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Abstract

Earthquake forecasting is a challenging goal for seismologists and geophysicists due to the complex nature of the earthquake

phenomenon. Delivering reliable forecasts is crucial for public safety. This study derives the probability of extreme events in

any seismic cluster generated by the Epidemic Type Aftershock Sequence (ETAS) model. This probability is obtained as a

function of time, space and magnitude. The results contribute to understanding the distinguishing features between mainshocks

and foreshocks and provide insights into earthquake prediction and the probability assessment of extreme events within seismic

clusters.
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Abstract13

Earthquake forecasting is a challenging goal for seismologists and geophysicists due to14

the complex nature of the earthquake phenomenon. Delivering reliable forecasts is cru-15

cial for public safety. This study derives the probability of extreme events in any seis-16

mic cluster generated by the Epidemic Type Aftershock Sequence (ETAS) model. This17

probability is obtained as a function of time, space and magnitude. The results contribute18

to understanding the distinguishing features between mainshocks and foreshocks and pro-19

vide insights into earthquake prediction and the probability assessment of extreme events20

within seismic clusters.21

Plain Language Summary22

Forecasting extreme events in a seismic sequence is a challenging but crucial goal23

for statistical seismologists to prevent catastrophic disasters. To date, the most used model24

in earthquake forecasting applications is the Epidemic-Type-Aftershock-Sequence (ETAS)25

model. It accounts for the most widely recognized feature of seismicity, that is, events’26

spatiotemporal clustering. In this work, we explicitly derive the probability for the largest27

event, in any seismic ETAS cluster, to occur in the time-space-magnitude location (t, x, y,m).28

To do that, we use some advanced mathematical tools, such as Laplace transforms, Taube-29

rian theorems, Bessel/Struve functions. In the pure-temporal case, depending on the spe-30

cific stability condition considered (explosion or not of the process), we derive the prob-31

ability of the largest event occurring in (t,m) as the product between an only-time func-32

tion and an only-magnitude function. Numerical results show that an ETAS synthetic33

catalogue fits well the theoretical prediction. When including the spatial component in34

the analysis, due to the high-complexity of the functions involved, we cannot analyti-35

cally derive the probability of the largest event to occur in (t, x, y,m); we derive instead36

its Laplace transform, which is shown to decrease with time and increase with space. A37

numerical procedure is suggested to obtain the inverse transform.38

1 Introduction39

Earthquake forecasting represents one of the most important and challenging goal40

for statistical seismologists and seismic-modeling researchers. The earthquake phenomenon41

is very complex, as it represents an example of self-organized criticality (Bak & Tang,42

1989; Sornette & Sornette, 1989; Jagla et al., 2014; Lippiello et al., 2019; Petrillo et al.,43

2020; Lippiello et al., 2021), but at the same time it is concretely very often tangible and44

the need to deliver reliable forecasts is essential for public safety.45

Seismic hazard assessment is based on several scaling laws, which have been found46

to represent a good approximation for earthquake sequences, such as the constitutive laws47

in the Epidemic Type Aftershock Sequence (ETAS) model, briefly illustrated in Section 2,48

and representing the most used model for operational forecasting issues (Marzocchi, 2008;49

Marzocchi & Lombardi, 2009; Jordan et al., 2011; Marzocchi et al., 2012; Jordan et al.,50

2014; Marzocchi et al., 2014; Page et al., 2016; Marzocchi et al., 2017; Llenos & Michael,51

2017; Omi et al., 2018; Spassiani, Falcone, et al., 2023; Spassiani, Yaghmaei-Sabegh, et52

al., 2023).53

Retrospective analyses are mostly focused on aftershock sequences following a large54

event, named mainshock, and the results obtained are used for analyses of perspective55

type. However, a lot of attention has been paid in the literature also to the largest event56

in the earthquake sequence: the forecast of extreme events is crucial to prevent disas-57

ters causing the death of several people. More precisely, in Saichev and Sornette (2005),58

Zhuang and Ogata (2006), Vere-Jones and Zhuang (2008) and Luo and Zhuang (2016),59

the distribution of the largest event in the critical ETAS model is related to the mag-60

nitude distribution of foreshocks, which are defined as background events that have at61
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least one offspring, direct or indirect, with a larger magnitude. Although the difference62

between mainshocks and foreshocks is still not rigorously defined and accepted in the63

literature (Helmstetter et al., 2002; Helmstetter & Sornette, 2003; Felzer et al., 2004; Mignan,64

2014; Lippiello et al., 2020; Petrillo & Lippiello, 2021), the derivation of the probabil-65

ity of foreshocks under a clustering model can be used as a test to find distinguishing66

features between these kinds of events. The distribution of foreshocks is in fact consid-67

ered essential in the earthquake prediction (Abercrombie & Mori, 1994; Savage & Rupp,68

2000; Merrifield et al., 2004; Marzocchi et al., 2019), as it allows us to evaluate the prob-69

ability of occurrence of the largest event in a sequence.70

In this paper, we extend the results of Saichev and Sornette (2005), Zhuang and71

Ogata (2006), Vere-Jones and Zhuang (2008) and Luo and Zhuang (2016) by deriving72

the probability for the largest event, in any ETAS cluster, to occur in time t and have73

magnitude m. It is related to all the samples and to the extreme events in the sequence,74

as here we do not consider a fixed initial event’s magnitude and we include the tempo-75

ral component of the process. The same procedure can be adopted to include the spa-76

tial component and then, thanks to the separability between space and time in the ETAS77

rate, to derive the probability for the largest event in any ETAS cluster to occur in (t, x, y,m),78

(x, y) being the epicenter coordinates, that is, the final expression for that probability79

in the complete ETAS setting.80

2 The ETAS model81

The Epidemic Type Aftershock Sequence (ETAS) model (Ogata, 1988, 1989, 1998)82

represents a benchmark in statistical seismology and belongs to the class of linear, marked,83

self-exciting Hawkes processes of branching type: each seismic event represents an ele-84

ment of the process, it is identified with its space-time location and it is marked by the85

magnitude. According to the branching framework, all the events may give birth to their86

own progeny independently of the others, resulting in a cluster-type structure. The clus-87

ters’ elements represent the aftershocks component of the process, associated with the88

stress perturbations due to previous shocks and modeled as a space-time non-homogeneous89

Poisson process. Instead, the initial events constitute the background component of the90

process, not triggered by precursory shocks and modeled as a time-stationary Poisson91

process, non-homogeneous in space. The conditional intensity of the space-time-magnitude92

ETAS model, completely characterizing the process, is93

λ(t, x, y,m|Ht) = λ(t, x, y|Ht) s(m),94

with λ(t, x, y|Ht) = µ(x, y) +
∑
i:ti<t

κ(mi)g(t− ti)f(x− xi, y − yi), (1)95

where Ht is the past history of the event (t, x, y,m) and:96

1. µ(x, y) is the time-stationary background rate;97

2. κ(m) = A exp{α(m −mc)}, m ≥ mc, is the productivity law, representing the98

fertility of the event with magnitude m. The magnitude mc is the completeness99

threshold, that is the value such that all the events with a higher magnitude are100

surely recorded in the seismic catalog;101

3. g(t) = p−1
c

(
1 + t

c

)−p
, t > 0, is the Omori-Utsu law for the aftershocks’ decay;102

4. f(x, y) is the probability density function (PDF) for the location of the event, typ-103

ically of power law type, that is f(x, y) = q−1
πDeγ(m−mc)

[
1 + x2+y2

Deγ(m−mc)

]−q
;104

5. s(m) = β exp{−β(m−mc)}, m ≥ mc, is the decreasing exponential Gutenberg-105

Richter (GR) law for the magnitudes of all the events in the process.106

All the parameters in the ETAS conditional intensity are positive and typically estimated107

through maximum likelihood techniques, where the log-likelihood function is easily de-108

rived as109
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lnL =
∑
i

λ(ti, xi, yi,mi|Hti)−
∫ ∫ ∫

T ×S
λ(t, x, y|Ht)dtdxdy +

∑
i

ln s(mi).110

A seismic sequence modeled by the space-time-magnitude ETAS is non-explosive111

under the conditions p > 1, β > α and n̄ = Aβ
β−α > 1, where the latter is the critical112

parameter of the process; in the specific case of the ETAS model, it coincides also to the113

branching ratio: it is the average number of first generation aftershocks per mother event,114

but can be defined also as the proportion of triggered events with respect to all the shocks115

(Helmstetter & Sornette, 2002; Zhuang et al., 2012).116

3 Theoretical derivation of the probability for the extreme event (t,m)117

In Saichev and Sornette (2005), Zhuang and Ogata (2006), Vere-Jones and Zhuang118

(2008) and Luo and Zhuang (2016), the authors consider the probability ζ(m,m′) for119

an event with magnitude m to have no offspring larger than a given magnitude m′. It120

is obtained as121

ζ(m,m′) = exp {−κ(m)F (m′)} ,122

where F (m′) = 1−
∫ m′

mc

s(m∗) exp {−κ(m∗)F (m′)} dm∗123

represents the probability for the largest earthquake in an arbitrary cluster, including124

the initial event and all its descendants, to be greater than m′. In the above formula-125

tions, κ(·) and s(·) are respectively the productivity law and the GR law introduced in126

the previous section.127

Here, we want to integrate over the magnitude of the mother event, and we want128

to add the temporal component of the ETAS rate. We then focus on the probability for129

the largest event to have magnitude m and to occur in time t or, briefly, to be the (t,m)130

event:131

η(t,m) = P{The largest event in any cluster is the (t,m) event}.132

The probability η(t,m) can be obtained as the union of two disjoint conditions:133

I1 = “ the largest event is the mother, occurring in t = 0, and none of its children has134

magnitude greater than m; that is, the largest event is (0,m) and any other (m̄, t >135

0) event is such that m̄ < m ”;136

I2 = “ the largest event (t,m) belongs to one subcluster, that is, t > 0 and neither the137

mother nor any other event in all the other subclusters have magnitude greater138

than m ”.139

These two events represent a partition of Ω = {The largest event in any cluster is the140

(t,m) event}, therefore η(t,m) is obtained as the sum of their probabilities. In other words,141

it holds142

η(t,m) = P{I1}+ P{I2}. (2)143

To derive the two probabilities P{I1} and P{I2} of above, we have to compute the144

probability R(m′) for the largest event in a cluster to be less than m′, which is obviously145

R(m′) = 1− F (m′), in fact:146
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R(m′) = P{The largest event in a cluster is less than m′},147

=

∫ m′

0

P{The largest event in the cluster generated by initial event with mag148

m∗ is less than m′ |The initial event in the cluster has mag m∗}149

· P{The initial event in the cluster has mag m∗} dm∗150

=

∫ m′

0

∞∑
n=0

[R(m′)]n
[κ(m∗)]n e−κ(m

∗)

n!
s(m∗) dm∗151

=

∫ m′

0

e−κ(m
∗)[1−R(m′)] s(m∗) dm∗, (3)152

where we have set mc = 0 to shorten notations (hereafter), and we summed over all153

the subclusters of the initial event’s n children.154

Now, recalling that the number of events is Poisson distributed, we derive the first155

term in the Right-Hand-Side (RHS) of (2) as follows:156

P{I1} = δ(t) s(m)

∞∑
n=0

[R(m)]n
[κ(m)]n

n!
e−κ(m) = δ(t) s(m) e−κ(m)[1−R(m)], (4)157

where the term δ(t) s(m) says that the initial event occurred in t = 0 and is randomly158

selected from a GR distribution. Instead, as regards the second term in the RHS of (2),159

we have to randomly select one of the subclusters of the initial event’s n children, which160

is assumed to contain the largest event, and to impose that both the mother and all the161

other shocks have a lower magnitude:162

P{I2} =

∫ m

0

s(m∗)

[ ∞∑
n=1

[κ(m∗)]n

n!
e−κ(m

∗)

(
n

1

)∫ t

0

η(t− ti,m) [R(m)]n−1g(ti) dti

]
dm∗163

=

∫ m

0

s(m∗)

[ ∞∑
n=1

κ(m∗) [κ(m∗)]n−1

(n− 1)!
e−κ(m

∗)[R(m)]n−1
∫ t

0

η(t− ti,m) g(ti) dti

]
dm∗164

=

∫ m

0

s(m∗)κ(m∗)

∞∑
n=0

[κ(m∗)]n

n!
e−κ(m

∗) [R(m)]n
∫ t

0

η(t− ti,m) g(ti) dti dm
∗

165

=

∫ m

0

s(m∗)κ(m∗) e−κ(m
∗)[1−R(m)] dm∗

∫ t

0

η(t− ti,m) g(ti) dti166

=

∫ m

0

s(m∗)κ(m∗) e−κ(m
∗)[1−R(m)] dm∗ ·

(
η ◦ g

)
(t,m), (5)167

where we used the symbol ◦ for the convolution. Then, setting168

A(m) = s(m) e−κ(m)[1−R(m)],169

B(m) =

∫ m

0

s(m∗)κ(m∗) e−κ(m
∗)[1−R(m)] dm∗. (6)170

We can rewrite the probability η(t,m) in (2) as a recursive equation:171

–5–
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η(t,m) = δ(t)A(m) +B(m)
(
η ◦ g

)
(t,m)172

= δ(t)A(m) +B(m)

{[
δ(t)A(m) +B(m)

(
η ◦ g

)]
◦ g
}

(t,m)173

= δ(t)A(m) +A(m)B(m) g(t) +B2(m)
(
η ◦ g(2)

)
(t,m)174

= δ(t)A(m) +A(m)B(m) g(t) +A(m)B2(m) g(2)(t) +B3(m)
(
η ◦ g(3)

)
(t,m) + . . .175

= A(m)

∞∑
i=0

Bi(m) g(i)(t), (7)176

where g(0)(t) = δ(t), and we used that the Delta function is the identity for convolu-177

tion power; furthermore, g(i)(·) indicates the ith convolution of g(·) with itself.178

By the Leibniz integral rule, one easily obtains a relationship between
dR(m)

dm
=

R′(m), A(m) and B(m), that is

R′(m) = A(m) +B(m)R′(m) ⇔ R′(m) =
A(m)

1−B(m)
,

which is a first order non-homogeneous differential equation that can be solved with the179

standard techniques of differential calculus.180

To the aim of solving the implicit equation in η(t,m), we stop at the first equal-181

ity in (7), and we apply the Laplace transform with respect to t to both the terms (we182

use the hat sign to indicate the transformed functions):183

η̂(s,m) = A(m) +B(m) η̂(s,m) ĝ(s) ⇔ η̂(s,m) =
A(m)

1−B(m)ĝ(s)
, (8)184

where185

ĝ(s) = (p− 1) (sc)p−1escΓ(1− p, sc) (9)186

is the Laplace transform of the Omori-Utsu function introduced in Section 2, and Γ(u, v) =187 ∫∞
v
xu−1e−xdx is the upper incomplete Gamma function (Bateman, 1953; Temme, 1996).188

In Fig.(1) we plot the function ĝ(s) defined above for different values of its parameters189

p, c. It shows quasi-constancy for small values of the variable, turning into a decreasing190

trend as s becomes larger. The rate of decrease does not change with p, whose variabil-191

ity only induces a vertical shift: the smaller p, the larger ĝ(s); the increase of the param-192

eter c induces instead a faster decrease of the function as s gets larger.193

Since the inverse Laplace transform of the left hand side in (8) is difficult to com-194

pute analytically, we follow the same approach as in Molchan (2005) and we make use195

of the Tauberian theorems (Feller, 1971) to obtain an approximation of the probability196

η(t,m) for the largest event in any time-magnitude ETAS cluster to be the (t,m) event.197

More precisely, given198

η̂(s,m) =

∫ ∞
0

e−stη(t,m) dt =

∫ ∞
0

e−stH(dt,m),199

where H(·,m) is the cumulative distribution function (c.d.f.) corresponding to η(·,m),200

we observe that for every y > 0 and for p > 1 it holds201

–6–
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lim
s→0

η̂(sy,m)

η̂(s,m)
= lim

s→0

1−B(m)ĝ(s)

1−B(m)ĝ(sy)
202

= lim
s→0

1−B(m)(p− 1) (sc)p−1escΓ(1− p, sc)
1−B(m)(p− 1) (scy)p−1escyΓ(1− p, scy)

203

= lim
s→0

1−B(m)(p− 1) esc
1

p− 1

1−B(m)(p− 1) escy
1

p− 1

204

=
1−B(m)

1−B(m)
= 1,205

where we used that Γ(z, x) ∼ Γ(z) − xz/z for x → 0+ and <(z) < 0 if z 6= −1. In206

fact, in the case of <(z) < 0, from Bender and Orszag (1999) we can write207

Γ(z, x) =

∫ +∞

x

tz−1
(

1− t+ · · ·+ (−1)N
tN

N !

)
dt−

∫ x

0

tz−1

(
exp(−t)−

N∑
n=0

(−t)N

n!

)
dt208

+

∫ +∞

0

tz−1

(
exp(−t)−

N∑
n=0

(−t)N

n!

)
dt,209

where N is the largest integer less than −z. Solving the first two integrals term by term210

and integrating the last one by part, we obtain211

Γ(z, x) = Γ(z)−
+∞∑
n=0

(−1)N
xz+n

n!(z + n)
.212

Then, we can apply the first Tauberian theorem (Feller, 1971), which states as fol-213

lows.214

Tauberian Theorem 1215

Let U be a measure (c.d.f.) and û its Laplace transform, i.e., û(s) =
∫∞
0
e−st U(dt).216

For y > 0, % ≥ 0 and with s · t = 1, it holds:217

lim
s→0

û(sy)

û(s)
=

(
1

y

)%
⇔ lim

t→∞

U(tx)

U(t)
= x% ⇔ û(s) ∼ U

(
1

s

)
Γ(%+ 1).218

In our case, we have to set % = 0, obtaining that the approximated solution H(t,m)219

for the implicit equation (8) verifies220

H(t,m) ∼ η̂

(
1

t
,m

)
221

=
A(m)

1−B(m)ĝ
(
1
t

)222

=
s(m) e−κ(m)[1−R(m)]

1−
[∫m

0
s(m∗)κ(m∗) e−κ(m∗)[1−R(m)] dm∗

]
(p− 1)

(
c
t

)p−1
e
c
t Γ(1− p, ct )

, (10)223

–7–
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where we used (6) and (9).224

To obtain η(t,m), we calculate the derivative of H with respect to t, i.e.,225

η(t,m) =
∂H(t,m)

∂t
∼ dĝ(1/t)

dt

A(m)B(m)(
1−B(m) ĝ

(
1
t

))2 . (11)226

It is straightforward to show that η(t,m) is asymptotically separable. In fact, us-227

ing that Γ(z, x) ∼ Γ(z)− xz/z for x→ 0 and <(z) < 0 if z 6= −1, we obtain228

ĝ
(
0+
)

= (p− 1)
(c
t

)p−1
ec/tΓ(1− p, c/t) ∼ (p− 1)

(c
t

)p−1
ec/t

(
Γ(1− p)−

(
c
t

)1−p
1− p

)
= 1.229

Therefore, for t→∞, we have230

η(t,m) ∼ dĝ(1/t)

dt

A(m)B(m)

(1−B(m))
2 = η(t) h(m). (12)231

As regards the temporal function, we get232

dĝ
(
1
t

)
dt

= ĝ

(
1

t

)(
−p− 1

t
− c

t2
+

Γ′(1− p, c/t)
Γ(1− p, c/t)

)
233

= (p− 1)
(c
t

)p−1
ec/t Γ(1− p, c/t)

(
1− p
t
− c

t2

)
+ (p− 1)

(c
t

)p−1
ec/t Γ′(1− p, c/t)234

= (p− 1)
(c
t

)p−1
ec/t

(
Γ(1− p)− (c/t)p−1

1− p

)(
1− p
t
− c

t2

)
+
p− 1

t
235

=

(
(p− 1)

(c
t

)p−1
ec/t Γ(1− p) + ec/t

)(
1− p
t
− c

t2

)
+
p− 1

t
236

= − (p− 1)2cp−1Γ(1− p)
tp

∼ t−p. (13)237

It is very interesting to observe that the asymptote of η(t) depends only on g(t)238

and that κ(m) and s(m) have no effect on it.239

To obtain instead the final expression for h(m), the productivity and GR functions240

introduced in Section 2 can also be substituted, as well as the explicit expressions of F (m) =241

1−R(m), that can be derived from Luo and Zhuang (2016) and Vere-Jones and Zhuang242

(2008), depending on the specific case considered. Precisely, we obtain the following.243

Subcritical case, µ < 1244

From Vere-Jones and Zhuang (2008), F (m) =
1

1− µ
e−βm[1 + o(1)] for m →245

∞, then:246

h(m) ∼
β e−βm e−Ae

αm 1
1−µ e

−βm ∫m
0
Aβ e−(β−α)m

∗
e−Ae

αm∗{ 1
1−µ e

−βm} dm∗(
1−

∫m
0
Aβ e−(β−α)m∗ e−Ae

αm∗{ 1
1−µ e

−βm} dm∗
)2 . (14)247

Critical case, µ = 1, α <
β

2
248

–8–
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From Vere-Jones and Zhuang (2008), F (m) =

(
1− α

β

)−1√
2

(
1− 2

α

β

)
e−

βm
2 [1+249

o(1)] for m→∞, then:250

h(m) ∼
β e−βm e

−Aeαm
{

(1−αβ )
−1
√

2(1−2αβ )e−
βm
2

} ∫m
0
Aβ e−(β−α)m

∗
e
−Aeαm

∗
{

(1−αβ )
−1
√

2(1−2αβ )e−
βm
2

}
dm∗[

1−
∫m
0
Aβ e−(β−α)m∗ e

−Aeαm∗
{

(1−αβ )
−1
√

2(1−2αβ )e−
βm
2

}
dm∗

]2 .

(15)251

Critical case, µ = 1, α =
β

2
252

From Luo and Zhuang (2016), F (m) =
2
√

2√
βm

e−αm[1 + o(1)] for m→∞, then:253

h(m) ∼
β e−βm e

−Aeαm
{

2
√

2√
βm

e−αm
} ∫m

0
Aβ e−(β−α)m

∗
e
−Aeαm

∗{ 2
√

2√
βm

e−αm
}
dm∗[

1−
∫m
0
Aβ e−(β−α)m∗ e

−Aeαm∗
{

2
√

2√
βm

e−αm
}
dm∗

]2 . (16)254

Critical case, µ = 1, β > α >
β

2
255

From Luo and Zhuang (2016), F (m) = ξe−αm[1 + o(1)] for m→∞, where ξ is256

the constant to which the function F (m) converges; then:257

h(m) ∼
β e−βm e−Ae

αm{ξe−αm} ∫m
0
Aβ e−(β−α)m

∗
e−Ae

αm∗{ξe−αm} dm∗[
1−

∫m
0
Aβ e−(β−α)m∗ e−Aeαm

∗{ξe−αm} dm∗
]2 . (17)258

Supercritical case, µ > 1259

From Zhuang and Ogata (2006), F (m) = Const. C > 0, for m→∞, then:260

h(m) ∼
β e−βm e−Ae

αmC
∫m
0
Aβ e−(β−α)m

∗
e−Ae

αm∗C dm∗[
1−

∫m
0
Aβ e−(β−α)m∗ e−Aeαm

∗C dm∗
]2 . (18)261

4 Numerical results262

It follows from Eq.(12) that η(t,m) is asymptotically separable, since it can be writ-263

ten as the product η(t) h(m).264

The function h(m) represents the probability to observe, as largest event, the mag-265

nitude m event at any time in any cluster, and in Fig.(2) we show the trend of the func-266

tion h(m) as the criticality varies: from the subcritical to supercritical regime. We show267

both the analytical and the numerical results. The implementation of the ETAS model268

is carried out as follows.269

1. The first step is to choose the background seismicity. This represents the zero-th270

order generation in a self-exiting point process and a certain number n0 of events271

is created.272
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2. Each of the background element generates a certain number of offspring. The num-273

ber n1 and the occurrence space-time position of the offspring depends of the func-274

tional form implemented in λ(t, x, y). This is the first order generation of events.275

3. The previous step is repeated considering nj = nj−1 and is iterated until we have276

nj∗ = 0, for a certain j∗.277

We observe that the simulated results fit very well the theoretical prediction.278

The temporal decay from Eq.(13) is plotted in Fig.(3) together with the ETAS nu-279

merical simulations. Also in this case we confirm that the asymptotic theoretical pre-280

diction fits very well the results from the ETAS synthetic catalogue.281

5 Inclusion of the spatial rate in the extreme event distribution282

In this section we will include the spatial component in the ETAS rate to derive283

the probability for the largest event in any cluster to have magnitude m, occur in t and284

nucleate in the spatial location (x, y), that is,285

η(t, x, y,m) = P{The largest event in any cluster is the (t, x, y,m) event}.286

Since the ETAS rate is separable in the space-time-magnitude domain, we can re-287

peat exactly the same reasoning as in Section 3 to obtain an implicit, recursive expres-288

sion for η(t, x, y,m):289

η(t, x, ym) = δ(t, x, y)A(m) +B(m)
(
η ◦ (g · f)

)
(t, x, y,m)290

= . . .291

= A(m)

∞∑
i=0

Bi(m) (g · f)(i)(t, x, y), (19)292

where (g · f)(0)(t, x, y) = δ(t, x, y) and · is the usual multiplicative sign. To solve the293

above equation, we will stop at the first equality in (19), apply the Laplace transform294

and make use of the Tauberian Theorem 1. Recalling again that the temporal and spa-295

tial components in the ETAS rate are separated, the solution of (19) is simply296

η̂(s, u, v,m) = A(m) +B(m) η̂(s, u, v,m) ĝ(s)f̂(u, v),297

that is,298

η̂(s, u, v,m) =
A(m)

1−B(m)ĝ(s)f̂(u, v)
, (20)299

where ĝ(s) is the Omori-Utsu Laplace transform of equation (9) and we used (8). We300

need then to explicitly derive the two-dimensional Laplace transform of the spatial com-301

ponent f(x, y) in the ETAS rate, that is (Voelker, 2013)302

f̂(u, v) =

∫ ∞
0

∫ ∞
0

e−ux−vyf(x, y) dxdy.303

We implement here the formulation typically adopted in the literature for the spa-304

tial component (Zhuang, 2011; Zhuang et al., 2019):305

f(x, y) =
q − 1

πDeγ(m−mc)

[
1 +

x2 + y2

Deγ(m−mc)

]−q
. (21)306
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In order to simplify the calculus and to interpreter better the results, we set x2+307

y2 = z2, Deγ(m−mc) = δ1 and q−1
πDeγ(m−mc)

= δ2. Eq.(21) then reads308

f(z) = δ2

[
1 +

z2

δ1

]−q
. (22)309

Recalling that the Laplace transform of a function f(z) is defined as f̂(w) =

∫ ∞
0

e−wzf(z)dz,310

by performing the substitution x = z/
√
δ1 we can compute the Laplace transform of311

f(z) in Eq.(22) as312

f̂(w) = δ2
√
δ1

∫ ∞
0

e−w
√
δ1x
[
1 + x2

]−q
dx313

=
1

Γ(q)
π3/2δ22−q−

1
2

(
1

δ1

)− q2− 1
4

wq−
1
2314 (

csc(πq)HHH 1
2−q

(√
δ1w

)
+ 2 csc(2πq)Jq− 1

2

(√
δ1w

)
− sec(πq)J 1

2−q

(√
δ1w

))
, (23)315

where Jn(ζ) is the Bessel function of the first type and HHHn(ζ) is the Struve function, which316

is the solution of a given non-homogeneous Bessel’s differential equation (Abramowitz317

& Stegun, 1972). In Fig.(4) we plot the trend of f̂(w) for different values of its param-318

eters D, γ, q: the function is shown to decrease with its variable w, and to assume smaller319

values for smaller q and larger γ and D, with the largest (smallest) differences observed320

when varying D (q).321

Consequently, we can rewrite the Eq.(20) as322

η̂(s, w,m) =
A(m)

1−B(m)ĝ(s)f̂(w)
, (24)323

where ĝ(s) and f̂(w) are respectively defined in Eqs. (9) and (23). Now, in order to find324

the solution η(t, z,m) from Eq.(24), we state and prove the following Tauberian theo-325

rem specific for functions in two-variables (see also Diamond (1987) and Bender and Orszag326

(2013)).327

Tauberian Theorem 2328

Let U(x, y) be a monotone non-decreasing function and û its Laplace transform,329

i.e., û =
∫∞
0

∫∞
0
e−xp−yqdU(x, y). If, for α, β, a, b > 0, it holds330

lim
(p,q)→(0,0)

û(αp, βq)

û(p, q)
= α−aβ−b,331

then:

U

(
ξ

p
,
η

q

)
= ξaηb

û(p, q)

Γ(a+ 1)Γ(b+ 1)
.332

Proof. Given the function G(x, y) =
xayb

Γ(a+ 1)Γ(b+ 1)
, it holds333

α−aβ−b =

∫ ∞
0

∫ ∞
0

e−xα−yβdG(x, y).334
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It then follows that335

û(αp, βq)

û(p, q)
=

∫∞
0

∫∞
0
e−αpx−βqydU(x, y)

û(p, q)
336

=

∫∞
0

∫∞
0
e−αξ−βηdU(ξ/p, η/q)

û(p, q)
337

=

∫ ∞
0

∫ ∞
0

e−αξ−βηdŪ(ξ, η),338

where in the second equality we imposed x = ξ/p and y = η/q, while in the third Ū(ξ, η) =339

U(ξ/p,η/q)
û(p,q) . The last equality is the Laplace transform of the function Ū(ξ, η). Since for340

(p, q)→ (0, 0) it holds
û(αp, βq)

û(p, q)
→ α−aβ−b by hypothesis, we can deduce that341

Ū(ξ, η)→ G(ξ, η) ∀(ξ, η),342

that is

U

(
ξ

p
,
η

q

)
∼ ξaηb û(p, q)

Γ(a+ 1)Γ(b+ 1)
.343

344

In our case one can show that the Tauberian Theorem 2 is satisfied, in fact, from345

Eq.(24), it holds346

lim
(s,w)→(0,0)

η̂(αs, βw,m)

η̂(s, w,m)
= 1. (25)347

Therefore, setting a, b = 0 and ξ, η = 1, we can obtain the approximated solu-348

tion349

U(t, z,m) ∼ η̂
(

1

t
,

1

z
,m

)
=

A(m)

1−B(m)ĝ

(
1

t

)
f̂

(
1

z

) , (26)350

where ĝ and f̂ are defined in Eqs. (9) and (23), respectively. The graphical representa-351

tion of the product ĝ

(
1

t

)
f̂

(
1

z

)
is given in Fig.(5) with respect to the temporal vari-352

able
1

t
and fixing five different values of the spatial variable

1

z
in the left panel, vice-versa353

in the right panel. Note that the x-axes contain the “Laplace variables”

(
1

t
,

1

z

)
= (s, w).354

By looking at the left panel, we can see that the product of the two Laplace transforms355

ĝ

(
1

t

)
f̂

(
1

z

)
increases with time t, getting quasi-constant upward vertical shifts as we356

use lower values for the space variable z. Instead, the right panel shows that the prod-357

uct decreases with this latter variable, but the upward vertical shifts observed when con-358

sidering higher t become progressively smaller, until blurring the lines for t > 50 (equiv-359

alently,
1

t
< 0.02). Finally, we stress that the final expression of U(t, z,m) in Eq. (26)360

will rely on the specific choice of the function F (m) = 1 − R(m), which is needed to361

obtain A(m) and B(m) as given in Eq. (6), depending on the stability cases discussed362

in Section 3. In general, for typical values of m,mc, α, β we expect A(m), B(m) > 0,363

but with a negative denominator in Eq. (26). Therefore, the trend of the function U(t, z,m)364
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is that shown in Fig.(5), but with inverted monotonicity, plus a vertical shift correspond-365

ing to the constant obtained from the explicit values of A(m) and B(m).366

Since U(t, z,m) is the joint CDF of t and z, the joint PDF η can be obtained through367

η(t, z,m) =
∂2

∂t∂z
U(t, z,m). (27)368

However, due to the high complexity of the functions involved, the analytical ex-369

plicit expression is hard to be obtained, thus making the numerical procedure the fast370

track. We expect it will certainly depend again on the specific stability case considered.371

6 Conclusions372

Earthquake forecasting is a challenging task that plays a crucial role in both so-373

cial safety and research science. The self-organized criticality of the earthquake phenomenon374

piles on the complexity of the problem. Seismic hazard assessment, based on the Epi-375

demic Type Aftershock Sequence (ETAS) model, has been instrumental in providing re-376

liable forecasts for operational purposes. While retrospective analyses have mainly fo-377

cused on aftershock sequences, attention has also been given to the largest event in the378

sequence, as predicting extreme events is vital for preventing catastrophic disasters. The379

distribution of foreshocks, which are background events with offspring of larger magni-380

tudes, is considered essential in earthquake prediction and assessing the probability of381

occurrence of the largest event in a sequence.382

This paper extends previous research by deriving the probability for the largest event383

within any ETAS cluster to occur at a specific space, time and magnitude, considering384

both the temporal and spatial components of the process. By examining the distinguish-385

ing features between mainshocks and foreshocks, these findings contribute to a better386

understanding of earthquake prediction and provide valuable insights into assessing the387

probability of extreme events within seismic clusters.388

Open Research389

All data and software used in this paper will be available by the time of publica-390

tion in a specific repository.391
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1

z
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ent values of the temporal variable
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t
(right panel). The plot has been obtained by setting
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Abstract13

Earthquake forecasting is a challenging goal for seismologists and geophysicists due to14

the complex nature of the earthquake phenomenon. Delivering reliable forecasts is cru-15

cial for public safety. This study derives the probability of extreme events in any seis-16

mic cluster generated by the Epidemic Type Aftershock Sequence (ETAS) model. This17

probability is obtained as a function of time, space and magnitude. The results contribute18

to understanding the distinguishing features between mainshocks and foreshocks and pro-19

vide insights into earthquake prediction and the probability assessment of extreme events20

within seismic clusters.21

Plain Language Summary22

Forecasting extreme events in a seismic sequence is a challenging but crucial goal23

for statistical seismologists to prevent catastrophic disasters. To date, the most used model24

in earthquake forecasting applications is the Epidemic-Type-Aftershock-Sequence (ETAS)25

model. It accounts for the most widely recognized feature of seismicity, that is, events’26

spatiotemporal clustering. In this work, we explicitly derive the probability for the largest27

event, in any seismic ETAS cluster, to occur in the time-space-magnitude location (t, x, y,m).28

To do that, we use some advanced mathematical tools, such as Laplace transforms, Taube-29

rian theorems, Bessel/Struve functions. In the pure-temporal case, depending on the spe-30

cific stability condition considered (explosion or not of the process), we derive the prob-31

ability of the largest event occurring in (t,m) as the product between an only-time func-32

tion and an only-magnitude function. Numerical results show that an ETAS synthetic33

catalogue fits well the theoretical prediction. When including the spatial component in34

the analysis, due to the high-complexity of the functions involved, we cannot analyti-35

cally derive the probability of the largest event to occur in (t, x, y,m); we derive instead36

its Laplace transform, which is shown to decrease with time and increase with space. A37

numerical procedure is suggested to obtain the inverse transform.38

1 Introduction39

Earthquake forecasting represents one of the most important and challenging goal40

for statistical seismologists and seismic-modeling researchers. The earthquake phenomenon41

is very complex, as it represents an example of self-organized criticality (Bak & Tang,42

1989; Sornette & Sornette, 1989; Jagla et al., 2014; Lippiello et al., 2019; Petrillo et al.,43

2020; Lippiello et al., 2021), but at the same time it is concretely very often tangible and44

the need to deliver reliable forecasts is essential for public safety.45

Seismic hazard assessment is based on several scaling laws, which have been found46

to represent a good approximation for earthquake sequences, such as the constitutive laws47

in the Epidemic Type Aftershock Sequence (ETAS) model, briefly illustrated in Section 2,48

and representing the most used model for operational forecasting issues (Marzocchi, 2008;49

Marzocchi & Lombardi, 2009; Jordan et al., 2011; Marzocchi et al., 2012; Jordan et al.,50

2014; Marzocchi et al., 2014; Page et al., 2016; Marzocchi et al., 2017; Llenos & Michael,51

2017; Omi et al., 2018; Spassiani, Falcone, et al., 2023; Spassiani, Yaghmaei-Sabegh, et52

al., 2023).53

Retrospective analyses are mostly focused on aftershock sequences following a large54

event, named mainshock, and the results obtained are used for analyses of perspective55

type. However, a lot of attention has been paid in the literature also to the largest event56

in the earthquake sequence: the forecast of extreme events is crucial to prevent disas-57

ters causing the death of several people. More precisely, in Saichev and Sornette (2005),58

Zhuang and Ogata (2006), Vere-Jones and Zhuang (2008) and Luo and Zhuang (2016),59

the distribution of the largest event in the critical ETAS model is related to the mag-60

nitude distribution of foreshocks, which are defined as background events that have at61
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least one offspring, direct or indirect, with a larger magnitude. Although the difference62

between mainshocks and foreshocks is still not rigorously defined and accepted in the63

literature (Helmstetter et al., 2002; Helmstetter & Sornette, 2003; Felzer et al., 2004; Mignan,64

2014; Lippiello et al., 2020; Petrillo & Lippiello, 2021), the derivation of the probabil-65

ity of foreshocks under a clustering model can be used as a test to find distinguishing66

features between these kinds of events. The distribution of foreshocks is in fact consid-67

ered essential in the earthquake prediction (Abercrombie & Mori, 1994; Savage & Rupp,68

2000; Merrifield et al., 2004; Marzocchi et al., 2019), as it allows us to evaluate the prob-69

ability of occurrence of the largest event in a sequence.70

In this paper, we extend the results of Saichev and Sornette (2005), Zhuang and71

Ogata (2006), Vere-Jones and Zhuang (2008) and Luo and Zhuang (2016) by deriving72

the probability for the largest event, in any ETAS cluster, to occur in time t and have73

magnitude m. It is related to all the samples and to the extreme events in the sequence,74

as here we do not consider a fixed initial event’s magnitude and we include the tempo-75

ral component of the process. The same procedure can be adopted to include the spa-76

tial component and then, thanks to the separability between space and time in the ETAS77

rate, to derive the probability for the largest event in any ETAS cluster to occur in (t, x, y,m),78

(x, y) being the epicenter coordinates, that is, the final expression for that probability79

in the complete ETAS setting.80

2 The ETAS model81

The Epidemic Type Aftershock Sequence (ETAS) model (Ogata, 1988, 1989, 1998)82

represents a benchmark in statistical seismology and belongs to the class of linear, marked,83

self-exciting Hawkes processes of branching type: each seismic event represents an ele-84

ment of the process, it is identified with its space-time location and it is marked by the85

magnitude. According to the branching framework, all the events may give birth to their86

own progeny independently of the others, resulting in a cluster-type structure. The clus-87

ters’ elements represent the aftershocks component of the process, associated with the88

stress perturbations due to previous shocks and modeled as a space-time non-homogeneous89

Poisson process. Instead, the initial events constitute the background component of the90

process, not triggered by precursory shocks and modeled as a time-stationary Poisson91

process, non-homogeneous in space. The conditional intensity of the space-time-magnitude92

ETAS model, completely characterizing the process, is93

λ(t, x, y,m|Ht) = λ(t, x, y|Ht) s(m),94

with λ(t, x, y|Ht) = µ(x, y) +
∑
i:ti<t

κ(mi)g(t− ti)f(x− xi, y − yi), (1)95

where Ht is the past history of the event (t, x, y,m) and:96

1. µ(x, y) is the time-stationary background rate;97

2. κ(m) = A exp{α(m −mc)}, m ≥ mc, is the productivity law, representing the98

fertility of the event with magnitude m. The magnitude mc is the completeness99

threshold, that is the value such that all the events with a higher magnitude are100

surely recorded in the seismic catalog;101

3. g(t) = p−1
c

(
1 + t

c

)−p
, t > 0, is the Omori-Utsu law for the aftershocks’ decay;102

4. f(x, y) is the probability density function (PDF) for the location of the event, typ-103

ically of power law type, that is f(x, y) = q−1
πDeγ(m−mc)

[
1 + x2+y2

Deγ(m−mc)

]−q
;104

5. s(m) = β exp{−β(m−mc)}, m ≥ mc, is the decreasing exponential Gutenberg-105

Richter (GR) law for the magnitudes of all the events in the process.106

All the parameters in the ETAS conditional intensity are positive and typically estimated107

through maximum likelihood techniques, where the log-likelihood function is easily de-108

rived as109
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lnL =
∑
i

λ(ti, xi, yi,mi|Hti)−
∫ ∫ ∫

T ×S
λ(t, x, y|Ht)dtdxdy +

∑
i

ln s(mi).110

A seismic sequence modeled by the space-time-magnitude ETAS is non-explosive111

under the conditions p > 1, β > α and n̄ = Aβ
β−α > 1, where the latter is the critical112

parameter of the process; in the specific case of the ETAS model, it coincides also to the113

branching ratio: it is the average number of first generation aftershocks per mother event,114

but can be defined also as the proportion of triggered events with respect to all the shocks115

(Helmstetter & Sornette, 2002; Zhuang et al., 2012).116

3 Theoretical derivation of the probability for the extreme event (t,m)117

In Saichev and Sornette (2005), Zhuang and Ogata (2006), Vere-Jones and Zhuang118

(2008) and Luo and Zhuang (2016), the authors consider the probability ζ(m,m′) for119

an event with magnitude m to have no offspring larger than a given magnitude m′. It120

is obtained as121

ζ(m,m′) = exp {−κ(m)F (m′)} ,122

where F (m′) = 1−
∫ m′

mc

s(m∗) exp {−κ(m∗)F (m′)} dm∗123

represents the probability for the largest earthquake in an arbitrary cluster, including124

the initial event and all its descendants, to be greater than m′. In the above formula-125

tions, κ(·) and s(·) are respectively the productivity law and the GR law introduced in126

the previous section.127

Here, we want to integrate over the magnitude of the mother event, and we want128

to add the temporal component of the ETAS rate. We then focus on the probability for129

the largest event to have magnitude m and to occur in time t or, briefly, to be the (t,m)130

event:131

η(t,m) = P{The largest event in any cluster is the (t,m) event}.132

The probability η(t,m) can be obtained as the union of two disjoint conditions:133

I1 = “ the largest event is the mother, occurring in t = 0, and none of its children has134

magnitude greater than m; that is, the largest event is (0,m) and any other (m̄, t >135

0) event is such that m̄ < m ”;136

I2 = “ the largest event (t,m) belongs to one subcluster, that is, t > 0 and neither the137

mother nor any other event in all the other subclusters have magnitude greater138

than m ”.139

These two events represent a partition of Ω = {The largest event in any cluster is the140

(t,m) event}, therefore η(t,m) is obtained as the sum of their probabilities. In other words,141

it holds142

η(t,m) = P{I1}+ P{I2}. (2)143

To derive the two probabilities P{I1} and P{I2} of above, we have to compute the144

probability R(m′) for the largest event in a cluster to be less than m′, which is obviously145

R(m′) = 1− F (m′), in fact:146
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R(m′) = P{The largest event in a cluster is less than m′},147

=

∫ m′

0

P{The largest event in the cluster generated by initial event with mag148

m∗ is less than m′ |The initial event in the cluster has mag m∗}149

· P{The initial event in the cluster has mag m∗} dm∗150

=

∫ m′

0

∞∑
n=0

[R(m′)]n
[κ(m∗)]n e−κ(m

∗)

n!
s(m∗) dm∗151

=

∫ m′

0

e−κ(m
∗)[1−R(m′)] s(m∗) dm∗, (3)152

where we have set mc = 0 to shorten notations (hereafter), and we summed over all153

the subclusters of the initial event’s n children.154

Now, recalling that the number of events is Poisson distributed, we derive the first155

term in the Right-Hand-Side (RHS) of (2) as follows:156

P{I1} = δ(t) s(m)

∞∑
n=0

[R(m)]n
[κ(m)]n

n!
e−κ(m) = δ(t) s(m) e−κ(m)[1−R(m)], (4)157

where the term δ(t) s(m) says that the initial event occurred in t = 0 and is randomly158

selected from a GR distribution. Instead, as regards the second term in the RHS of (2),159

we have to randomly select one of the subclusters of the initial event’s n children, which160

is assumed to contain the largest event, and to impose that both the mother and all the161

other shocks have a lower magnitude:162

P{I2} =

∫ m

0

s(m∗)

[ ∞∑
n=1

[κ(m∗)]n

n!
e−κ(m

∗)

(
n

1

)∫ t

0

η(t− ti,m) [R(m)]n−1g(ti) dti

]
dm∗163

=

∫ m

0

s(m∗)

[ ∞∑
n=1

κ(m∗) [κ(m∗)]n−1

(n− 1)!
e−κ(m

∗)[R(m)]n−1
∫ t

0

η(t− ti,m) g(ti) dti

]
dm∗164

=

∫ m

0

s(m∗)κ(m∗)

∞∑
n=0

[κ(m∗)]n

n!
e−κ(m

∗) [R(m)]n
∫ t

0

η(t− ti,m) g(ti) dti dm
∗

165

=

∫ m

0

s(m∗)κ(m∗) e−κ(m
∗)[1−R(m)] dm∗

∫ t

0

η(t− ti,m) g(ti) dti166

=

∫ m

0

s(m∗)κ(m∗) e−κ(m
∗)[1−R(m)] dm∗ ·

(
η ◦ g

)
(t,m), (5)167

where we used the symbol ◦ for the convolution. Then, setting168

A(m) = s(m) e−κ(m)[1−R(m)],169

B(m) =

∫ m

0

s(m∗)κ(m∗) e−κ(m
∗)[1−R(m)] dm∗. (6)170

We can rewrite the probability η(t,m) in (2) as a recursive equation:171
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η(t,m) = δ(t)A(m) +B(m)
(
η ◦ g

)
(t,m)172

= δ(t)A(m) +B(m)

{[
δ(t)A(m) +B(m)

(
η ◦ g

)]
◦ g
}

(t,m)173

= δ(t)A(m) +A(m)B(m) g(t) +B2(m)
(
η ◦ g(2)

)
(t,m)174

= δ(t)A(m) +A(m)B(m) g(t) +A(m)B2(m) g(2)(t) +B3(m)
(
η ◦ g(3)

)
(t,m) + . . .175

= A(m)

∞∑
i=0

Bi(m) g(i)(t), (7)176

where g(0)(t) = δ(t), and we used that the Delta function is the identity for convolu-177

tion power; furthermore, g(i)(·) indicates the ith convolution of g(·) with itself.178

By the Leibniz integral rule, one easily obtains a relationship between
dR(m)

dm
=

R′(m), A(m) and B(m), that is

R′(m) = A(m) +B(m)R′(m) ⇔ R′(m) =
A(m)

1−B(m)
,

which is a first order non-homogeneous differential equation that can be solved with the179

standard techniques of differential calculus.180

To the aim of solving the implicit equation in η(t,m), we stop at the first equal-181

ity in (7), and we apply the Laplace transform with respect to t to both the terms (we182

use the hat sign to indicate the transformed functions):183

η̂(s,m) = A(m) +B(m) η̂(s,m) ĝ(s) ⇔ η̂(s,m) =
A(m)

1−B(m)ĝ(s)
, (8)184

where185

ĝ(s) = (p− 1) (sc)p−1escΓ(1− p, sc) (9)186

is the Laplace transform of the Omori-Utsu function introduced in Section 2, and Γ(u, v) =187 ∫∞
v
xu−1e−xdx is the upper incomplete Gamma function (Bateman, 1953; Temme, 1996).188

In Fig.(1) we plot the function ĝ(s) defined above for different values of its parameters189

p, c. It shows quasi-constancy for small values of the variable, turning into a decreasing190

trend as s becomes larger. The rate of decrease does not change with p, whose variabil-191

ity only induces a vertical shift: the smaller p, the larger ĝ(s); the increase of the param-192

eter c induces instead a faster decrease of the function as s gets larger.193

Since the inverse Laplace transform of the left hand side in (8) is difficult to com-194

pute analytically, we follow the same approach as in Molchan (2005) and we make use195

of the Tauberian theorems (Feller, 1971) to obtain an approximation of the probability196

η(t,m) for the largest event in any time-magnitude ETAS cluster to be the (t,m) event.197

More precisely, given198

η̂(s,m) =

∫ ∞
0

e−stη(t,m) dt =

∫ ∞
0

e−stH(dt,m),199

where H(·,m) is the cumulative distribution function (c.d.f.) corresponding to η(·,m),200

we observe that for every y > 0 and for p > 1 it holds201
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lim
s→0

η̂(sy,m)

η̂(s,m)
= lim

s→0

1−B(m)ĝ(s)

1−B(m)ĝ(sy)
202

= lim
s→0

1−B(m)(p− 1) (sc)p−1escΓ(1− p, sc)
1−B(m)(p− 1) (scy)p−1escyΓ(1− p, scy)

203

= lim
s→0

1−B(m)(p− 1) esc
1

p− 1

1−B(m)(p− 1) escy
1

p− 1

204

=
1−B(m)

1−B(m)
= 1,205

where we used that Γ(z, x) ∼ Γ(z) − xz/z for x → 0+ and <(z) < 0 if z 6= −1. In206

fact, in the case of <(z) < 0, from Bender and Orszag (1999) we can write207

Γ(z, x) =

∫ +∞

x

tz−1
(

1− t+ · · ·+ (−1)N
tN

N !

)
dt−

∫ x

0

tz−1

(
exp(−t)−

N∑
n=0

(−t)N

n!

)
dt208

+

∫ +∞

0

tz−1

(
exp(−t)−

N∑
n=0

(−t)N

n!

)
dt,209

where N is the largest integer less than −z. Solving the first two integrals term by term210

and integrating the last one by part, we obtain211

Γ(z, x) = Γ(z)−
+∞∑
n=0

(−1)N
xz+n

n!(z + n)
.212

Then, we can apply the first Tauberian theorem (Feller, 1971), which states as fol-213

lows.214

Tauberian Theorem 1215

Let U be a measure (c.d.f.) and û its Laplace transform, i.e., û(s) =
∫∞
0
e−st U(dt).216

For y > 0, % ≥ 0 and with s · t = 1, it holds:217

lim
s→0

û(sy)

û(s)
=

(
1

y

)%
⇔ lim

t→∞

U(tx)

U(t)
= x% ⇔ û(s) ∼ U

(
1

s

)
Γ(%+ 1).218

In our case, we have to set % = 0, obtaining that the approximated solution H(t,m)219

for the implicit equation (8) verifies220

H(t,m) ∼ η̂

(
1

t
,m

)
221

=
A(m)

1−B(m)ĝ
(
1
t

)222

=
s(m) e−κ(m)[1−R(m)]

1−
[∫m

0
s(m∗)κ(m∗) e−κ(m∗)[1−R(m)] dm∗

]
(p− 1)

(
c
t

)p−1
e
c
t Γ(1− p, ct )

, (10)223
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where we used (6) and (9).224

To obtain η(t,m), we calculate the derivative of H with respect to t, i.e.,225

η(t,m) =
∂H(t,m)

∂t
∼ dĝ(1/t)

dt

A(m)B(m)(
1−B(m) ĝ

(
1
t

))2 . (11)226

It is straightforward to show that η(t,m) is asymptotically separable. In fact, us-227

ing that Γ(z, x) ∼ Γ(z)− xz/z for x→ 0 and <(z) < 0 if z 6= −1, we obtain228

ĝ
(
0+
)

= (p− 1)
(c
t

)p−1
ec/tΓ(1− p, c/t) ∼ (p− 1)

(c
t

)p−1
ec/t

(
Γ(1− p)−

(
c
t

)1−p
1− p

)
= 1.229

Therefore, for t→∞, we have230

η(t,m) ∼ dĝ(1/t)

dt

A(m)B(m)

(1−B(m))
2 = η(t) h(m). (12)231

As regards the temporal function, we get232

dĝ
(
1
t

)
dt

= ĝ

(
1

t

)(
−p− 1

t
− c

t2
+

Γ′(1− p, c/t)
Γ(1− p, c/t)

)
233

= (p− 1)
(c
t

)p−1
ec/t Γ(1− p, c/t)

(
1− p
t
− c

t2

)
+ (p− 1)

(c
t

)p−1
ec/t Γ′(1− p, c/t)234

= (p− 1)
(c
t

)p−1
ec/t

(
Γ(1− p)− (c/t)p−1

1− p

)(
1− p
t
− c

t2

)
+
p− 1

t
235

=

(
(p− 1)

(c
t

)p−1
ec/t Γ(1− p) + ec/t

)(
1− p
t
− c

t2

)
+
p− 1

t
236

= − (p− 1)2cp−1Γ(1− p)
tp

∼ t−p. (13)237

It is very interesting to observe that the asymptote of η(t) depends only on g(t)238

and that κ(m) and s(m) have no effect on it.239

To obtain instead the final expression for h(m), the productivity and GR functions240

introduced in Section 2 can also be substituted, as well as the explicit expressions of F (m) =241

1−R(m), that can be derived from Luo and Zhuang (2016) and Vere-Jones and Zhuang242

(2008), depending on the specific case considered. Precisely, we obtain the following.243

Subcritical case, µ < 1244

From Vere-Jones and Zhuang (2008), F (m) =
1

1− µ
e−βm[1 + o(1)] for m →245

∞, then:246

h(m) ∼
β e−βm e−Ae

αm 1
1−µ e

−βm ∫m
0
Aβ e−(β−α)m

∗
e−Ae

αm∗{ 1
1−µ e

−βm} dm∗(
1−

∫m
0
Aβ e−(β−α)m∗ e−Ae

αm∗{ 1
1−µ e

−βm} dm∗
)2 . (14)247

Critical case, µ = 1, α <
β

2
248
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From Vere-Jones and Zhuang (2008), F (m) =

(
1− α

β

)−1√
2

(
1− 2

α

β

)
e−

βm
2 [1+249

o(1)] for m→∞, then:250

h(m) ∼
β e−βm e

−Aeαm
{

(1−αβ )
−1
√

2(1−2αβ )e−
βm
2

} ∫m
0
Aβ e−(β−α)m

∗
e
−Aeαm

∗
{

(1−αβ )
−1
√

2(1−2αβ )e−
βm
2

}
dm∗[

1−
∫m
0
Aβ e−(β−α)m∗ e

−Aeαm∗
{

(1−αβ )
−1
√

2(1−2αβ )e−
βm
2

}
dm∗

]2 .

(15)251

Critical case, µ = 1, α =
β

2
252

From Luo and Zhuang (2016), F (m) =
2
√

2√
βm

e−αm[1 + o(1)] for m→∞, then:253

h(m) ∼
β e−βm e

−Aeαm
{

2
√

2√
βm

e−αm
} ∫m

0
Aβ e−(β−α)m

∗
e
−Aeαm

∗{ 2
√

2√
βm

e−αm
}
dm∗[

1−
∫m
0
Aβ e−(β−α)m∗ e

−Aeαm∗
{

2
√

2√
βm

e−αm
}
dm∗

]2 . (16)254

Critical case, µ = 1, β > α >
β

2
255

From Luo and Zhuang (2016), F (m) = ξe−αm[1 + o(1)] for m→∞, where ξ is256

the constant to which the function F (m) converges; then:257

h(m) ∼
β e−βm e−Ae

αm{ξe−αm} ∫m
0
Aβ e−(β−α)m

∗
e−Ae

αm∗{ξe−αm} dm∗[
1−

∫m
0
Aβ e−(β−α)m∗ e−Aeαm

∗{ξe−αm} dm∗
]2 . (17)258

Supercritical case, µ > 1259

From Zhuang and Ogata (2006), F (m) = Const. C > 0, for m→∞, then:260

h(m) ∼
β e−βm e−Ae

αmC
∫m
0
Aβ e−(β−α)m

∗
e−Ae

αm∗C dm∗[
1−

∫m
0
Aβ e−(β−α)m∗ e−Aeαm

∗C dm∗
]2 . (18)261

4 Numerical results262

It follows from Eq.(12) that η(t,m) is asymptotically separable, since it can be writ-263

ten as the product η(t) h(m).264

The function h(m) represents the probability to observe, as largest event, the mag-265

nitude m event at any time in any cluster, and in Fig.(2) we show the trend of the func-266

tion h(m) as the criticality varies: from the subcritical to supercritical regime. We show267

both the analytical and the numerical results. The implementation of the ETAS model268

is carried out as follows.269

1. The first step is to choose the background seismicity. This represents the zero-th270

order generation in a self-exiting point process and a certain number n0 of events271

is created.272
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2. Each of the background element generates a certain number of offspring. The num-273

ber n1 and the occurrence space-time position of the offspring depends of the func-274

tional form implemented in λ(t, x, y). This is the first order generation of events.275

3. The previous step is repeated considering nj = nj−1 and is iterated until we have276

nj∗ = 0, for a certain j∗.277

We observe that the simulated results fit very well the theoretical prediction.278

The temporal decay from Eq.(13) is plotted in Fig.(3) together with the ETAS nu-279

merical simulations. Also in this case we confirm that the asymptotic theoretical pre-280

diction fits very well the results from the ETAS synthetic catalogue.281

5 Inclusion of the spatial rate in the extreme event distribution282

In this section we will include the spatial component in the ETAS rate to derive283

the probability for the largest event in any cluster to have magnitude m, occur in t and284

nucleate in the spatial location (x, y), that is,285

η(t, x, y,m) = P{The largest event in any cluster is the (t, x, y,m) event}.286

Since the ETAS rate is separable in the space-time-magnitude domain, we can re-287

peat exactly the same reasoning as in Section 3 to obtain an implicit, recursive expres-288

sion for η(t, x, y,m):289

η(t, x, ym) = δ(t, x, y)A(m) +B(m)
(
η ◦ (g · f)

)
(t, x, y,m)290

= . . .291

= A(m)

∞∑
i=0

Bi(m) (g · f)(i)(t, x, y), (19)292

where (g · f)(0)(t, x, y) = δ(t, x, y) and · is the usual multiplicative sign. To solve the293

above equation, we will stop at the first equality in (19), apply the Laplace transform294

and make use of the Tauberian Theorem 1. Recalling again that the temporal and spa-295

tial components in the ETAS rate are separated, the solution of (19) is simply296

η̂(s, u, v,m) = A(m) +B(m) η̂(s, u, v,m) ĝ(s)f̂(u, v),297

that is,298

η̂(s, u, v,m) =
A(m)

1−B(m)ĝ(s)f̂(u, v)
, (20)299

where ĝ(s) is the Omori-Utsu Laplace transform of equation (9) and we used (8). We300

need then to explicitly derive the two-dimensional Laplace transform of the spatial com-301

ponent f(x, y) in the ETAS rate, that is (Voelker, 2013)302

f̂(u, v) =

∫ ∞
0

∫ ∞
0

e−ux−vyf(x, y) dxdy.303

We implement here the formulation typically adopted in the literature for the spa-304

tial component (Zhuang, 2011; Zhuang et al., 2019):305

f(x, y) =
q − 1

πDeγ(m−mc)

[
1 +

x2 + y2

Deγ(m−mc)

]−q
. (21)306
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In order to simplify the calculus and to interpreter better the results, we set x2+307

y2 = z2, Deγ(m−mc) = δ1 and q−1
πDeγ(m−mc)

= δ2. Eq.(21) then reads308

f(z) = δ2

[
1 +

z2

δ1

]−q
. (22)309

Recalling that the Laplace transform of a function f(z) is defined as f̂(w) =

∫ ∞
0

e−wzf(z)dz,310

by performing the substitution x = z/
√
δ1 we can compute the Laplace transform of311

f(z) in Eq.(22) as312

f̂(w) = δ2
√
δ1

∫ ∞
0

e−w
√
δ1x
[
1 + x2

]−q
dx313

=
1

Γ(q)
π3/2δ22−q−

1
2

(
1

δ1

)− q2− 1
4

wq−
1
2314 (

csc(πq)HHH 1
2−q

(√
δ1w

)
+ 2 csc(2πq)Jq− 1

2

(√
δ1w

)
− sec(πq)J 1

2−q

(√
δ1w

))
, (23)315

where Jn(ζ) is the Bessel function of the first type and HHHn(ζ) is the Struve function, which316

is the solution of a given non-homogeneous Bessel’s differential equation (Abramowitz317

& Stegun, 1972). In Fig.(4) we plot the trend of f̂(w) for different values of its param-318

eters D, γ, q: the function is shown to decrease with its variable w, and to assume smaller319

values for smaller q and larger γ and D, with the largest (smallest) differences observed320

when varying D (q).321

Consequently, we can rewrite the Eq.(20) as322

η̂(s, w,m) =
A(m)

1−B(m)ĝ(s)f̂(w)
, (24)323

where ĝ(s) and f̂(w) are respectively defined in Eqs. (9) and (23). Now, in order to find324

the solution η(t, z,m) from Eq.(24), we state and prove the following Tauberian theo-325

rem specific for functions in two-variables (see also Diamond (1987) and Bender and Orszag326

(2013)).327

Tauberian Theorem 2328

Let U(x, y) be a monotone non-decreasing function and û its Laplace transform,329

i.e., û =
∫∞
0

∫∞
0
e−xp−yqdU(x, y). If, for α, β, a, b > 0, it holds330

lim
(p,q)→(0,0)

û(αp, βq)

û(p, q)
= α−aβ−b,331

then:

U

(
ξ

p
,
η

q

)
= ξaηb

û(p, q)

Γ(a+ 1)Γ(b+ 1)
.332

Proof. Given the function G(x, y) =
xayb

Γ(a+ 1)Γ(b+ 1)
, it holds333

α−aβ−b =

∫ ∞
0

∫ ∞
0

e−xα−yβdG(x, y).334
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It then follows that335

û(αp, βq)

û(p, q)
=

∫∞
0

∫∞
0
e−αpx−βqydU(x, y)

û(p, q)
336

=

∫∞
0

∫∞
0
e−αξ−βηdU(ξ/p, η/q)

û(p, q)
337

=

∫ ∞
0

∫ ∞
0

e−αξ−βηdŪ(ξ, η),338

where in the second equality we imposed x = ξ/p and y = η/q, while in the third Ū(ξ, η) =339

U(ξ/p,η/q)
û(p,q) . The last equality is the Laplace transform of the function Ū(ξ, η). Since for340

(p, q)→ (0, 0) it holds
û(αp, βq)

û(p, q)
→ α−aβ−b by hypothesis, we can deduce that341

Ū(ξ, η)→ G(ξ, η) ∀(ξ, η),342

that is

U

(
ξ

p
,
η

q

)
∼ ξaηb û(p, q)

Γ(a+ 1)Γ(b+ 1)
.343

344

In our case one can show that the Tauberian Theorem 2 is satisfied, in fact, from345

Eq.(24), it holds346

lim
(s,w)→(0,0)

η̂(αs, βw,m)

η̂(s, w,m)
= 1. (25)347

Therefore, setting a, b = 0 and ξ, η = 1, we can obtain the approximated solu-348

tion349

U(t, z,m) ∼ η̂
(

1

t
,

1

z
,m

)
=

A(m)

1−B(m)ĝ

(
1

t

)
f̂

(
1

z

) , (26)350

where ĝ and f̂ are defined in Eqs. (9) and (23), respectively. The graphical representa-351

tion of the product ĝ

(
1

t

)
f̂

(
1

z

)
is given in Fig.(5) with respect to the temporal vari-352

able
1

t
and fixing five different values of the spatial variable

1

z
in the left panel, vice-versa353

in the right panel. Note that the x-axes contain the “Laplace variables”

(
1

t
,

1

z

)
= (s, w).354

By looking at the left panel, we can see that the product of the two Laplace transforms355

ĝ

(
1

t

)
f̂

(
1

z

)
increases with time t, getting quasi-constant upward vertical shifts as we356

use lower values for the space variable z. Instead, the right panel shows that the prod-357

uct decreases with this latter variable, but the upward vertical shifts observed when con-358

sidering higher t become progressively smaller, until blurring the lines for t > 50 (equiv-359

alently,
1

t
< 0.02). Finally, we stress that the final expression of U(t, z,m) in Eq. (26)360

will rely on the specific choice of the function F (m) = 1 − R(m), which is needed to361

obtain A(m) and B(m) as given in Eq. (6), depending on the stability cases discussed362

in Section 3. In general, for typical values of m,mc, α, β we expect A(m), B(m) > 0,363

but with a negative denominator in Eq. (26). Therefore, the trend of the function U(t, z,m)364
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is that shown in Fig.(5), but with inverted monotonicity, plus a vertical shift correspond-365

ing to the constant obtained from the explicit values of A(m) and B(m).366

Since U(t, z,m) is the joint CDF of t and z, the joint PDF η can be obtained through367

η(t, z,m) =
∂2

∂t∂z
U(t, z,m). (27)368

However, due to the high complexity of the functions involved, the analytical ex-369

plicit expression is hard to be obtained, thus making the numerical procedure the fast370

track. We expect it will certainly depend again on the specific stability case considered.371

6 Conclusions372

Earthquake forecasting is a challenging task that plays a crucial role in both so-373

cial safety and research science. The self-organized criticality of the earthquake phenomenon374

piles on the complexity of the problem. Seismic hazard assessment, based on the Epi-375

demic Type Aftershock Sequence (ETAS) model, has been instrumental in providing re-376

liable forecasts for operational purposes. While retrospective analyses have mainly fo-377

cused on aftershock sequences, attention has also been given to the largest event in the378

sequence, as predicting extreme events is vital for preventing catastrophic disasters. The379

distribution of foreshocks, which are background events with offspring of larger magni-380

tudes, is considered essential in earthquake prediction and assessing the probability of381

occurrence of the largest event in a sequence.382

This paper extends previous research by deriving the probability for the largest event383

within any ETAS cluster to occur at a specific space, time and magnitude, considering384

both the temporal and spatial components of the process. By examining the distinguish-385

ing features between mainshocks and foreshocks, these findings contribute to a better386

understanding of earthquake prediction and provide valuable insights into assessing the387

probability of extreme events within seismic clusters.388

Open Research389

All data and software used in this paper will be available by the time of publica-390

tion in a specific repository.391
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Figure 5. The product function ĝ

(
1

t

)
f̂

(
1

z

)
of Eq. (26) - ĝ, f̂ are respectively defined

in Eqs. (9) and (23) - with respect to: the temporal variable
1

t
and fixing five different val-

ues of the spatial variable
1

z
(left panel); the spatial variable

1

z
in the and fixing five differ-

ent values of the temporal variable
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t
(right panel). The plot has been obtained by setting

(p, c,D, q, γ,mc,m) = (1.1, 0.07, 0.005, 1.7, 0.5, 2, 5).
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