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Abstract

Volcanic ash provides information that can help understanding the evolution of volcanic activity during the early stages of a

crisis, and possible transitions towards different eruptive styles. Ash consists of particles from a range of origins in the volcanic

system and its analysis can be indicative of the processes driving activity. However, classifying ash particles into different types

is not straightforward. Diagnostic observations for particle classification are not standardized and vary across samples. Here

we explore the use of machine learning (ML) to improve the classification accuracy and reproducibility. We use a curated

database of ash particles (VolcAshDB) to optimize and train two ML-based models: an Extreme Gradient Boosting (XGBoost)

that uses the measured physical attributes of the particles, from which predictions are interpreted by the SHAP method, and

a Vision Transformer (ViT) that classifies binocular, multi-focused, particle images. We find that the XGBoost has an overall

classification accuracy of 0.77 (macro F1-score), and specific features of color (hue mean) and texture (correlation) are the most

discriminant between particle types. Classification using the particle images and the ViT is more accurate (macro F1-score

of 0.93), with performances across eruptive styles from 0.85 in dome explosion, to 0.95 for phreatic and subplinian events.

Notwithstanding the success of the classification algorithms, the used training dataset is limited in number of particles, ranges

of eruptive styles, and volcanoes. Thus, the algorithms should be tested further with additional samples, and it is likely that

classification for a given volcano is more accurate than between volcanoes.
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Key Points: 7 

• Volcanic ash particles are classified through machine learning algorithms into juvenile, 8 
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XGBoost’s predictions  11 

• Classification by a Vision Transformer model is very accurate and could be used by 12 
volcano observatories   13 
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Abstract 15 

Volcanic ash provides information that can help understanding the evolution of volcanic 16 
activity during the early stages of a crisis, and possible transitions towards different eruptive 17 
styles. Ash consists of particles from a range of origins in the volcanic system and its analysis 18 
can be indicative of the processes driving activity. However, classifying ash particles into 19 
different types is not straightforward. Diagnostic observations for particle classification are not 20 
standardized and vary across samples. Here we explore the use of machine learning (ML) to 21 
improve the classification accuracy and reproducibility. We use a curated database of ash 22 
particles (VolcAshDB) to optimize and train two ML-based models: an Extreme Gradient 23 
Boosting (XGBoost) that uses the measured physical attributes of the particles, from which 24 
predictions are interpreted by the SHAP method, and a Vision Transformer (ViT) that classifies 25 
binocular, multi-focused, particle images. We find that the XGBoost has an overall 26 
classification accuracy of 0.77 (macro F1-score), and specific features of color (hue_mean) 27 
and texture (correlation) are the most discriminant between particle types. Classification using 28 
the particle images and the ViT is more accurate (macro F1-score of 0.93), with performances 29 
across eruptive styles from 0.85 in dome explosion, to 0.95 for phreatic and subplinian events. 30 
Notwithstanding the success of the classification algorithms, the used training dataset is limited 31 
in number of particles, ranges of eruptive styles, and volcanoes. Thus, the algorithms should be 32 
tested further with additional samples, and it is likely that classification for a given volcano is 33 
more accurate than between volcanoes. 34 

1 Introduction 35 

A central challenge in volcanology is to anticipate the likely evolution of a restless 36 
volcano at a given point in time (Bebbington & Jenkins, 2019). During a period of unrest, small 37 
explosions or phreatic events may precede larger ones, or the volcano may remain at low 38 
activity levels and go back to dormancy (Marzocchi et al., 2012; Moran et al., 2011; Tilling, 39 
2008). Moreover, many eruptions consist of various phases, changing or alternating between 40 
explosive to effusive eruptive styles over time. To evaluate whether a volcano will progress 41 
towards one type of activity or another, an array of geophysical and geochemical tools is used 42 
to monitor and interpret the processes happening underneath the volcano (Newhall & 43 
Punongbayan, 1996). However, interpretation may not be straightforward and available data 44 
limited, and thus diagnosis is typically quite uncertain (Tilling, 2008).  45 

An additional tool that can provide critical insights on the state of a volcano is studying 46 
the volcanic ash. Ash can be classified into particle types that are indicative of processes 47 
driving the activity (Alvarado et al., 2016; D’Oriano et al., 2022; Gaunt et al., 2016; Pardo et 48 
al., 2014). For instance, the so-called juvenile particles are associated with the ascent of magma 49 
at shallow depth, and their identification, together with other monitoring signals, may warn of 50 
an ensuing magmatic eruption. For example, a-posteriori studies of ash from early and small 51 
phreatic eruptions of Mount St. Helens (USA, 1980) and Mount Unzen (Japan, 1991), 52 
identified minor amounts of juvenile particles in these pre-climactic deposits (Cashman & 53 
Hoblitt, 2004; Watanabe et al., 1999). Thus, had these been found in a timely manner, it could 54 
have altered the perception for explosive potential that followed (Cashman & Hoblitt, 2004). In 55 
other cases, the ambiguity of classification of the juvenile component in early explosions has 56 
led to very complex management of the volcanic crises such as the 1975–1977 Soufrière 57 
Guadeloupe crisis (Feuillard et al., 1983; Hincks et al., 2014; Le Guern et al., 1980). 58 
Furthermore, tracking the proportions of the different components in ash, their shape, and 59 
crystallinity, can give clues on possible transitions of eruption styles to better mitigate the 60 
associated hazards (e.g., Benet et al., 2021; Suzuki et al., 2013).  61 
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The classification of particles into types is typically done by collecting qualitative or 62 
quantitative data on a single particle level using a variety of techniques. This includes using 63 
binocular microscope (e.g., D’Oriano et al., 2014; Miwa et al., 2009; Pardo et al., 2014) to 64 
observe the gloss, color and shape, as well as the particles’ surface and shape (Dellino & La 65 
Volpe, 1996; Dürig et al., 2021; E. J. Liu et al., 2015; Ross et al., 2022). More detailed 66 
observations including the internal microstructures are typically done using the Scanning 67 
Electron Microscope (e.g., Miwa et al., 2013; Pardo et al., 2020), whereas the chemical 68 
analyses are made with the electron microprobe (Pardo et al., 2014), mass spectrometers (Rowe 69 
et al., 2008), and measurement of refractive indices (e.g., by the thermal immersion method; 70 
Watanabe et al., 1999). However, systematic and reproducible particle classification is 71 
problematic because there are few agreed diagnostic features, and these may vary from sample 72 
to sample depending on the eruptive style and the volcano (e.g., Pardo et al., 2014). Whilst a 73 
standardized analytical procedure of juvenile particles has been proposed (Ross et al., 2022), 74 
the step of particle classification relies on observer’s experience, making it subject to varying 75 
interpretations, and hindering comparison of datasets produced by different labs.  76 

An approach commonly employed to address such classification challenges in various 77 
domains is through the utilization of Machine Learning (ML). ML-based models can classify 78 
complex images in a wide range of situations (He et al., 2015). ML-based models are capable 79 
of learning patterns to classify objects, and use them for classification of future datasets, such 80 
as mushrooms (Lee et al., 2022) or leaf diseases (Sujatha et al., 2021), and have already been 81 
used for classification of ash particle shapes (Shoji et al., 2018). In this study, we trained two 82 
models using the VolcAshDB curated dataset (Benet et al. preprint) with the objectives of: (i)  83 
identification of the most important features for discrimination of particle types, and (ii) 84 
obtaining a particle classifier as accurate as possible. The results of our study should be a step 85 
forward towards a universal and unbiased classification of ash particles as more data becomes 86 
available and better algorithms are developed. 87 

2 Materials and Methods 88 

2.1 VolcAshDB dataset 89 

We used the data from the open-access database VolcAshDB, which comprises images 90 
and measurements (here referred as features) of more than 6,300 volcanic ash particles 91 
(https://volcash.wovodat.org/). These were obtained with the binocular microscope and 92 
processed to obtain multi-focused, high-resolution images (Benet al., preprint). The images 93 
have been classified with a dichotomous key (Figure 1), using some key particle features as 94 
reported in Benet et al., (preprint). The database contains ash particles from 12 samples from 8 95 
volcanoes and 11 eruptions from a range of magma compositions and eruptive styles (Table 1). 96 
These include (1) phreatic eruptions of Soufrière de Guadeloupe (Lesser Antilles) in 1976 and 97 
1977 (Feuillard et al., 1983), the early activity of April 1991 of Mt. Pinatubo (Philippines; 98 
Paladio-Melasantos et al., 1996), and Ontake (Japan) in 2014 (Miyagi et al., 2020), (2) dome 99 
explosions of Nevados de Chillán volcanic complex (Chile) from the beginning of the eruptive 100 
period in December 2016 and after the extrusion of a dome in April 2018 (Benet et al., 2021), 101 
explosions from Merapi volcano (Indonesia) in July and November 2013 (Nurfiani & Bouvet 102 
de Maisonneuve, 2018), (3) the basaltic lava fountaining of Cumbre Vieja (Canary Islands) in 103 
October 2021 (Romero et al., 2022), and (4) two samples from different locations (KE-DB2 104 
and KE-DB3) of the plinian/sub-plinian eruptions of Kelud (Indonesia) in 2014 (Maeno et al., 105 
2019; Utami et al., 2022), and a sample from the climactic plinian eruption of Mount St. 106 
Helens (USA) in 1980 (Scheidegger et al., 1982). 107 
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 108 

Figure 1. Example of classification process and particle images in VolcAshDB based on the 109 
steps for petrographic classification in Benet et al., (preprint). Note that the particle type 110 
altered material comprises both hydrothermal and weathered material. 111 

Table 1. Main sample characteristics, and proportion of main particle types in VolcAshDB. 112 
The associated error is calculated using the equation of margin of error Benet et al., (preprint) 113 
at a confidence interval of 95% and expressed in absolute values. 114 

Samples Eruption 
date 

Magma 
composition Volcano type Eruptive style 

Number of particles per component and 
associated error Total 

Altered 
material 

Free-
crystal Juvenile Lithic  

Cumbre 
Vieja 

         

CV-DB1 19/10/21 Mafic Cinder cone Lava 
fountaining 3 (±0.3) 1(±0.2) 719(±2.8) 352(±1.4) 1075 

Kelud          

KE-DB2 14/2/14 Intermediate Stratovolcano Subplinian 50(±3.9) 4(±1.2) 268(±4.1) 3(±1.0) 325 
KE-DB3 14/2/14 Intermediate Stratovolcano Subplinian 162(±5.3) 59(±4.0) 54(±3.9) 65(±4.2) 340 

Merapi          

ME-DB1 22/7/13 Intermediate Stratovolcano Dome 
explosion 232(±4.9) 13(±2.2) 0 78(±4.7) 323 

ME-DB2 22/11/13 Intermediate Stratovolcano Dome 
explosion 595(±2.9) 76(±2.1) 4(±0.5) 100(±2.4) 775 

Sourfière de 
Guadeloupe 

         

SG-DB1 8/7/76 Intermediate Stratovolcano Phreatic 222(±5.1) 54(±3.9) 0 66(±4.2) 342 

SG-DB2 1/3/77 Intermediate Stratovolcano Phreatic 134(±3.8) 8(±3.8) 0 0 142 
Nevados de 
Chillán 

         

NC-DB15 3/4/18 Intermediate Dome complex Dome 
explosion 224(±2.3) 77(±1.5) 92(±1.6) 749(±2.8) 1142 

NC-DB2 29/12/16 Intermediate Dome complex Dome 
explosion 99(±5.4) 12(±2.3) 14(±2.4) 171(±5.6) 296 

Ontake          
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ON-DB1 27/9/14 Intermediate Stratovolcano Phreatic 777(±0) 0 0 0 777 

Pinatubo          

PI-DB1 2/4/91 Silicic Caldera Phreatic 386(±3.7) 104(±3.5) 0 16(±1.5) 506 
Mount St 
Helens 

         

MS-DB1 18/5/80 Silicic Stratovolcano Plinian 4(±1.5) 0 255(±1.8) 2(±1.1) 261 
    Total 2888(±1.2) 408(±0.6) 1406(±1.0) 1602(±1.0) 6304 

In addition to ash images, VolcAshDB also includes: (i) the value of 33 features of each 115 
ash particle related its shape, texture, and color, (ii) a label with the identification of the types 116 
of particle (free-crystal, altered material, juvenile, and lithic; Figure 1), and (iii) metadata for 117 
each particle, such as the sample grain-size fraction, the number of magnifications used for 118 
image acquisition, amongst others. The shape features in the database have been used in 119 
previous studies (Cioni et al., 2014; Dellino & La Volpe, 1996; Dürig et al., 2018; Leibrandt & 120 
Le Pennec, 2015; E. J. Liu et al., 2015), and include those sensitive to particle-scale cavities, 121 
(e.g., solidity), perimeter-based irregularities (e.g., convexity), and form (e.g., elongation; Liu 122 
et al., 2015). The textural features in VolcAshDB were obtained from calculations of the 123 
distribution of pixel intensities in grayscale across several particle regions based on the so-124 
called Gray Level Cooccurrence Matrix (GLCM, Haralick et al., 1973). From the GLCMs we 125 
obtained features that indicate a more uniform texture (e.g., Homogeneity), and those that 126 
indicate a more complex or heterogeneous texture (e.g., Dissimilarity; Hall-Beyer, 2017). The 127 
color features of each particle were taken from the measurement of the mean, mode and 128 
standard deviation of the histogram distribution for each of the six channels in the Red-Green-129 
Blue (RGB), and Hue-Saturation-Value (HSV) color spaces. For more details on the 130 
calculation and references of each feature, the reader is referred to Benet et al., (preprint), and 131 
they are summarized with the abbreviation in Table S1. 132 

2.2 Development of a particle classifier using the measured particle features  133 

The steps needed to develop a volcanic ash particle classifier vary if the input data are 134 
the measured features, or the particle images directly. Because the particle types are already 135 
classified, the models are trained by supervised learning (Verdhan, 2020). We used three steps 136 
to identify the best-performing classifier for the feature data (Figure 2): data processing, model 137 
optimization, and selection. We also compared the ability to classify unseen (test set) data 138 
using non-parametric, tree- and ensemble-based ML models. We found that the XGBoost 139 
model had the best scores, as is the case in studies in other fields (Chen & Guestrin, 2016; 140 
Dhaliwal et al., 2018). The XGBoost model was used to gain insights on the most important 141 
features by calculating the Shapley values and with feature permutation (Molnar, 2021). 142 

 143 
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 144 

Figure 2. Illustration of the steps involved from the dataset to the outcomes, including those to 145 
obtain the best optimized model, XGBoost. (1) Data processing of the full dataset (features and 146 
particle types), including the oversampling of the training set. (2) hyperparameter optimization 147 
and cross-validation to obtain the models with the highest cross-validation scores. (3) 148 
evaluation of the models with the test set (unseen by the model) and selection of XGBoost with 149 
the highest classification scores. The XGBoost classifier was applied for prediction of particle 150 
types and feature importance. See more details in main text and subsequent figures. 151 

2.2.1 Data processing 152 

The dataset consists of 33 features measured from each particle (variables; Table S1) 153 
and the particle types (target variable; Figure 2). The dataset is made of 6,300 particles and was 154 
divided into a training set (80% of the total particles) to optimize and fit the models, and a test 155 
set (20%), not used during the model’s learning process. The original feature distributions are 156 
heterogenous and were standardized using the Scikit-learn’s function StandardScaler, as it is 157 
commonly done to ease convergence of ML models (Géron, 2017). The standard scaler 158 
redistributes the values of each feature with the mean at 0, and the first standard deviation at 1 159 
and -1. The features from the test set were also standardized according to the scaler that was fit 160 
into the training set to avoid data leakage. Any outliers, defined as values higher and smaller 161 
than two standard deviations (Verdhan, 2020), were kept after visually confirming that the 162 
source images had no errors. Highly correlated variables were kept for estimating their 163 
importance for classification in the step of feature permutation (more details are reported in 164 
‘Explaining the model’s predictions’ in Section 2.3.4). Highly correlated variables may cause 165 
multi-collinearity issues in regression models, but these haven’t been reported in tree-based 166 
models (Kotsiantis, 2013).  167 

The VolcAshDB dataset contains more altered material than juvenile and lithic particle 168 
types, and free crystals are relatively scarce (Table 1). Such uneven distribution of particle 169 
types may cause an imbalanced dataset problem. We addressed this issue by oversampling the 170 
less abundant particle types, using the SMOTE package, which uses a K-Nearest Neighbor 171 
algorithm (KNN) to generate synthetic data (Brownlee, 2020). This technique is strongly 172 
recommended to prevent the model from not learning to classify the less abundant class 173 
(Brownlee, 2020). 174 

2.2.2 Hyperparameter optimization 175 

Hyperparameters control the model learning process and are explicitly defined by the 176 
user. Hyperparameters are defined by ranges of values intrinsic to each model. We considered 177 
Decision Trees (DT), K-Nearest Neighbor (KNN), Random Forest (RF), Gradient Boost 178 
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Classifier (GBC), and the Extreme Gradient Boosting (XGBoost), and compiled their best 179 
hyperparameters values using Bayesian optimization, from the Scikit-optimize’s function 180 
BayesSearchCV. This function searches for the optimal hyperparameters depending on the 181 
previous iterations, making computation faster and less intensive than iterating through the 182 
entire search space (Owen, 2022). The scores to evaluate the effect of the hyperparameters 183 
were obtained from 10-fold cross-validation of the training set. In the K-fold Cross-validation 184 
(where K is an integer), the data are iteratively divided into K training and testing folds for K 185 
times, as recommended to avoid overfitting (Verdhan, 2020). The highest cross-validation 186 
scores, using the optimal hyperparameters (Table S2), were obtained with the XGBoost with 187 
0.9 F1-score (as defined and calculated below in Section 2.2.3) closely followed by KNN and 188 
GBC with 0.88 F1-score (obtained scores of each model are shown in Figure S1). 189 

2.2.3 Model evaluation and selection 190 

The cross-validation scores indicate how well a model fits the training set. To evaluate 191 
the models’ ability to generalize we also computed the predictions on the test set. Each 192 
prediction contains a confidence score per class which represents the likelihood of the 193 
prediction belonging to the class, and the score is given as a percentage (Mandal et al., 2021). 194 
The class, that is, the particle type in our case, with the highest confidence score is considered 195 
the predicted type by the model. Comparison between the predicted and the true types from 196 
VolcAshDB allows to categorise each prediction in one of the four following groups: True 197 
Positive (TP), where the prediction correctly identifies the class; True Negative (TN), where 198 
the prediction correctly identifies the absence of a class; False Positive (FP), where the 199 
prediction wrongly identifies the presence of a class, and False Negatives (FN), where the 200 
prediction wrongly identifies the absence of a class. The classification matrix (Figure S2) is 201 
typically used in ML to show the proportions of TP, TN, FP and FN for each class. Based on 202 
these proportions, we can calculate four well-known metrics to evaluate the models’ 203 
performance (e.g., Verdhan, 2020): 204 

 205 
 Accuracy = !"#!$

!"#!$#%"#%$
 (1) 

 206 
 Precision = !"

!"#%"
 (2) 

 207 
 Recall = !"

!"#%$
 (3) 

 208 
 F1-score = &∗!"

&∗!"#%"#%$
 (4) 

 209 

Classification scores in this study are reported based on the F1-score, as it combines the 210 
precision, dependent on the FP, and recall, dependent on the FN, into a single metric (Verdhan, 211 
2020), and is recommended for imbalanced datasets when FN and FP are equally important 212 
(Brownlee, 2020). We use the unweighted average of the F1-scores (the so-called macro from 213 
macro-averaging) of the four particle types to evaluate the overall model performance, as 214 
opposed to the weighted averaging, where the average is multiplied to a coefficient based on 215 
the number of particles per class (Verdhan, 2020). We found that XGBoost has the best 216 
classification performance with 0.76 macro F1-score amongst the optimized models and 217 
therefore is our selected model (classification score for each model are reported in Table S3 218 
and shown in Figure S3).  219 
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2.2.4 Explaining the model’s predictions  220 

Explainable AI (xAI) is a set of methods that provide explanations on the variables that 221 
drive the model’s predictions (Gianfagna & Di Cecco, 2021; Mishra, 2022; Molnar, 2021). We 222 
used the method called “permutation feature importance” to assess the contribution of the 33 223 
features to the model’s prediction across all instances (i.e., the feature values from all 224 
particles), and the SHapley Additive exPlanations (SHAP; Lundberg and Lee, 2017) method to 225 
estimate the contribution of the features for each particle and, by aggregation, their global 226 
importance (Molnar, 2021). In the permutation feature importance, the values of each feature 227 
from the dataset are shuffled to measure the increase in prediction error. We used Scikit-learn’s 228 
function permutation on the test set from which we obtained a ranking of the features’ 229 
contribution between two end-members: “important” features, which cause an increase in 230 
prediction error when shuffled, and “unimportant” features, where the error remains unchanged 231 
or decreases (Molnar, 2021). We estimated the feature importance on each class by permuting 232 
the features between each class and the rest (e.g., One-vs-Rest strategy). 233 

The SHAP library can be used to explain individual model’s predictions in regression 234 
(e.g., Biass et al., 2022; Kondylatos et al., 2022), and classification problems (e.g., Panati et al., 235 
2022; Tang et al., 2021). The methods from the SHAP library are based on the Shapley values 236 
(Shapley, 1953), which measure the contribution of the feature values to predict a certain value 237 
with respect to the average prediction for all instances (Molnar, 2021). Shapley values were 238 
calculated using TreeSHAP estimation method with raw output. Because Shapley values are 239 
additive, TreeSHAP method adds and averages the contribution of each node in the ensembled 240 
trees to obtain the Shapley value of each feature value per instance (Lundberg et al., 2018)–in 241 
our study, an instance are the feature values per particle. The highest Shapley positive values 242 
per instance are those which contribute the most to predict a given class. Averaging of the 243 
Shapley values by particle type, or across the four particle types (free-crystal, altered material, 244 
juvenile, and lithic), informs about the global feature importance (Lundberg et al., 2018), 245 
which can be used for comparison with the permutation feature importance. 246 

2.2.5 Classification strategies 247 

We applied three classification strategies to evaluate which model performs best: (i) the 248 
multilabel, where the four classes are used to train the model at once and one prediction 249 
probability is given for each class, with the highest value being the predicted class, (ii) the 250 
One-vs-One (OVO), where each possible pair of classes trains a binary classifier (i.e., a total of 251 
six classifiers, as there are six possible pairs for four classes), and their outputs are aggregated 252 
to yield the predicted class (Herrera et al., 2016), and (iii) the One-vs-Rest (OVR), where each 253 
class and its complementary (e.g., lithic vs non-lithic) are used to train a binary classifier (i.e., a 254 
total of four), and their outputs are aggregated to yield the predicted class (Herrera et al., 2016). 255 
For the OVO and OVR strategies, the outputs from the binary classifiers were aggregated with 256 
the same weight to obtain the predicted class. There are more sophisticated aggregation 257 
methods, such as the calibrated label ranking method (Fürnkranz et al., 2008), which adjust the 258 
weights of each binary classifier aiming to mitigate class dependencies, and making the global 259 
classification more robust (Herrera et al., 2016). However, we don’t know of any 260 
implementation of these methods in Python for the XGBoost model, and developing them from 261 
scratch is out the scope of this study. 262 

2.2.6 Effect of the training and test data split on the XGBoost scores 263 

As noted above, we first split the dataset into a training (80% of all particle features in 264 
VolcAshDB) and a test set (20%) and used the latter to evaluate the XGBoost’s performance. 265 
However, as splitting process is random it may affect the precision and accuracy of the 266 
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measured F1-scores. To estimate this error, we re-trained and evaluated the XGBoost at 1,000 267 
different values of random state, i.e., the hyperparameter that controls randomness. We 268 
obtained an average accuracy (macro F1-score of 0.76; Table S4) that is like the accuracy from 269 
the test set (macro F1-score of 0.75). The free-crystal type shows the widest variability 270 
(standard deviation of 0.04) and is the most inaccurate (F1-score of 0.57; Figure 3) amongst the 271 
particle types. This is likely because it is the least abundant type, and its classification is 272 
challenging given the different types of minerals and lack of a discriminant feature as 273 
explained below (Section 3.1). Accuracies of the three other types are higher (F1-score of 274 
0.73–0.88) and with better precision (standard deviation is < 0.02; Table S4).  275 

 276 

 277 

Figure 3. Density plots of the F1-scores obtained from 1,000 runs of the XGBoost at different 278 
random state across particle types and aggregated as macro F1-score (Overall).  279 

By averaging the F1-scores of each particle type, we obtain the macro F1-score 280 
distribution (Figure 3) and its variability (standard deviation; Table S4). To quantify the 281 
associated error (𝛼), we use the second standard deviation (Hughes and Hase 2010):  282 

 

𝛼	 = $
1

𝑁 − 1(
(𝑥( − 𝑥)&

$

()*

	x2 (5) 

where N is the number of experiments, 𝑥 is each measured value (i.e., macro F1-score) 283 
and 𝑥  is the mean. With the values noted above we obtain an error (𝛼) of 0.03 for macro F1-284 
score distribution and, since we used the second standard deviation, it is for a 95% confidence 285 
level. Therefore, the F1-score values can be reported as:	0.76±0.03 macro F1-score, which is a 286 
small relative error of <5 %.  287 

2.3 Development of a particle classifier using VolcAshDB image dataset  288 

We used four steps to develop an optimized classifier for the image dataset (Figure 4): 289 
data augmentation, fine-tuning, selection, and evaluation. We compared the performance 290 
between three state-of-the-art models that have top accuracies in the reference dataset 291 



manuscript submitted to Geochemistry, Geophysics, Geosystems 

 

ImageNet (Jia Deng et al., 2009): ResNet (He et al., 2016), which is the prevalent model of the 292 
so-called convolutional neural networks (CNN), Vision transformer (ViT; Dosovitskiy et al., 293 
2020), which superseded ResNet in image classification, and ConvNeXT (Z. Liu et al., 2022), 294 
which is an optimized convolutional neural network that has surpassed performances of vision 295 
transformers. The models are available in the Hugging Face library (https://huggingface.co/), 296 
which also provides application programming interfaces (API) for their deployment. The 297 
model that yielded highest classification score was the ViT. We augmented the training dataset 298 
with an array of variations from the original images (see below), and the ViT reached a macro 299 
F1-score of 0.93, outperforming the XGBoost classifier. The images of the ash particle in 300 
VolcAshDB were obtained from processed multi-focused binocular images, but this is not the 301 
standard practice, and thus we also tested the ViT’s ability to classify standard single-focus 302 
binocular images used in most studies of ash particles. 303 

 304 

Figure 4. Illustration of the steps involved from the dataset to the outcomes, including 305 
those to fine-tune the Vision Transformer (ViT). (1) Data processing of the full dataset (images 306 
and particle types). (2) preliminary evaluation of the models using the base hyperparameters, 307 
selection of ViT and hyperparameter optimization through grid search. (3) Fine-tuning with the 308 
augmented dataset and final evaluation using the test set. The ViT classifier can be then applied 309 
for prediction of particle types. See more details in main text and subsequent figures. 310 

2.3.1 Image augmentation and processing 311 

The binocular images of ash particles in VolcAshDB are multi-focused, and contain 312 
four color channels: red, green, blue and alpha. The alpha channel is a binary mask that takes a 313 
value of 1 or 0 to separate between the particle pixels and those of the background (more 314 
details in the segmentation step in (Benet et al., preprint). We split the dataset into a train (80% 315 
of the total images in VolcAshDB) and test set. Then, we augmented the number of images in 316 
the training set based on six standard methods (Ayyadevara & Reddy, 2020): rotation (at 45°), 317 
translation (at 25 pixels), up-down and left-right flipping, and adding random noise and 318 
Gaussian blur at sigma values of 0.155 and 0.55. Increasing the amount of images allowed us 319 
to balance the distribution across particle types (~2900/class), and is generally recommended to 320 
increase model’s robustness (Brownlee, 2020). Images were stored into four subdirectories, 321 
one for each class, of a root directory which is inputted to the Hugging Face’s API for fine-322 
tuning.  323 

2.3.2 Fine-tuning, preliminary evaluation, and model selection 324 

We fine-tuned the classifiers and did a preliminary round of evaluations to choose the 325 
best-performing model. Fine-tuning consists in making small adjustments to an already trained 326 
classifier, as opposed to training, where the data drives the model’s learning process without 327 
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any prior exposure. We selected the model before hyperparameter optimization because each 328 
run is time consuming (lasting about 14–18 hours) and because the authors of each model 329 
already provide the base hyperparameters (Table S5). The fine-tuned model that yielded the 330 
highest accuracy is ViT (0.88), followed by ConvNext and ResNet, both with an accuracy of 331 
0.86. 332 

2.3.3 ViT Hyperparameter optimization 333 

We obtained the optimal hyperparameters following the grid search technique for two 334 
ranges of batch size and learning rate. In grid search, each hyperparameter is modified one step 335 
at a time, while the other hyperparameters remain fixed, throughout all the possible 336 
combinations (Owen, 2022). We found that the optimal batch size and learning rate are 16 and 337 
3x10-5, respectively (accuracies obtained from grid search are reported in Table S6). Using 338 
these values, we tested three different optimizers, AdamW (Loshchilov & Hutter, 2019), 339 
Stochastic Gradient Descent (Sutskever et al., 2013) and Adagrad (Duchi et al., 2011) with the 340 
former performing the best (Table S7). We also tested and an increasing number of epochs 341 
(i.e., 5, 10, 15, 20), which didn’t improve performance above 10, probably because the model 342 
had already converged.  343 

2.3.4 Model evaluation 344 

We fine-tuned again the ViT with the augmented training set and the optimal set of 345 
hyperparameters, and obtained a significant improvement, with a macro F1-score of 0.93. We 346 
obtained the same metrics of precision, recall, accuracy and F1-score, confusion matrix, and 347 
confidence scores as defined and calculated above (Section 2.2.3 Model evaluation and 348 
selection). In contrast with the XGBoost, the explainability of the model is very limited as 349 
further discussed below (see Section 4.1). 350 

3 Results 351 

We used the VolcAshDB ash particle features and images to train the XGBoost and 352 
ViT models and to evaluate their ability to classify them into altered material, free-crystal, 353 
lithic or juvenile types (Table 2). We found that overall, the ViT classifies very accurately, 354 
with a macro F1-score of 0.93, whereas the XGBoost is less performant with a macro F1-score 355 
of 0.77 (Table 2) but allows for explaining the model’s predictions by interpretable AI 356 
methods. We describe below the model performance through the two datasets by particle type 357 
and some particle subgroups, such as those divided by the volcano, or one class versus another.  358 

Table 2. F1-score values for the whole database (unweighted average or macro) and particle 359 
types obtained from various models, including XGBoost multilabel, One-vs-One (OVO), One-360 
vs-Rest (OVR), and the multilabel image-based model ViT. 361 

 Overall Free-crystal Altered material Lithic Juvenile 
Multilabel 
XGBoost 0.77 0.57 0.88 0.74 0.90 

OVO XGBoost 0.75  0.56 0.89 0.71 0.85 

OVR XGBoost 0.76 0.55 0.90 0.73 0.88 

Multilabel ViT 0.93 0.91 0.95 0.89 0.95 

 362 

3.1 XGBoost quantitative evaluation 363 

Overall, the XGBoost shows rather accurate F1-scores across classification strategies: 364 
0.76 for multilabel, 0.75 for OVO, and 0.76 for OVR (Table 2). Computation of the confusion 365 
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matrix (Figure 5) shows that the model classifies best the altered material type (F1-score of 366 
0.9), closely followed by the juvenile type (F1-score of 0.88), and less accurately the lithic type 367 
(F1-score of 0.74), and significantly less the free-crystal type (F1-score of 0.57).  368 

 369 

Figure 5. Confusion matrix of the predictions by the XGBoost multilabel classifier. The 370 
percentages show the True Positive rate if positioned in the diagonal matrix (darker green), and 371 
otherwise, the False Negative rate (lighter), all percentages with the corresponding number of 372 
particles per predicted type. The best classification is for altered material followed in 373 
descending order by juvenile, lithic and free-crystal types. 374 
 375 

Binary classifications using OVO and OVR between altered material, lithic and 376 
juvenile have accuracies > 0.80 (macro F1-scores of 0.82–0.97), whereas the free-crystal type 377 
is systematically lower (Table S8). A closer inspection by volcano and eruptive style reveals a 378 
wide range in XGBoost’s performances (Table 3). Predictions of juvenile particles are very 379 
accurate (F1-score of 0.97) at Kelud volcano but inaccurate (F1-score of 0.32) at Nevados de 380 
Chillán. Classification of lithics is rather accurate for samples of dome explosions (F1-score of 381 
0.77) but inaccurate (F1-score of 0.28) for those of phreatic events. Such fluctuations indicate 382 
limited robustness by the classifier and care should be taken for its application to other datasets 383 
on a case-by-case basis.  384 

The likelihood that a particle belongs to a given type according to the model is reflected 385 
in the distribution of the confidence scores, and varies across particle types. Within the True 386 
Positives (TP), almost 90% of the juvenile TP have confidence scores > 0.9, whereas ~40% of 387 
the free-crystal TP have confidence scores between 0.4–0.9 (Figure 6A). This means that the 388 
XGBoost is almost certain when predicting juvenile particles, but more unstable for free 389 
crystals. The confidence scores over the False Negatives (FN) show that the XGBoost 390 
identifies a relatively high number of lithic particles and free-crystals as altered material, with 391 
confidence scores > 0.9 (Figure 6B–C), hinting at some classification challenges that are 392 
revealed below using the Shapley values (see ‘Local feature importance’ in Section 4.3.2).393 
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Table 3. F1-scores obtained from the multilabel XGBoost classifier of each particle type and their unweighted average (i.e., macro) for all 394 
particles in the test set (Overall), and across volcanoes and eruptive styles. These measurements also have an estimated precision of ±0.03. 395 
 396  

Overall Volcano  Eruptive style  
Soufrière de 
Guadeloupe 

Merapi Nevados 
de 
Chillán 

Cumbre 
Vieja 

Kelud  Phreatic Dome 
explosion 

Lava 
fountaining 

Sub-
plinian/ 
Plinian 

F1-score 
(macro) 

0.77 0.76 0.73 0.6 0.87 0.73  0.62 0.65 0.87 0.76 

F1 0.57 0.7 0.67 0.59 – 0.6  0.64 0.51 – 0.7 

A2 0.88 0.92 0.91 0.7 – 0.81  0.95 0.82 – 0.84 
L3 0.74 0.67 0.6 0.77 0.83 0.54  0.28 0.8 0.83 0.42 
J4 0.9 – – 0.32 0.92 0.97  – 0.46 0.92 0.99 

1F: Free-crystal  2A: Altered material  3L: Lithic  4J: Juvenile 397 
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 398 

Figure 6. Line plots of the confidence score versus (A) the cumulative proportion of True 399 
Positives (TP), (B) False Negatives (FN) in free-crystal, and (C) lithic types. The distribution 400 
of the data have been plotted into 9 bins of size 0.1. We don’t use cumulative proportion in 401 
(B) and (C) given the limited number of FN. The meaning of the Plot in (A) can be 402 
understood by the following two examples: if we take the value of juvenile TP at a 403 
confidence score between 0.8–0.9, there is a low cumulative proportion of ~10%, whereas in 404 
the next bin, 0.9–1.0 of confidence score, we have the vast majority (~90%) of the juvenile 405 
TP. If we take the value of free-crystal TP at a confidence score between 0.8–0.9, there is a 406 
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significant cumulative proportion of almost 40%. This shows that XGBoost is more reliant 407 
predicting juvenile particles than free crystals. 408 

3.2 What features drive XGBoost ash particle type predictions? 409 

3.2.1 Global feature importance 410 

We identified the features driving the XGBoost’s predictions with two approaches: 411 
applying the permutation feature importance, and computing the mean of the Shapley values 412 
(see Section 2.3.4). Although the calculation of the two methods is quite different, they 413 
yielded overall a similar feature importance ranking, and we identified the following three as 414 
the most important features (Table 4): (i) the mean of the hue channel (hue_mean), which is a 415 
feature from the Hue-Saturation-Value color space that measures the averaged chromaticity; 416 
(ii) the correlation, a textural feature that measures the degree of similarity between pixel 417 
relationships (Hall-Beyer, 2017); and (iii) the mode of the blue channel (blue_mode), which 418 
measures the most frequent pixel intensity of the blue channel of the particle image. 419 

 420 

Table 4. Feature importance identification based on mean of Shapley values and 421 
feature permutation. These two methods calculate the feature importance values differently 422 
and can’t be directly compared. The relative ranking of the features importance is similar (top 423 
ten ranked features in bold) with the same top two ranked features (hue_mean and 424 
correlation). We used the Shapley mean value for feature importance per particle type 425 
(shown as a plot in Figure 7), the top three of which are underlined. For the meaning of the 426 
abbreviations of each feature please see Table S1. The permutation feature values have been 427 
multiplied by ten for better readability, as the importance lies on the relative values across 428 
features. 429 
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Feature 
importance 

method 
Mean of Shapley values Feature permutation 

 Per particle type (Multilabel) 
Total 

Per particle type (OVR) 
Total  

A F L J A F L J 

hue_mean 0.78 0.86 0.12 1.15 2.91 0.91 0.41 0.15 0.91 1.22 

correlation 0.46 0.33 0.33 0.55 1.68 0.34 0.02 0.19 0.04 0.29 

blue_mode 0.31 0.10 0.48 0.54 1.43 0.06 0.04 0.00 0.01 0.10 

value_mode 0.28 0.23 0.60 0.20 1.31 0.05 0.05 0.24 0.00 0.00 

saturation_mode 0.10 0.27 -0.01 0.80 1.17 0.02 0.06 0.10 0.10 0.13 

convexity 0.02 0.52 0.06 0.48 1.10 0.01 0.06 0.00 0.03 0.03 

red_mean 0.16 0.18 0.53 0.21 1.07 0.03 0.03 0.01 0.01 0.04 

blue_std -0.06 0.81 0.06 0.19 1.00 0.34 0.24 0.04 0.04 0.28 

green_mode 0.18 0.27 0.11 0.18 0.73 0.03 0.02 0.01 0.03 0.02 

saturation_std 0.02 0.39 0.00 0.30 0.70 0.07 0.00 0.00 0.08 0.11 

solidity 0.04 0.40 -0.01 0.24 0.68 0.08 0.01 0.07 0.02 -0.04 

blue_mean 0.15 0.16 0.03 0.29 0.64 0.06 0.05 0.01 0.01 0.05 

homogeneity 0.13 0.08 0.32 0.06 0.59 0.16 0.03 0.12 0.00 0.06 

asm 0.21 0.29 0.01 0.02 0.53 0.18 0.03 0.00 0.00 0.14 

contrast -0.03 0.07 0.12 0.35 0.51 0.11 0.03 0.02 0.00 0.03 

hue_std 0.09 0.16 0.05 0.20 0.49 0.14 0.13 0.11 0.00 0.14 

green_mean 0.09 0.16 0.09 0.13 0.46 0.16 0.02 0.13 0.00 0.13 

saturation_mean 0.07 0.05 0.15 0.18 0.46 0.01 0.05 0.00 0.01 0.04 

circ_cioni 0.01 0.03 0.01 0.21 0.26 0.01 0.00 0.02 -0.01 -0.02 

energy 0.05 0.02 0.06 0.00 0.14 0.03 0.00 0.09 0.00 0.01 

red_std -0.01 0.00 0.03 0.09 0.11 0.03 0.13 0.00 0.00 0.03 

Total 3.12 5.51 3.13 6.51  2.86 1.43 1.33 1.29  

430 
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3.2.2 Local feature importance across particle types  431 

We identified the most important features used by the XGBoost to predict each 432 
particle type based on the Shapley values, which considers the interaction between the four 433 
particle types, unlike permutation which is based on the One-vs-Rest approach. Shapley 434 
values calculate the contribution of each feature to the actual prediction with respect to the 435 
expected prediction (Gianfagna & Di Cecco, 2021; Lundberg et al., 2018; Molnar, 2021). 436 
Thus, we can use the Shapley values of an individual particle prediction to identify which 437 
features were more important or average them across particle types to identify the global 438 
discriminant features per type (Figure 7). These vary according to the particle type as 439 
follows: 440 

(1) Altered material has the highest classification success with a F1-score of 0.90 and is 441 
predicted through color (hue_mean and blue_std), texture (correlation) and shape 442 
(convexity) (Figure 8A). A group of True Positives (TP) with hue_mean values 443 
between -3 and -2 (rescaled as described in Section 2.3.1) is revealed by the Shapley 444 
dependence plot (Figure 8B), which relates feature values (hue_mean) and their 445 
associated Shapley values for each particle (Lundberg et al., 2018). Such TP have 446 
almost 100% of confidence scores and consist of white (Figure 8C), red (predicted by 447 
red_mode, Figure 8D), rounded, hydrothermally altered material. 448 

(2) The juvenile particles are accurately classified with a F1-score of 0.88 with color 449 
(hue_mean, saturation_mode), texture (correlation), and shape (convexity) (Figure 450 
9A). The saturation_mode feature, which relates to the intensity of color, is 451 
discriminant (Shapley values > 1) with values of 0–2 (Figure 9B). The value_mode, 452 
which measures the amount of reflected light, or gloss, and which is considered 453 
characteristic of juvenile particles under the binocular (Miwa et al., 2009) is also very 454 
important. Low values of convexity are also relevant for discrimination, as could be 455 
expected by the presence of vesicles on the particles’ surfaces (Figure 9C). Moreover, 456 
the XGBoost predicts instances with lower hue_mean and saturation_mode as lithic 457 
(i.e., False Negative, FN), which correspond to darker, mid to high crystallinity 458 
juvenile particles from dome explosions (Figure 9D). 459 

(3) The lithic particles are moderately well classified with a F1-score of 0.74, and is 460 
mainly discriminated through color (value_mode and read_mean) and texture 461 
(homogeneity and correlation) features (Figure 10A). Low values of value_mode, 462 
ranging between of -1.7 to 0 (Figure 10B), discriminate lithic particles. These features 463 
together with relatively high values of correlation reflect dark lithic particles with 464 
uniform texture (Figure 10C). In contrast, instances with higher pixel intensity-based 465 
features (hue_mean and green_mean) are a source of FN, as suggested by negative 466 
Shapley values, and are classified as altered material (Figure 10D).  467 

(4) Free-crystals are the least accurately classified with F1-score of 0.54, and is mainly 468 
discriminated by color (blue_std, hue_mean), shape (convexity) and textural 469 
(correlation; Figure 11A). Unlike the other types, the most discriminant feature 470 
doesn’t cluster particles as shown by the blue_std values as a function of the Shapley 471 
values doesn’t yield any cluster of TP (Figure 11B), and those with Shapley values > 472 
1.5 overlap with altered material (Figure 11C). Thus, the XGBoost has limited 473 
predictability of free crystals, which is consistent with low a F1-score yielded from 474 
Free-crystals vs Rest binary classification (Table S8). Possible causes for this, besides 475 
the lack of a discriminant feature, include the presence of glass films on the crystal’s 476 
surface, the wide range of aspects of different minerals (mostly plagioclase and 477 
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pyroxene but also amphibole and sulfur-group minerals), and the significant rate of 478 
composite particles (e.g., crystals attached to glass) that are not reflected in the label 479 
(Figure 11D). 480 

 481 

Figure 7. Aggregated mean of the Shapley values by particle type. Note that some features 482 
are important for discrimination of multiple particle types (e.g., hue_mean) and other features 483 
are more discriminant of a specific type (e.g., value_mode for lithic type). Meaning of the 484 
abbreviations can be found in Table S1. 485 
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 486 

 487 

Figure 8. Summary plots to explain predictions of the altered material particle main type. (A) 488 
Feature importance according to the mean of the Shapley values, the higher the value the 489 
more the importance of the feature in the correct prediction. In (B) the Shapley dependence 490 
plot shows the relation of the Shapley value and the feature value for each particle type, and 491 
is commonly used to identify clusters of a specific class (particle main type) along the feature 492 
domain (Lundberg et al., 2018). For example, at values of -3 to -2  of hue_mean, there is a 493 
cluster of particles with high Shapley values and thus correctly classified as altered material. 494 
(C) and (D) are two examples of particles to show confidence score (A: Altered material), 495 
and the three features with the highest Shapley values. They are both True Positives and have 496 
been predicted at maximum confidence score with hue_mean (the mean of the chromaticity) 497 
being the main discriminant feature. 498 

 499 
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 500 

Figure 9. Summary plots to illustrate the features that contribute the most to the correct 501 
predictions of the juvenile particles. (A) Feature importance based on the mean of the 502 
Shapley values. (B) Shapley dependence plot. Note a cluster of juvenile particles around 503 
saturation_mode values between 1–3. (C) and (D) are examples of two predictions of the 504 
particle image, with the horizontal bar showing the confidence score across particle types, 505 
and the vertical bars the associated Shapley values. (C) shows a True Positive predicted at 506 
maximum confidence score with the hue_mean (chromaticity), saturation_mode (mode of the 507 
intensity of the color), and convexity. (D) is an example of a particle that was predicted by 508 
XGBoost model as lithic with a confidence of 70% (size of the green area in horizontal bar 509 
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plot) based on the red_mean (mean of the red channel), which is predominantly discriminant 510 
of lithic particles (Figure 10A), but was classified as juvenile in VolcAshDB.  511 

 512 

Figure 10. Summary plots to explain predictions of the lithic type. (A) Ranking of the 513 
features according to the mean of the Shapley values. (B) The Shapley dependence plot 514 
shows correct predictions of lithic particles with high Shapley values at negative values of 515 
value_mode. (C) and (D) show for each prediction the partcle image, confidence score across 516 
particle types, and the associated Shapley values. (C) shows a dark particle that is correctly 517 
classified as lithic with low value_mode (luminosity), whereas (D) shows that XGBoost gives 518 
similar confidence scores to the altered material and lithic types, with the former being 519 
slightly preferred given the values of green_mean, which are uncharacteristic of the lithic 520 
type (shown by negative Shapley value -0.7). Discrimination of lithic and altered material 521 
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particles such as in (D) is often not straightforward when weathering is incipient (Benet et al., 522 
preprint). 523 

 524 

Figure 11. Summary plots to explain predictions of the models for the free-crystal type. (A) 525 
Feature importance based on the mean of the Shapley values. (B) Shapley dependence plot. 526 
Note that the feature values have been rescaled by a standard scaler. (C) and (D) show for 527 
each prediction the particle image, confidence score across particle types, and the associated 528 
Shapley values. (C) shows particle that is likely a fragment of plagioclase crystal but is 529 
misclassified as altered material, because the free-crystal type lacks discriminant features (see 530 
main text for more details). (D) an additional source of false negatives are particles consisting 531 
of more than one material, such as those made of glass attached to a crystal. In this case, the 532 
model’s prediction correctly identifies two particle types, which is more accurate than using 533 
one single particle type as label. 534 
 535 

3.3 ViT quantitative evaluation 536 

3.3.1 General evaluation 537 

The ViT base model was fine-tuned using ~10,000 images from the augmented 538 
training set and evaluated with the test set (see Section 2.3 for information on each step). We 539 
obtained accurate classification for the whole test set (macro F1-score of 0.93), and also 540 
across particle types (Figure 12): altered material (F1-score of 0.95), juvenile (F1-score of 541 
0.95), free-crystal (F1-score of 0.91) and lithic (F1-score of 0.89). More than 85% of True 542 
Positives (TP) are predicted at high confidence scores (> 0.9; Figure 13A) which shows that 543 
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ViT classifies confidently and accurately. The False Negatives (FN) mostly consist of lithic 544 
particles classified as altered material and juvenile, a few of which at high confidence scores 545 
(Figure 13B), and also of juvenile particles classified as lithic type (Figure 13C). Below, we 546 
identify specific groups of particles that make up the FN and discuss the possible causes. 547 

 548 

Figure 12. Confusion matrix of the predictions by the ViT image classifier. The percentages 549 
show the True Positive rate if positioned in the diagonal matrix (darker green), and otherwise, 550 
the False Negative rate (lighter), all percentages with the corresponding number of particles 551 
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per predicted type. The best classification is for free-crystal followed by altered material, 552 
juvenile and lithic. 553 

 554 

Figure 13. Line plots of the confidence score versus (A) the cumulative proportion of True 555 
Positives (TP), (B) False Negatives (FN) in free-crystal and (C) lithic types. The distribution 556 
of the data have been plotted into 9 bins of size 0.1. We don’t use cumulative proportion in 557 
(B) and (C) given the limited number of FN. Two examples on how to read (A) are described 558 
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in Figure 6. Note that the ViT predicts True Positives at high confidence score values, 559 
although it is less certain about the lithic particle type. 560 

3.3.2 ViT’s evaluation across volcanoes, eruptive styles, and individual particles 561 

A closer inspection of the results across eruptive styles and volcanoes (Table S9) 562 
reveals a range of classification accuracies, from moderate (F1-score of 0.73) up to optimal 563 
classification performance with a F1-score of 1.0 (Figure 14): 564 

(1) Ash particles from phreatic events are in general well classified (macro F1-score of 565 
0.95), including the particle main types: altered material (F1-score of 0.99), free-566 
crystal (F1-score of 0.94) and lithic (F1-score of 0.93). The ViT successfully 567 
classifies the most common groups of particles in these samples such as hydrothermal 568 
aggregates (Figure 15A) and weathered material (Figure 15B).  569 

(2) Particles from samples of dome explosions are classified with the lowest accuracy 570 
(macro F1-score of 0.85) among the eruptive styles. The ViT accurately classifies 571 
free-crystal (F1-score of 0.86), altered material (F1-score of 0.90) and lithic (F1-572 
score of 0.90) types, but is less accurate (F1-score of 0.73) for the juvenile type with 573 
most False Negatives (FN) classified as lithics. However, the confidence scores of 574 
some FN show a transition between the juvenile and lithic types that has explanatory 575 
value. This means that particles may have both juvenile and lithic traits, and thus a 576 
measure on the types’ prevalence seems more realistic than using mutually exclusive 577 
types like in VolcAshDB. Particles with combined traits are common in samples from 578 
Nevados de Chillán Volcanic Complex (Figure 15C), which originated from a 579 
relatively long-lived dome-forming eruption cycle. An additional challenge is that the 580 
ViT confidently classifies as lithics some particles that are labelled as juvenile and, 581 
since petrographic classification was not always straightforward (Benet et al., 582 
preprint), it is difficult to decide whether these are False Negatives, or instead, 583 
petrographic classification errors (Figure 15D), especially when ML-based image 584 
classifiers have surpassed human performances in other fields (He et al., 2015).  585 

(3) Ash particles from lava fountaining are generally accurately classified (macro F1-586 
score of 0.94), between juvenile (F1-score of 0.94) and lithic (F1-score of 0.88) 587 
types. Most of the lithic particles belong to recycled juvenile particles, which are 588 
critical to avoid overestimating the amount of juvenile component (D’Oriano et al., 589 
2022) and their identification typically requires examination in the SEM (D’Oriano et 590 
al., 2014). The high score suggests that the ViT can discriminate between them to 591 
some extent (Figure 15E), but a more robust labelling by a team of experts and a 592 
larger dataset containing SEM images is necessary to obtain more robust conclusions. 593 
On the other hand, the juvenile particles consist of glossy, smoothed surface, 594 
vesicular, elongated glass shards and are accurately classified (Figure 15F).  595 

(4) The ViT accurately classifies ash particles from plinian and subplinian eruptive styles 596 
(macro F1-score of 0.95), including free crystals (F1-score of 0.92), altered material 597 
(F1-score of 0.93) and juvenile (1.0), but less accurate for lithics (F1-score of 0.77). 598 
The juvenile particles consist of fragments of pumice and all particles are successfully 599 
classified (Figure 15G). In contrast, the lithic particles mostly consist of dull grey 600 
fragments with rounded edges, and most of the FN are classified as altered material, 601 
which may reflect the challenge of classifying particles with incipient weathering into 602 
weathered material or lithic (Figure 15H). 603 

 604 

 605 
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 606 

Figure 14. (A) Bar charts showing the percentage of predicted types for each particle type in 607 
VolcAshDB. If all predictions were the same as in the database, each bar would be single-608 
colored as follows: orange for altered material (A), light blue for free-crystal (F), magenta for 609 
juvenile (J), and dark green for lithic (L). (B) shows the F1-score for each particle type across 610 
eruptive styles, whereas (C) shows the value of the macro F1-score per eruptive style. Note the 611 
range in macro F1-score values (C) from 0.85 for dome explosion to 0.91 for lava fountaining up 612 
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to 0.95 for phreatic, subplinian and plinian eruptive styles. The exact values of this figure can be 613 
found in Table S9. 614 

 615 

Figure 15. Representative examples of particle images and the predictions and their associated 616 
confidence score across eruptive styles, including phreatic (A,B), dome explosion (C,D), lava 617 
fountaining (E,F), and subplinian/plinian (G,H). Note that False Negatives contain in brackets 618 
the particle type according to VolcAshDB, and that color code is the same as in previous figure. 619 

4 Discussion 620 

4.1 Comparison between classification using particle’s features versus images 621 

We found that, overall, the ViT classifies more accurately with particle images (0.93 of 622 
macro F1-score) than the XGBoost classifies with the particle features (0.77 of macro F1-score). 623 
This difference is unlikely to be the XGBoost model itself, which is very popular in the literature 624 
and has had best performances amongst models for complex classification tasks (Brownlee, 625 



manuscript submitted to Geochemistry, Geophysics, Geosystems 

 

2016; Chen & Guestrin, 2016; Dhaliwal et al., 2018). One possibility is that the extracted 626 
features don’t retain certain discriminant information from the images, and as a result, the 627 
XGBoost is unable to classify particles such as free crystals (0.57 of F1-score). On the other 628 
hand, maintaining the physical information associated with features makes the model’s outcomes 629 
more interpretable (e.g., in classification of volcano-seismic signals; Falcin et al., 2021; Malfante 630 
et al., 2018) with xAI methods. This is an important advantage over Vision Transformers, whose 631 
main xAI tool consists in a heatmap of the region(s) of attention by the model (Dosovitskiy et al., 632 
2020) but appears insufficient to obtain well founded classification insights for ash particles 633 
(Figure 16). 634 

 635 

Figure 16. Example of (A) one multi-focused binocular image of a pumice particle from Mount 636 
St. Helens (1980), which is overlain by (B) a heatmap of the regions of attention by the base 637 
Vision Transformer (Dosovitskiy et al., 2020), typically used for interpreting image classifier’s 638 
predictions. It does not appear easy to discern which aspects of the particle were relevant for 639 
classification.  640 

4.2 Insights from XGBoost to better develop a classification criterion for the particles 641 
observed with the binocular 642 

The XGBoost model gave a medium to high classification performance with macro F1-643 
score of 0.77, and using the Shapley values we identified the most discriminant features of each 644 
particle type (Table 4). For instance, lithic particles can be distinguished with low values of 645 
value_mode which correspond to the luster of the particle according to the high Shapley values. 646 
This finding agrees with previous studies that use a dull luster (which corresponds to low values 647 
of value_mode) to identify lithic particles (Miwa et al., 2013). On the other hand, juvenile 648 
particles have high Shapley values for the saturation_mode. This feature is related to high color 649 
intensities as observed under the binocular, but it was not recognized before as a diagnostic 650 
observation of the particle type. These two examples belong to particle types that are well 651 
classified and for which the Shapley values are reliable. Shapley values obtained from particles 652 
that yielded lower accuracies, such as the free crystals, are not reliable, and thus overall 653 
performances should be improved. This could be achieved by enhancing the quality and quantity 654 
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of VolcAshDB dataset by (i) adding particles to balance the dataset, (ii) refining the particle 655 
contour in the multi-focused images, so that shape features can measure micro-scaled cavities 656 
(Benet et al., preprint), and (iii) the inclusion of a new feature that measures the density of lines 657 
on the surface, which could be sensitive to planar structures of free crystals. 658 

4.3 Deploying the ViT for automatic particle classification 659 

A main goal of our research is to obtain a classifier of ash particles that is as accurate as 660 
possible, and which can be applied to objectively classify new datasets in a reproducible manner. 661 
The ViT model (macro F1-score of 0.93) currently performs very accurately for some samples 662 
(e.g., Soufrière de Guadeloupe; macro F1-score of 0.95) but is less accurate for others (e.g., 663 
Merapi; macro F1-score of 0.80). This variation is also found within subgroups of particles. For 664 
instance, elongated, highly-vesicular, glossy particles from basaltic lava fountaining (Cumbre 665 
Vieja, 2021) or pumice fragments (Kelud, 2014) are very accurately classified, but high 666 
crystallinity, blocky, dark particles from dome explosions (Nevados de Chillán, 2016–2018) are 667 
less accurately classified. These changes in classification scores may be due to differences in the 668 
particle-forming processes: juvenile particles from Plinian eruptions are originated from a main 669 
and short fragmentation episode, whereas juvenile particles from dome explosions originate from 670 
magma with a long and complex story of slow conduit ascent, degassing, crystallization, 671 
fracturing, and recycling. Moreover, the variability of F1-scores between eruptive styles suggests 672 
that to obtain a more robust model for generalization, we need more particles from such 673 
problematic subgroups and labelling done by a team of experts. We will also increase our range 674 
of samples, including eruptive styles like strombolian activity, submarine eruptions, phreatic 675 
from water-lake interaction, and andesitic magma compositions, amongst the most important. 676 

 677 

4.4 A ViT particle classifier for volcano monitoring 678 

From an operational viewpoint, volcano observatories and laboratories are often equipped 679 
with binocular microscopes that can acquire standard, single-focus binocular images, and that are 680 
used to classifying ash (componentry analysis). This could be done near-real time, and it usually 681 
takes from one to a few days (Re et al., 2021), or it could also be done a posteriori to obtain a 682 
time series data of ash componentry that can be compared to other monitoring data to better 683 
understand how the volcanic system works (Benet et al., 2021; Suzuki et al., 2013). Our dataset 684 
and analysis are based on multi-focused images and therefore, we performed a preliminary test 685 
of ViT’s ability to classify single-focus images from a small dataset of ~1,200 images from 686 
Nevados de Chillán (Benet et al., 2021). The dataset contains images of about 400 particles, with 687 
3 images per particle at different focus depths. Since using the same split ratio (80:20) would 688 
yield very small training set, we used all particles for training, except 28 representative particles 689 
of the types of ash as described in Benet et al. (2021) as test. Fine-tuning the ViT took only 3 690 
hours and we obtained decent accuracies (macro F1-score of 0.84) on the test set (Figure 17). 691 
This suggests that volcano observatories could potentially use a ViT and obtain an objective 692 
score on a particle-by-particle basis relatively rapidly. 693 
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 694 

Figure 17. Confusion matrix of the predictions by the ViT image classifier after being fine-tuned 695 
with a single-focused, small training set (~370 particles from Benet et al., 2021). The 696 
percentages show the True Positive rate if positioned in the diagonal matrix (darker green), and 697 
otherwise, the False Negative rate (lighter), all percentages with the corresponding number of 698 
particles per predicted type. Note that given the limited data we used all particles for training 699 
except 28 for the test set. Since the subset is small, we report an error as the square root of the 700 
number of particles, which is known in statistics as the implicit random error (Ahmed, 2015). 701 

5 Conclusions 702 

Classification of the different particles that make up volcanic ash is not straightforward 703 
because diagnostic criteria are not standardized and thus reliable, and systematic identification of 704 
a given particle type is not straightforward. In this contribution, we attempt to alleviate this 705 
situation by exploring the use of state-of-the-art machine learning-based models to identify the 706 
most discriminant features of each particle type, and to evaluate their ability to classify particles. 707 
The identified features provide new insights on the recognition of juvenile and lithic particles 708 
towards a standardized classification. The image classifier performs at very high accuracies, 709 
although the variability across eruption and types shows that its capability to generalize to new 710 
samples is still unclear. Higher numbers of particles from a wider variety of eruptions and 711 
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volcanoes into VolcAshDB coupled to ML models should allow for unbiased comparison of ash 712 
samples, and reproducible classification of their particles as a tool for volcano monitoring 713 
studies. 714 
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and image acquisition are described in Benet et al., preprint. The GitHub repository 727 
https://github.com/dbenet-max/volcashdb_classification contains two relevant codes: the Python 728 
code for hyperparameter optimization, development, and interpretation via xAI of the XGBoost, 729 
and the code for deployment via the API Hugging Face of the ViT. 730 
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Key Points: 7 

• Volcanic ash particles are classified through machine learning algorithms into juvenile, 8 
lithic, free-crystal and altered material types 9 
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XGBoost’s predictions  11 

• Classification by a Vision Transformer model is very accurate and could be used by 12 
volcano observatories   13 
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Abstract 15 

Volcanic ash provides information that can help understanding the evolution of volcanic 16 
activity during the early stages of a crisis, and possible transitions towards different eruptive 17 
styles. Ash consists of particles from a range of origins in the volcanic system and its analysis 18 
can be indicative of the processes driving activity. However, classifying ash particles into 19 
different types is not straightforward. Diagnostic observations for particle classification are not 20 
standardized and vary across samples. Here we explore the use of machine learning (ML) to 21 
improve the classification accuracy and reproducibility. We use a curated database of ash 22 
particles (VolcAshDB) to optimize and train two ML-based models: an Extreme Gradient 23 
Boosting (XGBoost) that uses the measured physical attributes of the particles, from which 24 
predictions are interpreted by the SHAP method, and a Vision Transformer (ViT) that classifies 25 
binocular, multi-focused, particle images. We find that the XGBoost has an overall 26 
classification accuracy of 0.77 (macro F1-score), and specific features of color (hue_mean) 27 
and texture (correlation) are the most discriminant between particle types. Classification using 28 
the particle images and the ViT is more accurate (macro F1-score of 0.93), with performances 29 
across eruptive styles from 0.85 in dome explosion, to 0.95 for phreatic and subplinian events. 30 
Notwithstanding the success of the classification algorithms, the used training dataset is limited 31 
in number of particles, ranges of eruptive styles, and volcanoes. Thus, the algorithms should be 32 
tested further with additional samples, and it is likely that classification for a given volcano is 33 
more accurate than between volcanoes. 34 

1 Introduction 35 

A central challenge in volcanology is to anticipate the likely evolution of a restless 36 
volcano at a given point in time (Bebbington & Jenkins, 2019). During a period of unrest, small 37 
explosions or phreatic events may precede larger ones, or the volcano may remain at low 38 
activity levels and go back to dormancy (Marzocchi et al., 2012; Moran et al., 2011; Tilling, 39 
2008). Moreover, many eruptions consist of various phases, changing or alternating between 40 
explosive to effusive eruptive styles over time. To evaluate whether a volcano will progress 41 
towards one type of activity or another, an array of geophysical and geochemical tools is used 42 
to monitor and interpret the processes happening underneath the volcano (Newhall & 43 
Punongbayan, 1996). However, interpretation may not be straightforward and available data 44 
limited, and thus diagnosis is typically quite uncertain (Tilling, 2008).  45 

An additional tool that can provide critical insights on the state of a volcano is studying 46 
the volcanic ash. Ash can be classified into particle types that are indicative of processes 47 
driving the activity (Alvarado et al., 2016; D’Oriano et al., 2022; Gaunt et al., 2016; Pardo et 48 
al., 2014). For instance, the so-called juvenile particles are associated with the ascent of magma 49 
at shallow depth, and their identification, together with other monitoring signals, may warn of 50 
an ensuing magmatic eruption. For example, a-posteriori studies of ash from early and small 51 
phreatic eruptions of Mount St. Helens (USA, 1980) and Mount Unzen (Japan, 1991), 52 
identified minor amounts of juvenile particles in these pre-climactic deposits (Cashman & 53 
Hoblitt, 2004; Watanabe et al., 1999). Thus, had these been found in a timely manner, it could 54 
have altered the perception for explosive potential that followed (Cashman & Hoblitt, 2004). In 55 
other cases, the ambiguity of classification of the juvenile component in early explosions has 56 
led to very complex management of the volcanic crises such as the 1975–1977 Soufrière 57 
Guadeloupe crisis (Feuillard et al., 1983; Hincks et al., 2014; Le Guern et al., 1980). 58 
Furthermore, tracking the proportions of the different components in ash, their shape, and 59 
crystallinity, can give clues on possible transitions of eruption styles to better mitigate the 60 
associated hazards (e.g., Benet et al., 2021; Suzuki et al., 2013).  61 
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The classification of particles into types is typically done by collecting qualitative or 62 
quantitative data on a single particle level using a variety of techniques. This includes using 63 
binocular microscope (e.g., D’Oriano et al., 2014; Miwa et al., 2009; Pardo et al., 2014) to 64 
observe the gloss, color and shape, as well as the particles’ surface and shape (Dellino & La 65 
Volpe, 1996; Dürig et al., 2021; E. J. Liu et al., 2015; Ross et al., 2022). More detailed 66 
observations including the internal microstructures are typically done using the Scanning 67 
Electron Microscope (e.g., Miwa et al., 2013; Pardo et al., 2020), whereas the chemical 68 
analyses are made with the electron microprobe (Pardo et al., 2014), mass spectrometers (Rowe 69 
et al., 2008), and measurement of refractive indices (e.g., by the thermal immersion method; 70 
Watanabe et al., 1999). However, systematic and reproducible particle classification is 71 
problematic because there are few agreed diagnostic features, and these may vary from sample 72 
to sample depending on the eruptive style and the volcano (e.g., Pardo et al., 2014). Whilst a 73 
standardized analytical procedure of juvenile particles has been proposed (Ross et al., 2022), 74 
the step of particle classification relies on observer’s experience, making it subject to varying 75 
interpretations, and hindering comparison of datasets produced by different labs.  76 

An approach commonly employed to address such classification challenges in various 77 
domains is through the utilization of Machine Learning (ML). ML-based models can classify 78 
complex images in a wide range of situations (He et al., 2015). ML-based models are capable 79 
of learning patterns to classify objects, and use them for classification of future datasets, such 80 
as mushrooms (Lee et al., 2022) or leaf diseases (Sujatha et al., 2021), and have already been 81 
used for classification of ash particle shapes (Shoji et al., 2018). In this study, we trained two 82 
models using the VolcAshDB curated dataset (Benet et al. preprint) with the objectives of: (i)  83 
identification of the most important features for discrimination of particle types, and (ii) 84 
obtaining a particle classifier as accurate as possible. The results of our study should be a step 85 
forward towards a universal and unbiased classification of ash particles as more data becomes 86 
available and better algorithms are developed. 87 

2 Materials and Methods 88 

2.1 VolcAshDB dataset 89 

We used the data from the open-access database VolcAshDB, which comprises images 90 
and measurements (here referred as features) of more than 6,300 volcanic ash particles 91 
(https://volcash.wovodat.org/). These were obtained with the binocular microscope and 92 
processed to obtain multi-focused, high-resolution images (Benet al., preprint). The images 93 
have been classified with a dichotomous key (Figure 1), using some key particle features as 94 
reported in Benet et al., (preprint). The database contains ash particles from 12 samples from 8 95 
volcanoes and 11 eruptions from a range of magma compositions and eruptive styles (Table 1). 96 
These include (1) phreatic eruptions of Soufrière de Guadeloupe (Lesser Antilles) in 1976 and 97 
1977 (Feuillard et al., 1983), the early activity of April 1991 of Mt. Pinatubo (Philippines; 98 
Paladio-Melasantos et al., 1996), and Ontake (Japan) in 2014 (Miyagi et al., 2020), (2) dome 99 
explosions of Nevados de Chillán volcanic complex (Chile) from the beginning of the eruptive 100 
period in December 2016 and after the extrusion of a dome in April 2018 (Benet et al., 2021), 101 
explosions from Merapi volcano (Indonesia) in July and November 2013 (Nurfiani & Bouvet 102 
de Maisonneuve, 2018), (3) the basaltic lava fountaining of Cumbre Vieja (Canary Islands) in 103 
October 2021 (Romero et al., 2022), and (4) two samples from different locations (KE-DB2 104 
and KE-DB3) of the plinian/sub-plinian eruptions of Kelud (Indonesia) in 2014 (Maeno et al., 105 
2019; Utami et al., 2022), and a sample from the climactic plinian eruption of Mount St. 106 
Helens (USA) in 1980 (Scheidegger et al., 1982). 107 
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 108 

Figure 1. Example of classification process and particle images in VolcAshDB based on the 109 
steps for petrographic classification in Benet et al., (preprint). Note that the particle type 110 
altered material comprises both hydrothermal and weathered material. 111 

Table 1. Main sample characteristics, and proportion of main particle types in VolcAshDB. 112 
The associated error is calculated using the equation of margin of error Benet et al., (preprint) 113 
at a confidence interval of 95% and expressed in absolute values. 114 

Samples Eruption 
date 

Magma 
composition Volcano type Eruptive style 

Number of particles per component and 
associated error Total 

Altered 
material 

Free-
crystal Juvenile Lithic  

Cumbre 
Vieja 

         

CV-DB1 19/10/21 Mafic Cinder cone Lava 
fountaining 3 (±0.3) 1(±0.2) 719(±2.8) 352(±1.4) 1075 

Kelud          

KE-DB2 14/2/14 Intermediate Stratovolcano Subplinian 50(±3.9) 4(±1.2) 268(±4.1) 3(±1.0) 325 
KE-DB3 14/2/14 Intermediate Stratovolcano Subplinian 162(±5.3) 59(±4.0) 54(±3.9) 65(±4.2) 340 

Merapi          

ME-DB1 22/7/13 Intermediate Stratovolcano Dome 
explosion 232(±4.9) 13(±2.2) 0 78(±4.7) 323 

ME-DB2 22/11/13 Intermediate Stratovolcano Dome 
explosion 595(±2.9) 76(±2.1) 4(±0.5) 100(±2.4) 775 

Sourfière de 
Guadeloupe 

         

SG-DB1 8/7/76 Intermediate Stratovolcano Phreatic 222(±5.1) 54(±3.9) 0 66(±4.2) 342 

SG-DB2 1/3/77 Intermediate Stratovolcano Phreatic 134(±3.8) 8(±3.8) 0 0 142 
Nevados de 
Chillán 

         

NC-DB15 3/4/18 Intermediate Dome complex Dome 
explosion 224(±2.3) 77(±1.5) 92(±1.6) 749(±2.8) 1142 

NC-DB2 29/12/16 Intermediate Dome complex Dome 
explosion 99(±5.4) 12(±2.3) 14(±2.4) 171(±5.6) 296 

Ontake          
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ON-DB1 27/9/14 Intermediate Stratovolcano Phreatic 777(±0) 0 0 0 777 

Pinatubo          

PI-DB1 2/4/91 Silicic Caldera Phreatic 386(±3.7) 104(±3.5) 0 16(±1.5) 506 
Mount St 
Helens 

         

MS-DB1 18/5/80 Silicic Stratovolcano Plinian 4(±1.5) 0 255(±1.8) 2(±1.1) 261 
    Total 2888(±1.2) 408(±0.6) 1406(±1.0) 1602(±1.0) 6304 

In addition to ash images, VolcAshDB also includes: (i) the value of 33 features of each 115 
ash particle related its shape, texture, and color, (ii) a label with the identification of the types 116 
of particle (free-crystal, altered material, juvenile, and lithic; Figure 1), and (iii) metadata for 117 
each particle, such as the sample grain-size fraction, the number of magnifications used for 118 
image acquisition, amongst others. The shape features in the database have been used in 119 
previous studies (Cioni et al., 2014; Dellino & La Volpe, 1996; Dürig et al., 2018; Leibrandt & 120 
Le Pennec, 2015; E. J. Liu et al., 2015), and include those sensitive to particle-scale cavities, 121 
(e.g., solidity), perimeter-based irregularities (e.g., convexity), and form (e.g., elongation; Liu 122 
et al., 2015). The textural features in VolcAshDB were obtained from calculations of the 123 
distribution of pixel intensities in grayscale across several particle regions based on the so-124 
called Gray Level Cooccurrence Matrix (GLCM, Haralick et al., 1973). From the GLCMs we 125 
obtained features that indicate a more uniform texture (e.g., Homogeneity), and those that 126 
indicate a more complex or heterogeneous texture (e.g., Dissimilarity; Hall-Beyer, 2017). The 127 
color features of each particle were taken from the measurement of the mean, mode and 128 
standard deviation of the histogram distribution for each of the six channels in the Red-Green-129 
Blue (RGB), and Hue-Saturation-Value (HSV) color spaces. For more details on the 130 
calculation and references of each feature, the reader is referred to Benet et al., (preprint), and 131 
they are summarized with the abbreviation in Table S1. 132 

2.2 Development of a particle classifier using the measured particle features  133 

The steps needed to develop a volcanic ash particle classifier vary if the input data are 134 
the measured features, or the particle images directly. Because the particle types are already 135 
classified, the models are trained by supervised learning (Verdhan, 2020). We used three steps 136 
to identify the best-performing classifier for the feature data (Figure 2): data processing, model 137 
optimization, and selection. We also compared the ability to classify unseen (test set) data 138 
using non-parametric, tree- and ensemble-based ML models. We found that the XGBoost 139 
model had the best scores, as is the case in studies in other fields (Chen & Guestrin, 2016; 140 
Dhaliwal et al., 2018). The XGBoost model was used to gain insights on the most important 141 
features by calculating the Shapley values and with feature permutation (Molnar, 2021). 142 

 143 
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 144 

Figure 2. Illustration of the steps involved from the dataset to the outcomes, including those to 145 
obtain the best optimized model, XGBoost. (1) Data processing of the full dataset (features and 146 
particle types), including the oversampling of the training set. (2) hyperparameter optimization 147 
and cross-validation to obtain the models with the highest cross-validation scores. (3) 148 
evaluation of the models with the test set (unseen by the model) and selection of XGBoost with 149 
the highest classification scores. The XGBoost classifier was applied for prediction of particle 150 
types and feature importance. See more details in main text and subsequent figures. 151 

2.2.1 Data processing 152 

The dataset consists of 33 features measured from each particle (variables; Table S1) 153 
and the particle types (target variable; Figure 2). The dataset is made of 6,300 particles and was 154 
divided into a training set (80% of the total particles) to optimize and fit the models, and a test 155 
set (20%), not used during the model’s learning process. The original feature distributions are 156 
heterogenous and were standardized using the Scikit-learn’s function StandardScaler, as it is 157 
commonly done to ease convergence of ML models (Géron, 2017). The standard scaler 158 
redistributes the values of each feature with the mean at 0, and the first standard deviation at 1 159 
and -1. The features from the test set were also standardized according to the scaler that was fit 160 
into the training set to avoid data leakage. Any outliers, defined as values higher and smaller 161 
than two standard deviations (Verdhan, 2020), were kept after visually confirming that the 162 
source images had no errors. Highly correlated variables were kept for estimating their 163 
importance for classification in the step of feature permutation (more details are reported in 164 
‘Explaining the model’s predictions’ in Section 2.3.4). Highly correlated variables may cause 165 
multi-collinearity issues in regression models, but these haven’t been reported in tree-based 166 
models (Kotsiantis, 2013).  167 

The VolcAshDB dataset contains more altered material than juvenile and lithic particle 168 
types, and free crystals are relatively scarce (Table 1). Such uneven distribution of particle 169 
types may cause an imbalanced dataset problem. We addressed this issue by oversampling the 170 
less abundant particle types, using the SMOTE package, which uses a K-Nearest Neighbor 171 
algorithm (KNN) to generate synthetic data (Brownlee, 2020). This technique is strongly 172 
recommended to prevent the model from not learning to classify the less abundant class 173 
(Brownlee, 2020). 174 

2.2.2 Hyperparameter optimization 175 

Hyperparameters control the model learning process and are explicitly defined by the 176 
user. Hyperparameters are defined by ranges of values intrinsic to each model. We considered 177 
Decision Trees (DT), K-Nearest Neighbor (KNN), Random Forest (RF), Gradient Boost 178 
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Classifier (GBC), and the Extreme Gradient Boosting (XGBoost), and compiled their best 179 
hyperparameters values using Bayesian optimization, from the Scikit-optimize’s function 180 
BayesSearchCV. This function searches for the optimal hyperparameters depending on the 181 
previous iterations, making computation faster and less intensive than iterating through the 182 
entire search space (Owen, 2022). The scores to evaluate the effect of the hyperparameters 183 
were obtained from 10-fold cross-validation of the training set. In the K-fold Cross-validation 184 
(where K is an integer), the data are iteratively divided into K training and testing folds for K 185 
times, as recommended to avoid overfitting (Verdhan, 2020). The highest cross-validation 186 
scores, using the optimal hyperparameters (Table S2), were obtained with the XGBoost with 187 
0.9 F1-score (as defined and calculated below in Section 2.2.3) closely followed by KNN and 188 
GBC with 0.88 F1-score (obtained scores of each model are shown in Figure S1). 189 

2.2.3 Model evaluation and selection 190 

The cross-validation scores indicate how well a model fits the training set. To evaluate 191 
the models’ ability to generalize we also computed the predictions on the test set. Each 192 
prediction contains a confidence score per class which represents the likelihood of the 193 
prediction belonging to the class, and the score is given as a percentage (Mandal et al., 2021). 194 
The class, that is, the particle type in our case, with the highest confidence score is considered 195 
the predicted type by the model. Comparison between the predicted and the true types from 196 
VolcAshDB allows to categorise each prediction in one of the four following groups: True 197 
Positive (TP), where the prediction correctly identifies the class; True Negative (TN), where 198 
the prediction correctly identifies the absence of a class; False Positive (FP), where the 199 
prediction wrongly identifies the presence of a class, and False Negatives (FN), where the 200 
prediction wrongly identifies the absence of a class. The classification matrix (Figure S2) is 201 
typically used in ML to show the proportions of TP, TN, FP and FN for each class. Based on 202 
these proportions, we can calculate four well-known metrics to evaluate the models’ 203 
performance (e.g., Verdhan, 2020): 204 

 205 
 Accuracy = !"#!$

!"#!$#%"#%$
 (1) 

 206 
 Precision = !"

!"#%"
 (2) 

 207 
 Recall = !"

!"#%$
 (3) 

 208 
 F1-score = &∗!"

&∗!"#%"#%$
 (4) 

 209 

Classification scores in this study are reported based on the F1-score, as it combines the 210 
precision, dependent on the FP, and recall, dependent on the FN, into a single metric (Verdhan, 211 
2020), and is recommended for imbalanced datasets when FN and FP are equally important 212 
(Brownlee, 2020). We use the unweighted average of the F1-scores (the so-called macro from 213 
macro-averaging) of the four particle types to evaluate the overall model performance, as 214 
opposed to the weighted averaging, where the average is multiplied to a coefficient based on 215 
the number of particles per class (Verdhan, 2020). We found that XGBoost has the best 216 
classification performance with 0.76 macro F1-score amongst the optimized models and 217 
therefore is our selected model (classification score for each model are reported in Table S3 218 
and shown in Figure S3).  219 
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2.2.4 Explaining the model’s predictions  220 

Explainable AI (xAI) is a set of methods that provide explanations on the variables that 221 
drive the model’s predictions (Gianfagna & Di Cecco, 2021; Mishra, 2022; Molnar, 2021). We 222 
used the method called “permutation feature importance” to assess the contribution of the 33 223 
features to the model’s prediction across all instances (i.e., the feature values from all 224 
particles), and the SHapley Additive exPlanations (SHAP; Lundberg and Lee, 2017) method to 225 
estimate the contribution of the features for each particle and, by aggregation, their global 226 
importance (Molnar, 2021). In the permutation feature importance, the values of each feature 227 
from the dataset are shuffled to measure the increase in prediction error. We used Scikit-learn’s 228 
function permutation on the test set from which we obtained a ranking of the features’ 229 
contribution between two end-members: “important” features, which cause an increase in 230 
prediction error when shuffled, and “unimportant” features, where the error remains unchanged 231 
or decreases (Molnar, 2021). We estimated the feature importance on each class by permuting 232 
the features between each class and the rest (e.g., One-vs-Rest strategy). 233 

The SHAP library can be used to explain individual model’s predictions in regression 234 
(e.g., Biass et al., 2022; Kondylatos et al., 2022), and classification problems (e.g., Panati et al., 235 
2022; Tang et al., 2021). The methods from the SHAP library are based on the Shapley values 236 
(Shapley, 1953), which measure the contribution of the feature values to predict a certain value 237 
with respect to the average prediction for all instances (Molnar, 2021). Shapley values were 238 
calculated using TreeSHAP estimation method with raw output. Because Shapley values are 239 
additive, TreeSHAP method adds and averages the contribution of each node in the ensembled 240 
trees to obtain the Shapley value of each feature value per instance (Lundberg et al., 2018)–in 241 
our study, an instance are the feature values per particle. The highest Shapley positive values 242 
per instance are those which contribute the most to predict a given class. Averaging of the 243 
Shapley values by particle type, or across the four particle types (free-crystal, altered material, 244 
juvenile, and lithic), informs about the global feature importance (Lundberg et al., 2018), 245 
which can be used for comparison with the permutation feature importance. 246 

2.2.5 Classification strategies 247 

We applied three classification strategies to evaluate which model performs best: (i) the 248 
multilabel, where the four classes are used to train the model at once and one prediction 249 
probability is given for each class, with the highest value being the predicted class, (ii) the 250 
One-vs-One (OVO), where each possible pair of classes trains a binary classifier (i.e., a total of 251 
six classifiers, as there are six possible pairs for four classes), and their outputs are aggregated 252 
to yield the predicted class (Herrera et al., 2016), and (iii) the One-vs-Rest (OVR), where each 253 
class and its complementary (e.g., lithic vs non-lithic) are used to train a binary classifier (i.e., a 254 
total of four), and their outputs are aggregated to yield the predicted class (Herrera et al., 2016). 255 
For the OVO and OVR strategies, the outputs from the binary classifiers were aggregated with 256 
the same weight to obtain the predicted class. There are more sophisticated aggregation 257 
methods, such as the calibrated label ranking method (Fürnkranz et al., 2008), which adjust the 258 
weights of each binary classifier aiming to mitigate class dependencies, and making the global 259 
classification more robust (Herrera et al., 2016). However, we don’t know of any 260 
implementation of these methods in Python for the XGBoost model, and developing them from 261 
scratch is out the scope of this study. 262 

2.2.6 Effect of the training and test data split on the XGBoost scores 263 

As noted above, we first split the dataset into a training (80% of all particle features in 264 
VolcAshDB) and a test set (20%) and used the latter to evaluate the XGBoost’s performance. 265 
However, as splitting process is random it may affect the precision and accuracy of the 266 
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measured F1-scores. To estimate this error, we re-trained and evaluated the XGBoost at 1,000 267 
different values of random state, i.e., the hyperparameter that controls randomness. We 268 
obtained an average accuracy (macro F1-score of 0.76; Table S4) that is like the accuracy from 269 
the test set (macro F1-score of 0.75). The free-crystal type shows the widest variability 270 
(standard deviation of 0.04) and is the most inaccurate (F1-score of 0.57; Figure 3) amongst the 271 
particle types. This is likely because it is the least abundant type, and its classification is 272 
challenging given the different types of minerals and lack of a discriminant feature as 273 
explained below (Section 3.1). Accuracies of the three other types are higher (F1-score of 274 
0.73–0.88) and with better precision (standard deviation is < 0.02; Table S4).  275 

 276 

 277 

Figure 3. Density plots of the F1-scores obtained from 1,000 runs of the XGBoost at different 278 
random state across particle types and aggregated as macro F1-score (Overall).  279 

By averaging the F1-scores of each particle type, we obtain the macro F1-score 280 
distribution (Figure 3) and its variability (standard deviation; Table S4). To quantify the 281 
associated error (𝛼), we use the second standard deviation (Hughes and Hase 2010):  282 

 

𝛼	 = $
1

𝑁 − 1(
(𝑥( − 𝑥)&

$

()*

	x2 (5) 

where N is the number of experiments, 𝑥 is each measured value (i.e., macro F1-score) 283 
and 𝑥  is the mean. With the values noted above we obtain an error (𝛼) of 0.03 for macro F1-284 
score distribution and, since we used the second standard deviation, it is for a 95% confidence 285 
level. Therefore, the F1-score values can be reported as:	0.76±0.03 macro F1-score, which is a 286 
small relative error of <5 %.  287 

2.3 Development of a particle classifier using VolcAshDB image dataset  288 

We used four steps to develop an optimized classifier for the image dataset (Figure 4): 289 
data augmentation, fine-tuning, selection, and evaluation. We compared the performance 290 
between three state-of-the-art models that have top accuracies in the reference dataset 291 
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ImageNet (Jia Deng et al., 2009): ResNet (He et al., 2016), which is the prevalent model of the 292 
so-called convolutional neural networks (CNN), Vision transformer (ViT; Dosovitskiy et al., 293 
2020), which superseded ResNet in image classification, and ConvNeXT (Z. Liu et al., 2022), 294 
which is an optimized convolutional neural network that has surpassed performances of vision 295 
transformers. The models are available in the Hugging Face library (https://huggingface.co/), 296 
which also provides application programming interfaces (API) for their deployment. The 297 
model that yielded highest classification score was the ViT. We augmented the training dataset 298 
with an array of variations from the original images (see below), and the ViT reached a macro 299 
F1-score of 0.93, outperforming the XGBoost classifier. The images of the ash particle in 300 
VolcAshDB were obtained from processed multi-focused binocular images, but this is not the 301 
standard practice, and thus we also tested the ViT’s ability to classify standard single-focus 302 
binocular images used in most studies of ash particles. 303 

 304 

Figure 4. Illustration of the steps involved from the dataset to the outcomes, including 305 
those to fine-tune the Vision Transformer (ViT). (1) Data processing of the full dataset (images 306 
and particle types). (2) preliminary evaluation of the models using the base hyperparameters, 307 
selection of ViT and hyperparameter optimization through grid search. (3) Fine-tuning with the 308 
augmented dataset and final evaluation using the test set. The ViT classifier can be then applied 309 
for prediction of particle types. See more details in main text and subsequent figures. 310 

2.3.1 Image augmentation and processing 311 

The binocular images of ash particles in VolcAshDB are multi-focused, and contain 312 
four color channels: red, green, blue and alpha. The alpha channel is a binary mask that takes a 313 
value of 1 or 0 to separate between the particle pixels and those of the background (more 314 
details in the segmentation step in (Benet et al., preprint). We split the dataset into a train (80% 315 
of the total images in VolcAshDB) and test set. Then, we augmented the number of images in 316 
the training set based on six standard methods (Ayyadevara & Reddy, 2020): rotation (at 45°), 317 
translation (at 25 pixels), up-down and left-right flipping, and adding random noise and 318 
Gaussian blur at sigma values of 0.155 and 0.55. Increasing the amount of images allowed us 319 
to balance the distribution across particle types (~2900/class), and is generally recommended to 320 
increase model’s robustness (Brownlee, 2020). Images were stored into four subdirectories, 321 
one for each class, of a root directory which is inputted to the Hugging Face’s API for fine-322 
tuning.  323 

2.3.2 Fine-tuning, preliminary evaluation, and model selection 324 

We fine-tuned the classifiers and did a preliminary round of evaluations to choose the 325 
best-performing model. Fine-tuning consists in making small adjustments to an already trained 326 
classifier, as opposed to training, where the data drives the model’s learning process without 327 
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any prior exposure. We selected the model before hyperparameter optimization because each 328 
run is time consuming (lasting about 14–18 hours) and because the authors of each model 329 
already provide the base hyperparameters (Table S5). The fine-tuned model that yielded the 330 
highest accuracy is ViT (0.88), followed by ConvNext and ResNet, both with an accuracy of 331 
0.86. 332 

2.3.3 ViT Hyperparameter optimization 333 

We obtained the optimal hyperparameters following the grid search technique for two 334 
ranges of batch size and learning rate. In grid search, each hyperparameter is modified one step 335 
at a time, while the other hyperparameters remain fixed, throughout all the possible 336 
combinations (Owen, 2022). We found that the optimal batch size and learning rate are 16 and 337 
3x10-5, respectively (accuracies obtained from grid search are reported in Table S6). Using 338 
these values, we tested three different optimizers, AdamW (Loshchilov & Hutter, 2019), 339 
Stochastic Gradient Descent (Sutskever et al., 2013) and Adagrad (Duchi et al., 2011) with the 340 
former performing the best (Table S7). We also tested and an increasing number of epochs 341 
(i.e., 5, 10, 15, 20), which didn’t improve performance above 10, probably because the model 342 
had already converged.  343 

2.3.4 Model evaluation 344 

We fine-tuned again the ViT with the augmented training set and the optimal set of 345 
hyperparameters, and obtained a significant improvement, with a macro F1-score of 0.93. We 346 
obtained the same metrics of precision, recall, accuracy and F1-score, confusion matrix, and 347 
confidence scores as defined and calculated above (Section 2.2.3 Model evaluation and 348 
selection). In contrast with the XGBoost, the explainability of the model is very limited as 349 
further discussed below (see Section 4.1). 350 

3 Results 351 

We used the VolcAshDB ash particle features and images to train the XGBoost and 352 
ViT models and to evaluate their ability to classify them into altered material, free-crystal, 353 
lithic or juvenile types (Table 2). We found that overall, the ViT classifies very accurately, 354 
with a macro F1-score of 0.93, whereas the XGBoost is less performant with a macro F1-score 355 
of 0.77 (Table 2) but allows for explaining the model’s predictions by interpretable AI 356 
methods. We describe below the model performance through the two datasets by particle type 357 
and some particle subgroups, such as those divided by the volcano, or one class versus another.  358 

Table 2. F1-score values for the whole database (unweighted average or macro) and particle 359 
types obtained from various models, including XGBoost multilabel, One-vs-One (OVO), One-360 
vs-Rest (OVR), and the multilabel image-based model ViT. 361 

 Overall Free-crystal Altered material Lithic Juvenile 
Multilabel 
XGBoost 0.77 0.57 0.88 0.74 0.90 

OVO XGBoost 0.75  0.56 0.89 0.71 0.85 

OVR XGBoost 0.76 0.55 0.90 0.73 0.88 

Multilabel ViT 0.93 0.91 0.95 0.89 0.95 

 362 

3.1 XGBoost quantitative evaluation 363 

Overall, the XGBoost shows rather accurate F1-scores across classification strategies: 364 
0.76 for multilabel, 0.75 for OVO, and 0.76 for OVR (Table 2). Computation of the confusion 365 
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matrix (Figure 5) shows that the model classifies best the altered material type (F1-score of 366 
0.9), closely followed by the juvenile type (F1-score of 0.88), and less accurately the lithic type 367 
(F1-score of 0.74), and significantly less the free-crystal type (F1-score of 0.57).  368 

 369 

Figure 5. Confusion matrix of the predictions by the XGBoost multilabel classifier. The 370 
percentages show the True Positive rate if positioned in the diagonal matrix (darker green), and 371 
otherwise, the False Negative rate (lighter), all percentages with the corresponding number of 372 
particles per predicted type. The best classification is for altered material followed in 373 
descending order by juvenile, lithic and free-crystal types. 374 
 375 

Binary classifications using OVO and OVR between altered material, lithic and 376 
juvenile have accuracies > 0.80 (macro F1-scores of 0.82–0.97), whereas the free-crystal type 377 
is systematically lower (Table S8). A closer inspection by volcano and eruptive style reveals a 378 
wide range in XGBoost’s performances (Table 3). Predictions of juvenile particles are very 379 
accurate (F1-score of 0.97) at Kelud volcano but inaccurate (F1-score of 0.32) at Nevados de 380 
Chillán. Classification of lithics is rather accurate for samples of dome explosions (F1-score of 381 
0.77) but inaccurate (F1-score of 0.28) for those of phreatic events. Such fluctuations indicate 382 
limited robustness by the classifier and care should be taken for its application to other datasets 383 
on a case-by-case basis.  384 

The likelihood that a particle belongs to a given type according to the model is reflected 385 
in the distribution of the confidence scores, and varies across particle types. Within the True 386 
Positives (TP), almost 90% of the juvenile TP have confidence scores > 0.9, whereas ~40% of 387 
the free-crystal TP have confidence scores between 0.4–0.9 (Figure 6A). This means that the 388 
XGBoost is almost certain when predicting juvenile particles, but more unstable for free 389 
crystals. The confidence scores over the False Negatives (FN) show that the XGBoost 390 
identifies a relatively high number of lithic particles and free-crystals as altered material, with 391 
confidence scores > 0.9 (Figure 6B–C), hinting at some classification challenges that are 392 
revealed below using the Shapley values (see ‘Local feature importance’ in Section 4.3.2).393 
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Table 3. F1-scores obtained from the multilabel XGBoost classifier of each particle type and their unweighted average (i.e., macro) for all 394 
particles in the test set (Overall), and across volcanoes and eruptive styles. These measurements also have an estimated precision of ±0.03. 395 
 396  

Overall Volcano  Eruptive style  
Soufrière de 
Guadeloupe 

Merapi Nevados 
de 
Chillán 

Cumbre 
Vieja 

Kelud  Phreatic Dome 
explosion 

Lava 
fountaining 

Sub-
plinian/ 
Plinian 

F1-score 
(macro) 

0.77 0.76 0.73 0.6 0.87 0.73  0.62 0.65 0.87 0.76 

F1 0.57 0.7 0.67 0.59 – 0.6  0.64 0.51 – 0.7 

A2 0.88 0.92 0.91 0.7 – 0.81  0.95 0.82 – 0.84 
L3 0.74 0.67 0.6 0.77 0.83 0.54  0.28 0.8 0.83 0.42 
J4 0.9 – – 0.32 0.92 0.97  – 0.46 0.92 0.99 

1F: Free-crystal  2A: Altered material  3L: Lithic  4J: Juvenile 397 
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 398 

Figure 6. Line plots of the confidence score versus (A) the cumulative proportion of True 399 
Positives (TP), (B) False Negatives (FN) in free-crystal, and (C) lithic types. The distribution 400 
of the data have been plotted into 9 bins of size 0.1. We don’t use cumulative proportion in 401 
(B) and (C) given the limited number of FN. The meaning of the Plot in (A) can be 402 
understood by the following two examples: if we take the value of juvenile TP at a 403 
confidence score between 0.8–0.9, there is a low cumulative proportion of ~10%, whereas in 404 
the next bin, 0.9–1.0 of confidence score, we have the vast majority (~90%) of the juvenile 405 
TP. If we take the value of free-crystal TP at a confidence score between 0.8–0.9, there is a 406 
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significant cumulative proportion of almost 40%. This shows that XGBoost is more reliant 407 
predicting juvenile particles than free crystals. 408 

3.2 What features drive XGBoost ash particle type predictions? 409 

3.2.1 Global feature importance 410 

We identified the features driving the XGBoost’s predictions with two approaches: 411 
applying the permutation feature importance, and computing the mean of the Shapley values 412 
(see Section 2.3.4). Although the calculation of the two methods is quite different, they 413 
yielded overall a similar feature importance ranking, and we identified the following three as 414 
the most important features (Table 4): (i) the mean of the hue channel (hue_mean), which is a 415 
feature from the Hue-Saturation-Value color space that measures the averaged chromaticity; 416 
(ii) the correlation, a textural feature that measures the degree of similarity between pixel 417 
relationships (Hall-Beyer, 2017); and (iii) the mode of the blue channel (blue_mode), which 418 
measures the most frequent pixel intensity of the blue channel of the particle image. 419 

 420 

Table 4. Feature importance identification based on mean of Shapley values and 421 
feature permutation. These two methods calculate the feature importance values differently 422 
and can’t be directly compared. The relative ranking of the features importance is similar (top 423 
ten ranked features in bold) with the same top two ranked features (hue_mean and 424 
correlation). We used the Shapley mean value for feature importance per particle type 425 
(shown as a plot in Figure 7), the top three of which are underlined. For the meaning of the 426 
abbreviations of each feature please see Table S1. The permutation feature values have been 427 
multiplied by ten for better readability, as the importance lies on the relative values across 428 
features. 429 
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Feature 
importance 

method 
Mean of Shapley values Feature permutation 

 Per particle type (Multilabel) 
Total 

Per particle type (OVR) 
Total  

A F L J A F L J 

hue_mean 0.78 0.86 0.12 1.15 2.91 0.91 0.41 0.15 0.91 1.22 

correlation 0.46 0.33 0.33 0.55 1.68 0.34 0.02 0.19 0.04 0.29 

blue_mode 0.31 0.10 0.48 0.54 1.43 0.06 0.04 0.00 0.01 0.10 

value_mode 0.28 0.23 0.60 0.20 1.31 0.05 0.05 0.24 0.00 0.00 

saturation_mode 0.10 0.27 -0.01 0.80 1.17 0.02 0.06 0.10 0.10 0.13 

convexity 0.02 0.52 0.06 0.48 1.10 0.01 0.06 0.00 0.03 0.03 

red_mean 0.16 0.18 0.53 0.21 1.07 0.03 0.03 0.01 0.01 0.04 

blue_std -0.06 0.81 0.06 0.19 1.00 0.34 0.24 0.04 0.04 0.28 

green_mode 0.18 0.27 0.11 0.18 0.73 0.03 0.02 0.01 0.03 0.02 

saturation_std 0.02 0.39 0.00 0.30 0.70 0.07 0.00 0.00 0.08 0.11 

solidity 0.04 0.40 -0.01 0.24 0.68 0.08 0.01 0.07 0.02 -0.04 

blue_mean 0.15 0.16 0.03 0.29 0.64 0.06 0.05 0.01 0.01 0.05 

homogeneity 0.13 0.08 0.32 0.06 0.59 0.16 0.03 0.12 0.00 0.06 

asm 0.21 0.29 0.01 0.02 0.53 0.18 0.03 0.00 0.00 0.14 

contrast -0.03 0.07 0.12 0.35 0.51 0.11 0.03 0.02 0.00 0.03 

hue_std 0.09 0.16 0.05 0.20 0.49 0.14 0.13 0.11 0.00 0.14 

green_mean 0.09 0.16 0.09 0.13 0.46 0.16 0.02 0.13 0.00 0.13 

saturation_mean 0.07 0.05 0.15 0.18 0.46 0.01 0.05 0.00 0.01 0.04 

circ_cioni 0.01 0.03 0.01 0.21 0.26 0.01 0.00 0.02 -0.01 -0.02 

energy 0.05 0.02 0.06 0.00 0.14 0.03 0.00 0.09 0.00 0.01 

red_std -0.01 0.00 0.03 0.09 0.11 0.03 0.13 0.00 0.00 0.03 

Total 3.12 5.51 3.13 6.51  2.86 1.43 1.33 1.29  

430 
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3.2.2 Local feature importance across particle types  431 

We identified the most important features used by the XGBoost to predict each 432 
particle type based on the Shapley values, which considers the interaction between the four 433 
particle types, unlike permutation which is based on the One-vs-Rest approach. Shapley 434 
values calculate the contribution of each feature to the actual prediction with respect to the 435 
expected prediction (Gianfagna & Di Cecco, 2021; Lundberg et al., 2018; Molnar, 2021). 436 
Thus, we can use the Shapley values of an individual particle prediction to identify which 437 
features were more important or average them across particle types to identify the global 438 
discriminant features per type (Figure 7). These vary according to the particle type as 439 
follows: 440 

(1) Altered material has the highest classification success with a F1-score of 0.90 and is 441 
predicted through color (hue_mean and blue_std), texture (correlation) and shape 442 
(convexity) (Figure 8A). A group of True Positives (TP) with hue_mean values 443 
between -3 and -2 (rescaled as described in Section 2.3.1) is revealed by the Shapley 444 
dependence plot (Figure 8B), which relates feature values (hue_mean) and their 445 
associated Shapley values for each particle (Lundberg et al., 2018). Such TP have 446 
almost 100% of confidence scores and consist of white (Figure 8C), red (predicted by 447 
red_mode, Figure 8D), rounded, hydrothermally altered material. 448 

(2) The juvenile particles are accurately classified with a F1-score of 0.88 with color 449 
(hue_mean, saturation_mode), texture (correlation), and shape (convexity) (Figure 450 
9A). The saturation_mode feature, which relates to the intensity of color, is 451 
discriminant (Shapley values > 1) with values of 0–2 (Figure 9B). The value_mode, 452 
which measures the amount of reflected light, or gloss, and which is considered 453 
characteristic of juvenile particles under the binocular (Miwa et al., 2009) is also very 454 
important. Low values of convexity are also relevant for discrimination, as could be 455 
expected by the presence of vesicles on the particles’ surfaces (Figure 9C). Moreover, 456 
the XGBoost predicts instances with lower hue_mean and saturation_mode as lithic 457 
(i.e., False Negative, FN), which correspond to darker, mid to high crystallinity 458 
juvenile particles from dome explosions (Figure 9D). 459 

(3) The lithic particles are moderately well classified with a F1-score of 0.74, and is 460 
mainly discriminated through color (value_mode and read_mean) and texture 461 
(homogeneity and correlation) features (Figure 10A). Low values of value_mode, 462 
ranging between of -1.7 to 0 (Figure 10B), discriminate lithic particles. These features 463 
together with relatively high values of correlation reflect dark lithic particles with 464 
uniform texture (Figure 10C). In contrast, instances with higher pixel intensity-based 465 
features (hue_mean and green_mean) are a source of FN, as suggested by negative 466 
Shapley values, and are classified as altered material (Figure 10D).  467 

(4) Free-crystals are the least accurately classified with F1-score of 0.54, and is mainly 468 
discriminated by color (blue_std, hue_mean), shape (convexity) and textural 469 
(correlation; Figure 11A). Unlike the other types, the most discriminant feature 470 
doesn’t cluster particles as shown by the blue_std values as a function of the Shapley 471 
values doesn’t yield any cluster of TP (Figure 11B), and those with Shapley values > 472 
1.5 overlap with altered material (Figure 11C). Thus, the XGBoost has limited 473 
predictability of free crystals, which is consistent with low a F1-score yielded from 474 
Free-crystals vs Rest binary classification (Table S8). Possible causes for this, besides 475 
the lack of a discriminant feature, include the presence of glass films on the crystal’s 476 
surface, the wide range of aspects of different minerals (mostly plagioclase and 477 
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pyroxene but also amphibole and sulfur-group minerals), and the significant rate of 478 
composite particles (e.g., crystals attached to glass) that are not reflected in the label 479 
(Figure 11D). 480 

 481 

Figure 7. Aggregated mean of the Shapley values by particle type. Note that some features 482 
are important for discrimination of multiple particle types (e.g., hue_mean) and other features 483 
are more discriminant of a specific type (e.g., value_mode for lithic type). Meaning of the 484 
abbreviations can be found in Table S1. 485 
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 486 

 487 

Figure 8. Summary plots to explain predictions of the altered material particle main type. (A) 488 
Feature importance according to the mean of the Shapley values, the higher the value the 489 
more the importance of the feature in the correct prediction. In (B) the Shapley dependence 490 
plot shows the relation of the Shapley value and the feature value for each particle type, and 491 
is commonly used to identify clusters of a specific class (particle main type) along the feature 492 
domain (Lundberg et al., 2018). For example, at values of -3 to -2  of hue_mean, there is a 493 
cluster of particles with high Shapley values and thus correctly classified as altered material. 494 
(C) and (D) are two examples of particles to show confidence score (A: Altered material), 495 
and the three features with the highest Shapley values. They are both True Positives and have 496 
been predicted at maximum confidence score with hue_mean (the mean of the chromaticity) 497 
being the main discriminant feature. 498 

 499 
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 500 

Figure 9. Summary plots to illustrate the features that contribute the most to the correct 501 
predictions of the juvenile particles. (A) Feature importance based on the mean of the 502 
Shapley values. (B) Shapley dependence plot. Note a cluster of juvenile particles around 503 
saturation_mode values between 1–3. (C) and (D) are examples of two predictions of the 504 
particle image, with the horizontal bar showing the confidence score across particle types, 505 
and the vertical bars the associated Shapley values. (C) shows a True Positive predicted at 506 
maximum confidence score with the hue_mean (chromaticity), saturation_mode (mode of the 507 
intensity of the color), and convexity. (D) is an example of a particle that was predicted by 508 
XGBoost model as lithic with a confidence of 70% (size of the green area in horizontal bar 509 
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plot) based on the red_mean (mean of the red channel), which is predominantly discriminant 510 
of lithic particles (Figure 10A), but was classified as juvenile in VolcAshDB.  511 

 512 

Figure 10. Summary plots to explain predictions of the lithic type. (A) Ranking of the 513 
features according to the mean of the Shapley values. (B) The Shapley dependence plot 514 
shows correct predictions of lithic particles with high Shapley values at negative values of 515 
value_mode. (C) and (D) show for each prediction the partcle image, confidence score across 516 
particle types, and the associated Shapley values. (C) shows a dark particle that is correctly 517 
classified as lithic with low value_mode (luminosity), whereas (D) shows that XGBoost gives 518 
similar confidence scores to the altered material and lithic types, with the former being 519 
slightly preferred given the values of green_mean, which are uncharacteristic of the lithic 520 
type (shown by negative Shapley value -0.7). Discrimination of lithic and altered material 521 
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particles such as in (D) is often not straightforward when weathering is incipient (Benet et al., 522 
preprint). 523 

 524 

Figure 11. Summary plots to explain predictions of the models for the free-crystal type. (A) 525 
Feature importance based on the mean of the Shapley values. (B) Shapley dependence plot. 526 
Note that the feature values have been rescaled by a standard scaler. (C) and (D) show for 527 
each prediction the particle image, confidence score across particle types, and the associated 528 
Shapley values. (C) shows particle that is likely a fragment of plagioclase crystal but is 529 
misclassified as altered material, because the free-crystal type lacks discriminant features (see 530 
main text for more details). (D) an additional source of false negatives are particles consisting 531 
of more than one material, such as those made of glass attached to a crystal. In this case, the 532 
model’s prediction correctly identifies two particle types, which is more accurate than using 533 
one single particle type as label. 534 
 535 

3.3 ViT quantitative evaluation 536 

3.3.1 General evaluation 537 

The ViT base model was fine-tuned using ~10,000 images from the augmented 538 
training set and evaluated with the test set (see Section 2.3 for information on each step). We 539 
obtained accurate classification for the whole test set (macro F1-score of 0.93), and also 540 
across particle types (Figure 12): altered material (F1-score of 0.95), juvenile (F1-score of 541 
0.95), free-crystal (F1-score of 0.91) and lithic (F1-score of 0.89). More than 85% of True 542 
Positives (TP) are predicted at high confidence scores (> 0.9; Figure 13A) which shows that 543 
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ViT classifies confidently and accurately. The False Negatives (FN) mostly consist of lithic 544 
particles classified as altered material and juvenile, a few of which at high confidence scores 545 
(Figure 13B), and also of juvenile particles classified as lithic type (Figure 13C). Below, we 546 
identify specific groups of particles that make up the FN and discuss the possible causes. 547 

 548 

Figure 12. Confusion matrix of the predictions by the ViT image classifier. The percentages 549 
show the True Positive rate if positioned in the diagonal matrix (darker green), and otherwise, 550 
the False Negative rate (lighter), all percentages with the corresponding number of particles 551 
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per predicted type. The best classification is for free-crystal followed by altered material, 552 
juvenile and lithic. 553 

 554 

Figure 13. Line plots of the confidence score versus (A) the cumulative proportion of True 555 
Positives (TP), (B) False Negatives (FN) in free-crystal and (C) lithic types. The distribution 556 
of the data have been plotted into 9 bins of size 0.1. We don’t use cumulative proportion in 557 
(B) and (C) given the limited number of FN. Two examples on how to read (A) are described 558 
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in Figure 6. Note that the ViT predicts True Positives at high confidence score values, 559 
although it is less certain about the lithic particle type. 560 

3.3.2 ViT’s evaluation across volcanoes, eruptive styles, and individual particles 561 

A closer inspection of the results across eruptive styles and volcanoes (Table S9) 562 
reveals a range of classification accuracies, from moderate (F1-score of 0.73) up to optimal 563 
classification performance with a F1-score of 1.0 (Figure 14): 564 

(1) Ash particles from phreatic events are in general well classified (macro F1-score of 565 
0.95), including the particle main types: altered material (F1-score of 0.99), free-566 
crystal (F1-score of 0.94) and lithic (F1-score of 0.93). The ViT successfully 567 
classifies the most common groups of particles in these samples such as hydrothermal 568 
aggregates (Figure 15A) and weathered material (Figure 15B).  569 

(2) Particles from samples of dome explosions are classified with the lowest accuracy 570 
(macro F1-score of 0.85) among the eruptive styles. The ViT accurately classifies 571 
free-crystal (F1-score of 0.86), altered material (F1-score of 0.90) and lithic (F1-572 
score of 0.90) types, but is less accurate (F1-score of 0.73) for the juvenile type with 573 
most False Negatives (FN) classified as lithics. However, the confidence scores of 574 
some FN show a transition between the juvenile and lithic types that has explanatory 575 
value. This means that particles may have both juvenile and lithic traits, and thus a 576 
measure on the types’ prevalence seems more realistic than using mutually exclusive 577 
types like in VolcAshDB. Particles with combined traits are common in samples from 578 
Nevados de Chillán Volcanic Complex (Figure 15C), which originated from a 579 
relatively long-lived dome-forming eruption cycle. An additional challenge is that the 580 
ViT confidently classifies as lithics some particles that are labelled as juvenile and, 581 
since petrographic classification was not always straightforward (Benet et al., 582 
preprint), it is difficult to decide whether these are False Negatives, or instead, 583 
petrographic classification errors (Figure 15D), especially when ML-based image 584 
classifiers have surpassed human performances in other fields (He et al., 2015).  585 

(3) Ash particles from lava fountaining are generally accurately classified (macro F1-586 
score of 0.94), between juvenile (F1-score of 0.94) and lithic (F1-score of 0.88) 587 
types. Most of the lithic particles belong to recycled juvenile particles, which are 588 
critical to avoid overestimating the amount of juvenile component (D’Oriano et al., 589 
2022) and their identification typically requires examination in the SEM (D’Oriano et 590 
al., 2014). The high score suggests that the ViT can discriminate between them to 591 
some extent (Figure 15E), but a more robust labelling by a team of experts and a 592 
larger dataset containing SEM images is necessary to obtain more robust conclusions. 593 
On the other hand, the juvenile particles consist of glossy, smoothed surface, 594 
vesicular, elongated glass shards and are accurately classified (Figure 15F).  595 

(4) The ViT accurately classifies ash particles from plinian and subplinian eruptive styles 596 
(macro F1-score of 0.95), including free crystals (F1-score of 0.92), altered material 597 
(F1-score of 0.93) and juvenile (1.0), but less accurate for lithics (F1-score of 0.77). 598 
The juvenile particles consist of fragments of pumice and all particles are successfully 599 
classified (Figure 15G). In contrast, the lithic particles mostly consist of dull grey 600 
fragments with rounded edges, and most of the FN are classified as altered material, 601 
which may reflect the challenge of classifying particles with incipient weathering into 602 
weathered material or lithic (Figure 15H). 603 

 604 

 605 
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 606 

Figure 14. (A) Bar charts showing the percentage of predicted types for each particle type in 607 
VolcAshDB. If all predictions were the same as in the database, each bar would be single-608 
colored as follows: orange for altered material (A), light blue for free-crystal (F), magenta for 609 
juvenile (J), and dark green for lithic (L). (B) shows the F1-score for each particle type across 610 
eruptive styles, whereas (C) shows the value of the macro F1-score per eruptive style. Note the 611 
range in macro F1-score values (C) from 0.85 for dome explosion to 0.91 for lava fountaining up 612 
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to 0.95 for phreatic, subplinian and plinian eruptive styles. The exact values of this figure can be 613 
found in Table S9. 614 

 615 

Figure 15. Representative examples of particle images and the predictions and their associated 616 
confidence score across eruptive styles, including phreatic (A,B), dome explosion (C,D), lava 617 
fountaining (E,F), and subplinian/plinian (G,H). Note that False Negatives contain in brackets 618 
the particle type according to VolcAshDB, and that color code is the same as in previous figure. 619 

4 Discussion 620 

4.1 Comparison between classification using particle’s features versus images 621 

We found that, overall, the ViT classifies more accurately with particle images (0.93 of 622 
macro F1-score) than the XGBoost classifies with the particle features (0.77 of macro F1-score). 623 
This difference is unlikely to be the XGBoost model itself, which is very popular in the literature 624 
and has had best performances amongst models for complex classification tasks (Brownlee, 625 
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2016; Chen & Guestrin, 2016; Dhaliwal et al., 2018). One possibility is that the extracted 626 
features don’t retain certain discriminant information from the images, and as a result, the 627 
XGBoost is unable to classify particles such as free crystals (0.57 of F1-score). On the other 628 
hand, maintaining the physical information associated with features makes the model’s outcomes 629 
more interpretable (e.g., in classification of volcano-seismic signals; Falcin et al., 2021; Malfante 630 
et al., 2018) with xAI methods. This is an important advantage over Vision Transformers, whose 631 
main xAI tool consists in a heatmap of the region(s) of attention by the model (Dosovitskiy et al., 632 
2020) but appears insufficient to obtain well founded classification insights for ash particles 633 
(Figure 16). 634 

 635 

Figure 16. Example of (A) one multi-focused binocular image of a pumice particle from Mount 636 
St. Helens (1980), which is overlain by (B) a heatmap of the regions of attention by the base 637 
Vision Transformer (Dosovitskiy et al., 2020), typically used for interpreting image classifier’s 638 
predictions. It does not appear easy to discern which aspects of the particle were relevant for 639 
classification.  640 

4.2 Insights from XGBoost to better develop a classification criterion for the particles 641 
observed with the binocular 642 

The XGBoost model gave a medium to high classification performance with macro F1-643 
score of 0.77, and using the Shapley values we identified the most discriminant features of each 644 
particle type (Table 4). For instance, lithic particles can be distinguished with low values of 645 
value_mode which correspond to the luster of the particle according to the high Shapley values. 646 
This finding agrees with previous studies that use a dull luster (which corresponds to low values 647 
of value_mode) to identify lithic particles (Miwa et al., 2013). On the other hand, juvenile 648 
particles have high Shapley values for the saturation_mode. This feature is related to high color 649 
intensities as observed under the binocular, but it was not recognized before as a diagnostic 650 
observation of the particle type. These two examples belong to particle types that are well 651 
classified and for which the Shapley values are reliable. Shapley values obtained from particles 652 
that yielded lower accuracies, such as the free crystals, are not reliable, and thus overall 653 
performances should be improved. This could be achieved by enhancing the quality and quantity 654 
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of VolcAshDB dataset by (i) adding particles to balance the dataset, (ii) refining the particle 655 
contour in the multi-focused images, so that shape features can measure micro-scaled cavities 656 
(Benet et al., preprint), and (iii) the inclusion of a new feature that measures the density of lines 657 
on the surface, which could be sensitive to planar structures of free crystals. 658 

4.3 Deploying the ViT for automatic particle classification 659 

A main goal of our research is to obtain a classifier of ash particles that is as accurate as 660 
possible, and which can be applied to objectively classify new datasets in a reproducible manner. 661 
The ViT model (macro F1-score of 0.93) currently performs very accurately for some samples 662 
(e.g., Soufrière de Guadeloupe; macro F1-score of 0.95) but is less accurate for others (e.g., 663 
Merapi; macro F1-score of 0.80). This variation is also found within subgroups of particles. For 664 
instance, elongated, highly-vesicular, glossy particles from basaltic lava fountaining (Cumbre 665 
Vieja, 2021) or pumice fragments (Kelud, 2014) are very accurately classified, but high 666 
crystallinity, blocky, dark particles from dome explosions (Nevados de Chillán, 2016–2018) are 667 
less accurately classified. These changes in classification scores may be due to differences in the 668 
particle-forming processes: juvenile particles from Plinian eruptions are originated from a main 669 
and short fragmentation episode, whereas juvenile particles from dome explosions originate from 670 
magma with a long and complex story of slow conduit ascent, degassing, crystallization, 671 
fracturing, and recycling. Moreover, the variability of F1-scores between eruptive styles suggests 672 
that to obtain a more robust model for generalization, we need more particles from such 673 
problematic subgroups and labelling done by a team of experts. We will also increase our range 674 
of samples, including eruptive styles like strombolian activity, submarine eruptions, phreatic 675 
from water-lake interaction, and andesitic magma compositions, amongst the most important. 676 

 677 

4.4 A ViT particle classifier for volcano monitoring 678 

From an operational viewpoint, volcano observatories and laboratories are often equipped 679 
with binocular microscopes that can acquire standard, single-focus binocular images, and that are 680 
used to classifying ash (componentry analysis). This could be done near-real time, and it usually 681 
takes from one to a few days (Re et al., 2021), or it could also be done a posteriori to obtain a 682 
time series data of ash componentry that can be compared to other monitoring data to better 683 
understand how the volcanic system works (Benet et al., 2021; Suzuki et al., 2013). Our dataset 684 
and analysis are based on multi-focused images and therefore, we performed a preliminary test 685 
of ViT’s ability to classify single-focus images from a small dataset of ~1,200 images from 686 
Nevados de Chillán (Benet et al., 2021). The dataset contains images of about 400 particles, with 687 
3 images per particle at different focus depths. Since using the same split ratio (80:20) would 688 
yield very small training set, we used all particles for training, except 28 representative particles 689 
of the types of ash as described in Benet et al. (2021) as test. Fine-tuning the ViT took only 3 690 
hours and we obtained decent accuracies (macro F1-score of 0.84) on the test set (Figure 17). 691 
This suggests that volcano observatories could potentially use a ViT and obtain an objective 692 
score on a particle-by-particle basis relatively rapidly. 693 
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 694 

Figure 17. Confusion matrix of the predictions by the ViT image classifier after being fine-tuned 695 
with a single-focused, small training set (~370 particles from Benet et al., 2021). The 696 
percentages show the True Positive rate if positioned in the diagonal matrix (darker green), and 697 
otherwise, the False Negative rate (lighter), all percentages with the corresponding number of 698 
particles per predicted type. Note that given the limited data we used all particles for training 699 
except 28 for the test set. Since the subset is small, we report an error as the square root of the 700 
number of particles, which is known in statistics as the implicit random error (Ahmed, 2015). 701 

5 Conclusions 702 

Classification of the different particles that make up volcanic ash is not straightforward 703 
because diagnostic criteria are not standardized and thus reliable, and systematic identification of 704 
a given particle type is not straightforward. In this contribution, we attempt to alleviate this 705 
situation by exploring the use of state-of-the-art machine learning-based models to identify the 706 
most discriminant features of each particle type, and to evaluate their ability to classify particles. 707 
The identified features provide new insights on the recognition of juvenile and lithic particles 708 
towards a standardized classification. The image classifier performs at very high accuracies, 709 
although the variability across eruption and types shows that its capability to generalize to new 710 
samples is still unclear. Higher numbers of particles from a wider variety of eruptions and 711 
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volcanoes into VolcAshDB coupled to ML models should allow for unbiased comparison of ash 712 
samples, and reproducible classification of their particles as a tool for volcano monitoring 713 
studies. 714 
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and the code for deployment via the API Hugging Face of the ViT. 730 
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Introduction  

The following information below includes details on the used features and their 
abbreviations, a series of tables with the accuracies obtained through different experiments 
to choose amongst the different types of machine learning-based models and to choose the 
optimal hyperparameters. Other supplementary information includes the results of 
classification from the One-Versus-One and One-Versus-Rest classification techniques, two 
figures to summarize classification scores across different types of models, and an example 
of a confusion matrix.  

Table S1. List of measured features, and their abbreviation and calculation. The reader is 
referred to Benet et al., (preprint) for more details and a reference. 

Feature Abbreviation Equation 

Convexity convexity P!/P" 

Rectangularity rectangularity #!
$%&$' 

Elongation elongation 
D()*+,-,.$

E/)0
 

Roundness roundness 
12!

34"#$%&'&()
 

Circularity by Dellino 
and la Volpe (1996) 

circ_dellino 
P"

2&πA"
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Symbols used: A", particle area; P", particle perimeter; A!, hull area; P!, hull perimeter; W, 
width of bounding box; H, height of bounding box; D()*+,-,., Feret maximum diameter the 
maximum distance between two parallel lines tangential to the particle outline; E/)0, major 
ellipse axis; levels, pixel intensities from the ROI used for Grey-Level Cooccurrence-Matrix 
(GLCM) calculation; P5

6(i, j), probability of pixel pairs at a given distance (d) and angle (θ) in 
GLCM; µ7, GLCM mean; σ7$, standard deviation; N, number of pixels per channel; x7, pixel 
value; x, mean of pixel values. 
 
Table S2: Optimal hyperparameter obtained from the highest cross-validation score for 
various models. 

Hyperparameter XGB RF DTC KNN GBC 

colsample_bytree 0.47 – – – – 

Circularity by Cioni 
et al. (2014) 

circ_cioni 
 

4πA"
P"$

 

Solidity solidity 
A"

2H + 2W
 

Aspect ratio  aspect_rat W/H 

Compactness compactness 
A"
HW

 

Contrast contrast 7 P5
6(i − j)$

8,9,8:;<

7,0>?

 

Dissimilarity dissimilarity 7 P5
6|i − j|

8,9,8:;<

7,0>?

 

Homogeneity homogeneity 7
P5
6(i, j)

1 + (i − j)$

8,9,8:;<

7,0>?

 

ASM asm 7 P5
6(i, j)$

8,9,8:;<

7,0>?

 

Energy energy √ASM 

Correlation correlation 7 P5
6

⎣
⎢
⎢
⎡(i − µ7) Bj − µ0C

D(σ7$)Bσ0$C ⎦
⎥
⎥
⎤8,9,8:;<

7,0>?

 

Channel1 mean 
channel_mean (e.g., 
hue_mean) 

1
N
7x7

@

7>7

 

 

Channel standard 
dev 

channel_std (e.g., value_std) H
1

N − 1
7(x7 − x)$
A

7><

 

 

Channel mode 
channel_mode (e.g., 
red_mode) 

Computationally found as the most 
common value in the array by 
Scipy’s stats.mode function 
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learning_rate 0.01 – – – 0.01 
max_depth 10 7 7 – 10 

n_estimators 45 22 – – 48 
reg_alpha 1 – – – – 

reg_lambda 1 – – – – 
min_samples_split – 22 25 – 30 

n_neighbors – – – 5 – 
 
 
Table S3: Evaluation of optimized models. Support indicates the number of particles used 
for evaluation. 

 XGB RF DT KNN GBC 
precision 0.75 0.68 0.65 0.64 0.69 
recall 0.75 0.72 0.69 0.68 0.72 
F1-score 0.75 0.69 0.65 0.64 0.70 
accuracy 0.81 0.75 0.70 0.70 0.77 
support 315 315 315 315 315 

 
Table S4: Statistical measures of mean, first and second standard deviations of the 
distribution of F1-scores by particle type and their aggregated macro F1-score. 
 
 Altered 

material 
Free-
crystal 

Lithic Juvenile Overall 

Mean 0.87 0.57 0.73 0.88 0.76 
Standard deviation 0.01 0.04 0.02 0.01 0.015 
Second standard 
deviation 

0.02 0.09 0.04 0.03 0.03 

Particles in train 2310 326 1122 1281 5040 
Particles in test 577 81 280 320 1260 

 
Table S5. List of the base hyperparameters for each model provided by their authors. Note, 
in bold, the name of the model according to the authors. 
 
Hyperparameter Value 

Vision Transformer (ViT-B{16,32}) Dosovitskiy et al., 2020 

Learning rate 8x10-4 

Epochs 7 

Residual neural network (R50x{1,2}) He et al., 2016 

Learning rate 10-3 

Epochs 7 
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Convolutional neural network (ConvNeXt-
T/S/B/L/XL 

Liu et al., 2022 

Optimizer Adam 

Learning rate 5x10-5 

Epochs 30 

 
Table S6. Accuracies obtained from grid search at varying learning rate and batch size. 
 

 

6e-4 8e-4 1e-5 3e-5 

4 86.66 87.32 87.18 86.66 

8 86.55 87.79 86.55 86.55 

16 86.93 87.50 86.97 87.25 

32 86.13 86.99 87.07 87.08 

64 86.34 87.21 86.87 87.08 

 
Table S7. Comparison of optimizers’ performance based on accuracy. 
 

Optimizer Accuracy 

AdamW 87.50% 

SGD 81.72% 

Adagrad 85.59% 

 

 

Learning rate 

Batch size 
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Table S8. F1-scores obtained from the OVO and OVR strategies for each particle type, and their unweighted average (i.e., macro), for all 
particles in the test set (Overall) and across the associated binary classifiers. These measurements have an estimated precision of ±0.03 (see 
‘Effect of the train and test split’ in Section 2.2.6 for its calculation). 

 
 One-vs-One (OVO)  One-vs-Rest (OVR) 

 Overal
l 

F vs A F vs L F vs J A vs L A vs J L vs J Overall A vs Rest F vs Rest L vs Rest J vs Rest 

F1-score 
(macro) 

0.75 0.81 0.78 0.9 0.88 0.97 0.84 0.76 0.89 0.74 0.82 0.92 

F1 0.56 0.67 0.64 0.82 – – – 0.55 – 0.52 – – 
A2 0.9 0.95 – – 0.92 0.98 – 0.88 0.88 – – – 
L3 0.71 – 0.92 – 0.86 – 0.84 0.73 – – 0.73 – 
J4 0.85 – – 0.96 – 0.97 0.85 0.88 – – – 0.88 
Rest5        – 0.89 0.97 0.9 0.96 

1F: Free-crystal  2A: Altered material  3L: Lithic  4J: Juvenile 
5Rest includes all the particles that do not belong to the class of interest (e.g., Lithic vs Non-lithic)
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Table S9. F1-scores obtained from the ViT classifier of each particle type and their 
unweighted F1-score average (i.e., macro) for all particles in the test set (Overall), and 
across volcanoes and eruptive styles. 

 

Overall 

Volcano  Eruptive style 

 Soufrière de 
Guadeloupe Merapi 

Nevados 
de 

Chillán 

Cumbre 
Vieja Kelud  Phreatic 

Dome 
explosion 

Lava 
fountaining 

Sub-
plinian

/ 
Plinian 

F1-
score 

0.93 0.95 0.80 0.85 0.91 0.91  0.95 0.85 0.91 0.95 

F1 0.91 0.90 0.72 0.95 – 0.92  0.94 0.86 – 0.92 

A2 0.95 0.99 0.95 0.80 – 0.93  0.99 0.90 – 0.93 

L3 0.89 0.96 0.75 0.91 0.88 0.77  0.93 0.90 0.88 0.77 

J4 0.95 – – 0.72 0.94 1  – 0.73 0.94 1 
 
 
 

 
Figure S1. Whisker plots of the F1-score values obtained from 10-fold cross validation 
(see ‘Hyperparameter optimization’ in Section 2.2.2 for an explanation of this technique) 
of Extreme Gradient Boosting (XGB), Random Forest (RF), Decision Tree Classifier (DTC), 
K-Nearest Neighbor (KNN) and Gradient Boost Classifier (GBC). Performances are 
measured with the F1-score (see ‘Model evaluation’ in Section 2.2.3 for its calculation). 
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Each whisker plot shows the median (horizontal line), 25th and 75th percentiles (box upper 
and lower side). Whisker lengths are at 1.5 times the interquartile ranges, beyond which 
are the outliers (diamonds). 
 

 
Figure S2. (A) Example of a confusion matrix for a four particle-classes classifier and (B) 
calculation of the main metrics taking juvenile as the class of interest. 
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Figure S3. Evaluation of the models’ performance with the test set after hyperparameter 
optimization based on the precision, recall, F1-score and accuracy. 


