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Abstract

Initialization is essential for accurate seasonal-to-decadal (S2D) climate predictions. The initialization schemes used differ on the

component initialized, the Data Assimilation (DA) method, or the technique. We compare five popular schemes within NorCPM

following the same experimental protocol: reanalysis from 1980–2010 and seasonal and decadal predictions initialized from the

reanalysis. We compare atmospheric initialization—Newtonian relaxation (nudging)—against ocean initialization—Ensemble

Kalman Filter—(ODA). On the atmosphere, we explore the benefit of full-field (NudF-UVT) or anomaly (NudA-UVT) nudging

of horizontal winds and temperature (U, V, and T) observations. The scheme NudA-UV nudges horizontal winds to disentangle

the role of wind-driven variability. The scheme ODA+NudA-UV provides a first attempt at joint initialization of the ocean

and atmospheric components. During the reanalysis, atmospheric nudging leads to atmosphere and land components best

synchronized with observations. Conversely, ODA best synchronizes the ocean component with observations. The atmospheric

nudging schemes are better at reproducing specific events, such as the rapid North Atlantic subpolar gyre (SPG) shift. An

abrupt climatological change using the NudA-UV scheme demonstrates that energy conservation is crucial when only assimilating

winds. ODA outperforms atmospheric-initialized versions for S2D global predictions, while atmospheric nudging is preferable for

accurately initializing phenomena in specific regions, with the technique’s benefit depending on the prediction’s temporal scale.

For instance, atmospheric full-field initialization benefits the tropical Atlantic Niño at one-month lead time, and atmospheric

anomaly initialization benefits longer lead times, reducing hindcast drift. Combining atmosphere and ocean initialization yields

sub-optimal results, as sustaining the ensemble’s reliability—required for ODA’s performance—is challenging with atmospheric

nudging.
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Key Points:8

• Constraining the ocean state to observations produces more skillful predictions9

than constraining the atmospheric state10
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tion and minimizes hindcast drift14
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Abstract15

Initialization is essential for accurate seasonal-to-decadal (S2D) climate predictions.16

The initialization schemes used differ on the component initialized, the Data Assimila-17

tion (DA) method, or the technique. We compare five popular schemes within NorCPM18

following the same experimental protocol: reanalysis from 1980–2010 and seasonal and19

decadal predictions initialized from the reanalysis. We compare atmospheric initialization—20

Newtonian relaxation (nudging)—against ocean initialization—Ensemble Kalman Filter—21

(ODA). On the atmosphere, we explore the benefit of full-field (NudF-UVT) or anomaly22

(NudA-UVT) nudging of horizontal winds and temperature (U, V, and T) observations.23

The scheme NudA-UV nudges horizontal winds to disentangle the role of wind-driven24

variability. The scheme ODA+NudA-UV provides a first attempt at joint initialization25

of the ocean and atmospheric components. During the reanalysis, atmospheric nudging26

leads to atmosphere and land components best synchronized with observations. Conversely,27

ODA best synchronizes the ocean component with observations. The atmospheric nudg-28

ing schemes are better at reproducing specific events, such as the rapid North Atlantic29

subpolar gyre (SPG) shift. An abrupt climatological change using the NudA-UV scheme30

demonstrates that energy conservation is crucial when only assimilating winds. ODA out-31

performs atmospheric-initialized versions for S2D global predictions, while atmospheric32

nudging is preferable for accurately initializing phenomena in specific regions, with the33

technique’s benefit depending on the prediction’s temporal scale. For instance, atmo-34

spheric full-field initialization benefits the tropical Atlantic Niño at one-month lead time,35

and atmospheric anomaly initialization benefits longer lead times, reducing hindcast drift.36

Combining atmosphere and ocean initialization yields sub-optimal results, as sustain-37

ing the ensemble’s reliability—required for ODA’s performance—is challenging with at-38

mospheric nudging.39

Plain Language Summary40

This study explores the impact of a wide range of standard initialization schemes41

on the performance of coupled reanalysis and seasonal-to-decadal predictions produced42

with the same Earth System Model. We compare atmospherically-driven initialization43

versus ocean initialization. We also compare full-field initialization —meaning where the44

observations are used as are—versus anomaly initialization —when the climatological45

difference between the model and observations is removed. All schemes have strengths46

and weaknesses. As expected, ocean initialization works best in the ocean, while atmo-47

spherically driven initialization works best in the atmosphere and land. Ocean initial-48

ization has the best performance overall for seasonal and decadal predictions. Still, the49

atmospherically driven initialization works better for some specific regions and events—50

for example, the strong North Atlantic subpolar gyre shift in 1995. Full-field initializa-51

tion performs better than anomaly initialization at short lead times, and it improves per-52

formance in regions where the mean state is important for representing the variability,53

such as the Tropical Atlantic. Constraining atmospheric temperature is important for54

reanalysis and seasonal prediction while constraining only the winds works better for decadal55

prediction.56

1 Introduction57

Climate prediction is of great socioeconomic importance and is an essential tool58

for climate services, which help to mitigate the risks caused by climate change (e.g., Mar-59

iotti et al., 2020). On S2D time scales, such predictions depend on an accurate initial-60

ization of internal variability and the response to external forcing (Smith et al., 2007;61

N. S. Keenlyside et al., 2008; Meehl et al., 2009; Hawkins & Sutton, 2009; Pohlmann et62

al., 2009; Doblas-Reyes et al., 2013). Specifically, the correct initialization of ocean vari-63

ability, and the correct interaction with the atmosphere, are essential to achieve skill-64
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ful predictions at such timescales (Balmaseda & Anderson, 2009; Mariotti et al., 2018;65

Meehl et al., 2021). A dedicated contribution, the Decadal Climate Prediction Project66

(DCPP, Boer et al., 2016), addressed this topic in the Coupled Model Intercomparison67

Project (CMIP) organized by the World Climate Research Programme (WCRP).68

There are various schemes for accurately initializing S2D predictions. One com-69

mon practice is to initialize each component of the Earth System Models (ESMs) indi-70

vidually, replacing them with an existing reanalysis (Balmaseda et al., 2009), but this71

can lead to initialization shock. Producing initial conditions with the same ESM used72

for performing the predictions can overcome this issue (Pohlmann et al., 2009). These73

techniques can use the data as it is (i.e., full-field; FF) or they can use anomalies about74

a climatology (i.e., anomaly-field; AF) (Smith et al., 2013; Volpi et al., 2017). Other ini-75

tialization approaches include: atmospheric momentum fluxes initialization, joint atmo-76

spheric momentum and heat fluxes initialization (Yeager et al., 2012), ocean data assim-77

ilation (ODA) (Wang et al., 2019; Brune & Baehr, 2020), and a combination of ODA and78

atmospheric fluxes initialization (Brune et al., 2018; Polkova et al., 2019; Lu et al., 2020).79

There is a debate on whether AF or FF initialization is best (Magnusson et al., 2013;80

Carrassi et al., 2014). Climate models have biases (climatological error) larger than the81

signals we aim to predict (Palmer & Stevens, 2019), which causes challenges when com-82

paring the two initialization approaches (Dee, 2006). FF aims to correct the error in the83

mean state, which can be important for predictability. However, FF tends to produce84

a large drift during the prediction as the model reverts to its attractor (Smith et al., 2013;85

Weber et al., 2015). This technique can be skillful if the drift does not interfere with the86

signal, as the drift can be subtracted in a post-processing step (Yeager et al., 2012). Con-87

versely, AF assumes that reducing the forecast drift will lead to fewer errors than cor-88

recting the mean error in the initial state (Smith et al., 2013; Weber et al., 2015). It thus89

only constrains the error of the anomaly and reduces initialization shocks and predic-90

tion drift. Both techniques have strengths and weaknesses, which can be more impor-91

tant depending on the application. For instance, initialization shocks dissipate rapidly92

in the atmosphere but take much longer in the ocean. Furthermore, FF has other dis-93

advantages when used in data assimilation (DA) methods: (1) When the bias is redun-94

dant (reemerging in between the assimilation cycle) and the observation network het-95

erogeneous (e.g., with observations predominantly at the ocean surface), full-field assim-96

ilation and multivariate updates propagate the bias to the unobserved regions. (2) DA97

is designed to correct random, zero-mean errors, i.e., the model and observations are as-98

sumed (erroneously) to be unbiased. Consequently, the analysis state with FF still in-99

cludes part of the bias; finally, (3) with ensemble methods, FF also yields a too strong100

reduction of ensemble spread (Dee, 2006; Anderson, 2001). On the other hand, the draw-101

backs of AF arise when (1) the variability of the model and observations are not com-102

parable (Weber et al., 2015), for example, if the model bias is also characterized by a spa-103

tial shift impacting the amplitude of the variability (Volpi et al., 2017), and (2) the non-104

linear relationship between non-observed variables and assimilated variables introduce105

physical inconsistencies (J. Robson, 2010; Yeager et al., 2012). The choice of initializa-106

tion technique depends on the prediction’s timescale considered. For sub-seasonal-to-seasonal107

(S2S) predictions FF is often preferred, while for S2D about half of the prediction sys-108

tems are initialized using AF (Meehl et al., 2021) illustrating such debate.109

Most of the predictability in S2D timescales resides in the ocean’s slow variability—110

largely driven by the atmosphere—, and several studies have explored different DA meth-111

ods, observation networks, and the importance of ocean-atmosphere coupling during ini-112

tialization. For example, constraining the fluxes at the ocean surfaces of an Ocean Gen-113

eral Circulation Model (OGCM, e.g., Yeager et al., 2012) or nudging the atmosphere of114

the coupled system (Brune & Baehr, 2020) can be effective to initialize the ocean com-115

ponent. Another approach having a comparable impact is to nudge the SST, which pre-116

scribes the flux at the ocean interface (e.g., N. S. Keenlyside et al., 2008; Garćıa-Serrano117

–3–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

et al., 2015; Smith et al., 2013). It is also possible to focus on the ocean component ini-118

tialization within the ESM—commonly called coupled initialization—(e.g., S. Zhang et119

al., 2009; Pohlmann et al., 2009; Karspeck et al., 2018; Counillon et al., 2016; Brune &120

Baehr, 2020; Bethke et al., 2021). Coupled initialization approaches usually rely on ad-121

vanced DA methods that can provide multivariate updates of the entire ocean state and122

take full advantage of the sparse ocean observation network. The joint initialization of123

the ocean subsurface and atmosphere has been advocated (for example, Smith et al., 2013;124

Polkova et al., 2019). In idealized studies S. Zhang et al. (2009, 2010) show that joint125

assimilation of atmosphere and SST can accurately reproduce the variability of the At-126

lantic meridional overturning circulation (AMOC) and that complementing the system127

with subsurface data improved performance in the North Atlantic (NA), proving its po-128

tential to initialize decadal predictions. Furthermore, Dunstone and Smith (2010) indi-129

cate that the subsurface can skillfully initialize the AMOC and that complementing with130

atmospheric data improves the initialization during the first lead year.131

Isolating the best scheme is challenging since these schemes have been evaluated132

using different ESMs, reference periods, observational data sets, and experimental de-133

signs, which can lead to differences in prediction accuracy. Thus, there is a need to eval-134

uate these schemes under a unified methodology. Here, we evaluate various initializa-135

tion schemes for S2D predictions using the same prediction system—the Norwegian Cli-136

mate Prediction Model—and the same experimental design. We will assess the perfor-137

mance of coupled reanalysis, seasonal hindcasts, and decadal hindcasts from 1980 to 2010.138

We will examine the advantages of using full-field or anomaly-field initialization and ex-139

plore the benefits of constraining the atmosphere, the ocean, or both components.140

We use the Norwegian Climate Prediction Model (NorCPM, Counillon et al., 2014,141

2016) that combines the Norwegian Earth System Model (NorESM, Bentsen et al., 2013)142

and the Ensemble Kalman Filter (EnKF, Evensen, 2003) data assimilation method. NorESM143

is a state-of-the-art climate model based on the Community Earth System Model (CESM1,144

Hurrell et al., 2013), with the difference that it uses an ocean component with isopyc-145

nal vertical coordinates, different atmospheric chemistry, and ocean biochemistry. The146

EnKF is an advanced data assimilation method that corrects unobserved variables through147

a state-dependent multivariate covariance matrix and the observation error statistics.148

The model covariances are derived from a Monte-Carlo simulation. NorCPM performs149

monthly anomaly assimilation of SST, and temperature and salinity profiles. To initial-150

ize the atmospheric state, we use the Newtonian relaxation (nudging) towards the ERA-151

interim reanalysis (Dee et al., 2011).152

This paper is organized as follows. Section 2 presents the practical implementa-153

tion of NorCPM: the description of the ESM, NorESM, the data assimilation method,154

and the nudging implementation; it also introduces the validation data sets and metrics155

and describes the experimental setup. Sections 3.1, 3.2.1 and 3.2.2 present and discuss156

the result of the reanalysis, and the seasonal and decadal hindcasts. Finally, a summary157

and conclusions are presented in Section 4.158

2 Methods159

2.1 Norwegian Earth System Model160

The Norwegian Earth System Model (NorESM, Bentsen et al., 2013) is a global,161

fully coupled climate model based on the Community Earth System Model (CESM1, Hur-162

rell et al., 2013). It uses the same ice and land components as CESM1: Los Alamos Sea163

Ice Model (CICE4, Bitz et al., 2012) and the Community Land Model (CLM4, Lawrence164

et al., 2011), respectively. Its atmospheric component is CAM4-OSLO, which is a ver-165

sion of the Community Atmosphere Model (CAM4, Neale et al., 2010) with modifica-166

tions in the aerosol, chemistry, and cloud-aerosol interaction schemes (Kirkev̊ag et al.,167
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2012). The ocean component is the Bergen Layered Ocean Model (BLOM, Bentsen et168

al., 2013; Danabasoglu et al., 2014), a modification of the Miami Isopycnal Coordinate169

Ocean Model (MICOM, Bleck & Smith, 1990; Bleck et al., 1992), using density as its170

vertical coordinate.171

We use the medium-resolution version of NorESM. The atmosphere and land com-172

ponents use a 1.9◦×2.5◦ regular horizontal grid. The atmosphere component uses 26 hy-173

brid sigma-pressure levels. The horizontal resolution for the ocean and ice components174

is approximately 1◦. It is enhanced in the meridional direction at the equator and both175

zonal and meridional directions at high latitudes. The ocean uses 51 isopycnal vertical176

levels and includes two additional layers of time-evolving thicknesses and densities rep-177

resenting the bulk mixed layer. External forcings used here comply with CMIP5 histor-178

ical forcings (Taylor et al., 2012) and the RCP8.5 (van Vuuren et al., 2011) beyond 2005.179

2.2 Ocean data assimilation with the EnKF180

The Ensemble Kalman Filter (EnKF, Evensen, 2003) is a sequential data assim-181

ilation methodology consisting of a forecast and an update phase (analysis). During the182

first phase, the ensemble of states (ensemble) is integrated forward in time (forecast) from183

the previous ensemble of analysis states. During the second phase, observations are used184

to update (analyze) the ensemble for the next iteration. The method uses the ensem-185

ble covariance to provide flow-dependent correction, and it performs a linear analysis up-186

date, which preserves the linear properties (such as geostrophy).187

We denote the ensemble forecast Xf ∈ Rn×N . The superscript f stands for fore-188

cast, N is the ensemble size, and n is the dimension of the state. The model error is as-189

sumed to follow a Gaussian distribution with zero mean. The ensemble mean is denoted190

xf and the ensemble anomalies are Af = Xf −xf1T , where 1 ∈ RN×1 has all its val-191

ues equal to 1. Under the aforementioned hypothesis, the ensemble covariance P is an192

approximation of the forecast error ϵ:193

ϵϵT ≈ P = (N − 1)−1AfAfT . (1)194

We use the Deterministic EnKF (DEnKF, Sakov & Oke, 2008), a deterministic for-195

mulation of the EnKF. The forecast ensemble mean is updated as follows:196

xa = xf +K(d−Hxf ); (2)197

and the update of the ensemble anomaly is:198

Aa = Af − 1

2
KHAf . (3)199

The superscript a denotes the analysis, and f the forecast. d ∈ Rm×1 is the observa-200

tion vector with m number of observations, and an associated error covariance R; H the201

observation operator which relates the forecast model state variables to the measurements.202

Finally, K is the Kalman gain:203

K = PHT (HPHT +R)−1. (4)204

Then, the full ensemble analysis Xa can be reconstructed:205

Xa = xa1T +Aa. (5)206
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We perform a monthly assimilation cycle, which updates the ESM’s ocean and sea207

ice component in the middle of the month as described in Bethke et al. (2021) (the i2208

system). The other components (atmosphere and land) adjust dynamically during the209

assimilation cycle. We assimilate SST from the HadISST2 data set (John Kennedy, per-210

sonal communication, 2015; Nick Rayner, personal communication, 2015) and hydrographic211

profiles from EN4.2.1 (Gouretski & Reseghetti, 2010). The observation error for the hy-212

drographic profiles and the localization radius varies with latitude as described in Wang213

et al. (2017). We update the full isopycnal state variable in the vertical. We employ the214

aggregation method for layer thickness (Wang et al., 2016). The method is a cost-efficient215

modification of the linear analysis update in data assimilation for physically constrained216

variables. It ensures that the analysis satisfies physical bounds without changing the ex-217

pected mean of the update and thus avoids introducing a drift. We use the rfactor in-218

flation method where the observation error is inflated by a factor 2 for the update of the219

ensemble anomaly (equation 3) and the k-factor formulation in which observational er-220

ror is artificially inflated if the assimilation pushes the update beyond two times the en-221

semble spread (Sakov et al., 2012). We use an anomaly assimilation technique to remove222

the climatological monthly difference between the observations and the model. The monthly223

climatological mean of the model is estimated from the 30-member historical ensemble224

for the period 1980–2010. The climatological mean for the hydrographic profiles is cal-225

culated from the EN4 objective analysis (Good et al., 2013). The EnKF implementa-226

tion in NorCPM works offline—meaning that the model is stopped, the state is written227

on disk, the data assimilation is applied to the files, and the model is restarted.228

2.3 Atmospheric Nudging229

Nudging is a simple method to constrain the evolution of a system towards a pre-230

scribed dataset (Hoke & Anthes, 1976). It does not consider the uncertainty of the ob-231

servations and only applies a constraint on the variables nudged (monovariate). How-232

ever, it is computationally cheap, implemented in most ESMs, and works online. This233

is beneficial since the time required for initializing the model and writing the input/output234

is burdensome with large systems. This is the case for the initialization of the atmospheric235

state that requires 6-hourly updates (see, e.g., Karspeck et al., 2018).236

Nudging works by adding a term (nudging tendency) that is applied at the model237

time step to the prognostic (or tendency) equations:238

∂Xm

∂t
= −Xm −Xp

τ
, (6)239

where X stands for the variable to nudge, and the subscripts m and p identify the model240

predicted and the prescribed values. The formulation in equation (6) corresponds to full-241

field nudging. The constant τ is the relaxation time scale—how strong the model is at-242

tracted to the prescribed dataset. This parameter value is selected to avoid dynamic shocks243

and to counteract the error growth (Carrassi et al., 2014). The prescribed value can be244

either from reanalysis data or the model itself (Zhang et al., 2014).245

One can also apply anomaly nudging (Zhang et al., 2014), where the right-hand246

side of equation (6) is replaced by the anomaly terms, i.e., X → A. Thus, A = X−X247

and X is the climatological seasonal cycle. The anomaly nudging tendency is:248

∂Xm

∂t
= −Am −Ap

τ
. (7)249

Considering the model and prescribed data anomalies (Am and Ap) and re-arranging the250

terms, the anomaly nudging tendency can be formulated as a function of the model state251

Xm and a new prescribed term:252
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X∗
p = Xp −Xp +Xm. (8)253

Using the new prescribed term, the equation (7) can be expressed as:254

∂Xm

∂t
= −

Xm −X∗
p

τ
. (9)255

With the formulations of equations (6) and (9), we can perform both full-field and anomaly256

nudging without having to modify the model code, and by changing only the input data257

used.258

We use the nudging implementation described in Kooperman et al. (2012) and Zhang259

et al. (2014). We nudge at every atmospheric model time step (30min) with relaxation260

time scale τ = 6h towards fields from the 6-hourly reanalysis product ERA-Interim (ERA-261

I, Dee et al., 2011) linearly interpolated in space and time to our model grid. For anomaly262

nudging, we compute the monthly climatology for the model (from Free, see Table 1) and263

ERA-I for the period 1980–2010. We interpolate these monthly climatologies linearly to264

the model time without correcting for biases in the diurnal cycle. Additionally, we nudge265

surface pressure and apply a correction to the barotropic wind accordingly. In the ver-266

tical, nudging is performed below 60 km height with tapering between 50 km to 60 km,267

while in the land and ocean surfaces, the model is constrained towards the prescribed268

data.269

In CAM, an energy fix is applied to preserve energy in the system during the model270

integration. When nudging temperature, one modifies the energy in the atmospheric com-271

ponent. A common practice is, thus, to switch off the energy fix and let the energy in272

the atmosphere converge to that of the target data set. However, when one only nudges273

winds, energy is no longer sustained. We will therefore consider the impact of nudging274

the winds without the energy fix activated (default in CAM4) with a version where the275

energy fix is reactivated.276

2.4 Experimental design277

We evaluate six different initialization schemes (Table 1), assessing both accuracy278

of the reanalyses and the skill of S2D predictions. Two schemes, NudF-UVT and NudA-279

UVT, use FF and AF atmospheric nudging of horizontal wind and temperature fields280

(U, V, T). The schemes NudA-UV and NudA-UV (EF) use anomaly atmospheric nudg-281

ing of the horizontal wind field (U, V), with the difference that the latter imposes en-282

ergy conservation (EF) in addition (see Section 2.3).283

A fifth scheme, ODA, constrains ocean variability. We perform anomaly assimila-284

tion of SST and vertical temperature and salinity (T, S) profiles with the EnKF (see Sec-285

tion 2.2 for details on the practical implementation). Finally, the scheme ODA+NudA-286

UV combines the ODA and NudA-UV (EF) experiments. We did combine ODA with287

full field atmospheric nudging as it would have caused a mismatch of the mean state be-288

cause our ODA scheme assimilates anomalies (see Counillon et al., 2016, for detailed jus-289

tification).290

All the schemes produce a reanalysis with a 30-member ensemble of NorESM1-ME291

(Section 2.1). The ensemble of initial conditions for all reanalyses is identical and pro-292

duced by randomly selecting states from a stable pre-industrial simulation and integrat-293

ing it with historical forcing from 1850 to 1980. The 30-member reanalyses of each ini-294

tialization method are used as initial conditions for our seasonal-to-decadal hindcasts.295

The simulation (typical historical ensemble) run without assimilation is called Free and296

is used to identify the skill associated with external forcing.297
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Table 1. Configurations summary.

Configuration Ocean DA Atmo nud (6 h) Assimilated variablesa E. F.b

Free - - - yes
NudF-UVT - FF (U, V, T) -
NudA-UVT - AF (U, V, T) -
NudA-UV - AF (U, V) -
NudA-UV (EF) - FF (U, V) yes
ODA AF - [SST, T, S] yes
ODA+NudA-UV AF AF [SST, T, S] + (U, V) yes

aVariables in squared brackets (parenthesis) denote ocean (atmosphere) observations.
bE. F. is for Energy Fix.

The seasonal-to-decadal hindcasts comprise 104 seasonal hindcasts (26 years with298

four hindcasts per year) and 13 decadal hindcasts for each of the six initialization schemes.299

The seasonal hindcasts start on the 15th of January, April, July, and October each year300

during 1985–2010 and run for a year. The decadal hindcasts start on the 15th of Octo-301

ber every other year and run for 11 years each. Each hindcast runs nine realizations (en-302

semble members). Initial conditions are taken from the first nine members of the 30-member303

ensemble reanalyses. Note that this choice does not influence the results because all mem-304

bers are equally likely.305

2.5 Assessment: Data and Metrics306

This section describes the metrics and datasets we used to assess our initialization307

schemes.308

2.5.1 Metrics309

We base our analysis on monthly anomalies. We calculate the anomalies for the310

reanalyses by subtracting their corresponding climatological seasonal cycle from the monthly311

average. We obtain the hindcast anomalies after performing a drift correction, which we312

assume to be lead-time (month or year) dependent. Thus, the hindcast anomalies are313

computed relative to the average of the Nh hindcasts:314

X ′
jt = Xjt −N−1

h

Nh∑
k=1

Xkt. (10)315

Xjt and X ′
jt are the raw and anomalies (drift-corrected) values for hindcast j at the lead316

time t. The observation anomalies are obtained by removing the corresponding clima-317

tology from the dataset. All climatologies are computed using the 1980-2010 period.318

We assess the system’s skill using the following metrics: unbiased root mean squared319

error RMSEu, and the anomaly correlation coefficient ACC. The RMSEu and ACC are320

defined as:321

RMSEu =

(
N−1

N∑
k=1

(X ′
k − Y ′

k)
2

)1/2

, (11)322

ACC =
N∑

k=1

X ′
k Y

′
k

(
N∑

k=1

X
′2
k

N∑
k=1

Y
′2
k

)−1/2

, (12)323
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where X ′
k and Y ′

k are the reanalysis (or hindcast) and observation anomalies at month324

(lead-time) k; and N is the evaluation period’s length. Since the assessment is based on325

the anomalies, the RMSEu does not penalize if the reanalysis has a bias or if the hind-326

casts drift with lead time. Similarly, the ACC is insensitive to bias (Wilks, Daniel, 2019).327

For the reanalysis, we also computed the climatological change ∆BIAS, defined as328

the deviation of the reanalysis monthly climatology to that of Free during the reanal-329

ysis:330

∆BIAS =

N∑
t=1

(X
R

t −X
F

t ). (13)331

X
R

t is the monthly climatology of the reanalyses and X
F

t that of Free with N = 1, ..., t, ..., 12332

being the calendar months.333

In a reliable system, the total error σ should match RMSEu (Fortin et al., 2014;334

Rodwell et al., 2016), thus:335

RMSEu = σ = (σ2
o + σ2

m)1/2, (14)336

where the total error is the quadratic sum between the ensemble spread σm, and the ob-337

servation error σo, and RMSEu is defined in equation (11).338

For the global (or regional indices) statistics, we use grid cell area weighting:339

RMSEu =
∑
i

aiRMSEui

∑
j

aj

−1

, (15)340

and341

ACC =
∑
i

aiACCi

∑
j

aj

−1

. (16)342

where ai is the area of the corresponding i-th grid cell.343

2.5.2 Datasets344

To validate the reanalysis and hindcasts, we take 2m temperature (T2M) data from345

the ERA5 reanalysis (ERA5, Hersbach et al., 2020), with a horizontal resolution of 0.25◦346

× 0.25◦, which we re-grid to the CAM4 model grid. For the ocean surface temperature,347

we take SST observations from the Hadley Centre Sea Ice and Sea Surface Temperature348

dataset (HadISST2, Rayner et al., 2003). We interpolate our ocean outputs towards HadISST2349

horizontal grid. We obtain subsurface temperature and salinity data from the EN4.2.1350

objective analysis (EN4.2.1, Gouretski & Reseghetti, 2010). We re-grid and interpolate351

our ocean subsurface output to EN4.2.1 dataset resolution for the comparisons. Further-352

more, we consider the heat and salinity content in the first 500m, named HC500 and SC500353

respectively. We define them as the ocean depth’s average temperature (and salinity).354

For the verification of the decadal hindcasts, we also use the Atlantic meridional355

overturning circulation (AMOC) at 26◦ North from the RAPID dataset (RAPID, Johns356

et al., 2011).357

–9–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

3 Results358

In this section, we evaluate the performance of each initialization scheme to pro-359

vide skillful reanalysis (Sec. 3.1), seasonal (Sec. 3.2.1) and decadal (Sec. 3.2.2) predic-360

tions.361

Figure 1. Global statistics of the reanalyses computed over 1980–2010, for a) SST, b) T2M,

c) HC500, and d) SC500. The left-hand y-axis (in black) displays units for RMSEu (magenta),

∆BIAS (cyan), and total error (yellow), while the red right-hand y-axis is for ACC (red). The

reanalyses are said to be reliable when the total error (yellow) and RMSEu (magenta) overlap.

The black horizontal line marks zero.

3.1 Reanalysis362

We first compare the quality of the reanalyses using atmospheric nudging with FF363

(NudF-UVT) and AF (NudA-UVT). Both schemes have similar global ACC and RMSEu364

for all evaluated quantities (Figure 1). Globally, the reanalysis from NudF-UVT is marginally365

better for SST and T2M (Figures 1a and 1b), but yields a degradation for HC500 (Fig-366

ure 1c) and SC500 (Figure 1d). Most of this degradation occurs in the SPG, the trop-367

ical and South Atlantic, and the Southern Ocean (Figure 2d). Furthermore, NudF-UVT368

exhibits a substantial RMSEu drift of HC500 and SC500 (Figure 3). Such RMSEu drift369

follows a parabolic shape, as the mean climatology (used for computing the metric, equa-370

tion 11) is reached halfway through the reanalysis period. In contrast, the reanalysis pro-371

vided by NudA-UVT does not have the drift in HC500 RMSEu, while in SC500 the RMSEu372

has a much weaker trend than in NudF-UVT. Additionally, the use of FF atmospheric373

nudging—of U, V, T—introduces a large change in the climatology (∆BIAS in Figure374

1). For SST and T2M, ∆BIAS is larger than RMSEu. Both schemes yield poor global375

ensemble reliability near the surface, with the estimated total error (equation 14) being376

much smaller than the RMSEu (Figures 1a and 1b). This implies that the ensemble spread377
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(not shown) collapses during the reanalyses. The reliability for HC500 and SC500 is also378

poor (Figures 1c and 1d). It should be acknowledged that the HC500 (and to a minor379

extent SC500) reliability of Free is already too low, although it should, by construction,380

be satisfied by the experiment. This suggests that the observation error estimate from381

EN4 objective analysis is too low. Still, when applying the nudging, the ensemble un-382

certainty is reduced more than the error of the ensemble mean, and the reliability is fur-383

ther degraded. In the SPG (Figures 4a and 4b), both schemes capture well the timing384

of the rapid shift in the gyre index in 1995, but only NudA-UVT reproduces the ampli-385

tude of the shift correctly. This abrupt shift is linked to the North Atlantic Oscillation386

(NAO) influence (Häkkinen & Rhines, 2004; Yeager & Robson, 2017), which induces a387

preconditioning of the ocean circulation state (Lohmann et al., 2009; J. I. Robson et al.,388

2012). Moreover, both schemes fail to sustain a weak SPG in the 2000s. NudA-UVT achieves389

overall better performance than NudF-UVT, which exhibits a drift from a too-weak SPG390

in the 1980s to a too-strong SPG in 2010. This likely relates to the strong decreasing trend391

in the AMOC in NudF-UVT (Figure 5b) that affects the poleward heat transport. The392

verification period with the RAPID (RAPID, Johns et al., 2011) data is too short to hold393

a firm conclusion. Yet, NudA-UVT has a decreasing anomaly from 2005 in good agree-394

ment with observations, albeit missing the weakening in 2009, while NudF-UVT has an395

unrealistic decreasing trend.396

Figure 2. ACC of monthly HC500 anomalies a) NudA-UVT, b) NudA-UV, c) ODA, d)

NudF-UVT, e) NudA-UV (EF) and f) ODA+NudA-UV reanalysis computed against EN4 objec-

tive analysis for the period 1980–2010. Green-to-magenta colors indicate positive ACCs, and the

cyan color indicates all the negative ACCs.

We compare the schemes NudA-UV and NudA-UVT to assess the importance of397

constraining atmospheric temperature in addition to horizontal winds, compared to just398

constraining horizontal winds. At the surface (SST and T2M), nudging only horizontal399

winds degrades performance (Figures 1a and 1b). For T2M, for example, NudA-UV re-400

duces error by 0.3K compared to Free, whereas NudA-UVT reduces it by 0.6K. The de-401

graded performance of NudA-UV is largest over the tropical band and is less pronounced402

at mid-to-high latitudes (Figures 6a and 6b). The reliability for T2M is slightly improved403

in NudA-UV compared to NudA-UVT (see also Table S1). In NudA-UV, there is a sig-404

nificant increase in climatological change ∆BIAS for SST and T2M. On the other hand,405

NudA-UVT sustains ∆BIAS near 0K due to temperature nudging. Below the surface,406

the global skill performance of NudA-UV and NudA-UVT are similar for HC500 and SC500407
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(Figures 1c and 1d), with NudA-UV being slightly poorer. NudA-UV also impacts ∆BIAS408

of HC500, giving a larger negative bias than NudA-UVT. Most of the ACC differences409

for HC500 are in the Atlantic Ocean, specifically in the Iceland basin (Figures S6c and410

S6e), North East Atlantic, and South Pacific (Figures 2a and 2b). The performance for411

the SPG (Figure 4) and AMOC (Figure 5) variability are comparable, with NudA-UV412

showing a slightly poorer match in the early 1990s. This suggests that wind-driven vari-413

ability is not the sole factor determining the amplitude of the SPG, as NudA-UV can-414

not maintain a strong gyre.415

Figure 3. Time series of RMSEu for a) HC500 and b)SC500 in the different reanalyses com-

puted against EN4 objective analysis. Line color green corresponds to NudF-UVT, orange to

NudA-UVT, cyan to NudA-UV, blue to NudA-UV (EF), red to ODA, magenta to ODA+NudA-

UV, and brown is Free.

The default implementation of nudging in CAM4 deactivates the energy conser-416

vation fix in the atmospheric component (see section 2.3). Here, we assess if conserving417

energy can reduce the climatology change by comparing ∆BIAS in NudA-UV with that418

of the NudA-UV (EF) experiment for which the global energy fixer is activated (Figures419

1a and 1d). Overall, the performance (RMSEu, ACCs, and reliability) is unchanged, but420

the climatological change is reduced by half in NudA-UV (EF). However, we see that421

HC500 skill in the Iceland Sea and into the Norwegian Sea, differ in these two schemes.422

An analysis of the HC500 time series for the Iceland Sea further reveals that long-term423

trend and inter-annual variability contribute to the variability of the region (Figure S6).424

And comparing NudA-UV and NudA-UV (EF), we find that the energy fix is very ef-425

fective in improving the representation of the trend in the Iceland basin (R = 0.31 and426

0.61, respectively, in Figures S6e and S6g).427

We now compare atmospheric constraints versus ocean constraints for coupled re-428

analysis. The skill for T2M (Figure 1b) using atmospheric nudging is substantially bet-429

ter than using ODA. The ODA system has skill over the ocean (most pronounced over430

the tropical band) while skill over land is poor in the extratropics and polar areas (Fig-431

ures 6a and 6c). When comparing the T2M skill over the ocean with the SST skill (not432

shown), atmospheric nudging works better than ODA when using T2M. However, for433

SST, ODA was found to be more effective. It is important to note that the correlation434

between T2M and SST is strong and that the choice of validation data sets can signif-435

icantly affect skill differences. The validation of SST is done against the HadISST2 anal-436

ysis, which is assimilated in the ODA system. Meanwhile, the verification of T2M is done437

against ERA5, similar to the ERA-I product used for atmospheric nudging. This slight438

contradiction highlights the uncertainties in the observation data sets (Massonnet et al.,439

2016; Bellprat et al., 2017). In the ocean interior, ODA outperforms all atmospheric nudg-440

ing schemes (Figures 1c-1d). This is also clear from Figure 3, where ODA has a consis-441
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Figure 4. HC500 anomalies in the SPG box (48◦-65◦N, 60◦-15◦S) for a) NudA-UVT, b)

NudF-UVT, c) NudA-UV, d) NudA-UV (EF), e) ODA and f) ODA+NudA-UV reanalyses. Solid-

colored lines represent the ensemble mean of reanalysis, dash-dotted lines correspond to hindcast

schemes, and the solid brown line is Free. Shading denotes ensemble minima and maxima. The

solid black line shows the EN4.2.1 objective analysis estimate. The correlation coefficient R be-

tween reanalysis and observations is in the top-left-hand corner. Positive values of the index

correspond to a weak SPG

tently lower error than the nudging schemes and is the only system with stable RMSEu442

for SC500—that does not degrade with time. This stability implies that the strong con-443

straint on the variability of the surface fluxes provided by atmospheric nudging is insuf-444

ficient to guarantee a stable performance for the ocean interior, such as SC500. The ben-445

efit of the ODA over the nudging schemes is largest in the tropical Pacific, the north-446

western Pacific, the Indian Ocean, and the SPG (Figure 2c), where atmospheric nudg-447

ing introduces a patch of low-skill in the Irminger and Icelandic Seas (see, for example,448

Figures 2a and 2b). The reliability of the system is also better preserved as we see a closer449

match between RMSEu and total error σ (Figures 1c and 1d, magenta and yellow lines).450

In the ODA system the reliability is only marginally degraded from Free and much less451

than atmospheric nudging. In the case of regional indexes, ODA achieves overall the best452

correlation for the SPG index (R = 0.98, Figure 4e), and it is the only system that sus-453

tains the weak SPG during the 2000s. However, the shift in 1995 is not as abrupt as in454
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the observations and the atmospheric nudging schemes (see, for example, Figure 4a). This455

is because the NAO constraint is very weak in the ODA system, and the system only ad-456

justs a-posteriori for errors in the atmospheric forcing. Finally, for the AMOC at 26.5◦N,457

there is a long term weakening with a stronger weak anomaly from 2006 that is under-458

estimated by all systems. ODA is the only system that captured the rebound in 2009,459

however, it does not capture the local minimum in 2004 as with atmospheric nudging460

systems (Figures 5c and 5e), suggesting that this feature is better constrained with at-461

mospheric variability.462

Figure 5. AMOC transport anomalies at 26.5◦N with respect to the 2005–2010 period for a)

NudA-UVT, b) NudF-UVT, c) NudA-UV, d) NudA-UV (EF), e) ODA and f) ODA+NudA-UV

reanalyses. Solid-colored lines represent the ensemble mean of reanalysis, dash-dotted lines cor-

respond to hindcast schemes, and the solid brown line is Free. Shading denotes ensemble minima

and maxima. The solid black line is the RAPID observations.

Given the complementary skills of atmospheric nudging and the ODA systems, one463

would expect their combination to work best. However, comparing the global statistics464

of ODA and ODA+NudA-UV (Figure 1), we see that the use of atmospheric nudging465

in ODA+NudA-UV degrades performance in ocean quantities (SST, HC500, and SC500).466

ODA+NudA-UV performs almost identically to NudA-UV. This is more evident at the467

surface (see T2M in Figures 6b, 6c and 6f). This is because the ODA relies on the re-468

liability of the system—the analysis update depends on the relative importance of the469
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ensemble spread to the observational error— and, in our current implementation, the470

atmospheric nudging collapses the ocean’s ensemble spread. This means that ocean ob-471

servations have nearly no impact. However, the ODA+NudA-UV performs slightly bet-472

ter than NudA-UV for SST, HC500, SC500, and SPG (Figure 4f) and AMOC (Figure473

5f), in good agreement with Brune et al. (2018), indicating that ODA yields improve-474

ments.475

Figure 6. ACC of de-seasoned monthly T2M for a) NudA-UVT, b) NudA-UV, c) ODA, d)

NudF-UVT, e) NudA-UV (EF) and f) ODA+NudA-UV reanalyses computed against ERA5 for

the period 1980–2010. Green-to-magenta colors indicate positive ACC values, and the cyan color

indicates all the negative ACCs

3.2 Predictions476

In this section, we evaluate the quality (skill) of the seasonal and decadal hindcasts477

initialized from the reanalysis (see section 2.4).478

3.2.1 Seasonal predictions479

Our prediction systems have a superior global surface skill compared to persistence480

starting from the third lead month (Figures 7a and 7b). On the other hand, the predic-481

tion skill for HC500 is low and only beats persistence after the sixth month; while SC500482

never outperforms persistence (Figures 7c and 7d). However, it is possible that the skill483

of persistence is overestimated as it is computed from the same data set used for vali-484

dation. This is likely the case for HC500 and SC500, since the observation error in the485

EN4 objective analysis is highly correlated in time due to the sparse in situ measurements.486

Comparing the different systems, the ODA system performs best for all assessed quan-487

tities (Figure 7). This highlights the importance of ocean initialization in the prediction488

skill achieved.489

While the globally averaged skill is low (ACCs below 0.4 in T2M and HC500, in490

Figures 7b and 7c), some regions show enhanced skill (Figures 8 and 9). Skill is most491

significant over the ocean and most notably in the tropical band driven by the El Niño–Southern492

Oscillation (ENSO) (Balmaseda & Anderson, 2009; Meehl et al., 2021), the Indian Ocean493

Dipole (Saji et al., 1999; Webster et al., 1999), and, to a lesser extent, over the Atlantic494

Niño region (N. Keenlyside et al., 2020). There is also a region of significant skill in the495

–15–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 7. Global average ACC of the seasonal hindcast with lead month, for: a) sea surface

temperature (SST), b) 2m air temperature (T2M), c) 500m heat content (HC500), and d) 500m

salinity content (SC500). Line color green corresponds to NudF-UVT, orange to NudA-UVT,

cyan to NudA-UV, blue to NudA-UV (EF), red to ODA and magenta to ODA+NudA-UV. The

solid black line is persistence, and the brown line is the Free run.

northern North Atlantic, the SPG, and the Iceland Sea, in agreement with other climate496

systems (e.g., Kirtman et al., 2014; Wang et al., 2019).497

We assess the prediction skill in the ENSO region by computing RMSEu and ACC498

of the Niño 3.4 index (mean SST within the box 5◦S-5◦N, 120◦W-170◦W) against HadISST2499

observations with lead time (Figure 10). All prediction systems outperform persistence,500

with ODA performing best. NudF-UVT and NudA-UVT perform better than NudA-501

UV, showing the importance of constraining the surface heat flux for predicting ENSO502

variability. NudF-UVT is initially better than NudA-UVT, but the skill quickly degrades503

over time for RMSEu. This nicely highlights the dilemma of full-field versus anomaly-504

field initialization: the mean state is essential for initialization. However, constraining505

the bias causes drift and more rapid degradation of predictability performance than anomaly-506

field initialization. We can also observe ODA’s impact in ODA+NudA-UV, which, com-507

pared to NudA-UV (EF), has a higher skill, especially after the seventh lead month. These508

results are valid regardless of the initial season of the hindcasts (Figures S2 and S3), and509

no system shows superior performance regarding the May predictability barrier.510

For the Atlantic Niño, we analyze the ATL3 index (SST averaged over the region511

3◦S - 3◦N, 20◦W - 0◦) RMSEu and ACC as a function of lead-time (Figure 11). NudF-512

UVT performs better than all other systems, but it does not beat persistence until month513

six. Breaking down the analysis by start season (Figures S4b and S5b), we see that NudF-514

UVT performs best for the hindcast starting in May, slightly beating persistence at lead515

month 2 (ACC and RMSEu), i.e., at the peak of the Atlantic Niño. Skillfully predict-516
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Figure 8. Seasonal hindcast 2-5 lead-month T2M ACC for a) NudA-UVT, b) NudA-UV, c)

ODA, d) NudF-UVT, e) NudA-UV (EF) and f) ODA+NudA-UV. Green-to-magenta colors indi-

cate positive ACCs and cyan colour indicates all negative ACCs.

ing this event is very challenging, and the NudF-UVT system beats the anomaly-coupled517

version of NorCPM (Counillon et al., 2021), whose hindcasts starting in May performed518

poorly. This highlights that constraining the mean seasonal cycle and the wind variabil-519

ity is critical to skillfully predicting the Atlantic Niño (Ding et al., 2015; Dippe et al.,520

2018; Harlaß et al., 2018). The skill for the other start months is poor (Figures S4 and521

S5), in agreement with those shown in Counillon et al. (2021). Overall, the skill remains522

poor in predicting Atlantic Niño variability.523

Most of our experiments show good skill in predicting T2M and HC500 in the SPG524

at lead month 2-5. The best skill is achieved with ODA and, of all the nudging schemes,525

NudA-UVT performs best (Figures 8 and 9). NudF-UVT performs poorly and even reaches526

a negative correlation in the Irminger Sea. This highlights that constraining the mean527

state error is not critical in this region and that simple lead-dependent drift post-processing528

is insufficient with our model, unlike in Yeager et al. (2012). On the other hand, in the529

Iceland Sea and into the Norwegian Sea, ODA again performs best, and it is clear that530

NudF-UVT and NudA-UVT outperform NudA-UV. This highlights the role of atmo-531

spheric heat flux in this region. The comparison between NudA-UV and NudA-UV (EF)532

highlights that correcting the spurious drift (see Section 3.1) in this region is important533

for predictive skill at seasonal scales.534

3.2.2 Decadal predictions535

We assess our decadal predictions skill with ACC and RMSEu as a function of lead536

years. Figure 12 shows the global average skill with lead years for HC500, and Figure537

13 shows the corresponding pointwise skill for lead-year 2–5. Globally, all systems show538

higher skill than persistence. ODA performs best and NudF-UVT worst. NudF-UVT539

shows comparable skill to NudA-UVT until lead year 2, after which its skill rapidly de-540

grades.541

All schemes show a relatively low global skill. Given the short period of our decadal542

hindcast, the ACCs pattern is relatively noisy, and even negative in some regions (cyan-543

to-blue colors in Figure 13). However, compared to the skill of a non-initialized hind-544
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Figure 9. ACC of the seasonal hindcasts at lead-month 2-5 for HC500 with: a) NudA-UVT,

b) NudA-UV, c) ODA, d) NudF-UVT, e) NudA-UV (EF) and f) ODA+NudA-UV computed

against EN4 objective analysis. Green-to-magenta colors indicate positive ACCs and cyan colour

indicates all negative ACCs.

Figure 10. a) ACC of Niño 3.4 SST as a function of the lead month and b) is the same for

RMSEu in K. Line color green corresponds to NudF-UVT, orange to NudA-UVT, cyan to NudA-

UV, blue to NudA-UV (EF), red to ODA, magenta to ODA+NudA-UV, brown to Free, and

persistence is the solid black line.

cast (Figure 13e), all of our schemes show regions of improved skill. These regions are545

the North Atlantic, the Western Pacific Ocean, and the Indian Ocean. The regions for546

which skill is improved when compared to Free agree with the NorCPM experiment for547

CMIP6 DCPP carried for the 1950-2020 period (Bethke et al., 2021). The skill is mostly548

driven by external forcing, and initialization further improves it, in agreement with pre-549

vious studies (e.g., Choi & Son, 2022). The skill is negative in Free at the western coasts550

of North and South America as the forced response does not agree with the Pacific Decadal551

Oscillation (PDO) that is predominantly positive during the analysis period 1980–2010552

and can be partly related to internal climate variability (Mochizuki et al., 2010). Skill553

in Free is improved if one considers a longer period, e.g. 1950–2020, see (Bethke et al.,554

2021). The degradation is mitigated by initialization, and overall, the best skill is achieved555

by NudF-UVT, suggesting that correcting the climate mean state can be important for556
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Figure 11. Same as Figure 10 for ATL3 SST.

PDV predictions (e.g., Guemas et al., 2012; Bilbao et al., 2021). Finally, ODA has the557

largest skill improvement in the SPG region, highlighting the importance of constrain-558

ing the ocean to initialize decadal variability within the sub-polar North Atlantic.559

Figure 12. Global a) ACC and b) RMSEu as a function of lead year for HC500. The line

color green corresponds to NudF-UVT, orange to NudA-UVT, cyan to NudA-UV, blue to NudA-

UV (EF), red to ODA, and magenta to ODA+NudA-UV, brown to Free, and the black line is

persistence.

To further analyze the SPG variability, we evaluate the performance of the SPG560

index based on HC500 with lead-year (Figure 14). The conclusions are unchanged when561

using different SPG indices (e.g., based on SSH or SST, not shown). Most systems beat562

persistence after lead-year 5. ODA provides the best skill and outperforms persistence563

from the start, while NudF-UVT is the worst. We can also see the benefit that ODA brings564

in ODA+NudA-UV, which achieves higher skills than NudA-UV only, due to hydrographic565

profile assimilation. Also, nudging only horizontal winds (NudA-UV) gives better pre-566

dictions than additionally nudging atmospheric temperature (NudA-UVT) (Figure 14).567

In NudA-UV, the dynamical forcing of NAO is well captured, and its effects on predic-568

tions are more long-lasting (Lohmann et al., 2009; Häkkinen & Rhines, 2004) than ad-569

ditionally applying temperature constrain. The additional constraint of the temperature570

provides better reanalysis near the surface but introduces a dynamic imbalance with the571

ocean interior. We can also see that the schemes using NudA-UV give a more steady pre-572

diction skill of about 0.6 along the complete forecast. All schemes show a pronounced573

attraction towards their climatology (dash-dot lines in Figure 4), showing that the mem-574
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Figure 13. ACC for the decadal hindcast at lead year 2-5 of HC500 a) NudA-UVT, b) NudA-

UV, c) ODA, d) NudF-UVT, e) Free and f) ODA+NudA-UV computed against EN4 objective

analysis. Green-to-magenta colors indicate positive ACCs, while cyan-to-blue colors indicate neg-

ative ACCs.

Figure 14. a) ACC and b) RMSE of the SPG index (computed from HC500 versus EN4

objective analysis) as a function of lead year. The line color green corresponds to NudF-UVT,

orange to NudA-UVT, cyan to NudA-UV, blue to NudA-UV (EF), red to ODA, and magenta to

ODA+NudA-UV, the brown line is Free, and the black line is persistence.

ory of the initial conditions is gradually lost, and the ensemble mean converges with that575

of Free. In NudF-UVT, the drift is substantial and overshoots Free. Such a drift is char-576

acteristic of dynamic imbalance.577

Prediction of AMOC variability at 26.5◦N is shown in Figure 5 and compared to578

the RAPID observation program (RAPID, Johns et al., 2011) started in 2004. The val-579

idation period is too short to assess robustly which configuration has the most skill. How-580

ever, most systems tend to agree in their reanalysis, but there is a larger discrepancy for581

atmospheric nudging, including temperature, and NudF-UVT has, again, a considerable582

drift.583
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4 Summary and Conclusions584

In this study, we compared the potential of a large set of initialization schemes to585

constrain climate variability in an ESM and to provide skillful initial conditions for cli-586

mate predictions. This enabled us to assess the strengths and weaknesses of different method-587

ologies and techniques using the same model, setting, and period. We compared anomaly588

versus full-field atmospheric nudging, and U, V, and T nudging compared to only U and589

V in the atmosphere. We also assessed the importance of conserving energy in atmospheric590

assimilation and, finally, we tried to combine atmospheric nudging and ocean data as-591

similation. We assessed the performance for reanalysis and for a set of seasonal and decadal592

hindcasts for 1980–2010. Our analysis is summarized below:593

1. Full-field initialization introduces a large drift in the climate reanalysis and hind-594

casts, but constraining the mean state error was shown to improve the performance595

in some regions, such as in the Tropical Atlantic. Still, anomaly initialization is596

performing overall best beyond short lead time.597

2. Nudging of atmospheric momentum achieves good skill for decadal predictions.598

It shows little drift in the hindcasts for the North Atlantic Gyre circulation (e.g.,599

SPG or AMOC). Adding a temperature constraint provides more accurate reanal-600

ysis and seasonal predictions but degrades decadal predictions.601

3. Conserving energy with the atmospheric nudging of horizontal winds limits the602

climatological change during the reanalysis, but very few differences are found dur-603

ing the seasonal hindcasts.604

4. Ocean data assimilation enhances the accuracy of the ocean interior during the605

reanalysis. It provides a better skill for seasonal and decadal predictions than any606

atmospheric nudging simulations. However, atmospheric nudging improves the re-607

analysis of ocean variability strongly influenced by atmospheric events, such as the608

1995 shift in the SPG.609

5. While the ocean data assimilation and atmospheric nudging approaches are com-610

plementary, and their combination is expected to provide optimal performance,611

the scheme tested in this study achieved inferior skill. Atmospheric nudging to-612

wards a deterministic atmospheric reanalysis causes a near collapse of the ensem-613

ble spread at the surface and strongly degrades the influence of the surface ocean614

data. Still, the assimilation of hydrographic profiles yields slight improvements in615

decadal predictions.616

In future work, we will explore ways of preserving the reliability of the ensemble617

at the ocean-atmosphere interface when combining atmospheric nudging with ocean data618

assimilation. A substantial limitation of the current approach is that we are nudging to-619

ward a deterministic reconstruction of the atmosphere. As such, this approach disregards620

the atmospheric reanalysis error and causes the ensemble spread to collapse. We will there-621

fore nudge toward an atmospheric ensemble reanalysis (e.g., ERA5). Furthermore, mod-622

els used for producing atmospheric reanalyses have considerably higher resolution than623

the atmosphere model in our ESM, and representation error (e.g., Janjić et al., 2018) may624

also induce a collapse of the ensemble spread (Anderson, 2001). Therefore we will com-625

plement the system with ad-hoc techniques such as inflation (Anderson, 2001; El Gharamti626

et al., 2021), atmospheric perturbation (Houtekamer & Derome, 1995) and consider us-627

ing a weaker nudging.628

We have also seen that full-field and anomaly nudging initialization have advan-629

tages. To date, models have biases that are typically larger than the variability being630

predicted (Palmer & Stevens, 2019). However, we foresee that the advantages of the full-631

field initialization approach will one day out-compete its caveats due to model improve-632

ment (for example, using higher resolution (e.g., Hewitt et al., 2017)), and better obser-633

vational data (more numerous and comprehensive). Furthermore, several methods are634

being developed to handle climate biases with NorCPM, namely: anomaly coupling (Counillon635
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et al., 2021), multivariate parameter estimation (Singh et al., 2022), super-resolution (Barthélémy636

et al., 2022) and supermodelling (Counillon et al., 2023; F. J. Schevenhoven & Carrassi,637

2021; F. Schevenhoven et al., 2023).638

5 Open Research639

The reanalysis and seasonal and decadal hindcasts data presented in this article640

are being organized and archived at https://ns9039k.web.sigma2.no/lgarcia/initializations/.641

The data is organized following the naming convention used in Table 1. Each directory642

contains the reanalysis and hindcasts monthly ensemble mean for 2m temperature (T2M),643

sea surface temperature (SST), and temperature (T) and salinity (S). We also include644

the AMOC transport at 26.5◦N, from annual averages. We provide the data on model645

grid and using netcdf format. The full simulations will be available on https://archive646

.sigma2.no, with a specific doi upon acceptance of the manuscript.647

The code of the Norwegian Earth System Model (NorESM) and the Norwegian Cli-648

mate Prediction Model (NorCPM version1) are available online on the Norwegian Earth649

System Modeling hub (https://github.com/NorESMhub). Specific details about Nor-650

CPM can be found in the website (https://wiki.app.uib.no/norcpm/index.php/Norwegian651

Climate Prediction Model). The temperature and salinity (T, S) vertical profiles from652

EN4.2.1 objective analysis (Good et al., 2013) can be obtained from the Met Office Hadley653

Centre observations datasets website (https://www.metoffice.gov.uk/hadobs/en4/654

download-en4-2-1.html). And the sea surface temperature (SST) observations, HADISST2655

(Rayner et al., 2003), are available at https://www.metoffice.gov.uk/hadobs/hadisst2/656

data/download.html. The reference data used for 2m temperature (T2M), from ERA5657

(Hersbach et al., 2020), can be obtained the Copernicus web services (https://cds.climate658

.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form).659

The AMOC measurements used are available in the RAPID-AMOC website (https://660

rapid.ac.uk).661
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Abstract15

Initialization is essential for accurate seasonal-to-decadal (S2D) climate predictions.16

The initialization schemes used differ on the component initialized, the Data Assimila-17

tion (DA) method, or the technique. We compare five popular schemes within NorCPM18

following the same experimental protocol: reanalysis from 1980–2010 and seasonal and19

decadal predictions initialized from the reanalysis. We compare atmospheric initialization—20

Newtonian relaxation (nudging)—against ocean initialization—Ensemble Kalman Filter—21

(ODA). On the atmosphere, we explore the benefit of full-field (NudF-UVT) or anomaly22

(NudA-UVT) nudging of horizontal winds and temperature (U, V, and T) observations.23

The scheme NudA-UV nudges horizontal winds to disentangle the role of wind-driven24

variability. The scheme ODA+NudA-UV provides a first attempt at joint initialization25

of the ocean and atmospheric components. During the reanalysis, atmospheric nudging26

leads to atmosphere and land components best synchronized with observations. Conversely,27

ODA best synchronizes the ocean component with observations. The atmospheric nudg-28

ing schemes are better at reproducing specific events, such as the rapid North Atlantic29

subpolar gyre (SPG) shift. An abrupt climatological change using the NudA-UV scheme30

demonstrates that energy conservation is crucial when only assimilating winds. ODA out-31

performs atmospheric-initialized versions for S2D global predictions, while atmospheric32

nudging is preferable for accurately initializing phenomena in specific regions, with the33

technique’s benefit depending on the prediction’s temporal scale. For instance, atmo-34

spheric full-field initialization benefits the tropical Atlantic Niño at one-month lead time,35

and atmospheric anomaly initialization benefits longer lead times, reducing hindcast drift.36

Combining atmosphere and ocean initialization yields sub-optimal results, as sustain-37

ing the ensemble’s reliability—required for ODA’s performance—is challenging with at-38

mospheric nudging.39

Plain Language Summary40

This study explores the impact of a wide range of standard initialization schemes41

on the performance of coupled reanalysis and seasonal-to-decadal predictions produced42

with the same Earth System Model. We compare atmospherically-driven initialization43

versus ocean initialization. We also compare full-field initialization —meaning where the44

observations are used as are—versus anomaly initialization —when the climatological45

difference between the model and observations is removed. All schemes have strengths46

and weaknesses. As expected, ocean initialization works best in the ocean, while atmo-47

spherically driven initialization works best in the atmosphere and land. Ocean initial-48

ization has the best performance overall for seasonal and decadal predictions. Still, the49

atmospherically driven initialization works better for some specific regions and events—50

for example, the strong North Atlantic subpolar gyre shift in 1995. Full-field initializa-51

tion performs better than anomaly initialization at short lead times, and it improves per-52

formance in regions where the mean state is important for representing the variability,53

such as the Tropical Atlantic. Constraining atmospheric temperature is important for54

reanalysis and seasonal prediction while constraining only the winds works better for decadal55

prediction.56

1 Introduction57

Climate prediction is of great socioeconomic importance and is an essential tool58

for climate services, which help to mitigate the risks caused by climate change (e.g., Mar-59

iotti et al., 2020). On S2D time scales, such predictions depend on an accurate initial-60

ization of internal variability and the response to external forcing (Smith et al., 2007;61

N. S. Keenlyside et al., 2008; Meehl et al., 2009; Hawkins & Sutton, 2009; Pohlmann et62

al., 2009; Doblas-Reyes et al., 2013). Specifically, the correct initialization of ocean vari-63

ability, and the correct interaction with the atmosphere, are essential to achieve skill-64
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ful predictions at such timescales (Balmaseda & Anderson, 2009; Mariotti et al., 2018;65

Meehl et al., 2021). A dedicated contribution, the Decadal Climate Prediction Project66

(DCPP, Boer et al., 2016), addressed this topic in the Coupled Model Intercomparison67

Project (CMIP) organized by the World Climate Research Programme (WCRP).68

There are various schemes for accurately initializing S2D predictions. One com-69

mon practice is to initialize each component of the Earth System Models (ESMs) indi-70

vidually, replacing them with an existing reanalysis (Balmaseda et al., 2009), but this71

can lead to initialization shock. Producing initial conditions with the same ESM used72

for performing the predictions can overcome this issue (Pohlmann et al., 2009). These73

techniques can use the data as it is (i.e., full-field; FF) or they can use anomalies about74

a climatology (i.e., anomaly-field; AF) (Smith et al., 2013; Volpi et al., 2017). Other ini-75

tialization approaches include: atmospheric momentum fluxes initialization, joint atmo-76

spheric momentum and heat fluxes initialization (Yeager et al., 2012), ocean data assim-77

ilation (ODA) (Wang et al., 2019; Brune & Baehr, 2020), and a combination of ODA and78

atmospheric fluxes initialization (Brune et al., 2018; Polkova et al., 2019; Lu et al., 2020).79

There is a debate on whether AF or FF initialization is best (Magnusson et al., 2013;80

Carrassi et al., 2014). Climate models have biases (climatological error) larger than the81

signals we aim to predict (Palmer & Stevens, 2019), which causes challenges when com-82

paring the two initialization approaches (Dee, 2006). FF aims to correct the error in the83

mean state, which can be important for predictability. However, FF tends to produce84

a large drift during the prediction as the model reverts to its attractor (Smith et al., 2013;85

Weber et al., 2015). This technique can be skillful if the drift does not interfere with the86

signal, as the drift can be subtracted in a post-processing step (Yeager et al., 2012). Con-87

versely, AF assumes that reducing the forecast drift will lead to fewer errors than cor-88

recting the mean error in the initial state (Smith et al., 2013; Weber et al., 2015). It thus89

only constrains the error of the anomaly and reduces initialization shocks and predic-90

tion drift. Both techniques have strengths and weaknesses, which can be more impor-91

tant depending on the application. For instance, initialization shocks dissipate rapidly92

in the atmosphere but take much longer in the ocean. Furthermore, FF has other dis-93

advantages when used in data assimilation (DA) methods: (1) When the bias is redun-94

dant (reemerging in between the assimilation cycle) and the observation network het-95

erogeneous (e.g., with observations predominantly at the ocean surface), full-field assim-96

ilation and multivariate updates propagate the bias to the unobserved regions. (2) DA97

is designed to correct random, zero-mean errors, i.e., the model and observations are as-98

sumed (erroneously) to be unbiased. Consequently, the analysis state with FF still in-99

cludes part of the bias; finally, (3) with ensemble methods, FF also yields a too strong100

reduction of ensemble spread (Dee, 2006; Anderson, 2001). On the other hand, the draw-101

backs of AF arise when (1) the variability of the model and observations are not com-102

parable (Weber et al., 2015), for example, if the model bias is also characterized by a spa-103

tial shift impacting the amplitude of the variability (Volpi et al., 2017), and (2) the non-104

linear relationship between non-observed variables and assimilated variables introduce105

physical inconsistencies (J. Robson, 2010; Yeager et al., 2012). The choice of initializa-106

tion technique depends on the prediction’s timescale considered. For sub-seasonal-to-seasonal107

(S2S) predictions FF is often preferred, while for S2D about half of the prediction sys-108

tems are initialized using AF (Meehl et al., 2021) illustrating such debate.109

Most of the predictability in S2D timescales resides in the ocean’s slow variability—110

largely driven by the atmosphere—, and several studies have explored different DA meth-111

ods, observation networks, and the importance of ocean-atmosphere coupling during ini-112

tialization. For example, constraining the fluxes at the ocean surfaces of an Ocean Gen-113

eral Circulation Model (OGCM, e.g., Yeager et al., 2012) or nudging the atmosphere of114

the coupled system (Brune & Baehr, 2020) can be effective to initialize the ocean com-115

ponent. Another approach having a comparable impact is to nudge the SST, which pre-116

scribes the flux at the ocean interface (e.g., N. S. Keenlyside et al., 2008; Garćıa-Serrano117
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et al., 2015; Smith et al., 2013). It is also possible to focus on the ocean component ini-118

tialization within the ESM—commonly called coupled initialization—(e.g., S. Zhang et119

al., 2009; Pohlmann et al., 2009; Karspeck et al., 2018; Counillon et al., 2016; Brune &120

Baehr, 2020; Bethke et al., 2021). Coupled initialization approaches usually rely on ad-121

vanced DA methods that can provide multivariate updates of the entire ocean state and122

take full advantage of the sparse ocean observation network. The joint initialization of123

the ocean subsurface and atmosphere has been advocated (for example, Smith et al., 2013;124

Polkova et al., 2019). In idealized studies S. Zhang et al. (2009, 2010) show that joint125

assimilation of atmosphere and SST can accurately reproduce the variability of the At-126

lantic meridional overturning circulation (AMOC) and that complementing the system127

with subsurface data improved performance in the North Atlantic (NA), proving its po-128

tential to initialize decadal predictions. Furthermore, Dunstone and Smith (2010) indi-129

cate that the subsurface can skillfully initialize the AMOC and that complementing with130

atmospheric data improves the initialization during the first lead year.131

Isolating the best scheme is challenging since these schemes have been evaluated132

using different ESMs, reference periods, observational data sets, and experimental de-133

signs, which can lead to differences in prediction accuracy. Thus, there is a need to eval-134

uate these schemes under a unified methodology. Here, we evaluate various initializa-135

tion schemes for S2D predictions using the same prediction system—the Norwegian Cli-136

mate Prediction Model—and the same experimental design. We will assess the perfor-137

mance of coupled reanalysis, seasonal hindcasts, and decadal hindcasts from 1980 to 2010.138

We will examine the advantages of using full-field or anomaly-field initialization and ex-139

plore the benefits of constraining the atmosphere, the ocean, or both components.140

We use the Norwegian Climate Prediction Model (NorCPM, Counillon et al., 2014,141

2016) that combines the Norwegian Earth System Model (NorESM, Bentsen et al., 2013)142

and the Ensemble Kalman Filter (EnKF, Evensen, 2003) data assimilation method. NorESM143

is a state-of-the-art climate model based on the Community Earth System Model (CESM1,144

Hurrell et al., 2013), with the difference that it uses an ocean component with isopyc-145

nal vertical coordinates, different atmospheric chemistry, and ocean biochemistry. The146

EnKF is an advanced data assimilation method that corrects unobserved variables through147

a state-dependent multivariate covariance matrix and the observation error statistics.148

The model covariances are derived from a Monte-Carlo simulation. NorCPM performs149

monthly anomaly assimilation of SST, and temperature and salinity profiles. To initial-150

ize the atmospheric state, we use the Newtonian relaxation (nudging) towards the ERA-151

interim reanalysis (Dee et al., 2011).152

This paper is organized as follows. Section 2 presents the practical implementa-153

tion of NorCPM: the description of the ESM, NorESM, the data assimilation method,154

and the nudging implementation; it also introduces the validation data sets and metrics155

and describes the experimental setup. Sections 3.1, 3.2.1 and 3.2.2 present and discuss156

the result of the reanalysis, and the seasonal and decadal hindcasts. Finally, a summary157

and conclusions are presented in Section 4.158

2 Methods159

2.1 Norwegian Earth System Model160

The Norwegian Earth System Model (NorESM, Bentsen et al., 2013) is a global,161

fully coupled climate model based on the Community Earth System Model (CESM1, Hur-162

rell et al., 2013). It uses the same ice and land components as CESM1: Los Alamos Sea163

Ice Model (CICE4, Bitz et al., 2012) and the Community Land Model (CLM4, Lawrence164

et al., 2011), respectively. Its atmospheric component is CAM4-OSLO, which is a ver-165

sion of the Community Atmosphere Model (CAM4, Neale et al., 2010) with modifica-166

tions in the aerosol, chemistry, and cloud-aerosol interaction schemes (Kirkev̊ag et al.,167
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2012). The ocean component is the Bergen Layered Ocean Model (BLOM, Bentsen et168

al., 2013; Danabasoglu et al., 2014), a modification of the Miami Isopycnal Coordinate169

Ocean Model (MICOM, Bleck & Smith, 1990; Bleck et al., 1992), using density as its170

vertical coordinate.171

We use the medium-resolution version of NorESM. The atmosphere and land com-172

ponents use a 1.9◦×2.5◦ regular horizontal grid. The atmosphere component uses 26 hy-173

brid sigma-pressure levels. The horizontal resolution for the ocean and ice components174

is approximately 1◦. It is enhanced in the meridional direction at the equator and both175

zonal and meridional directions at high latitudes. The ocean uses 51 isopycnal vertical176

levels and includes two additional layers of time-evolving thicknesses and densities rep-177

resenting the bulk mixed layer. External forcings used here comply with CMIP5 histor-178

ical forcings (Taylor et al., 2012) and the RCP8.5 (van Vuuren et al., 2011) beyond 2005.179

2.2 Ocean data assimilation with the EnKF180

The Ensemble Kalman Filter (EnKF, Evensen, 2003) is a sequential data assim-181

ilation methodology consisting of a forecast and an update phase (analysis). During the182

first phase, the ensemble of states (ensemble) is integrated forward in time (forecast) from183

the previous ensemble of analysis states. During the second phase, observations are used184

to update (analyze) the ensemble for the next iteration. The method uses the ensem-185

ble covariance to provide flow-dependent correction, and it performs a linear analysis up-186

date, which preserves the linear properties (such as geostrophy).187

We denote the ensemble forecast Xf ∈ Rn×N . The superscript f stands for fore-188

cast, N is the ensemble size, and n is the dimension of the state. The model error is as-189

sumed to follow a Gaussian distribution with zero mean. The ensemble mean is denoted190

xf and the ensemble anomalies are Af = Xf −xf1T , where 1 ∈ RN×1 has all its val-191

ues equal to 1. Under the aforementioned hypothesis, the ensemble covariance P is an192

approximation of the forecast error ϵ:193

ϵϵT ≈ P = (N − 1)−1AfAfT . (1)194

We use the Deterministic EnKF (DEnKF, Sakov & Oke, 2008), a deterministic for-195

mulation of the EnKF. The forecast ensemble mean is updated as follows:196

xa = xf +K(d−Hxf ); (2)197

and the update of the ensemble anomaly is:198

Aa = Af − 1

2
KHAf . (3)199

The superscript a denotes the analysis, and f the forecast. d ∈ Rm×1 is the observa-200

tion vector with m number of observations, and an associated error covariance R; H the201

observation operator which relates the forecast model state variables to the measurements.202

Finally, K is the Kalman gain:203

K = PHT (HPHT +R)−1. (4)204

Then, the full ensemble analysis Xa can be reconstructed:205

Xa = xa1T +Aa. (5)206
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We perform a monthly assimilation cycle, which updates the ESM’s ocean and sea207

ice component in the middle of the month as described in Bethke et al. (2021) (the i2208

system). The other components (atmosphere and land) adjust dynamically during the209

assimilation cycle. We assimilate SST from the HadISST2 data set (John Kennedy, per-210

sonal communication, 2015; Nick Rayner, personal communication, 2015) and hydrographic211

profiles from EN4.2.1 (Gouretski & Reseghetti, 2010). The observation error for the hy-212

drographic profiles and the localization radius varies with latitude as described in Wang213

et al. (2017). We update the full isopycnal state variable in the vertical. We employ the214

aggregation method for layer thickness (Wang et al., 2016). The method is a cost-efficient215

modification of the linear analysis update in data assimilation for physically constrained216

variables. It ensures that the analysis satisfies physical bounds without changing the ex-217

pected mean of the update and thus avoids introducing a drift. We use the rfactor in-218

flation method where the observation error is inflated by a factor 2 for the update of the219

ensemble anomaly (equation 3) and the k-factor formulation in which observational er-220

ror is artificially inflated if the assimilation pushes the update beyond two times the en-221

semble spread (Sakov et al., 2012). We use an anomaly assimilation technique to remove222

the climatological monthly difference between the observations and the model. The monthly223

climatological mean of the model is estimated from the 30-member historical ensemble224

for the period 1980–2010. The climatological mean for the hydrographic profiles is cal-225

culated from the EN4 objective analysis (Good et al., 2013). The EnKF implementa-226

tion in NorCPM works offline—meaning that the model is stopped, the state is written227

on disk, the data assimilation is applied to the files, and the model is restarted.228

2.3 Atmospheric Nudging229

Nudging is a simple method to constrain the evolution of a system towards a pre-230

scribed dataset (Hoke & Anthes, 1976). It does not consider the uncertainty of the ob-231

servations and only applies a constraint on the variables nudged (monovariate). How-232

ever, it is computationally cheap, implemented in most ESMs, and works online. This233

is beneficial since the time required for initializing the model and writing the input/output234

is burdensome with large systems. This is the case for the initialization of the atmospheric235

state that requires 6-hourly updates (see, e.g., Karspeck et al., 2018).236

Nudging works by adding a term (nudging tendency) that is applied at the model237

time step to the prognostic (or tendency) equations:238

∂Xm

∂t
= −Xm −Xp

τ
, (6)239

where X stands for the variable to nudge, and the subscripts m and p identify the model240

predicted and the prescribed values. The formulation in equation (6) corresponds to full-241

field nudging. The constant τ is the relaxation time scale—how strong the model is at-242

tracted to the prescribed dataset. This parameter value is selected to avoid dynamic shocks243

and to counteract the error growth (Carrassi et al., 2014). The prescribed value can be244

either from reanalysis data or the model itself (Zhang et al., 2014).245

One can also apply anomaly nudging (Zhang et al., 2014), where the right-hand246

side of equation (6) is replaced by the anomaly terms, i.e., X → A. Thus, A = X−X247

and X is the climatological seasonal cycle. The anomaly nudging tendency is:248

∂Xm

∂t
= −Am −Ap

τ
. (7)249

Considering the model and prescribed data anomalies (Am and Ap) and re-arranging the250

terms, the anomaly nudging tendency can be formulated as a function of the model state251

Xm and a new prescribed term:252
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X∗
p = Xp −Xp +Xm. (8)253

Using the new prescribed term, the equation (7) can be expressed as:254

∂Xm

∂t
= −

Xm −X∗
p

τ
. (9)255

With the formulations of equations (6) and (9), we can perform both full-field and anomaly256

nudging without having to modify the model code, and by changing only the input data257

used.258

We use the nudging implementation described in Kooperman et al. (2012) and Zhang259

et al. (2014). We nudge at every atmospheric model time step (30min) with relaxation260

time scale τ = 6h towards fields from the 6-hourly reanalysis product ERA-Interim (ERA-261

I, Dee et al., 2011) linearly interpolated in space and time to our model grid. For anomaly262

nudging, we compute the monthly climatology for the model (from Free, see Table 1) and263

ERA-I for the period 1980–2010. We interpolate these monthly climatologies linearly to264

the model time without correcting for biases in the diurnal cycle. Additionally, we nudge265

surface pressure and apply a correction to the barotropic wind accordingly. In the ver-266

tical, nudging is performed below 60 km height with tapering between 50 km to 60 km,267

while in the land and ocean surfaces, the model is constrained towards the prescribed268

data.269

In CAM, an energy fix is applied to preserve energy in the system during the model270

integration. When nudging temperature, one modifies the energy in the atmospheric com-271

ponent. A common practice is, thus, to switch off the energy fix and let the energy in272

the atmosphere converge to that of the target data set. However, when one only nudges273

winds, energy is no longer sustained. We will therefore consider the impact of nudging274

the winds without the energy fix activated (default in CAM4) with a version where the275

energy fix is reactivated.276

2.4 Experimental design277

We evaluate six different initialization schemes (Table 1), assessing both accuracy278

of the reanalyses and the skill of S2D predictions. Two schemes, NudF-UVT and NudA-279

UVT, use FF and AF atmospheric nudging of horizontal wind and temperature fields280

(U, V, T). The schemes NudA-UV and NudA-UV (EF) use anomaly atmospheric nudg-281

ing of the horizontal wind field (U, V), with the difference that the latter imposes en-282

ergy conservation (EF) in addition (see Section 2.3).283

A fifth scheme, ODA, constrains ocean variability. We perform anomaly assimila-284

tion of SST and vertical temperature and salinity (T, S) profiles with the EnKF (see Sec-285

tion 2.2 for details on the practical implementation). Finally, the scheme ODA+NudA-286

UV combines the ODA and NudA-UV (EF) experiments. We did combine ODA with287

full field atmospheric nudging as it would have caused a mismatch of the mean state be-288

cause our ODA scheme assimilates anomalies (see Counillon et al., 2016, for detailed jus-289

tification).290

All the schemes produce a reanalysis with a 30-member ensemble of NorESM1-ME291

(Section 2.1). The ensemble of initial conditions for all reanalyses is identical and pro-292

duced by randomly selecting states from a stable pre-industrial simulation and integrat-293

ing it with historical forcing from 1850 to 1980. The 30-member reanalyses of each ini-294

tialization method are used as initial conditions for our seasonal-to-decadal hindcasts.295

The simulation (typical historical ensemble) run without assimilation is called Free and296

is used to identify the skill associated with external forcing.297
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Table 1. Configurations summary.

Configuration Ocean DA Atmo nud (6 h) Assimilated variablesa E. F.b

Free - - - yes
NudF-UVT - FF (U, V, T) -
NudA-UVT - AF (U, V, T) -
NudA-UV - AF (U, V) -
NudA-UV (EF) - FF (U, V) yes
ODA AF - [SST, T, S] yes
ODA+NudA-UV AF AF [SST, T, S] + (U, V) yes

aVariables in squared brackets (parenthesis) denote ocean (atmosphere) observations.
bE. F. is for Energy Fix.

The seasonal-to-decadal hindcasts comprise 104 seasonal hindcasts (26 years with298

four hindcasts per year) and 13 decadal hindcasts for each of the six initialization schemes.299

The seasonal hindcasts start on the 15th of January, April, July, and October each year300

during 1985–2010 and run for a year. The decadal hindcasts start on the 15th of Octo-301

ber every other year and run for 11 years each. Each hindcast runs nine realizations (en-302

semble members). Initial conditions are taken from the first nine members of the 30-member303

ensemble reanalyses. Note that this choice does not influence the results because all mem-304

bers are equally likely.305

2.5 Assessment: Data and Metrics306

This section describes the metrics and datasets we used to assess our initialization307

schemes.308

2.5.1 Metrics309

We base our analysis on monthly anomalies. We calculate the anomalies for the310

reanalyses by subtracting their corresponding climatological seasonal cycle from the monthly311

average. We obtain the hindcast anomalies after performing a drift correction, which we312

assume to be lead-time (month or year) dependent. Thus, the hindcast anomalies are313

computed relative to the average of the Nh hindcasts:314

X ′
jt = Xjt −N−1

h

Nh∑
k=1

Xkt. (10)315

Xjt and X ′
jt are the raw and anomalies (drift-corrected) values for hindcast j at the lead316

time t. The observation anomalies are obtained by removing the corresponding clima-317

tology from the dataset. All climatologies are computed using the 1980-2010 period.318

We assess the system’s skill using the following metrics: unbiased root mean squared319

error RMSEu, and the anomaly correlation coefficient ACC. The RMSEu and ACC are320

defined as:321

RMSEu =

(
N−1

N∑
k=1

(X ′
k − Y ′

k)
2

)1/2

, (11)322

ACC =
N∑

k=1

X ′
k Y

′
k

(
N∑

k=1

X
′2
k

N∑
k=1

Y
′2
k

)−1/2

, (12)323
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where X ′
k and Y ′

k are the reanalysis (or hindcast) and observation anomalies at month324

(lead-time) k; and N is the evaluation period’s length. Since the assessment is based on325

the anomalies, the RMSEu does not penalize if the reanalysis has a bias or if the hind-326

casts drift with lead time. Similarly, the ACC is insensitive to bias (Wilks, Daniel, 2019).327

For the reanalysis, we also computed the climatological change ∆BIAS, defined as328

the deviation of the reanalysis monthly climatology to that of Free during the reanal-329

ysis:330

∆BIAS =

N∑
t=1

(X
R

t −X
F

t ). (13)331

X
R

t is the monthly climatology of the reanalyses and X
F

t that of Free with N = 1, ..., t, ..., 12332

being the calendar months.333

In a reliable system, the total error σ should match RMSEu (Fortin et al., 2014;334

Rodwell et al., 2016), thus:335

RMSEu = σ = (σ2
o + σ2

m)1/2, (14)336

where the total error is the quadratic sum between the ensemble spread σm, and the ob-337

servation error σo, and RMSEu is defined in equation (11).338

For the global (or regional indices) statistics, we use grid cell area weighting:339

RMSEu =
∑
i

aiRMSEui

∑
j

aj

−1

, (15)340

and341

ACC =
∑
i

aiACCi

∑
j

aj

−1

. (16)342

where ai is the area of the corresponding i-th grid cell.343

2.5.2 Datasets344

To validate the reanalysis and hindcasts, we take 2m temperature (T2M) data from345

the ERA5 reanalysis (ERA5, Hersbach et al., 2020), with a horizontal resolution of 0.25◦346

× 0.25◦, which we re-grid to the CAM4 model grid. For the ocean surface temperature,347

we take SST observations from the Hadley Centre Sea Ice and Sea Surface Temperature348

dataset (HadISST2, Rayner et al., 2003). We interpolate our ocean outputs towards HadISST2349

horizontal grid. We obtain subsurface temperature and salinity data from the EN4.2.1350

objective analysis (EN4.2.1, Gouretski & Reseghetti, 2010). We re-grid and interpolate351

our ocean subsurface output to EN4.2.1 dataset resolution for the comparisons. Further-352

more, we consider the heat and salinity content in the first 500m, named HC500 and SC500353

respectively. We define them as the ocean depth’s average temperature (and salinity).354

For the verification of the decadal hindcasts, we also use the Atlantic meridional355

overturning circulation (AMOC) at 26◦ North from the RAPID dataset (RAPID, Johns356

et al., 2011).357
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3 Results358

In this section, we evaluate the performance of each initialization scheme to pro-359

vide skillful reanalysis (Sec. 3.1), seasonal (Sec. 3.2.1) and decadal (Sec. 3.2.2) predic-360

tions.361

Figure 1. Global statistics of the reanalyses computed over 1980–2010, for a) SST, b) T2M,

c) HC500, and d) SC500. The left-hand y-axis (in black) displays units for RMSEu (magenta),

∆BIAS (cyan), and total error (yellow), while the red right-hand y-axis is for ACC (red). The

reanalyses are said to be reliable when the total error (yellow) and RMSEu (magenta) overlap.

The black horizontal line marks zero.

3.1 Reanalysis362

We first compare the quality of the reanalyses using atmospheric nudging with FF363

(NudF-UVT) and AF (NudA-UVT). Both schemes have similar global ACC and RMSEu364

for all evaluated quantities (Figure 1). Globally, the reanalysis from NudF-UVT is marginally365

better for SST and T2M (Figures 1a and 1b), but yields a degradation for HC500 (Fig-366

ure 1c) and SC500 (Figure 1d). Most of this degradation occurs in the SPG, the trop-367

ical and South Atlantic, and the Southern Ocean (Figure 2d). Furthermore, NudF-UVT368

exhibits a substantial RMSEu drift of HC500 and SC500 (Figure 3). Such RMSEu drift369

follows a parabolic shape, as the mean climatology (used for computing the metric, equa-370

tion 11) is reached halfway through the reanalysis period. In contrast, the reanalysis pro-371

vided by NudA-UVT does not have the drift in HC500 RMSEu, while in SC500 the RMSEu372

has a much weaker trend than in NudF-UVT. Additionally, the use of FF atmospheric373

nudging—of U, V, T—introduces a large change in the climatology (∆BIAS in Figure374

1). For SST and T2M, ∆BIAS is larger than RMSEu. Both schemes yield poor global375

ensemble reliability near the surface, with the estimated total error (equation 14) being376

much smaller than the RMSEu (Figures 1a and 1b). This implies that the ensemble spread377
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(not shown) collapses during the reanalyses. The reliability for HC500 and SC500 is also378

poor (Figures 1c and 1d). It should be acknowledged that the HC500 (and to a minor379

extent SC500) reliability of Free is already too low, although it should, by construction,380

be satisfied by the experiment. This suggests that the observation error estimate from381

EN4 objective analysis is too low. Still, when applying the nudging, the ensemble un-382

certainty is reduced more than the error of the ensemble mean, and the reliability is fur-383

ther degraded. In the SPG (Figures 4a and 4b), both schemes capture well the timing384

of the rapid shift in the gyre index in 1995, but only NudA-UVT reproduces the ampli-385

tude of the shift correctly. This abrupt shift is linked to the North Atlantic Oscillation386

(NAO) influence (Häkkinen & Rhines, 2004; Yeager & Robson, 2017), which induces a387

preconditioning of the ocean circulation state (Lohmann et al., 2009; J. I. Robson et al.,388

2012). Moreover, both schemes fail to sustain a weak SPG in the 2000s. NudA-UVT achieves389

overall better performance than NudF-UVT, which exhibits a drift from a too-weak SPG390

in the 1980s to a too-strong SPG in 2010. This likely relates to the strong decreasing trend391

in the AMOC in NudF-UVT (Figure 5b) that affects the poleward heat transport. The392

verification period with the RAPID (RAPID, Johns et al., 2011) data is too short to hold393

a firm conclusion. Yet, NudA-UVT has a decreasing anomaly from 2005 in good agree-394

ment with observations, albeit missing the weakening in 2009, while NudF-UVT has an395

unrealistic decreasing trend.396

Figure 2. ACC of monthly HC500 anomalies a) NudA-UVT, b) NudA-UV, c) ODA, d)

NudF-UVT, e) NudA-UV (EF) and f) ODA+NudA-UV reanalysis computed against EN4 objec-

tive analysis for the period 1980–2010. Green-to-magenta colors indicate positive ACCs, and the

cyan color indicates all the negative ACCs.

We compare the schemes NudA-UV and NudA-UVT to assess the importance of397

constraining atmospheric temperature in addition to horizontal winds, compared to just398

constraining horizontal winds. At the surface (SST and T2M), nudging only horizontal399

winds degrades performance (Figures 1a and 1b). For T2M, for example, NudA-UV re-400

duces error by 0.3K compared to Free, whereas NudA-UVT reduces it by 0.6K. The de-401

graded performance of NudA-UV is largest over the tropical band and is less pronounced402

at mid-to-high latitudes (Figures 6a and 6b). The reliability for T2M is slightly improved403

in NudA-UV compared to NudA-UVT (see also Table S1). In NudA-UV, there is a sig-404

nificant increase in climatological change ∆BIAS for SST and T2M. On the other hand,405

NudA-UVT sustains ∆BIAS near 0K due to temperature nudging. Below the surface,406

the global skill performance of NudA-UV and NudA-UVT are similar for HC500 and SC500407
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(Figures 1c and 1d), with NudA-UV being slightly poorer. NudA-UV also impacts ∆BIAS408

of HC500, giving a larger negative bias than NudA-UVT. Most of the ACC differences409

for HC500 are in the Atlantic Ocean, specifically in the Iceland basin (Figures S6c and410

S6e), North East Atlantic, and South Pacific (Figures 2a and 2b). The performance for411

the SPG (Figure 4) and AMOC (Figure 5) variability are comparable, with NudA-UV412

showing a slightly poorer match in the early 1990s. This suggests that wind-driven vari-413

ability is not the sole factor determining the amplitude of the SPG, as NudA-UV can-414

not maintain a strong gyre.415

Figure 3. Time series of RMSEu for a) HC500 and b)SC500 in the different reanalyses com-

puted against EN4 objective analysis. Line color green corresponds to NudF-UVT, orange to

NudA-UVT, cyan to NudA-UV, blue to NudA-UV (EF), red to ODA, magenta to ODA+NudA-

UV, and brown is Free.

The default implementation of nudging in CAM4 deactivates the energy conser-416

vation fix in the atmospheric component (see section 2.3). Here, we assess if conserving417

energy can reduce the climatology change by comparing ∆BIAS in NudA-UV with that418

of the NudA-UV (EF) experiment for which the global energy fixer is activated (Figures419

1a and 1d). Overall, the performance (RMSEu, ACCs, and reliability) is unchanged, but420

the climatological change is reduced by half in NudA-UV (EF). However, we see that421

HC500 skill in the Iceland Sea and into the Norwegian Sea, differ in these two schemes.422

An analysis of the HC500 time series for the Iceland Sea further reveals that long-term423

trend and inter-annual variability contribute to the variability of the region (Figure S6).424

And comparing NudA-UV and NudA-UV (EF), we find that the energy fix is very ef-425

fective in improving the representation of the trend in the Iceland basin (R = 0.31 and426

0.61, respectively, in Figures S6e and S6g).427

We now compare atmospheric constraints versus ocean constraints for coupled re-428

analysis. The skill for T2M (Figure 1b) using atmospheric nudging is substantially bet-429

ter than using ODA. The ODA system has skill over the ocean (most pronounced over430

the tropical band) while skill over land is poor in the extratropics and polar areas (Fig-431

ures 6a and 6c). When comparing the T2M skill over the ocean with the SST skill (not432

shown), atmospheric nudging works better than ODA when using T2M. However, for433

SST, ODA was found to be more effective. It is important to note that the correlation434

between T2M and SST is strong and that the choice of validation data sets can signif-435

icantly affect skill differences. The validation of SST is done against the HadISST2 anal-436

ysis, which is assimilated in the ODA system. Meanwhile, the verification of T2M is done437

against ERA5, similar to the ERA-I product used for atmospheric nudging. This slight438

contradiction highlights the uncertainties in the observation data sets (Massonnet et al.,439

2016; Bellprat et al., 2017). In the ocean interior, ODA outperforms all atmospheric nudg-440

ing schemes (Figures 1c-1d). This is also clear from Figure 3, where ODA has a consis-441

–12–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 4. HC500 anomalies in the SPG box (48◦-65◦N, 60◦-15◦S) for a) NudA-UVT, b)

NudF-UVT, c) NudA-UV, d) NudA-UV (EF), e) ODA and f) ODA+NudA-UV reanalyses. Solid-

colored lines represent the ensemble mean of reanalysis, dash-dotted lines correspond to hindcast

schemes, and the solid brown line is Free. Shading denotes ensemble minima and maxima. The

solid black line shows the EN4.2.1 objective analysis estimate. The correlation coefficient R be-

tween reanalysis and observations is in the top-left-hand corner. Positive values of the index

correspond to a weak SPG

tently lower error than the nudging schemes and is the only system with stable RMSEu442

for SC500—that does not degrade with time. This stability implies that the strong con-443

straint on the variability of the surface fluxes provided by atmospheric nudging is insuf-444

ficient to guarantee a stable performance for the ocean interior, such as SC500. The ben-445

efit of the ODA over the nudging schemes is largest in the tropical Pacific, the north-446

western Pacific, the Indian Ocean, and the SPG (Figure 2c), where atmospheric nudg-447

ing introduces a patch of low-skill in the Irminger and Icelandic Seas (see, for example,448

Figures 2a and 2b). The reliability of the system is also better preserved as we see a closer449

match between RMSEu and total error σ (Figures 1c and 1d, magenta and yellow lines).450

In the ODA system the reliability is only marginally degraded from Free and much less451

than atmospheric nudging. In the case of regional indexes, ODA achieves overall the best452

correlation for the SPG index (R = 0.98, Figure 4e), and it is the only system that sus-453

tains the weak SPG during the 2000s. However, the shift in 1995 is not as abrupt as in454
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the observations and the atmospheric nudging schemes (see, for example, Figure 4a). This455

is because the NAO constraint is very weak in the ODA system, and the system only ad-456

justs a-posteriori for errors in the atmospheric forcing. Finally, for the AMOC at 26.5◦N,457

there is a long term weakening with a stronger weak anomaly from 2006 that is under-458

estimated by all systems. ODA is the only system that captured the rebound in 2009,459

however, it does not capture the local minimum in 2004 as with atmospheric nudging460

systems (Figures 5c and 5e), suggesting that this feature is better constrained with at-461

mospheric variability.462

Figure 5. AMOC transport anomalies at 26.5◦N with respect to the 2005–2010 period for a)

NudA-UVT, b) NudF-UVT, c) NudA-UV, d) NudA-UV (EF), e) ODA and f) ODA+NudA-UV

reanalyses. Solid-colored lines represent the ensemble mean of reanalysis, dash-dotted lines cor-

respond to hindcast schemes, and the solid brown line is Free. Shading denotes ensemble minima

and maxima. The solid black line is the RAPID observations.

Given the complementary skills of atmospheric nudging and the ODA systems, one463

would expect their combination to work best. However, comparing the global statistics464

of ODA and ODA+NudA-UV (Figure 1), we see that the use of atmospheric nudging465

in ODA+NudA-UV degrades performance in ocean quantities (SST, HC500, and SC500).466

ODA+NudA-UV performs almost identically to NudA-UV. This is more evident at the467

surface (see T2M in Figures 6b, 6c and 6f). This is because the ODA relies on the re-468

liability of the system—the analysis update depends on the relative importance of the469
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ensemble spread to the observational error— and, in our current implementation, the470

atmospheric nudging collapses the ocean’s ensemble spread. This means that ocean ob-471

servations have nearly no impact. However, the ODA+NudA-UV performs slightly bet-472

ter than NudA-UV for SST, HC500, SC500, and SPG (Figure 4f) and AMOC (Figure473

5f), in good agreement with Brune et al. (2018), indicating that ODA yields improve-474

ments.475

Figure 6. ACC of de-seasoned monthly T2M for a) NudA-UVT, b) NudA-UV, c) ODA, d)

NudF-UVT, e) NudA-UV (EF) and f) ODA+NudA-UV reanalyses computed against ERA5 for

the period 1980–2010. Green-to-magenta colors indicate positive ACC values, and the cyan color

indicates all the negative ACCs

3.2 Predictions476

In this section, we evaluate the quality (skill) of the seasonal and decadal hindcasts477

initialized from the reanalysis (see section 2.4).478

3.2.1 Seasonal predictions479

Our prediction systems have a superior global surface skill compared to persistence480

starting from the third lead month (Figures 7a and 7b). On the other hand, the predic-481

tion skill for HC500 is low and only beats persistence after the sixth month; while SC500482

never outperforms persistence (Figures 7c and 7d). However, it is possible that the skill483

of persistence is overestimated as it is computed from the same data set used for vali-484

dation. This is likely the case for HC500 and SC500, since the observation error in the485

EN4 objective analysis is highly correlated in time due to the sparse in situ measurements.486

Comparing the different systems, the ODA system performs best for all assessed quan-487

tities (Figure 7). This highlights the importance of ocean initialization in the prediction488

skill achieved.489

While the globally averaged skill is low (ACCs below 0.4 in T2M and HC500, in490

Figures 7b and 7c), some regions show enhanced skill (Figures 8 and 9). Skill is most491

significant over the ocean and most notably in the tropical band driven by the El Niño–Southern492

Oscillation (ENSO) (Balmaseda & Anderson, 2009; Meehl et al., 2021), the Indian Ocean493

Dipole (Saji et al., 1999; Webster et al., 1999), and, to a lesser extent, over the Atlantic494

Niño region (N. Keenlyside et al., 2020). There is also a region of significant skill in the495
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Figure 7. Global average ACC of the seasonal hindcast with lead month, for: a) sea surface

temperature (SST), b) 2m air temperature (T2M), c) 500m heat content (HC500), and d) 500m

salinity content (SC500). Line color green corresponds to NudF-UVT, orange to NudA-UVT,

cyan to NudA-UV, blue to NudA-UV (EF), red to ODA and magenta to ODA+NudA-UV. The

solid black line is persistence, and the brown line is the Free run.

northern North Atlantic, the SPG, and the Iceland Sea, in agreement with other climate496

systems (e.g., Kirtman et al., 2014; Wang et al., 2019).497

We assess the prediction skill in the ENSO region by computing RMSEu and ACC498

of the Niño 3.4 index (mean SST within the box 5◦S-5◦N, 120◦W-170◦W) against HadISST2499

observations with lead time (Figure 10). All prediction systems outperform persistence,500

with ODA performing best. NudF-UVT and NudA-UVT perform better than NudA-501

UV, showing the importance of constraining the surface heat flux for predicting ENSO502

variability. NudF-UVT is initially better than NudA-UVT, but the skill quickly degrades503

over time for RMSEu. This nicely highlights the dilemma of full-field versus anomaly-504

field initialization: the mean state is essential for initialization. However, constraining505

the bias causes drift and more rapid degradation of predictability performance than anomaly-506

field initialization. We can also observe ODA’s impact in ODA+NudA-UV, which, com-507

pared to NudA-UV (EF), has a higher skill, especially after the seventh lead month. These508

results are valid regardless of the initial season of the hindcasts (Figures S2 and S3), and509

no system shows superior performance regarding the May predictability barrier.510

For the Atlantic Niño, we analyze the ATL3 index (SST averaged over the region511

3◦S - 3◦N, 20◦W - 0◦) RMSEu and ACC as a function of lead-time (Figure 11). NudF-512

UVT performs better than all other systems, but it does not beat persistence until month513

six. Breaking down the analysis by start season (Figures S4b and S5b), we see that NudF-514

UVT performs best for the hindcast starting in May, slightly beating persistence at lead515

month 2 (ACC and RMSEu), i.e., at the peak of the Atlantic Niño. Skillfully predict-516
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Figure 8. Seasonal hindcast 2-5 lead-month T2M ACC for a) NudA-UVT, b) NudA-UV, c)

ODA, d) NudF-UVT, e) NudA-UV (EF) and f) ODA+NudA-UV. Green-to-magenta colors indi-

cate positive ACCs and cyan colour indicates all negative ACCs.

ing this event is very challenging, and the NudF-UVT system beats the anomaly-coupled517

version of NorCPM (Counillon et al., 2021), whose hindcasts starting in May performed518

poorly. This highlights that constraining the mean seasonal cycle and the wind variabil-519

ity is critical to skillfully predicting the Atlantic Niño (Ding et al., 2015; Dippe et al.,520

2018; Harlaß et al., 2018). The skill for the other start months is poor (Figures S4 and521

S5), in agreement with those shown in Counillon et al. (2021). Overall, the skill remains522

poor in predicting Atlantic Niño variability.523

Most of our experiments show good skill in predicting T2M and HC500 in the SPG524

at lead month 2-5. The best skill is achieved with ODA and, of all the nudging schemes,525

NudA-UVT performs best (Figures 8 and 9). NudF-UVT performs poorly and even reaches526

a negative correlation in the Irminger Sea. This highlights that constraining the mean527

state error is not critical in this region and that simple lead-dependent drift post-processing528

is insufficient with our model, unlike in Yeager et al. (2012). On the other hand, in the529

Iceland Sea and into the Norwegian Sea, ODA again performs best, and it is clear that530

NudF-UVT and NudA-UVT outperform NudA-UV. This highlights the role of atmo-531

spheric heat flux in this region. The comparison between NudA-UV and NudA-UV (EF)532

highlights that correcting the spurious drift (see Section 3.1) in this region is important533

for predictive skill at seasonal scales.534

3.2.2 Decadal predictions535

We assess our decadal predictions skill with ACC and RMSEu as a function of lead536

years. Figure 12 shows the global average skill with lead years for HC500, and Figure537

13 shows the corresponding pointwise skill for lead-year 2–5. Globally, all systems show538

higher skill than persistence. ODA performs best and NudF-UVT worst. NudF-UVT539

shows comparable skill to NudA-UVT until lead year 2, after which its skill rapidly de-540

grades.541

All schemes show a relatively low global skill. Given the short period of our decadal542

hindcast, the ACCs pattern is relatively noisy, and even negative in some regions (cyan-543

to-blue colors in Figure 13). However, compared to the skill of a non-initialized hind-544

–17–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 9. ACC of the seasonal hindcasts at lead-month 2-5 for HC500 with: a) NudA-UVT,

b) NudA-UV, c) ODA, d) NudF-UVT, e) NudA-UV (EF) and f) ODA+NudA-UV computed

against EN4 objective analysis. Green-to-magenta colors indicate positive ACCs and cyan colour

indicates all negative ACCs.

Figure 10. a) ACC of Niño 3.4 SST as a function of the lead month and b) is the same for

RMSEu in K. Line color green corresponds to NudF-UVT, orange to NudA-UVT, cyan to NudA-

UV, blue to NudA-UV (EF), red to ODA, magenta to ODA+NudA-UV, brown to Free, and

persistence is the solid black line.

cast (Figure 13e), all of our schemes show regions of improved skill. These regions are545

the North Atlantic, the Western Pacific Ocean, and the Indian Ocean. The regions for546

which skill is improved when compared to Free agree with the NorCPM experiment for547

CMIP6 DCPP carried for the 1950-2020 period (Bethke et al., 2021). The skill is mostly548

driven by external forcing, and initialization further improves it, in agreement with pre-549

vious studies (e.g., Choi & Son, 2022). The skill is negative in Free at the western coasts550

of North and South America as the forced response does not agree with the Pacific Decadal551

Oscillation (PDO) that is predominantly positive during the analysis period 1980–2010552

and can be partly related to internal climate variability (Mochizuki et al., 2010). Skill553

in Free is improved if one considers a longer period, e.g. 1950–2020, see (Bethke et al.,554

2021). The degradation is mitigated by initialization, and overall, the best skill is achieved555

by NudF-UVT, suggesting that correcting the climate mean state can be important for556
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Figure 11. Same as Figure 10 for ATL3 SST.

PDV predictions (e.g., Guemas et al., 2012; Bilbao et al., 2021). Finally, ODA has the557

largest skill improvement in the SPG region, highlighting the importance of constrain-558

ing the ocean to initialize decadal variability within the sub-polar North Atlantic.559

Figure 12. Global a) ACC and b) RMSEu as a function of lead year for HC500. The line

color green corresponds to NudF-UVT, orange to NudA-UVT, cyan to NudA-UV, blue to NudA-

UV (EF), red to ODA, and magenta to ODA+NudA-UV, brown to Free, and the black line is

persistence.

To further analyze the SPG variability, we evaluate the performance of the SPG560

index based on HC500 with lead-year (Figure 14). The conclusions are unchanged when561

using different SPG indices (e.g., based on SSH or SST, not shown). Most systems beat562

persistence after lead-year 5. ODA provides the best skill and outperforms persistence563

from the start, while NudF-UVT is the worst. We can also see the benefit that ODA brings564

in ODA+NudA-UV, which achieves higher skills than NudA-UV only, due to hydrographic565

profile assimilation. Also, nudging only horizontal winds (NudA-UV) gives better pre-566

dictions than additionally nudging atmospheric temperature (NudA-UVT) (Figure 14).567

In NudA-UV, the dynamical forcing of NAO is well captured, and its effects on predic-568

tions are more long-lasting (Lohmann et al., 2009; Häkkinen & Rhines, 2004) than ad-569

ditionally applying temperature constrain. The additional constraint of the temperature570

provides better reanalysis near the surface but introduces a dynamic imbalance with the571

ocean interior. We can also see that the schemes using NudA-UV give a more steady pre-572

diction skill of about 0.6 along the complete forecast. All schemes show a pronounced573

attraction towards their climatology (dash-dot lines in Figure 4), showing that the mem-574
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Figure 13. ACC for the decadal hindcast at lead year 2-5 of HC500 a) NudA-UVT, b) NudA-

UV, c) ODA, d) NudF-UVT, e) Free and f) ODA+NudA-UV computed against EN4 objective

analysis. Green-to-magenta colors indicate positive ACCs, while cyan-to-blue colors indicate neg-

ative ACCs.

Figure 14. a) ACC and b) RMSE of the SPG index (computed from HC500 versus EN4

objective analysis) as a function of lead year. The line color green corresponds to NudF-UVT,

orange to NudA-UVT, cyan to NudA-UV, blue to NudA-UV (EF), red to ODA, and magenta to

ODA+NudA-UV, the brown line is Free, and the black line is persistence.

ory of the initial conditions is gradually lost, and the ensemble mean converges with that575

of Free. In NudF-UVT, the drift is substantial and overshoots Free. Such a drift is char-576

acteristic of dynamic imbalance.577

Prediction of AMOC variability at 26.5◦N is shown in Figure 5 and compared to578

the RAPID observation program (RAPID, Johns et al., 2011) started in 2004. The val-579

idation period is too short to assess robustly which configuration has the most skill. How-580

ever, most systems tend to agree in their reanalysis, but there is a larger discrepancy for581

atmospheric nudging, including temperature, and NudF-UVT has, again, a considerable582

drift.583
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4 Summary and Conclusions584

In this study, we compared the potential of a large set of initialization schemes to585

constrain climate variability in an ESM and to provide skillful initial conditions for cli-586

mate predictions. This enabled us to assess the strengths and weaknesses of different method-587

ologies and techniques using the same model, setting, and period. We compared anomaly588

versus full-field atmospheric nudging, and U, V, and T nudging compared to only U and589

V in the atmosphere. We also assessed the importance of conserving energy in atmospheric590

assimilation and, finally, we tried to combine atmospheric nudging and ocean data as-591

similation. We assessed the performance for reanalysis and for a set of seasonal and decadal592

hindcasts for 1980–2010. Our analysis is summarized below:593

1. Full-field initialization introduces a large drift in the climate reanalysis and hind-594

casts, but constraining the mean state error was shown to improve the performance595

in some regions, such as in the Tropical Atlantic. Still, anomaly initialization is596

performing overall best beyond short lead time.597

2. Nudging of atmospheric momentum achieves good skill for decadal predictions.598

It shows little drift in the hindcasts for the North Atlantic Gyre circulation (e.g.,599

SPG or AMOC). Adding a temperature constraint provides more accurate reanal-600

ysis and seasonal predictions but degrades decadal predictions.601

3. Conserving energy with the atmospheric nudging of horizontal winds limits the602

climatological change during the reanalysis, but very few differences are found dur-603

ing the seasonal hindcasts.604

4. Ocean data assimilation enhances the accuracy of the ocean interior during the605

reanalysis. It provides a better skill for seasonal and decadal predictions than any606

atmospheric nudging simulations. However, atmospheric nudging improves the re-607

analysis of ocean variability strongly influenced by atmospheric events, such as the608

1995 shift in the SPG.609

5. While the ocean data assimilation and atmospheric nudging approaches are com-610

plementary, and their combination is expected to provide optimal performance,611

the scheme tested in this study achieved inferior skill. Atmospheric nudging to-612

wards a deterministic atmospheric reanalysis causes a near collapse of the ensem-613

ble spread at the surface and strongly degrades the influence of the surface ocean614

data. Still, the assimilation of hydrographic profiles yields slight improvements in615

decadal predictions.616

In future work, we will explore ways of preserving the reliability of the ensemble617

at the ocean-atmosphere interface when combining atmospheric nudging with ocean data618

assimilation. A substantial limitation of the current approach is that we are nudging to-619

ward a deterministic reconstruction of the atmosphere. As such, this approach disregards620

the atmospheric reanalysis error and causes the ensemble spread to collapse. We will there-621

fore nudge toward an atmospheric ensemble reanalysis (e.g., ERA5). Furthermore, mod-622

els used for producing atmospheric reanalyses have considerably higher resolution than623

the atmosphere model in our ESM, and representation error (e.g., Janjić et al., 2018) may624

also induce a collapse of the ensemble spread (Anderson, 2001). Therefore we will com-625

plement the system with ad-hoc techniques such as inflation (Anderson, 2001; El Gharamti626

et al., 2021), atmospheric perturbation (Houtekamer & Derome, 1995) and consider us-627

ing a weaker nudging.628

We have also seen that full-field and anomaly nudging initialization have advan-629

tages. To date, models have biases that are typically larger than the variability being630

predicted (Palmer & Stevens, 2019). However, we foresee that the advantages of the full-631

field initialization approach will one day out-compete its caveats due to model improve-632

ment (for example, using higher resolution (e.g., Hewitt et al., 2017)), and better obser-633

vational data (more numerous and comprehensive). Furthermore, several methods are634

being developed to handle climate biases with NorCPM, namely: anomaly coupling (Counillon635
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et al., 2021), multivariate parameter estimation (Singh et al., 2022), super-resolution (Barthélémy636

et al., 2022) and supermodelling (Counillon et al., 2023; F. J. Schevenhoven & Carrassi,637

2021; F. Schevenhoven et al., 2023).638

5 Open Research639

The reanalysis and seasonal and decadal hindcasts data presented in this article640

are being organized and archived at https://ns9039k.web.sigma2.no/lgarcia/initializations/.641

The data is organized following the naming convention used in Table 1. Each directory642

contains the reanalysis and hindcasts monthly ensemble mean for 2m temperature (T2M),643

sea surface temperature (SST), and temperature (T) and salinity (S). We also include644

the AMOC transport at 26.5◦N, from annual averages. We provide the data on model645

grid and using netcdf format. The full simulations will be available on https://archive646

.sigma2.no, with a specific doi upon acceptance of the manuscript.647

The code of the Norwegian Earth System Model (NorESM) and the Norwegian Cli-648

mate Prediction Model (NorCPM version1) are available online on the Norwegian Earth649

System Modeling hub (https://github.com/NorESMhub). Specific details about Nor-650

CPM can be found in the website (https://wiki.app.uib.no/norcpm/index.php/Norwegian651

Climate Prediction Model). The temperature and salinity (T, S) vertical profiles from652

EN4.2.1 objective analysis (Good et al., 2013) can be obtained from the Met Office Hadley653

Centre observations datasets website (https://www.metoffice.gov.uk/hadobs/en4/654

download-en4-2-1.html). And the sea surface temperature (SST) observations, HADISST2655

(Rayner et al., 2003), are available at https://www.metoffice.gov.uk/hadobs/hadisst2/656

data/download.html. The reference data used for 2m temperature (T2M), from ERA5657

(Hersbach et al., 2020), can be obtained the Copernicus web services (https://cds.climate658

.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form).659

The AMOC measurements used are available in the RAPID-AMOC website (https://660

rapid.ac.uk).661
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X - 2 GARCIA-OLIVA ET AL.: INTERCOMPARISSON OF INITIALIZATION WITH NORCPM

Table S1. Reanalysis reliabilitya.

Configuration SST T2M HC500 SC500
Free 1.09 1.03 1.67 1.21
NudF-UVT 2.11 15.25 6.90 4.88
NudA-UVT 2.14 14.50 6.39 3.76
NudA-UV 2.37 7.65 5.59 3.77
NudA-UV (EF) 2.35 7.55 5.58 3.78
ODA 1.10 1.07 2.49 1.87
ODA+NudA-UV 2.39 13.22 11.03 8.25
a RMSEu/σ, see equation (14) in main text.

Figure S1. Regions studied. Numbered regions are (1) Iceland Sea (ICS), (2) North Atlantic

Subpolar Gyre (SPG), (3) Irminger Sea (IRS), (4) El Niño 3.4 (ENSO), and (5) Atlantic 3

(ATL3). In colors: HC500 reanalysis of ODA experiment.
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GARCIA-OLIVA ET AL.: INTERCOMPARISSON OF INITIALIZATION WITH NORCPM X - 3

Figure S2. ACC of Niño 3.4 SST with lead-month computed against HadISST2 decomposed

by starting month of the hindcasts.
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X - 4 GARCIA-OLIVA ET AL.: INTERCOMPARISSON OF INITIALIZATION WITH NORCPM

Figure S3. RMSE of Niño 3.4 SST with lead-month computed against HadISST2 and decom-

posed by starting month of the hindcasts.
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GARCIA-OLIVA ET AL.: INTERCOMPARISSON OF INITIALIZATION WITH NORCPM X - 5

Figure S4. Same as Fig. S2, but for ATL3 SST.
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X - 6 GARCIA-OLIVA ET AL.: INTERCOMPARISSON OF INITIALIZATION WITH NORCPM

Figure S5. Same as Fig. S3, but for ATL3 SST.
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GARCIA-OLIVA ET AL.: INTERCOMPARISSON OF INITIALIZATION WITH NORCPM X - 7

Figure S6. HC500 in the Iceland Sea basin box for NudF-UVT (a,b), NudA-UVT (c,d),

NudA-UV (e,f) and NudA-UV EF (g,h). Panels on the left are with the trend and panels on the

right are detrended. The correlation coefficient with EN4 objective analysis estimate is included.
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