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Abstract

The ‘super-station’ approach has been adopted since 1980s as a pragmatic method of improving extreme-value predictions by

grouping short-length datasets from several measurement stations to become a larger dataset to reduce uncertainties due to

random sampling variation. El Rafei et al. (2023, https://doi.org/10.1029/2023GL105286) analyzed reanalysis and randomly

generated wind extremes datasets and claimed that this technique can introduce unexpected biases in typical situations. We

demonstrate by Monte-Carlo simulation, assuming the same number of grouped stations and data lengths used, that applying

the grouping technique to samples from homogeneous datasets does not lead to biased prediction of extremes. In addition,

the grouping technique effectively reduces the uncertainty and sampling errors that result from short-length datasets from

individual stations of consistent meteorology.
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intervals (ARIs).  We use Monte-Carlo simulated extreme wind speeds to illustrate the 42 
approach, as employed by El Rafei et al (2023). 43 

2 Comments on El Rafei et al (2023) 44 

El Rafei et al (2023) have used convective wind gusts in New South Wales in Australia as 45 
examples and concluded that the grouping approach leads to biases in estimates of 46 
geophysical variables with high ARIs.   Thus, in their ‘Conclusion’ section, the authors state: 47 
“The superstation fit tends to the highest levels suggested by any of the pooled locations and 48 
this bias increases with longer recurrence intervals”.  However, several questions come to 49 
mind with respect to the analyses by El Rafei et al. 50 

The authors have not used recorded and corrected surface wind data, but instead distributions 51 
from BARRA-SY reanalysis.  When processing recorded anemometer data from surface 52 
weather stations, it is necessary to correct for terrain and topography (e.g. Holmes, 2016); 53 
however it is not clear how this is done with the reanalysis-derived gusts.  Are uncorrected 54 
terrain and topographic effects a reason for the ‘speckling’ in Figure 1A? 55 

Secondly the data set only extends to 23 years (1996 to 2019).  The ‘speckled’ values in 56 
Figure 1A derived from such a short period therefore themselves contain significant sampling 57 
errors.   58 

Thirdly, the 50 km by 50 km group size is relatively small.  Although individual convective 59 
downburst events are smaller, they often occur sequentially in multiple cells (e.g. ‘squall 60 
lines’) that affect much larger areas. A good example is the event in South Australia in 61 
September 2016 that caused failures of several transmission lines (Australian Bureau of 62 
Meteorology 2016). 63 

The simulation analysis leading to Figure 2 of their paper is also puzzling.  The authors have 64 
deliberately varied the parameters of the underlying probability distributions when generating 65 
synthetic data.  Hence, the combined data is heterogeneous.  Is it then legitimate to make 66 
conclusions about a grouping method that assumes homogeneity, using inhomogeneous 67 
synthetic data? 68 

El Rafei et al noted that: “… These superstations represent specific geographical areas 69 
where stations with meteorological consistency are grouped together…,”.  Therefore, all the 70 
locations where the datasets are recorded should be ensured as having one and the same 71 
underlying statistical distribution which randomly generates the data points grouped.    72 

Because of random sampling variation, however, the extent of uncertainty for estimating the 73 
underlying statistical distribution depends on the length of the dataset. This manifests as the 74 
extent of uncertainty in the estimated distribution parameters: the longer the dataset, the 75 
narrower the confidence intervals (CI’s) of the distribution parameters. For example, as 76 
illustrated in the following section, individual station data lengths of 23 years and 1,000 77 
years, as used for the results shown respectively in Figures 1 and 2 in El Rafei et al (2023), 78 
lead to different conclusions about whether a specific distribution is accepted as the 79 
underlying model of the data. 80 

Five Generalized Pareto distributions (GPD) were used in Figure 2A by El Rafei et al. These 81 
had the same exceedance rate (𝜆 = 5), threshold (𝑢଴ = 20 m/s) and shape parameter 82 
(𝜉 = −0.1), but different scale parameters (𝜎௜ = 2.75 + 0.25𝑖, 𝑖 = 1,2, . . . ,5).  83 



El Rafei et al (2023) also claimed, at the end of Section 3 of that paper, that: “Both (GPD and 84 
GEV) show a similar level of bias for all record lengths, although the biases are slightly 85 
smaller if GPD is used instead of the usual (for rainfall) GEV.” The GPD and GEV have 86 
been known to possess a duality relationship: for a given GPD model, an equivalent GEV 87 
model can be found, and vice versa (Wang and Holmes, 2020). That is, it is unnecessary to 88 
reprocess a block-maxima dataset into a peaks-over-threshold. For example, for the model 89 
with 𝜎ଷ = 3.5 in Figure 2A of their paper, the parameters of its equivalent GEV are 90 𝑢଴೒ = 25.2, 𝜎௚ = 2.98, and 𝜉௚ = −0.1. 91 

3 Validity check of the grouping approach by simulations 92 

To check of validity of the biases by the super-station approach claimed by El Rafei et al, 93 
their third GPD model (i.e. with 𝜎ଷ = 3.5) is used here to generate synthetic data. We follow 94 
the treatment of their paper to generate by Monte-Carlo simulation 23 years of data for 25 95 
hypothetical stations.  Figure 1a shows the generated data (thin black lines) and the resulting 96 
super-station data (red circular points) along with the five theoretical GPD models (thick 97 
colored lines) in the wind gust versus log-ARI plot.  Similarly, because Figure 2A of the 98 
paper by El Rafei et al used 1,000 years of data to obtain the super-station data, we have 99 
generated 1,000 years of data for 25 hypothetical stations, as shown in Figure 1b. 100 

 101 

 102 

Figure 1: Simulated gust data of 25 hypothetical stations and super-station for (a) 23 years; 103 
and (b) 1,000 years. 104 
 105 

Figure 1 clearly reveals that, for wind gusts given an ARI, the dataset of 23 years spreads 106 
much more widely than the dataset of 1,000 years. This is a manifest of shorter records being 107 
more seriously affected by sampling variation than of longer records. The spread of the 23-108 
year data tracks of the 25 stations covers essentially all the theoretical gust speed values of 109 
the five models. That is, given a sample of 23-year data from any individual station, one 110 
cannot assert with high confidence which of the five models is the underlying model. On the 111 
contrary, with 1,000-year data from an individual station, in the overwhelming cases one is 112 

a b



able to deduce with sufficient confidence the third model is the model which generates the 113 
dataset. In addition, the super-stations (red circular points) shown in the two cases do not 114 
exhibit a systematic tendency of biases towards more hazardous models, as claimed by the 115 
authors. 116 

To see more closely the uncertainties in 𝜎ଷ, 10,000 stations are generated for datasets of 23 117 
and 1,000 years. They have been fitted to the GPD model with the shape parameter being the 118 
only unknown. The probability densities of the estimated 𝜎ଷ are shown in Figure 2, in which 119 
the thick and thin red lines represent 67 % and 95 % CIs, respectively. Figure 2a shows that 120 
the 95 % CI for 𝜎ଷ for 23-year data from one station is [2.93, 4.08], covering all the 121 
shape-parameter values (ranging from 3 to 4) of the five models. This implies that, with 23 122 
years of data in one station, we fail to reject that any of the five models could be the true 123 
model. In contrast, the 95 % CI of 𝜎ଷ for 1,000 years data from one station is [3.41, 3.59] 124 
(Figure 2c), which establishes with statistical significance that the third model is the true one. 125 

 126 

 127 

Figure 2: Probability densities and confidence intervals of 𝜎ଷ for datasets of (a) 23 years at 128 
one station; (b) 23 years at 25 grouped stations; (c) 1,000 years at one station; and (d) 1,000 129 
years at 25 grouped stations. 130 
 131 

Comparing Figures 2a and c to Figures 2b and d (produced by grouping data from the 25 132 
hypothetical stations to form super-stations), respectively, illustrates the advantageous effect 133 
by data grouping in reducing the variance of 𝜎ଷ, which is also implied in Figure 1.  134 
Importantly, all the point estimates (red circles) do not show biases for the true value of 𝜎ଷ 135 
due to data grouping. 136 

Another implication of Figure 2 is that the 1,000-year datasets generated by the five different 137 
models, as done in El Rafei et al (2023), would indicate clearly that they are generated by 138 

ba 

c d



five distinct models, which mean indeed the five datasets are from heterogeneous 139 
meteorology. Grouping the five datasets into a super-station would violate the basic 140 
requirement that they are recorded in regions of consistent meteorology, which is the same 141 
basic requirement for estimating the common inferential statistics (e.g. mean and standard 142 
deviation) of a dataset drawn from a defined sample space. Therefore, the claimed biases 143 
observed in Figure 2A of the paper by El Rafei et al arise from treating datasets from 144 
obviously different sample spaces as if they were drawn from one sample space, but not 145 
biases due to the application of super-station approach. This also indicates the importance of 146 
clearly identifying the sample space of subject-matter problem before conducting a proper 147 
statistical analysis. 148 

 149 

4 Summary 150 

We have shown by simulation of samples from the same underlying probability distribution, 151 
i.e. homogeneous datasets, that the grouping technique does not lead to biased prediction of 152 
extremes, as previously claimed by El Rafei et al (2023).  However, the technique is shown 153 
to reduce the uncertainty and sampling errors resulting from prediction from datasets from 154 
individual stations of short length, provided that datasets from similar climates are grouped, 155 
and that they are corrected for non-standard terrain and for any effects of local topography. 156 
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