 

Location-specific comparisons of injection heights derived from both radar and lidar data seem 392 

to indicate that as distance from the source of the fire increases, the accuracy of the injection 393 

heights (estimated form the radar data) decreases. Further work may involve combining data 394 

from several Doppler Radars and accounting for how debris particles are likely to behave when 395 

suspended in the atmosphere using numerical models. Another source of uncertainty would be 396 

whether the reflectivity and correlation coefficient thresholds are optimal for the accurate 397 

estimation of injection heights. Currently, these values have been chosen using prior 398 

observations of polarimetric data, however since reflectivity and correlation coefficient values 399 

vary from fire to fire, other classifiers need to be explored. Future work will also need to 400 
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evaluate the skill of estimating injections from radar data against other methods of estimating 401 

injection heights, such as those from satellites that use passive remote sensing.  402 

 While having inherent uncertainties, the close to full-time coverage of radar-derived 403 

smoke injection heights from operational weather radars has strong potential to help monitor the 404 

conditions of fires in a real-time manner. Additionally, it can be used in a variety of applications 405 

including the evaluation of smoke injection approacjes in the context of air quality and 406 

atmospheric composition modeling (Thapa et al., 2022; Ye et al., 2021), supporting the 407 

identification of pyroconvection (Peterson et al., 2022), and assessing historical trends of smoke 408 

injection (Wilmot et al., 2022).  409 
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manuscript, is archived by the National Aeronautics and Space Administration, U.S. Government 422 

(NASA/LARC/SD/ASDC, 2020). GOES-17 satellite imagery (used in some figures) is also 423 

available in the FIREX-AQ repository.  424 

The code for the algorithm, figures, tables, and data analysis are written in Python 425 

(Python version 3.9.7), available under the license https://www.python.org and MATLAB 426 

version R2020b (The MathWorks Inc., 2020), available at https://www.mathworks.com. The 427 

Python code is written with the help of several libraries, including NumPy version 1.21.2 (Harris 428 

et al., 2020) under the license https://numpy.org, Matplotlib version 3.4.3 (Hunter, 2007) under 429 

the license https://www.matplotlib.org, SciPy version 1.2.1 (Virtanen et al., 2020) under the 430 
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