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Abstract

This paper offers a comprehensive examination of Fermat’s Last Theorem , a statement in number theory that captivated
mathematicians for over 350 years until its proof by Andrew Wiles in 1994. Beginning with historical context surrounding Pierre
de Fermat and the theorem’s formulation , the paper meticulously reviews the mathematical foundations underlying the theorem,
including Diophantine equations, modular forms, and elliptic curves. Special attention is given to Wiles’ groundbreaking use of
the Taniyama-Shimura-Weil conjecture and Ribet’s theorem to provide a complete proof, including the resolution of an initial
flaw in the proof. Furthermore, the paper explores the theorem’s far-reaching implications in number theory, algebraic geometry,
cryptography, and computer science. The study reveals that Fermat’s Last Theorem is not just an isolated mathematical
problem but a testament to the depth, beauty, and inter-connectedness of mathematics, with broad impact across various

scientific disciplines.
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Abstract

This paper offers a comprehensive examination of Fermat’s Last The-
orem, a statement in number theory that captivated mathematicians for
over 350 years until its proof by Andrew Wiles in 1994. Beginning with
historical context surrounding Pierre de Fermat and the theorem’s for-
mulation, the paper meticulously reviews the mathematical foundations
underlying the theorem, including Diophantine equations, modular forms,
and elliptic curves. Special attention is given to Wiles’ groundbreaking use
of the Taniyama-Shimura-Weil conjecture and Ribet’s theorem to provide
a complete proof, including the resolution of an initial flaw in the proof.
Furthermore, the paper explores the theorem’s far-reaching implications in
number theory, algebraic geometry, cryptography, and computer science.
The study reveals that Fermat’s Last Theorem is not just an isolated
mathematical problem but a testament to the depth, beauty, and inter-
connectedness of mathematics, with broad impact across various scientific
disciplines.

1 Introduction

Fermat’s Last Theorem, a statement in number theory that was first formulated
by Pierre de Fermat in 1637 [36], has been one of the most celebrated and studied
theorems in the history of mathematics. The theorem asserts that there are no
three positive integers a, b, ¢ that can satisfy the equation a™ + b = ¢" for any
integer value of n greater than 2 [10]. While the theorem may appear simple
and straightforward, its proof eluded mathematicians for more than 350 years,
making it one of the most enduring challenges in the field [7].

The theorem has been a focal point of research in number theory, inspiring
a multitude of mathematical techniques and theorems [I5]. It has connections
to modular forms, elliptic curves, and algebraic equations, among other areas
[12]. The monumental proof by British mathematician Andrew Wiles in 1994
not only resolved this longstanding problem but also introduced groundbreak-
ing techniques and methods that have had far-reaching implications in various
branches of mathematics and computer science [46].

This paper aims to provide a comprehensive overview of Fermat’s Last Theo-
rem, delving into its history, the formal statement of the theorem, the intricacies



of its proof, and its modern-day implications [6]. We will explore the role of
modular forms, elliptic curves, and Ribet’s theorem in the proof, as well as the
theorem’s applications in cryptography and other areas of mathematics [43].

The journey through Fermat’s Last Theorem is not just a tale of a math-
ematical problem solved; it is a testament to the depth, beauty, and intercon-
nectedness of mathematics [37]. As we navigate through the complexities of the
theorem and its proof, we will gain insights into the rich tapestry of modern
mathematics [27].

2 Historical Context

2.1 The Life of Pierre de Fermat

Pierre de Fermat was born between October 31 and December 6, 1607, in
Beaumont-de-Lomagne, France. His father, Dominique Fermat, was a wealthy
leather merchant and served as one of the four consuls of Beaumont-de-Lomagne
[26] [8]. Pierre had one brother and two sisters and was almost certainly brought
up in the town of his birth [26].

Fermat attended the University of Orléans, where he received a bachelor’s
degree in civil law in 1626 [8]. He then moved to Bordeaux, where he began
his first serious mathematical researches. In Bordeaux, he was in contact with
mathematicians like Beaugrand and Etienne d’Espagnet, with whom he shared
mathematical interests [26].

In 1630, Fermat bought the office of a councilor at the Parliament of Toulouse,
one of the High Courts of Judicature in France [8]. He held this office for the
rest of his life, and it entitled him to change his name from Pierre Fermat to
Pierre de Fermat [20].

Fermat is best known for his Last Theorem, which he described in a note in
the margin of his copy of Diophantus’ ”Arithmetica” [§]. The theorem states
that no three positive integers a, b, ¢ can satisfy the equation a™ + ™ = ¢ for
any integer value of n greater than 2 [19].

Despite his significant contributions to mathematics, much of Fermat’s work
was not published during his lifetime. He often communicated his findings in
letters to other mathematicians like Blaise Pascal and Marin Mersenne, leaving
it to future generations to rediscover and formally prove many of his theories
26, [19].

Fermat’s work laid the foundation for the development of several areas of
mathematics, and his methods and theorems continue to be studied and applied
in various scientific disciplines today [8 [19].

2.2 The Birth of the Theorem

Fermat’s Last Theorem was first formulated by Pierre de Fermat in 1637. The
theorem was introduced in a rather unusual manner; Fermat wrote it as a
marginal note in his copy of the book ”Arithmetica” by Diophantus [29]. The



note was written in Latin and stated that he had discovered ”a truly marvelous
proof of this proposition which this margin is too narrow to contain” [16].

The theorem itself is a statement in number theory that asserts that no three
positive integers a, b, ¢ can satisfy the equation a™+b" = ¢” for any integer value
of n greater than 2. The theorem was not published in any of Fermat’s works,
and it was only after his death that his son, Samuel, found the famous marginal
note while going through his father’s papers [29].

The lack of a proof for the theorem and the intriguing note left by Fermat led
to much speculation and effort to prove it, marking the beginning of a journey
that would span more than three and a half centuries. Despite the absence of
a formal proof, the theorem captivated the imagination of mathematicians and
amateurs alike, inspiring a plethora of proofs for specific cases and laying the
groundwork for future research in number theory [16].

Fermat himself only proved the case for n = 4, and it was Euler who first
extended the proof to n = 3. However, a general proof eluded mathematicians
until Andrew Wiles provided one in 1994, thereby resolving one of the most
famous problems in the history of mathematics [29] [16].

2.3 Early Attempts and Partial Proofs

Fermat’s Last Theorem, originally stated by Pierre de Fermat in 1637, remained
unproven for more than three centuries. During this period, various mathemati-
cians made significant contributions by proving the theorem for specific expo-
nents. One of the earliest proofs was provided by Fermat himself for the case
n = 4, using a method known as infinite descent [21].

In the 19th century, Sophie Germain made substantial contributions by in-
novating an approach that was relevant to an entire class of primes. Her work
laid the foundation for future mathematicians to extend the proof to cover all
regular primes [40].

Ernst Kummer further extended this work in the mid-19th century, proving
the theorem for all regular primes. This left irregular primes to be analyzed
individually. Over time, mathematicians were able to extend the proof to cover
all prime exponents up to four million [g].

Further advancements were made in the 20th century, particularly around
1955, when Japanese mathematicians Goro Shimura and Yutaka Taniyama sus-
pected a link between elliptic curves and modular forms. This eventually led to
Andrew Wiles providing the first complete proof of the theorem in 1995 [26].

For those interested in a more in-depth study, H.M. Edwards’ "Fermat’s
Last Theorem: A Genetic Introduction to Algebraic Number Theory” is a rec-
ommended read [40].

2.4 Taniyama-Shimura-Weil Conjecture

The Taniyama-Shimura-Weil Conjecture, now formally proven and referred to
as the Modularity Theorem, was a groundbreaking hypothesis in the realm of
number theory and algebraic geometry. The conjecture asserts that every elliptic



curve E over the field of rational numbers Q can be parameterized by modular
forms. Mathematically, an elliptic curve E over Q is defined by the equation

y? =23 + Az + B,

where A, B € Q [25].

The conjecture was initially met with skepticism and was considered a part
of what mathematicians colloquially termed ”moonshine mathematics.” How-
ever, it gained significant attention when Andrew Wiles recognized its deep
connection to Fermat’s Last Theorem, which can be expressed as

a +b" £ forn>2,a,b,c€Zt.

Wiles hypothesized that if the Taniyama-Shimura-Weil Conjecture could be
proven true for a specific class of semistable elliptic curves, then Fermat’s Last
Theorem would follow as a corollary [47].

Wiles dedicated several years to this complex problem, often working in
isolation. His work involved intricate mathematical objects like modular forms,
which can be represented as complex functions f(z) satisfying

(25) =@+ atse),

where a, b, c,d € Z and k is the weight of the modular form [47].

Ultimately, Wiles succeeded in proving the conjecture for a specific class
of elliptic curves, thereby providing the first complete proof of Fermat’s Last
Theorem. His work not only resolved a centuries-old problem but also validated
the Taniyama-Shimura-Weil Conjecture for semistable elliptic curves [25] [47].

2.5 Andrew Wiles and the Final Proof

Andrew Wiles, a British mathematician, achieved a monumental milestone in
the history of mathematics by proving Fermat’s Last Theorem in 1994 [25] [3].
His proof was the culmination of a seven-year solitary endeavor, during which
he worked in secrecy in his attic [25].

Wiles’s approach to the proof was groundbreaking. He utilized the Shimura-
Taniyama-Weil Conjecture, which posits a deep connection between elliptic
curves and modular forms [35]. The conjecture was initially considered almost
impossible to prove with the existing mathematical knowledge. Wiles’s proof
not only confirmed the conjecture for semistable elliptic curves but also, as a
corollary, established the truth of Fermat’s Last Theorem. Mathematically, this
can be expressed as:

a® +b" #c" forn>2,a,b,c€ZT

His proof employed sophisticated techniques from algebraic geometry and num-
ber theory, including the use of modular lifting theorems and deformation rings
[35].



However, the journey was not without hurdles. After his initial announce-
ment in 1993, a gap was discovered in the proof. With the help of his former
student, Richard Taylor, Wiles was able to correct the error within a year [25].

Wiles’s proof had a profound impact on number theory and opened new
avenues for research. His work was recognized with numerous honors, including
the Abel Prize, often considered the "Nobel Prize of Mathematics” [25].

3 Mathematical Foundations

3.1 Basic Number Theory

Number theory, a branch of pure mathematics, is devoted to the study of integers
and more generally to objects built out of them. One of the central concepts in
number theory is that of a prime number. A prime number is an integer greater
than 1 that has no positive divisors other than 1 and itself. The Fundamental
Theorem of Arithmetic states that every integer greater than 1 is either a prime
number or can be uniquely factored into prime numbers [16].

n=pi' X pg? X ... xXpr* (1)

where p1, pa, ..., pg are prime numbers and ey, ea, ..., e are their respective
exponents.

Another important concept is that of modular arithmetic. In modular arith-
metic, numbers "wrap around” upon reaching a certain value, known as the
modulus. The notation ¢ = b mod m means that a and b leave the same
remainder when divided by m.

a=b modm <= m]|(a—0) (2)

Fermat’s Little Theorem is often used in number theory and is particularly
relevant to the proof of Fermat’s Last Theorem. It states that if p is a prime
number, then for any integer a such that 0 < a < p,

a®'=1 modp (3)

These concepts are foundational in understanding the proof of Fermat’s Last
Theorem, as they are extensively used in the proof’s modular forms and elliptic
curves [45].

3.2 Algebraic Equations

Diophantine equations, named after the ancient Greek mathematician Diophan-
tus, are polynomial equations for which integer solutions are sought. These
equations play a crucial role in number theory and are intimately connected to
Fermat’s Last Theorem [28] [9].

One of the most famous Diophantine equations is the Pythagorean equation
a? + b?> = ¢?, which has an infinite number of integer solutions. However,



Fermat’s equation z™ + y™ = 2" for n > 2 has no integer solutions, which is the
essence of Fermat’s Last Theorem.

The study of Diophantine equations has led to various techniques and the-
orems that are instrumental in understanding the properties of numbers. For
example, the Modular Arithmetic method is often employed to find the integer
solutions of these equations [23].

Elliptic curves, a special class of Diophantine equations, have been instru-
mental in the proof of Fermat’s Last Theorem. These curves are defined by
equations of the form y? = 23 + ax + b, and their properties have been exten-
sively studied in the context of the theorem.

In summary, Diophantine equations serve as the algebraic foundation upon
which the complexities of Fermat’s Last Theorem are built. Their study has
not only provided insights into the theorem itself but has also enriched the field
of number theory as a whole.

3.3 Modular Forms

Modular forms are complex analytic functions defined on the upper half-plane,
satisfying specific transformation properties under the action of the modular
group. Mathematically, a modular form f of weight k for the modular group I'
is a function that satisfies:

P = atse)

for all (CCL Z) el.

Andrew Wiles utilized modular forms to prove Fermat’s Last Theorem by
establishing a connection between elliptic curves and modular forms, known as
the Modularity Theorem. This theorem states that every elliptic curve over
the rational numbers is modular, meaning it can be associated with a unique
modular form [38]. The Modularity Theorem was the cornerstone of Wiles’s
proof, as it allowed him to transfer the problem from the realm of elliptic curves
to the well-understood theory of modular forms.

Further, modular forms have applications beyond Fermat’s Last Theorem,
including in string theory and the sphere packing problem [5]. The study of
modular forms continues to be an active area of research, contributing to various
fields of mathematics and theoretical physics.

3.4 Elliptic Curves

Elliptic curves are algebraic structures that have found applications in various
branches of mathematics and computer science, including number theory and
cryptography [34]. In the context of Fermat’s Last Theorem, they play a pivotal
role, particularly through their deep connection with modular forms [I1].



An elliptic curve E over the field of rational numbers Q is defined by a cubic
equation of the form y? = 2% + Az 4+ B, where A, B € Q and the discriminant
A = —16(4A3 + 27B?) # 0 to ensure the curve is non-singular [17].

The set of rational points on an elliptic curve, denoted E(Q), forms an
abelian group. The point at infinity serves as the identity element of this group.
The structure of this group has been a subject of extensive study in number
theory [34].

The Taniyama-Shimura-Weil conjecture, which was ultimately proved by
Andrew Wiles, posits that every elliptic curve over Q is modular [47]. This
means that there exists a modular form that corresponds to each elliptic curve,
and the Fourier coefficients of this modular form encode information about the
curve’s rational points [11].

Wiles’ proof of Fermat’s Last Theorem hinged on this modularity property.
He showed that if there existed a counterexample to Fermat’s Last Theorem, it
would lead to the construction of a non-modular elliptic curve, thereby contra-
dicting the Taniyama-Shimura-Weil conjecture [47].

The study of elliptic curves and their properties has far-reaching implica-
tions. Their role in the proof of Fermat’s Last Theorem serves as a testament
to the interconnectedness of various mathematical disciplines [34].

4 The Statement of the Theorem

4.1 Formal Statement

Fermat’s Last Theorem, one of the most famous theorems in the history of
mathematics, posits that no three positive integers a, b, ¢ can satisfy the equation
a™ +b" = ¢” for any integer value of n greater than 2. This conjecture was first
scribbled by Pierre de Fermat in the margin of his copy of an ancient Greek
text, "Arithmetica,” in 1637. Fermat added that he had discovered "a truly
marvelous proof of this proposition which this margin is too narrow to contain”
14, 32].

4.1.1 Special Cases and Generalizations

Over the centuries, the theorem has been proven for specific cases. Euler proved
the theorem for n = 3, and Fermat himself had proven the case for n = 4.
These special cases were solved using methods from elementary number theory
[39, 2]. However, the general case eluded mathematicians for more than 350
years, becoming one of the most enduring challenges in the field.

4.1.2 Modern Formulations

In modern terms, the theorem is often stated using the language of algebraic
number theory and modular forms. These mathematical structures were instru-
mental in Andrew Wiles’ groundbreaking proof of the theorem in 1994. Wiles’
proof utilized modular forms to establish a link between elliptic curves and



modular forms, thereby proving the Taniyama-Shimura-Weil [33] conjecture for
semistable elliptic curves, which in turn proved Fermat’s Last Theorem.

4.1.3 Impact and Relevance

The proof of Fermat’s Last Theorem had far-reaching implications, not just in
number theory but also in other areas of mathematics and cryptography [39, 2].
Its proof marked a significant milestone, resolving a problem that had been open
for more than three centuries and demonstrating the depth and interconnected-
ness of modern mathematics.

5 The Proof

5.1 Modular Elliptic Curves

Modular elliptic curves are central to the proof of Fermat’s Last Theorem. An-
drew Wiles, in collaboration with Richard Taylor, proved that every semistable
elliptic curve over the rational numbers is modular [22]. This monumental result
confirmed the Shimura-Taniyama-Weil conjecture for semistable elliptic curves,
which in turn implied Fermat’s Last Theorem.

5.1.1 Wiles-Taylor Method

Wiles and Taylor’s method involved a deep understanding of the modularity of
elliptic curves. They utilized modular forms to construct a proof that was both
intricate and elegant. The proof also made use of deformation theory and Hecke
algebras [4]. The key equation that Wiles used can be represented as follows:

E:y*=2*+Az+B (4)

where E is an elliptic curve, and A and B are coefficients that satisfy 443 +
27B? £ 0.

5.1.2 Implications for Number Theory

The proof had far-reaching implications, not just for Fermat’s Last Theorem but
also for number theory at large. It led to advancements in the understanding
of elliptic curves and modular forms, and even had implications for Euclid’s
Infinitude of Primes [42]. One of the key equations that emerged from this work
is:
L(E,s)=[[(1 —ap +p"2)7" (5)
PIN

where L(E,s) is the L-series associated with the elliptic curve E, N is the
conductor, and a, are Fourier coefficients [22].



5.2 The Role of Ribet’s Theorem
5.2.1 Introduction and Historical Context

Ribet’s theorem, originally known as the epsilon conjecture, is a cornerstone in
number theory that links modular forms with Galois representations. Proposed
by Jean-Pierre Serre and proven by Ken Ribet, this theorem was a pivotal step
towards proving Fermat’s Last Theorem (FLT) [30].

5.2.2 Mathematical Statement

The theorem can be mathematically stated as follows: Let f be a weight 2
newform on T'g(¢N) with an absolutely irreducible 2-dimensional mod p Galois
representation pr,. Then, there exists a weight 2 newform g such that pf, ~
pg.p K1]. In equation form, this can be represented as:

Pfp = Pgp (6)

5.2.3 Implications for Fermat’s Last Theorem

Ribet’s theorem implies that if an elliptic curve F has certain properties, then
that curve cannot be modular. This was crucial for FLT, as it showed that a
counterexample to FLT would create a curve that would not be modular [30].
Mathematically, if E is a counterexample to FLT, then:

E 2 Modular Curve (7)

5.2.4 Level Lowering

The theorem also discusses the concept of level lowering, stating that an elliptic
curve of a certain conductor N does not guarantee the existence of another
elliptic curve with rational Fourier coefficients [41]. This can be expressed as:

N(E) # N(E) (8)

5.2.5 Contribution to Taniyama-Shimura-Weil Conjecture

Ribet’s theorem proved that the Taniyama-Shimura-Weil conjecture implies
FLT, thereby setting the stage for Andrew Wiles to prove FLT [30]. This rela-
tionship can be expressed as:

Taniyama-Shimura-Weil Conjecture = FLT (9)

5.3 The Flaw and the Fix

In June 1993, Andrew Wiles initially announced his proof of Fermat’s Last
Theorem. However, a gap was discovered in the proof in September of the same
year. The gap was related to the identification of a deformation ring with a
Hecke algebra, a crucial step now referred to as an R =T theorem.



5.3.1 The Gap

The gap in the original proof was in the part where Wiles tried to show that
certain modular forms are also Galois representations. Mathematically, this can
be represented as:

¢ : Gal(Q/Q) — GL2(C) (10)

where ¢ is a Galois representation. Wiles’ original argument failed to establish
this isomorphism for all cases.

5.3.2 The Fix

Wiles, along with his former student Richard Taylor, managed to fix the gap by
incorporating additional techniques from algebraic geometry. They introduced
a new tool, now known as the Taylor-Wiles method, to establish the R = T
theorem. The corrected proof can be summarized in the equation:

R=T (11)

where R is the universal deformation ring and T is the Hecke algebra. This
identification was crucial for the modularity lifting theorem, which was the
cornerstone of Wiles’ proof.

5.3.3 Impact

The method of identifying a deformation ring with a Hecke algebra has had
a profound impact on algebraic number theory and has been generalized in
various ways. The corrected proof was finally published in 1995, solidifying
Wiles” monumental achievement.

6 Implications and Applications

6.1 Cryptography

Number theory is the backbone of modern cryptography, providing the math-
ematical underpinnings for many cryptographic algorithms. One of the most
prominent examples is the RSA algorithm, which is widely used for secure data
transmission and digital signatures [24].

6.1.1 RSA Algorithm

The RSA algorithm, named after its inventors Ron Rivest, Adi Shamir, and
Leonard Adleman, is an asymmetric cryptographic algorithm that uses two dif-
ferent keys: a public key for encryption and a private key for decryption [31].

Mathematical Foundations: The RSA algorithm relies on the mathemat-
ical properties of prime numbers and their role in modular arithmetic. Specif-
ically, it uses Euler’s totient function ¢(n), which is defined as the number of
integers less than n that are coprime to n.
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Key Generation:
1. Select two large prime numbers p and q.
2. Compute n =p X q.

3. Compute ¢p(n) = (p—1) x (¢ — 1).

4. Choose an integer e such that 1 < e < ¢(n) and ged(e, p(n)) = 1. The
pair (e, n) serves as the public key.

5. Compute d as d = e~! mod ¢(n). The pair (d,n) serves as the private
key.

Encryption: Given a plaintext message m, the ciphertext ¢ is computed
using the public key as follows:

c=m® modn
Decryption: The decrypted message m is recovered using the private key
as follows:
m=c¢? modn

The security of RSA is based on the computational difficulty of the integer
factorization problem. Specifically, given n, it is computationally infeasible to
find p and ¢ in polynomial time [IJ.

Example: Let’s consider a simple example to illustrate the RSA algorithm.
Suppose p = 53 and ¢ = 59, then n = 3127 and ¢(n) = 3016. Let e =3 and d =
2011. To encrypt a message m = 89, we compute ¢ = 89° mod 3127 = 1394.
To decrypt, we compute m = 13942011 mod 3127 = 89.

Applications in Modern Cryptography: RSA is widely used in various
forms of secure data transmission, digital signatures, and secure key exchange.
Its security and efficiency make it a standard choice in industry applications
[24].

6.2 Other Areas of Mathematics

The proof of Fermat’s Last Theorem has had a profound impact on various
other areas of mathematics. Its techniques and results have found applications
in several domains.

6.2.1 Algebraic Geometry

The proof introduced new methods in algebraic geometry, particularly through
the use of elliptic curves. For example, the Weierstrass equation for elliptic
curves is given by:

v=az34+ar+b

This equation is central to the study of elliptic curves and has applications in
coding theory [34].
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6.2.2 Representation Theory

The Taniyama-Shimura-Weil conjecture, which was proven for semistable el-
liptic curves, has implications in representation theory. Specifically, it relates
to the Langlands program, which aims to establish connections between Galois
groups and automorphic forms [18].

6.2.3 Topology

The proof also has implications in topology, particularly in the study of 3-
manifolds. The geometrization conjecture, which classifies all 3-manifolds, can
be formulated using techniques similar to those used in the proof [44].

6.2.4 Number Theory

Beyond Fermat’s Last Theorem itself, the proof has enriched the field of num-
ber theory, particularly in the study of Diophantine equations. For example,
the equation ™ 4 y™ = z" can be generalized to other forms of Diophantine
equations [I3].

6.2.5 Computational Mathematics

The algorithms and techniques used in the proof have found applications in
computational mathematics, particularly in the area of integer factorization
and primality testing. For example, the AKS primality test is given by:

(a—b)"=a"—-0b" modn

This equation is used to test the primality of numbers [20].

7 Conclusion

The journey through the proof of Fermat’s Last Theorem has been a monu-
mental one, traversing various mathematical landscapes from modular forms to
elliptic curves, and from algebraic equations to cryptography. This paper has
aimed to provide a comprehensive overview of the theorem’s history, its formal
statement, and its modern implications.

The theorem, which posits that no three positive integers a, b, ¢ can satisfy
the equation a™ 4 b" = " for any integer n > 2, has been a cornerstone in
the field of number theory. Its proof by Andrew Wiles in 1994 was a watershed
moment, not just for the theorem itself but for mathematics as a whole. The
proof utilized groundbreaking techniques in modular forms and elliptic curves,
encapsulated by the equation E : y? = 234 Ax+ B, where E is an elliptic curve.

The role of Ribet’s theorem in setting the stage for Wiles cannot be over-
stated. Ribet’s theorem, mathematically expressed as pf, =~ pgp,, provided
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the crucial link between modular forms and Galois representations, thereby im-
plying that a counterexample to Fermat’s Last Theorem would contradict the
Taniyama-Shimura-Weil conjecture.

The proof also had its share of drama, with a gap identified in the original
proof. This gap was later fixed by Wiles and his former student Richard Taylor,
using the equation R ~ T, where R is the universal deformation ring and 7" is
the Hecke algebra.

Beyond the theorem itself, the techniques used in its proof have found ap-
plications in various other areas of mathematics and computer science. In cryp-
tography, for instance, the RSA algorithm relies heavily on number theory and
modular arithmetic, expressed through Euler’s totient function ¢(n).

In summary, the proof of Fermat’s Last Theorem serves as a testament to
the interconnectedness of various mathematical disciplines. It not only resolved
a centuries-old problem but also enriched our understanding of number theory,
algebraic geometry, and even cryptography. As we continue to explore these
mathematical landscapes, the theorem will undoubtedly continue to serve as a
beacon, guiding us through the complexities and wonders of the mathematical
world.
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