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Abstract

A new detection and attribution method is presented and applied to the global mean surface air temperature (GSAT) from

1900 to 2014. The method aims at attributing the climate changes to the variations of greenhouse gases, anthropogenic

aerosols, and natural forcings. A convolutional neural network (CNN) is trained using the simulated GSAT from historical

and single-forcing simulations of twelve climate models. Then, we perform a backward optimization with the CNN to estimate

the attributable GSAT changes. Such a method does not assume additivity in the effects of the forcings. The uncertainty

in the attributable GSAT is estimated by sampling different starting points from single-forcing simulations and repeating the

backward optimization. To evaluate this new method, the attributable GSAT changes are also calculated using the regularized

optimal fingerprinting (ROF) method. Using synthetic non-additive data, we first find that the neural network-based method

estimates attribuable changes better than ROF. When using GSAT data from climate model, the attribuable anomalies are

similar for both methods, which might reflect that the influence of forcing is mainy additive for the GSAT. However, we found

that the uncertainties given both methods are different. The new method presented here can be adapted and extended in future

work, to investigate the non-additive changes found at the local scale or on other physical variables.
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Abstract15

A new detection and attribution method is presented and applied to the global mean sur-16

face air temperature (GSAT) from 1900 to 2014. The method aims at attributing the17

climate changes to the variations of greenhouse gases, anthropogenic aerosols, and nat-18

ural forcings. A convolutional neural network (CNN) is trained using the simulated GSAT19

from historical and single-forcing simulations of twelve climate models. Then, we per-20

form a backward optimization with the CNN to estimate the attributable GSAT changes.21

Such a method does not assume additivity in the effects of the forcings. The uncertainty22

in the attributable GSAT is estimated by sampling different starting points from single-23

forcing simulations and repeating the backward optimization. To evaluate this new method,24

the attributable GSAT changes are also calculated using the regularized optimal finger-25

printing (ROF) method. Using synthetic non-additive data, we first find that the neu-26

ral network-based method estimates attribuable changes better than ROF. When using27

GSAT data from climate model, the attribuable anomalies are similar for both meth-28

ods, which might reflect that the influence of forcing is mainy additive for the GSAT.29

However, we found that the uncertainties given both methods are different. The new method30

presented here can be adapted and extended in future work, to investigate the non-additive31

changes found at the local scale or on other physical variables.32

Plain Language Summary33

In order to design effective adaptation policies, it is essential to have reliable es-34

timates of the effect of anthropogenic activities on the climate. For that purpose a new35

attribution method based on a neural network is designed and evaluated. The method36

estimates the past global mean surface air temperatures anomalies caused by the changes37

in the greenhouse gases concentration, the variation of anthropogenic aerosols, and the38

variations driven by naturally occurring phenomena. To build this estimation, the data39

from observations and climate models are used. This methodology is compared with an-40

other state-of-the-art method. The results of both methods are evaluated and discussed.41

The proposed method provide better estimations in the case of large non-additivity of42

the causes of climate change and can be applied to other physical variables or at the re-43

gional scale. In the case of the global mean surface air temperature, the method presented44

provides estimation similar to other methods.45
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1 Introduction46

Detection and attribution of climate change is key to understanding past climate47

change and devising adaptation policies. This problem is an important part of IPCC re-48

ports (Eyring et al., 2021) as it directly inquires about the impact of anthropogenic ac-49

tivities on the climate system. Detection aims to compare climate change with internal50

variability. A change is detected if it exceeds the anomalies generated by the internal cli-51

mate variability. Internal variability refers to climate variations resulting from processes52

intrinsic to the climate system, occurring in the absence of external forcing. Internal vari-53

ability may arise from processes within each of the climate system components (atmo-54

sphere, ocean, land surface, cryosphere) or may emerge from their interactions (Cassou55

et al., 2018). For instance, the global mean surface air temperature (GSAT) varies by56

a few tenths of degrees during the El Niño or La Niña phases of the El Niño Southern57

Oscillation (Neelin et al., 1998). Similarly, the Pacific decadal variability and the Atlantic58

multi-decadal variability can also influence the GSAT (Meehl et al., 2016; Z. Li et al.,59

2020). Forcing agents external to the climate system, known as external forcings, can60

also cause climate changes. The dominant forcings in the historical period (i.e. 1850 to61

present-day) are the increase in the concentration of greenhouse gases, the variations of62

the aerosol concentrations, the variations of incoming solar radiation, the changes in land63

use and stratospheric ozone concentration (Masson-Delmotte et al., 2021). Attribution64

then aims to explain and quantify the impacts of the different forcings. Anthropogeni-65

cally driven and naturally occurring forcings are often considered separately to under-66

stand the impact of human activities. Natural forcings include the effects of natural sources67

of aerosols and solar activity. The anthropogenic effects include the contributions of other68

effects. Hasselmann (1993) defined a method called “optimal fingerprinting” for detec-69

tion and attribution relying on climate model simulations and observations. This method70

has been improved to build more reliable uncertainties and to check for the consistency71

between models and observations (Allen & Tett, 1999), or to account for the residual in-72

ternal variability in ensembles of climate model simulations (Allen & Stott, 2003). To73

better account for the uncertainty in the estimation of forcings Ribes et al. (2013) pro-74

posed to use a regularized estimator of the covariance matrix of internal variability. A75

review, based, among other, on regularized optimal forcing estimates, concluded that the76

likely range (5-95% range) of the attributable anthropogenic GSAT anomaly in 2010-77

2019 relative to 1850-1900 is between +0.8 to +1.3°C (Eyring et al., 2021). The anomaly78
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attributable to greenhouse gases reported is +1.0°C to +2.0°C, while it is from -0.8°C79

to 0.0°C for other anthropogenic forcings, and from -0.1°C to +0.1°C for natural forc-80

ings.81

However, the optimal fingerprinting has several limitations such as the loss of in-82

formation due to the reduction of the temporal and spatial dimensionality of data, needed83

to make a proper approximation of the covariance matrix of internal variability. Another84

problem is the additivity assumption where the individual forcing effects are summed85

together to estimate the climate response to the sum of forcings even if it is verified for86

the attribution of historical GSAT (Marvel et al., 2015; Shiogama et al., 2013). This ad-87

ditivity assumption also found to be invalid for precipitation (Marvel et al., 2015), the88

surface air temperature changes driven by greenhouse gases and aerosols can be non-additive89

over the extra-tropical regions such as the Arctic (Deng et al., 2020) or the Southern Hemi-90

sphere (Pope et al., 2020).91

To take account of non-additive changes, we present here a new method for attribut-92

ing past climate using machine learning. A neural network is a machine learning method93

consisting of consecutive hidden layers of nonlinear transformations and adjustable weights94

and biases which are determined by applying gradient descent using backpropagation95

(Goodfellow et al., 2016). It is a statistical tool increasingly used in recent years in many96

scientific fields (Choudhary et al., 2022). Convolutional neural networks (CNN, Yamashita97

et al. (2018)) are a class of non-linear neural networks used notably in imagery problems98

(O’Shea & Nash, 2015). Their main characteristic is the use of a learnable kernel that99

slides along the input data. The CNNs have also shown their great capacity to analyze100

time series and other one-dimensional patterns (Kiranyaz et al., 2021) and have become101

common machine learning tools. For instance, without being exhaustive, neural networks102

have been used in climate science to predict the evolution of El Nino Southern Oscilla-103

tion (Ham et al., 2019), to identify storm structures (Gagne II et al., 2019), for weather104

prediction (Lam et al., 2022; Gagne II et al., 2019), or for detection studies (Labe & Barnes,105

2021; Barnes et al., 2019). However, they are still emerging in large parts of the geosciences.106

Here, we propose an alternative attribution framework based on a CNN to account107

for interactions between the forcings. To the best of our knowledge, this is the first at-108

tempt to apply a neural network to the problem of detection and attribution of climate109

change. We compare the results obtained with the neural-network based attribution method110

with those resulting from regularized optimal fingerprinting. We chose to study the GSAT111
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as it is widely studied in the detection and attribution literature in order to properly in-112

troduce our methodology. We investigate the effects of greenhouse gases, anthropogenic113

aerosols and natural forcings. In the future, this attribution method based on a neural114

network could be applied to other physical variables such as precipitation, or changes115

at the regional scale where non-additivity are expected to be more important (Good et116

al., 2015).117

To evaluate our neural network based attribution method and compare it to reg-118

ularized optimal fingerprinting, we first build synthetic data to assess the ability of meth-119

ods to take non-addivities into account. Then we use a perfect model approach. This120

consists of removing data coming from one climate model and treating its simulations121

as pseudo-observations. The estimated effect of each forcing is then compared to their122

actual simulated effects.123

The article is organized as follows. In section 2, we present the data and the pre-124

processing applied and how we built up synthetic data. In section 3, we present the neu-125

ral network and its direct performance. We also introduce the two attribution methods126

used in this paper : backward optimization and regularized optimal fingerprinting (ROF).127

In section 4, we present the results obtained by the two attribution methods. Finally in128

section 5, we conclude and discuss the limitations as well as future perspectives.129

2 Model and Data130

2.1 Climate models simulations131

In this section, we present the climate model data used in this study. We use the132

monthly surface air temperature from the outputs of the Coupled Model Intercompar-133

ison Project 6 phase (CMIP6; Eyring et al. (2016)) and of the Detection and Attribu-134

tion Model Intercomparison Project (DAMIP; Gillett et al. (2016)) panel of CMIP6. All135

simulations from CMIP6 use the same experimental protocol with identical boundary136

conditions based on reconstructions and observations.137

We use the historical simulations, called HIST, to obtain estimation of the com-138

bined effect of the forcings. These simulations use as variable boundary conditions all139

external forcings from 1850 to 2014. This includes the reconstructed concentrations of140

greenhouse gases, anthropogenic aerosols and ozone, and the estimated past variations141

of solar incoming radiation and land-use.142
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We also use single-forcing simulations to obtain estimation of the individual effect143

of the forcings. These simulations use as variable boundary conditions only one of the144

external forcings, all the other external forcings being fixed at their value from 1850. We145

use the single-forcing simulations hist-GHG denoted later GHG, hist-aer denoted AER,146

and hist-nat denoted NAT dedicated respectively to greenhouse gas concentrations, an-147

thropogenic aerosols, and natural forcings (i.e. volcanic aerosol and solar variations) as148

variable forcings for the same period (1850-2014). The effect of stratospheric ozone and149

land use was not investigated as only a few simulations have been performed in CMIP6,150

and because their effective radiative forcings are much smaller than the ones of green-151

house gases, aerosols or natural forcings (Smith et al., 2020).152

We also use the preindustrial control simulations, called PI, to estimate of the ef-153

fects of internal variability. These control simulations use fixed forcings from their es-154

timated pre-industrial levels corresponding that of 1850. The PI simulations are multi-155

centennial with usually a single realization for each climate model. These simulations156

show a small drift due to incomplete spin-up or nonclosure of the energy budget (Hobbs157

et al., 2016). Hereafter such small long-term drift (Irving et al., 2021) is deleted from158

each PI simulations by removing a quadratic trend (Gupta et al., 2013) of the simulated159

GSAT before analysis in all simulations.160

All simulations but PI includes multiple realizations called ensemble members and161

denoted later as members. The members use different initial conditions which are sam-162

pled from the PI simulation. We use 12 atmosphere-ocean general circulation models (AOGCMs,163

see Tab. 1 for details) where at least two members are available for the simulations HIST,164

GHG, AER and NAT.165
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Table 1. Presentation of the climate models used. nGHG, nAER, nNAT and nHIST denote the

number of members used for GHG, AER, NAT and HIST. The duration of the PI simulation is

indicated, in yr. σPI denotes the year to year standard deviation of the GSAT from PI, in °C.

Model nGHG nAER nNAT nHIST PI (yr) σPI (°C) Reference

CanESM5 50 30 30 65 1000 0.10 Swart et al. (2019)

CESM2 3 3 2 11 500 0.13 Danabasoglu et al. (2020)

IPSL-CM6-LR 10 10 10 32 1000 0.15 Boucher et al. (2020)

ACCESS-ESM1-5 3 3 3 30 500 0.11 Ziehn et al. (2020)

BCC-CSM2-MR 3 3 3 3 600 0.17 Wu et al. (2019)

CNRM-CM6-1 9 10 10 30 500 0.13 Voldoire et al. (2019)

FGOALS-g3 3 3 3 6 700 0.10 Li et al. (2020)

HadGEM3 4 4 4 5 500 0.11 Roberts et al. (2019)

MIROC6 3 3 3 50 500 0.13 Tatebe et al. (2019)

MRI-ESM2.0 5 5 5 7 500 0.10 Yukimoto et al. (2019)

NorESM2-LM 3 3 3 3 500 0.15 Seland et al. (2020)

GISS-E2-1-G 5 7 15 19 500 0.15 Kelley et al. (2020)

2.2 Observations166

We use observations of the 2m air temperature from HadCRUT5 (Morice et al.,167

2021). The gridded data is a blend of the CRUTEM5 (Osborn et al., 2021) land-surface168

air temperature dataset and the HadSST4 (Kennedy et al., 2019) sea-surface temper-169

ature (SST) dataset. Such a blending is necessary because there are few observations of170

temperature at 2 meters over the oceans compared to SST observations. The resulting171

globally averaged quantity is called global mean surface temperature (GMST) and it dif-172

fers from the GSAT which is solely based on surface air temperature. In order to cor-173

rect this we multiply by 1.06 the GMST from observation to estimate the observed GSAT,174

as estimated by Richardson et al. (2018).175
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2.3 Pre-processing176

All monthly climate model data are aggregated to an annual mean and spatially177

averaged from 90°S to 90°N to provide the GSAT. We then estimate the temperature anoma-178

lies compared to the pre-industrial period.179

We remove the time mean GSAT of PI from the GHG, AER, and NAT simulations.180

For observations and HIST, we compute the average temperature during the 1850-1900181

period and remove it from the GSAT. Hereafter we only use the data from 1900-2014182

period (115 years).183

The simulated and observed GSAT can be separated into a forced component and184

an internally-generated climate variability component. To reduce the effects of internal185

climate variability we apply a low-pass filter to the GSAT of the GHG and AER sim-186

ulations. We use a Lanczos low-pass filter (Burger & Burge, 2009), with a window size187

of 21 years, and a cutoff period of 10 years. The endpoints are estimated by extending188

the time series by replicating the mean value of the first and last ten years of each sim-189

ulation. This should not alter the estimated effect of greenhouse gases or aerosols on the190

GSAT as both forcings only show multi-decadal and longer fluctuations in terms of ef-191

fective radiative forcing (Gulev et al., 2021). We do not apply this procedure to NAT192

and HIST because the emission of aerosol from volcanic eruptions induces an intense cool-193

ing for the next 2 to 5 years, and such smoothing would degrade the forced anomalies.194

This smoothing procedure only lead to minor improvements regarding the estimated un-195

certainties (not shown).196

We illustrate in Fig. 1 the processed data for all climate models, observations and197

the multi-model mean (MMM) for each forcing. To compute the MMM we first compute198

the ensemble mean (i.e averaging all ensemble member) for each climate model and then199

we average the 12 ensemble means. In all models, GHG shows a monotonic warming with200

an increasing slope since the 1960’s, as expected from the greenhouse gases emissions.201

In AER, the aerosol induces a cooling with a prononced slope from the 1940’s to 1980’s,202

and a plateau from 1980 to 2014. NAT shows small cooling from 0.1 to 0.4°C only oc-203

curring after the major eruptive volcanic eruptions of Agung (1963), El Chichon (1982)204

and Pinatubo (1991). HIST shows a monotonic warming less pronounced than GHG with205

also a cooling a few years after the major volcanic eruptions. In all simulations, the in-206

ternal variability is important, as illustrated by the fluctuations visible in each members207

(thin lines) and is reduced in the ensemble mean (thick lines).208
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Figure 1. GSAT anomaly simulated by each model and (lower panel only) multi-model mean

(MMM) and observed GSAT. Black lines show the HIST members. Red lines show the GHG

members. Green lines show the NAT members. Blue lines show the AER members. The purple

line shows the observations in the lower panel. Bold lines of the same colors show the ensemble

mean.
–9–
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2.4 Synthetic data209

To investigate the performance of the attribution methods when considering ex-210

ternal forcings with non-additive influences, a synthetic data set is generated. We gen-211

erate three time series of size 115 denoted f1, f2 and f3, that represents the forced ef-212

fects of three synthetic forcings. These time series are constructed to have similarities213

with the expected influence of the greenhouse gases, aerosol and natural forcing for f1,214

f2 and f3, respectively (see Fig. red, green and blue lines in 2). However, the expressions215

of f1, f2 and f3 remain arbitrary and are not meant to represent simulated or observed216

climate. We detail in Text S1 the analytic expressions used to build the time series. We217

construct the total effect of the three forcings combined, noted r, using two additional218

term compared to the additive case :219

r = f1 + 0.3f2
1 + f2 + f3 + 0.1f1f2 (1)

Figure 2. Synthetic time series f1 (red), f2 (blue), f3 (green), and r (black). A randomly cho-

sen time series after adding the variability is illustrated for F1 (orange), F2 (dark blue), F3 (dark

green) and R (grey). Colors shades indicate one standard deviation across the 100 surrogate time

series obtained for each pseudo-forcings and their response.

Using an analogy with climate, anomalies are considered to result from the addi-220

tion of a forced and an internally-generated variability component (see Fig. 1). We add221

an additional variability to f1, f2 and f3 and r that only represent the forced compo-222
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nent. To generate this variability, we fit a first order autoregressive (AR1) model using223

the time series obtained from the concatenated PI simulations from all models. This AR1224

model is then used to generate 410 surrogate time series that are added to f1, f2, f3 and225

r. This provides the 100 time series for each forcings denoted F1, F2, F3 and 110 time226

series R resulting from the combined forcings (see Fig. 2).227

3 Methods228

3.1 Backward optimization of a neural network229

3.1.1 Neural network230

In this section we describe the neural network used. We determine the relationship231

linking the GSAT from HIST to that of GHG, AER, and NAT using a CNN. In the train-232

ing procedure, we use the GSAT from AER, GHG, and NAT as inputs and the GSAT233

from HIST as the target. Our goal is to construct a predictor that captures the role of234

all forcings combined. We assume that stratospheric ozone and land use do not affect235

this relationship.236

A schematic of the CNN used is shown in Fig 3. CNNs can be used to construct237

relatively simple neural networks as the number of weights and biases is directly decided238

by the size and number of the filters used. We assume that this architecture is suitable239

in the present case the size of the data set is relatively small compared to other neural240

network applications. This might limit the overfitting which occurs when a neural net-241

work model performs significantly better for training data than it does for new data. In242

our case, a one-dimensional kernel is applied to the temporal dimension. To fix the val-243

ues of the weights and biases of the convolutional layers, a neural network needs a learn-244

ing data-set composed of input-output pairs. The outputs are the GSAT of one HIST245

member while the inputs are built with one member for each single-forcing simulations.246

We build this data set by going through all combinations of GHG, AER, NAT and HIST247

members of the same climate model. In order to test the backward optimization (see sec-248

tion 3.3), we removed one HIST member from each climate model and 10 for the IPSL-249

CM6-LR model from these combinations to serve as test data-set. This provides for the250

training of the neural network Nd = (nHIST −1) nGHG nAER nNAT 4-tuples for each251

climate model except for IPSL-CM6-LR with (nHIST−10) nGHG nAER nNAT 4-tuples.252

We note Nd the total number of the 4-tuples obtained for all models. The training data-253
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Figure 3. Diagram of the CNN used. Each white-filled blue rectangles represents a time se-

ries of 115 years. The input layer is shown on the left, the hidden layers on the middle and the

output layer on the right. Light blue-filled rectangles represent the kernels of the different hidden

layers. Dark blue-filled rectangles represent the output of the kernel. Zero-padding is shown in

green with dotted lines.

set is thus of size Nd which is of the order of 105 while an individual input is of size (3,115)254

and its corresponding output of size (1,115). The usual practice is to go through this database255

a number of times to train the CNN. However, we have altered the procedure to provide256

a similar weight to all models during the training.257

Three steps are applied. First, a climate model is randomly selected. Secondly, we258

randomly select one 4-tuple from the chosen climate model. Then the CNN is trained259

using the three GSAT time series dedicated to (GHG, AER, NAT) as input and the GSAT260

dedicated to HIST as the target. We iterate this process by repeating it 5.106 times. A261

lower number of iterations was found to degrade the backward optimization results (not262

shown), but the results are otherwise similar when increasing the number of iterations.263

A neural network uses hyperparameters which are the variables that determine the264

network structure and those which determine how the network is trained. The hyper-265

parameters are chosen using a cross-validation, as detailed in Text S2 and Fig. S1. The266

chosen architecture has three convolutional hidden layers, a kernel size of 5 for all lay-267

ers and 32 filters for each layer.268
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3.2 Performance of the CNN269

Before presenting the neural network dedicated to the attribution method in the270

next section, we investigate the performance of the CNN in estimating the total effect271

of forcing from the effect of each forcing separately. First, we train the CNN using the272

data from all models and estimate the mean training RMSE made in predicting the data273

for each model separately. Second, we successively train the CNN leaving out the data274

from one model and estimate the mean cross-validation RMSE in predicting the left-out275

model data. Because internal variability is included in the training data, we expect the276

RMSE to exceed the internal variability in all climate models. The training RMSE is277

within 0.10°C and 0.25°C for the different climate models. Indeed, the models with large278

training RSME (Fig. 4 blue bars) corresponds to those simulating a large internal vari-279

ability, as estimated by the standard deviation of the GSAT of the PI simulation (Tab.280

1), where the forced signal is absent.281

The CNN also should produce an estimated GSAT similar to the mean output from282

the training data, which is expected to be similar to the MMM from HIST. The train-283

ing RMSE may also reflect a forced signal in the HIST simulations distinct from the other284

models. The amplitude of the RMSE increases to 0.15°C-0.35°C when using cross-validation.285

This suggest that the CNN does not overfit. HadGEM3 and, to a lesser extent, FGOALS-286

g3 and GISS-E2-1-G, show differences much larger than the training RMSE when the287

data from these models is used for the validation. This might reflect important singu-288

larities for these three models, which is probably linked to their singular response to forc-289

ings. This might be linked to the equilibrium climate sensitivity which quantifies the abil-290

ity of a model to warm up when greenhouse gases increase. It depends on the feedbacks291

acting in the climate system, and remains poorly constrained by observations (Sherwood292

et al., 2020). GISS-E2-1-G simulate one of the lowest equilibrium climate sensitivity, while293

HadGEM2 has one of the highest sensitivity. In addition, FGOALS-g3 simulate almost294

no response to anthropogenic aerosols (see Fig. 1)295

3.2.1 Backward optimization296

In this section we describe how we use the CNN to perform climate change attri-297

bution. The backward optimization is a method that infers the most likely input of the298

CNN from a given output. To attribute climate change from the CNN, we calculate such299
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Figure 4. RMSE between the CNN output and the GSAT of HIST, in °C, when using (blue

bar) the training data and (cross validation, orange bar) when using the data of a model left out

in the training.
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input, which provides the GSAT attributed to the three forcings from the total GSAT300

anomaly observed or simulated. This is a neural network interpretation method (Toms301

et al., 2020; Gagne II et al., 2019; McGovern et al., 2019) also known as variational in-302

version when applied to a geophysical model (Brajard et al., 2012). A scheme of the pro-303

cedure is given in Fig. 5. This optimal input is determined by minimizing a dedicated304

cost function and using the backpropagation. The cost function, called J , is:305

J(X) = MSE(y,CNN(X)) +B MSE(X, X̄) + CσHF (2)

where X = (xGHG,xAER, xNAT ) is the optimal input to be determined, i.e. a triple of306

115-yr time series corresponding to the GSAT induced by greenhouse gases, anthropogenic307

aerosols and natural forcing. X̄ is the three time series obtained with the MMM of the308

simulations GHG, AER and NAT (see Fig. 1, lower panel). MSE denotes the mean squared309

error. y is the desired output of the neural network. σHF is the sum of the time stan-310

dard deviation of the high-pass filtered time series obtained from xGHG and xAER us-311

ing a Lanczos high-pass filter with a window of size 21, a cutoff period of ten years. B312

and C are two adjustable real parameters.313

The first term on the right hand side of equation (2) measures the the mean square314

error between the desired output and the CNN output. The second term, also known315

as a background term, is applied so that the results are similar to a first guess, taken from316

the MMM in order to avoid absurd and nonphysical solutions. Although this term is not317

standard for the backward optimization of a neural network, it is however used for the318

variational inversion procedure used in data assimilation (Brajard et al., 2012; Fablet319

et al., 2021). The last term is used to build smooth GSAT time series for the forcings320

associated with greenhouse gases and anthropogenic aerosols. Again, this term is not used321

for the natural forcings, so that the effects from volcanic aerosols remains unsmoothed,322

with cooling peaks lasting two to five years, as expected.323

When estimating the optimal input, the initial input is iteratively updated using324

a back-propagation to minimize J(X) until it is smaller than a fixed value, called A. To325

reduce the computational cost, the minimization process is stopped after 500 iterations326

if J(X) does not converge. The backward optimization of a neural network has multi-327

ple solutions and the method is sensitive to the initial value used for X. Therefore, for328

each of the twelve climate models, we randomly select with repetition 100 (10 during the329

perfect model approach) triples of the GSAT time series among the members of GHG,330

–15–



manuscript submitted to Journal of Advances in Modeling Earth Systems

Figure 5. Schematic of the backward optimization attribution process with one entry denoted

y at the right. The 1200 backward optimization results are at the bottom. The learned CNN is

in the middle in dark blue. J(X), the cost function of the backward optimization is on the top.

X denote the optimized input and ŷ denotes its image by the CNN. The 1200 starting points are

on the left.

AER, and NAT as first guess for the initial states. These initial states are chosen as they331

represent physically coherent inputs. This provides 1200 initial physically coherent val-332

ues for X which sample the internal climate variability and the spread among the dif-333

ferent models. This generates 1200 backward optimizations. This estimation is empir-334

ical and does not account for the internal variability of the target of the backward op-335

timization. For each year, the 90% confidence intervals of the optimal input is then es-336

timated using ± 1.64 standard deviations among the backward optimization results as-337

suming a Gaussian distribution.338

The choice of A (iteration stop treshold), B (background term) and C (smooth-339

ing term) was fixed empirically as the other hyperparameters of the neural network. We340

found that these parameters do not significantly modify the results of the backward op-341

timisation (see Text S3, Tab. S1 and Tab. S2). We select A = 0.05, B = 0.01 and C =342

0.1.343

–16–



manuscript submitted to Journal of Advances in Modeling Earth Systems

3.3 Regularized optimal fingerprints344

We evaluate the performance of the neural network based method for detection and345

attribution by comparing its results to those obtained with the regularized optimal fin-346

gerprinting (ROF, Ribes et al. (2013)). This last method is widely used and has already347

been applied to the air surface temperature using CMIP6 data by Gillett et al. (2021).348

The ROF method is based on a multivariate linear regression and on the assump-349

tion that the observed change can be obtained with the sum of the forced anomalies for350

each forcing (the so-called fingerprints) plus internal variability.351

The observed GSAT denoted y, is given by:352

y = βX+ ϵ (3)

with β = (βGHG, βAER, βNAT ) the scaling factors and and X = (XGHG, XAER, XNAT )353

the effects of all the forcings on the GSAT. ϵ represents the effect of internal variabil-354

ity, assumed to be a Gaussian white noise.355

We use greenhouse gases, anthropogenic aerosols and natural forcings as three in-356

dividual forcings and neglect the other forcings. X is estimated in this case by using the357

MMM of GHG, AER and NAT simulations.358

To perform such a regression, a common method is to reduce the dimension of data359

using the leading empirical orthogonal functions calculated in PI. This reduces the num-360

ber of spatial dimensions and allows an accurate estimation of the internal variability361

covariance matrix. But such a method involves an arbitrary choice of the number of EOFs362

used to truncate the data. The ROF method (Ribes et al., 2013) avoids this arbitrary363

choice using a regularized estimation of the covariance matrix to estimate the scaling fac-364

tors.365

The response of climate to the i-th forcing is detected if βi is significantly differ-366

ent from zero. If the confidence interval of βi includes one, this shows consistency be-367

tween observations and simulated climate model responses. We use the total least square368

(TLS) method (Allen & Stott, 2003) to perform the regression and estimate the scaling369

factors, which accounts for the residual internal variability in the MMM. The internal370

variability is assumed to be the same in GHG, AER and NAT members, which prevents371

the use of different smoothing to the GSAT simulated in GHG and AER, as done for the372

backward optimization, or in NAT. As the internal variability is largely reduced by the373

ensemble averaging in the MMM, we estimate the attributable warming in GSAT by βiXi374
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for the i-th forcing. This should lead to an attributable warming similar to βiX̂i using375

the estimated Xi by the TLS instead of Xi. Estimates of attributable warming in GSAT376

for each year can then be obtained by
∑

βiXi. Following Gillett et al. (2021), the in-377

ternal variability is sampled by concatenating all available simulations after subtraction378

of the mean of the corresponding model ensemble. To account for the subtraction of the379

ensemble mean, we multiply for each model, the anomalies by
√

n
n−1 , where n is the en-380

semble size. For each simulation, the equivalent size corresponding to the MMM is es-381

timated using:382

N =
M2

M∑
i=1

1

ni

(4)

with M the number of different climate models used (in our case 12) and ni the num-383

ber of members available for the i-th climate model. To estimate the uncertainty in the384

GSAT effect attributable to the i-th forcing, it is necessary to take into account the un-385

certainty of βi and the internal variability contained in Xi. For each year and forcing,386

the uncertainty in the attributable GSAT is calculated using 1000 random draws assum-387

ing a gaussian distribution for both βi and Xi. The mean and standard errors of βi are388

estimated as in Allen and Stott (2003). The mean and standard deviation of Xi are es-389

timated from the size N of the MMM and the standard deviation of the GSAT obtained390

from the PI runs. We first calculate the standard deviation for each model (as given in391

Tab. 1), average the values obtained across models, and then divide by the square root392

of N . This procedure is valid under the conditions that the uncertainties of βi and Xi393

are Gaussian, uncorrelated and small compared to their respective means. The latter hy-394

pothesis is not verified for GSAT anomalies close to zero for Xi, such as those obtained395

in the first decades of our time series (see Fig. 1), or for the GSAT of NAT. Thus the396

uncertainties for the attributable GSAT are to be taken with caution.397

4 Attribution performances398

4.1 Performance on synthetic data399

To investigate the performance of the backward optimization and ROF in the case400

of non-additive data, we applied the two attributions methods to the synthetic data pre-401

sented in section 2.4. Fig. 6ac shows the time series of the estimated effect of the three402

synthetic forcings and f1, f2 and f3 the ground truth time series. We use the 100 sur-403
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Figure 6. Estimated f1, f2 and f3 given by (a) ROF and (c) backward optimization. The

original f1, f2 and f3 ground truth lines are shown in bold. Histograms shows the distribution of

the RMSE of the results of b) ROF and d) backward optimization compared to the ground truth.
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rogate time series generated for each forcings and their response denoted F1, F2, F3 and404

R, instead of the simulated GSAT from GHG, AER, NAT and HIST, respectively. The405

10 R time series remaining are used as pseudo-observation, noted y previously. For the406

backward optimisation the estimated forced effect f1 (Fig. 6c, red lines) show some vari-407

ability but is centred around the true f1 (purple line). For ROF (Fig. 6a, red lines), the408

estimated f1 are systematically larger than the true f1 at the end of the time series. Sim-409

ilarly, f2 (Fig. 6c, blue and dark blue lines) is well estimated by the backward optimiza-410

tion, while ROF (Fig. 6a) produce an estimated f2 with an important variability and411

an overestimation in most of the cases. The f3 forcing is well estimated by both meth-412

ods, but with more variability for backward optimization.413

The RMSE between the effect estimated by the different attribution methods and414

the ground truth are shown in 6bd in the form of boxplot. For ROF the mean RMSE415

value is 0.14°C for f1, 0.12°C for f2 and 0.01°C for f3. These values are for backward op-416

timization of 0.05°C for f1, 0.04°C for f2 and 0.04°C for f3. Backward optimization there-417

fore provides errors smaller than ROF in case of the non-additive forcing generated, while418

the use of ROF lead to important errors.419

4.2 Evaluation of the performances in attributing climate changes : per-420

fect model approach421

To evaluate the performance of the backward optimization and ROF we use a per-422

fect model approach that relies on climate model data only. This approach consists of423

using the data from all but one of the climate models to perform our two attribution meth-424

ods. In the case of backward optimization, this implies that we do not use the data from425

a climate model during the CNN training phase, in the starting points, or in the MMM426

calculation. For ROF, the data of a model are not used to construct the climate noise427

estimate or included in the MMM. We use a HIST member of the test dataset (see Sec-428

tion 3.3) from each climate model as the target for the attribution methods. The attributable429

anomalies associated with each forcing are then compared with the ensemble mean of430

the GHG, AER and NAT simulations of the removed climate model, even if it includes431

some residual internal variability, especially when the number of members is small. We432

use the paradigm that “climate models are statistically indistinguishable from the truth”433

(Ribes et al., 2017; Hargreaves, 2010; van Oldenborgh et al., 2013), where the difference434

between observations and models is assumed to be distributed as the difference between435
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any pairs of climate models. We therefore assess the capability of the attribution meth-436

ods when using observations by investigating only climate models. This approach is called437

a perfect model approach by analogy with the methods developed for seasonal (Doblas-438

Reyes et al., 2013) or decadal (Hawkins et al., 2011) climate forecast.439

Figure 7 illustrates the attributable anomalies calculated from an HIST member440

for each climate model. The ensemble means of GHG, AER and NAT simulations for441

that climate model are shown for comparison. The differences between the attributable442

anomalies and the ensemble means of GHG, AER and NAT are also quantified in Fig.443

8ab and 8ef with the RMSE and the time mean difference between the two time series.444

Lastly, the widths of the 90% confidence intervals in 2000-2014 are compared in Fig. 8cd.445

446

The two methodologies show a monotonic warming induced by the greenhouse gases447

that intensified in the 1970’s for all climate models. The cooling effect of anthropogenic448

aerosols is also consistent for both methods, with an intensified cooling in the 1970’s, also449

known as global dimming (Wild, 2009), followed by a stabilization in the 2000’s. Lastly,450

the changes attributable to natural forcings are small in both methods, except for the451

cooling following the major volcanic eruptions.452

For the backward optimization, the RMSE is 0.14°C, 0.20°C and 0.12°C when av-453

eraged across the 12 models for the effects of greenhouse gases, anthropogenic aerosols454

and natural forcing, respectively (see dashed line in Fig. 8a). ROF provides an average455

RMSE of 0.20°C, 0.15°C and 0.12°C for these forcings (dashed lines in Fig. 8b), so the456

errors are similar in both methods. Moreover ROF shows an average positive bias of 0.09°C457

for greenhouse gases. All other biases for ROF and for backward optimization are almost458

zero. ROF, therefore seems to over-estimate the effect of greenhouse gases which is not459

the case of the backward optimization.460

However, RMSE and biases are affected by the residual internal variability included461

in ensemble means especially when only a few members are available. The RMSE and462

biases are therefore weak indicators for models with few members. The width of the con-463

fidence intervals for greenhouse gases and anthropogenic aerosols obtained with the back-464

ward optimisation are smaller than those obtained with ROF from the 1970’s, while they465

are larger from 1900 to 1940. Although the uncertainty provided by the confidence in-466

tervals of ROF was verified using a perfect model approach in Gillett et al. (2021), some467
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Figure 7. Attributable GSAT in °C calculated for ROF and backward optimization from

(black line) a HIST member. The GSAT is decomposed into the attribuable changes due to (red

line) greenhouse gases; (blue line) anthropogenic aerosols and (green line) natural forcings. For

comparison, the ensemble mean of (purple line) GHG, (dark blue line) AER and (beige line)

NAT is indicated. Color shades show the 90% confidence intervals of the attributed GSAT.
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Figure 8. Performances of attribution methods using a perfect model approach. a) RMSE

when using ROF for the attributable GSAT anomaly of (red) greenhouse gases, (blue) anthro-

pogenic aerosols, (green) natural forcing. b) Same as a) for the backward optimization. c) Width

of the 90% percent confidence intervals in 2000-2014 when using ROF. d) same as c) but for

backward optimization e) Time mean difference between the estimated and ensemble mean

GSAT attribuable to the forcings when using ROF. f) Same as e) for backward optimization.

Dashed lines shows average values across the 12 climate models.
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authors suggested that ROF underestimates such uncertainty because of insufficient con-468

sideration in the internal variability (Li et al., 2021; DelSole et al., 2019). This suggests469

that the confidence intervals given by the backward optimisation are also underestimated,470

and that further improvements would be needed to evaluate them in more details.471

The width of the confidence intervals for the effect of natural forcing (Fig. 8cd, green472

points) is in ROF much lower than this obtained with the backward optimization. This473

might be explained by the calculation of the confidence intervals of ROF which is not474

adapted to small anomalies (see section 3.4) as obtained for natural forcings. Moreover475

we evaluate the uncertainty for the backward optimization by sampling both the inter-476

model and internal variability contained in the starting points, so that the confidence477

intervals are rather homogeneous in time and for the three forcings. We suggest that both478

estimations need to be refined using larger ensembles of simulations. This would allow479

a more systematic assessment of the uncertainties using the perfect model approach.480

Figures 7 and 8 also show that the cooling from anthropogenic aerosols is overes-481

timated in FGOALS-g3 in backward optimization results compared to the ensemble mean,482

and underestimated in CanESM5 and HadGEM3. It is likely that effect of external forc-483

ings in these three models is very different from the other models. For instance, FGOALS-484

g3 simulates a negligible effect for the aerosols in AER (see Fig. 1). CanESM5 and HadGEM3485

simulate a warming induced by greenhouse gases (see GHG simulation) larger than the486

other models, probably associated with the important equilibrium climate sensitivity of487

these models. The backward optimization fails to reproduce these singular behaviors,488

being mostly governed by the multi-model consensus. The CNN-based method, i.e. the489

backward optimization, shows results less variable between models than ROF. The back-490

ward optimization attributable changes are more consistent with the multi-model con-491

sensus, which is hardly affected by removing the data from one climate model. In con-492

trast, in ROF the MMM time series is rescaled with the scaling factors (see section 3.3).493

This leads to important errors when the data used as pseudo-observation is taken from494

a model with a large sensitivity (see for instance CanESM5).495

Figure 7 is only based on the use of a single historical simulation for each model.496

Therefore, we also investigate if the attribuable changes are affected by a modification497

of the historical member. The attribuable GSAT is estimated with the two methods from498

the ten HIST IPSL-CM6-LR member from the test data (see section 3.1.1). The RM-499
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SEs, the biases and the width of confidence intervals are obtained with respect to the500

ensemble mean of the single-forcing simulations of the IPSL-CM6-LR model (Fig. S2).501

Backward optimization presents much less variable results between members than ROF502

in terms of RMSE or bias, except for natural forcing. The amplitude of the confidence503

intervals is slightly increases for the backward optimization compared to ROF. It results504

that backward optimization is less affected by internal variability than ROF.505

4.3 Attribution of the observed GSAT506

After studying the performance of ROF and backward optimization for synthetic507

data and in a perfect model approach, we apply both methods to the observed GSAT508

anomalies.509

The attributable GSAT changes are similar for ROF and backward optimization510

(see Fig. 9). For example, in 2000-2014, ROF provides a GSAT attributable to green-511

house gases of 1.28°C ( 90% confidence interval of [0.85°C,1.71°C]), while it is -0.33°C512

([-0.80°C,0.12°C]) for anthropogenic aerosols and 0.01°C ([0.0°C,0.02°C]) for natural forc-513

ing. In comparison, backward optimization finds attributable changes of 1.42°C ([1.03°C,1.80°C]),514

-0.61°C ([-1.16°C,-0.06°C]) and 0.02°C ([-0.33°C,0.38°C]), respectively, for these three forc-515

ings. Nevertheless, backward optimization provides more noisy time series and more cool-516

ing during volcanic eruptions. The similarity of the results between ROF and backward517

optimization suggests that the GSAT changes are largely additive as found in Marvel518

et al. (2015) or Shiogama et al. (2013).519

The attributable changes of the GSAT given by ROF are much comparable to that520

of Gillett et al. (2021) who studied the effect of other forcings (land use and ozone) to-521

gether with the greenhouse gases. Their results for the 2010-2019 decade provide a 5%-522

95% range of the attributable warming of [1.2°C,1.9°C] for greenhouse gases and other523

forcings, [-0.7°C,-0.1°C] for anthropogenic aerosols and [0.01°C,0.06°C] for natural forc-524

ing. We verified that the ROF results shown in Fig. 9 remain similar when we take into525

account other forcings together with the greenhouse gases influence (see Fig. S3).526

Backward optimization shows a slightly smaller uncertainty for greenhouse gases527

and anthropogenic aerosols than ROF toward the end of the time series, but a larger un-528

certainty range for natural forcings, as found and discussed in section 4.2. We can note529

that the reconstruction of the observations by the backward optimization is by construc-530
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Figure 9. (Top) Attributable GSAT anomaly, in °C, as given by ROF for the effect of the

(red) greenhouse gases, (green) natural forcings and (blue) anthropogenic aerosols. The black line

shows the observed GSAT. The color shade shows the 90% confidence interval. (Bottom) : same

as top, but for backward optimization.
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tion very close to the observations (see Fig. S4) and captures most of the internal vari-531

ability contained within the observations.532

4.4 Focus on the main backward optimization results533

The backward optimization uncertainties are computed sampling various initial in-534

puts. Backward optimization is often used with an all-zeros starting point (Toms et al.,535

2020) even if McGovern et al. (2019) have optimised the initial inputs by using coher-536

ent starting points as done in the present study. Figure 10 shows the boxplots of the at-537

tributable changes in 2000-2014 when using the observations and backward optimiza-538

tion, as previously discussed in section 4.3, classified according to the climate models used539

for the initial input.540

The attributable changes produced by the backward optimization are influenced541

by the climate model used to generate the initial input. For example, CanESM5 sim-542

ulates large warming in response to greenhouse gases (see Fig. 1), probably linked to its543

large equilibrium climate sensitivity. When using the outputs of CanESM5 as initial in-544

put of the backward optimization, large attributable changes are obtained for both the545

greenhouse gases and the anthropogenic aerosols. On the other hand, when using an ini-546

tial input from FGOALS-g3 the changes due to the greenhouse gases and the anthro-547

pogenic aerosols are small. For each forcing, we analyse the dispersion of the GSAT anoma-548

lies over the years 2000-2014 by estimating the mean GSAT attributable to the use of549

all starting points for each of the 12 climate models. The variability explained by the550

model is calculated by is the standard deviation across these 12 attributable GSAT. The551

residual variability which accounts for the internal variability of the starting points is552

estimated by the standard deviation of the 1200 attributable GSAT after subtracting for553

each time series the average response obtained with their respective climate model. The554

standard deviation explained by the model of the starting point is 0.22°C for greenhouse555

gases, 0.29°C for anthropogenic aerosols and 0.14°C for natural forcings. The residual556

standard deviation is of 0.06°C for the greenhouse gases, 0.09°C for the anthropogenic557

aerosols and 0.1°C for the natural forcings. The residual variance therefore is smaller than558

this associated with the climate model for each forcing, especially for the greenhouse gases.559

The range of attribution results is about 1°C for all forcings, with some particular mod-560

els providing attribuable anomalies at the head or the tail of the inter-models distribu-561

tion when used as starting point. Removing or modifying these outliers to improve the562
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Figure 10. Boxplots of the attributable changes in 2000-2014 when using observation and

backward optimization, classified according to the climate model used as initial inputs for (A) the

greenhouse gases (B) the anthropogenic aerosols and (C) the natural forcings.
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backward optimization results have been considered. However, selecting these initial in-563

puts may imply a selection of climate models which needs to be associated with a care-564

ful investigation of the physical mechanisms (Coquard et al., 2004).565

5 Discussion and conclusion566

We present a method for detection and attribution of climate data based on a back-567

ward optimization of a convolutional neural network (CNN). We trained the CNN on568

the simulated GSATs obtained from outputs of twelve CMIP6 climate models. We then569

performed a backward optimization to estimate the attributable changes. This method-570

ology does not assume that the effects of the external forcings are additive. Such addi-571

tivity implies that the total changes simulated by the forcings can be obtained by the572

sum of the changes due to the individual forcings. The additivity assumption is an im-573

portant limitation when focusing on precipitation (Marvel et al., 2015) or at regional scale574

(Pope et al., 2020; Deng et al., 2020). We evaluated the effect of internal variability and575

model dispersion by using different starting points sampling the simulated distributions.576

We compared the results of the CNN backward optimization with those obtained using577

the regularized optimal fingerprinting (ROF) (Allen & Stott, 2003; Ribes et al., 2013).578

In order to assess the ability of backward optimization to deal with non-additivities in579

forcing compared to ROF we used synthetic data, which, unlike GSAT, have a strong580

non-additive behavior. In that case, the backward optimization results are more simi-581

lar to the true forced effect of the forcings than when using ROF which assumes addi-582

tivity. To see if this results can be generalised additional investigations need to be con-583

ducted using either different synthetic data or real non-additive climate data, as for in-584

stance the precipitation field.585

We also designed a perfect model approach to evaluate the skill of the two meth-586

ods. We successively removed the data of each climate model and used an historical mem-587

ber of the removed climate model as pseudo-observation. The attributable changes of588

each forcing are then compared to their actual effect simulated in the corresponding en-589

semble mean of single-forcing simulations. Backward optimization is found to provide590

performances similar to that obtained with ROFs in terms of RMSEs or bias. The con-591

fidence intervals of the backward optimization are smaller for greenhouse gases and an-592

thropogenic aerosols in the last years of the studied period and much larger for natu-593

ral forcings than those obtained by ROF. As the calculation of the uncertainty applied594
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in ROF has been previously shown to be also underestimated (DelSole et al., 2019), this595

suggests that backward optimization leads to an even larger underestimation. This might596

be linked to the internal variability of the target time series, which is not accounted for597

in the neural network-based method. A solution to solve this issue would be to gener-598

ate surrogate time series for the backward optimization and repeat the backward opti-599

mization. Larger ensemble of single forcing simulations, such as those proposed in the600

Large Ensemble Single Forcing Model Intercomparison Project (D. M. Smith et al., 2022),601

would also be required to refine of the estimated errors. In addition, the changes attribuable602

to natural forcings in the backward optimization have a larger uncertainty than the one603

of ROF. This is suggested to be an artefact of the estimated uncertainty used, which may604

be flawed for small changes. Many aspects of the backward optimization can be improved605

in future works. The backward optimization process can also be improved by giving weights606

based on the realistic simulation of the interannual to decadal variability. Indeed, the607

procedure presented here is designed to produce a close agreement between the recon-608

structed time series and the observations (or pseudo-observations). As shown in Fig. S4,609

the reconstructed time series, i. e. the image of the CNN using the backward optimiza-610

tion results, closely follow the observations. The CNN might instead be designed to only611

reproduce the forced component of the anomalies excluding the internal variability un-612

related to climate forcings. A better treatment of the initial state could be also inves-613

tigated, excluding or penalizing the time series used as initial input when inconsistent614

with observations. In addition, giving different weights to each climate models accord-615

ing to their performance in reproducing observed features could be considered, such as616

the observed GSAT evolution in Ribes et al. (2021).617

Overall, the attributable changes obtained with the backward optimization are con-618

sistent with recent attribution results, as reviewed in Eyring et al. (2020a). This con-619

firms the previous detection and attribution results on the GSAT. This study also shows620

that neural networks can be used to explore the CMIP databases through the backward621

optimization presented here. Such a method could be deployed on other physical vari-622

ables, such as precipitation. It could also easily be applied to spatial average instead of623

global mean where the non-additivities could be an obstacle. Lastly, a similar method624

applied on gridded data could also be considered without major modifications given that625

CNNs can easily process images.626
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Data Availability Statement628

The CMIP6 data is available through the Earth System Grid Federation (Cinquini629

et al., 2014) and can be accessed through different international nodes. For example,:630

https://esgf-node.ipsl.upmc.fr/projects/esgf-ipsl/631

Codes used in this article for the backward optimization and the figures are from632

Bône (2023) software available freely at https://doi.org/10.5281/zenodo.7248662.633

The ROF results have been obtained using the Eyring et al. (2020b) software (version634

2.9.0) that can be freely found at https://github.com/ESMValGroup/ESMValTool/releases/635

tag/v2.9.0.636
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Introduction

This supporting information gives some details on the construction of the synthetic data.

We present how the f1, f2 and f3 time series are constructed. The methodology adopted for

the choice of the hyperparameters for the neural network and the backward optimization is

alsopresented.Then, the effect of the internal variability is investigated by repeating ROF

and backward optimization using the HIST member from IPSL-CM6-LR the changes of

the attributable anomalies are illustrated when accounting land use and ozone forcing in

ROF. Lastly, we illustrate the reconstitution of the observation by the CNN.

Text S1. Synthetic dataset

We define three time series, f1, f2 and f3 as t ∈ {1, 2, 3...115} :
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X - 2 :

f1 = 6.10−5t2 + 2.10−3t

f2 = −0.5sin( tπ
150

)

f3 = 1.10−5t2 − 1.10−3t+ fadd(t)

fadd is a term added to represent the effect of three pseudo-volcanic eruptions for t ∈

{9, 49, 89}. This term is an additional anomaly that last for five years and is defined as :

fadd = e
2
3
(t−tj) if t ∈ [tj, tj + 4] and tj ∈ {9,49,89} and 0 otherwise

Text S2. Choice of hyper-parameters of the neural network

The hyperparameters of the CNN are the number of hidden layers, the cost function,

the non-linear activation function, the size of the kernel, the length of the hidden layers,

the learning rate, the type of padding used, and the batch size. The effects of the type

of padding, the activation function, the batch size and the learning rate have not been

investigated. We use the RMSE cost function and zero-values padding. A non-linear

activation function is used between the hidden layers of the neural network in our case

the hyperbolic tangent function. To determine the other hyper-parameters we use a

cross validation. We considered the data from the 12 models but leaving out the data

of one climate model. We train a CNN using the remaining models. The process was

repeated by excluding successively each climate model. For each CNN built we also select

randomly a historical member of the climate model left out as pseudo-observations, and

perform the backward optimization. We compare the results to the ensemble mean of

the simulations for this climate model. The mean value of the 12 backward optimization

RMSE, is illustrated in Fig. S1 for different sets of hyperparameters.

The backward optimization RMSE are between 0.18°C and 0.41°C. The number of filters

of the layer shows the largest influence, with a reduction of the RMSE for increasing

length of the hidden layers. The number of hidden layers and the kernel sizes does not

affect the RMSE.
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We choose the architecture that gives the lowest backward optimization RMSE while

keeping a small number of weights and biases with three hidden layers, a kernel sizes of 5

and number of filters of 32.

Text S3. Choice of the hyper-parameter of the backward optimization

Tables S1 and S2 shows the mean RMSE of the backward optimization described, for

differents values of A, B, and C. The difference of performance is small in all experiments.

We noted that large values of A and B reduce dramatically the variability of results of the

backward optimization (not shown) and select A=0.05, B=0.01 and C=0.1. We choose a

non-zero value for B to keep a background term although it only has a marginal effect on

the RMSE.
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Figure S1. A) Mean cross-validation RMSE (in °C) for differents kernel sizes and

number of filters while using three hidden layers. B) same as A) but with 5 hidden layers.

Table S1. Mean cross-validation RMSE (in °C) of the backward optimization for

different values of A and B, while C is fixed to 0.1.

A=0.01 A=0.05 A=0.1

B=0 0.205 0.190 0.189

B=0.01 0.199 0.189 0.190

B=0.1 0.191 0.191 0.192
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Table S2. Mean cross-validation RMSE (in °C) of the backward optimization for

different values of B and C, while A is fixed to 0.05°C.

C=0 C=0.01 C=0.1

B=0 0.188 0.187 0.188

B=0.01 0.190 0.188 0.189

B=0.1 0.191 0.191 0.191
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Figure S2. Performances of attribution methodologies on the 10 removed IPSL-CM6-

LR members A) RMSE distribution when using ROF and all 10 removed members as

pseudo-observation for the attributable GSAT anomaly of (red) greenhouse gases, (blue)

anthropogenic aerosols, (green) natural forcing. B) Same as A) for the backward optimiza-

tion. C) Distribution of the widths of the 90 % percent confidence intervals in 2000-2014

when using ROF. D) same as C) but for backward optimization E) Distribution of the

time mean differences between the estimated and ensemble mean GSAT attribuable to

the forcings when using ROF. F) Same as E) for backward optimization.
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Figure S3. Attributable GSAT anomalies calculated from ROF with observations

when using anthropogenic aerosols, natural forcing and greenhouse gases as forcings (top)

anthropogenic aerosols, natural forcing and greenhouse gases and other anthropogenic

effect combined (bottom).
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Figure S4. (Black) Observed GSAT anomalies, in °C, and (blue) the mean recon-

struction of the observation by the CNN. Color shade shows the 90% percents confidence

intervals of the mean reconstruction obtained across the 1200 backward optimization re-

sults available.
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