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Abstract

Manganese (Mn) is a key cofactor in enzymes responsible for lignin decay (mainly Mn peroxidase), regulating the rate of litter

degradation and carbon (C) turnover in temperate and boreal forest biomes.While soil Mn is mainly derived from bedrock,

atmospheric Mn could also contribute to soil Mn cycling, especially within the surficial horizon, with implications for soil C

cycling. However, quantification of the atmospheric Mn cycle, which comprises emissions from natural (desert dust, sea salts,

volcanoes, primary biogenic particles, and wildfires) and anthropogenic sources (e.g. industrialization and land-use change due

to agriculture) transport, and deposition into the terrestrial and marine ecosystem, remains uncertain. Here, we use compiled

emission datasets for each identified source to model and quantify the atmospheric Mn cycle with observational constraints.

We estimated global emissions of atmospheric Mn in aerosols (<10 μm in aerodynamic diameter) to be 1500 Gg Mn yr-1.

Approximately 32% of the emissions come from anthropogenic sources. Deposition of the anthropogenic Mn shortened soil

Mn “pseudo” turnover times in surficial soils about 1-m depth (ranging from 1,000 to over 10,000,000 years) by 1-2 orders of

magnitude in industrialized regions. Such anthropogenic Mn inputs boosted the Mn-to-N ratio of the atmospheric deposition

in non-desert dominated regions (between 5×10-5 and 0.02) across industrialized areas, but still lower than soil Mn-to-N ratio

by 1-3 orders of magnitude. Correlation analysis revealed a negative relationship between Mn deposition and topsoil C density

across temperate and (sub)tropical forests, illuminating the role of Mn deposition in these ecosystems.
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Key Points: 49 

• We modelled the atmospheric manganese (Mn) cycle from emission to deposition and 50 
compared our aerosol model to existing observations based on our compilation. 51 

• Anthropogenic activity contributes to approximately one-third of global atmospheric Mn, 52 
shortening the soil Mn turnover time by 1 to 2 orders of magnitude. 53 

• Mn correlates with topsoil carbon (C) in temperate and (sub)tropical forests, along with N 54 
deposition and other climatic factors.  55 
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Abstract 56 

Manganese (Mn) is a key cofactor in enzymes responsible for lignin decay (mainly Mn 57 
peroxidase), regulating the rate of litter degradation and carbon (C) turnover in temperate and 58 
boreal forest biomes.While soil Mn is mainly derived from bedrock, atmospheric Mn could also 59 
contribute to soil Mn cycling, especially within the surficial horizon, with implications for soil C 60 
cycling. However, quantification of the atmospheric Mn cycle, which comprises emissions from 61 
natural (desert dust, sea salts, volcanoes, primary biogenic particles, and wildfires) and 62 
anthropogenic sources (e.g. industrialization and land-use change due to agriculture) transport, 63 
and deposition into the terrestrial and marine ecosystem, remains uncertain. Here, we use 64 
compiled emission datasets for each identified source to model and quantify the atmospheric Mn 65 
cycle with observational constraints. We estimated global emissions of atmospheric Mn in 66 
aerosols (<10 µm in aerodynamic diameter) to be 1500 Gg Mn yr-1. Approximately 32% of the 67 
emissions come from anthropogenic sources. Deposition of the anthropogenic Mn shortened soil 68 
Mn “pseudo” turnover times in surficial soils about 1-m depth (ranging from 1,000 to over 69 
10,000,000 years) by 1-2 orders of magnitude in industrialized regions. Such anthropogenic Mn 70 
inputs boosted the Mn-to-N ratio of the atmospheric deposition in non-desert dominated regions 71 
(between 5×10-5 and 0.02) across industrialized areas, but still lower than soil Mn-to-N ratio by 72 
1-3 orders of magnitude. Correlation analysis revealed a negative relationship between Mn 73 
deposition and topsoil C density across temperate and (sub)tropical forests, illuminating the role 74 
of Mn deposition in these ecosystems. 75 

1 Introduction 76 

As an essential trace element and micronutrient, manganese (Mn) has been identified to be 77 
closely related to soil carbon (C) turnover because of its role of regulating soil organic matter 78 
(SOM) decomposition by enhancing the activity of lignin-decay enzymes (mainly Mn 79 
peroxidase, MnP) and hence the oxidative decomposition of lignin (Berg et al., 2007; Hofrichter, 80 
2002). Mn limitation and the associated fungal community change from N deposition have been 81 
proposed as an explanation for the suppressing effect of long-term atmospheric nitrogen (N) 82 
deposition on SOM decomposition (Moore et al., 2021; Whalen et al., 2018).  83 
 84 
Studies have assessed the relationship between Mn and soil C turnover using various indicators 85 
including Mn concentration in litter, rate or extent of decomposition of litter (Berg et al., 2007, 86 
2010; Berg 2000; Davey et al., 2007; Trum et al., 2015), soil Mn and total C concentrations 87 
(Stendahl et al., 2017), MnP enzymatic activity, and fungal community structures (Kranabetter et 88 
al., 2021; Moore et al., 2021; Whalen et al., 2018). However, no previous study has examined the 89 
impact of atmospheric Mn deposition on soil C turnover, nor has such a relationship been 90 
quantified on a global scale. In fact, atmospheric deposition has been identified as a major source 91 
of metal(loid) accumulation, including Mn, in surficial soil layers (He & Walling, 1997; Kaste et 92 
al., 2003; Puchelt et al., 1993; Wang et al., 2022) where most fresh organic matter accumulates, 93 
underlining the need to characterize atmospheric Mn deposition for more advanced 94 
understanding of soil C turnover.  95 
 96 
While atmospheric Mn deposition has not been extensively investigated, studies have shown the 97 
importance of atmospheric deposition of iron (Fe), which has similar biogeochemical properties 98 
as Mn (Canfield et al., 2005), for understanding marine biogeochemistry (Mahowald et al., 99 
2009). In oceans, atmospheric deposition of Fe could be a stronger source of Fe than the 100 
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weathering of rock (Canfield et al., 2005); Mn deposition could act similarly as a non-negligible 101 
source of ocean Mn which could have significant ecological relevance such as co-limitation of 102 
phytoplankton growth with Fe (Browning et al., 2021; Mahowald et al., 2018). More recently, 103 
Mn catalysis of organic C polymerization reactions was proposed to result in organic carbon 104 
preservation and storage in marine sediments (Moore et al., 2023). Together, these studies show 105 
that atmospheric Mn deposition could play an important role in the global Mn cycle and is likely 106 
linked to functions carried out by Mn in both terrestrial and marine ecosystems.  107 
 108 
There is a variety of natural sources of Mn, such as desert dust (the single dominant source), sea 109 
salts, volcanoes, wildfires, and primary biogenic particles (Nriagu, 1989; Pacyna & Pacyna, 110 
2001). In addition to natural sources of atmospheric Mn deposition, humans can perturb the 111 
global atmospheric Mn cycle by significantly altering desert dust and adding anthropogenic 112 
emission sources, such as combustion (Mahowald et al., 2018). Anthropogenic aerosols have the 113 
potential to inducing a more rapid impact on ecosystems because of their higher solubility owing 114 
to their smaller particle size, higher carbon content, chemical and surface associations, and 115 
reactions that occur during the process of combustion (Desboeufs et al., 2005; Jang et al., 2007; 116 
Sedwick et al., 2007; Voutsa & Samara, 2002) compared to natural aerosols. 117 
 118 
While global budgets for many metals have been estimated previously, the spatial distribution of 119 
Mn deposition and the overlap with N deposition are unknown. Nriagu (1989) made the first 120 
attempt to estimate Mn emissions to the atmosphere. Nriagu (1989) and Pacyna & Pacyna (2001) 121 
identified desert dust as the single dominant source, and estimated the contribution of 122 
anthropogenic sources to be approximately 11%. Mahowald et al. (2018) estimated that 123 
anthropogenic emissions represented ~1% of the total aerosol Mn sources. Uncertainties are high 124 
due to the lack of observational data, and so far, there have been no detailed spatially explicit 125 
studies of the atmospheric Mn cycle. Therefore, a better estimation of the Mn source budget 126 
(both natural and anthropogenic) along with its spatial distribution is necessary for understanding 127 
the global Mn cycle and its influence on terrestrial ecosystems.  128 
  129 
In this study, we conducted the first 3-d modeling of the emission, atmospheric transport, and 130 
deposition of atmospheric Mn from multiple sources including natural and anthropogenic dust, 131 
sea salts, volcanoes, wildfires, and primary biogenic particles. We compile emission datasets for 132 
each source and soil Mn concentration measurements for the emission modeling and model 133 
calibration, respectively. We synthesized observational and modeling evidence to characterize 134 
the spatial distribution of atmospheric Mn and to assess the anthropogenic perturbation to it in 135 
both PM2.5 and PM10 size fractions (atmospheric particulate matter, PM, <2.5 and 10 µm in 136 
aerodynamic diameter, respectively), which are used as common measures for aerosols in the 137 
atmosphere and included in the model (Mahowald et al., 2014; Ryder et al., 2019). To 138 
understand the importance of atmospheric deposition as a flux in the Mn cycle and as a source of 139 
Mn addition to soils in terrestrial ecosystems, we interpreted soil Mn “pseudo” turnover times 140 
and Mn-to-N ratios in deposition as well as the relationship between Mn deposition and C 141 
density in topsoil.  142 
 143 
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2 Materials and Methods 144 

2.1 Soil Mn Observations and Interpolation 145 

We compiled soil observational data collected from 94 studies found using the Thomson Web of 146 
Science Core Collection on March 20, 2022 and the soil characterization database provided in 147 
National Cooperative Soil Survey (NCSS). There are 2068 individual data points in total, 148 
reporting worldwide Mn concentrations in surface soils based on several extraction and digestion 149 
methods (Data Set S1). A standard approach is HNO3 + HCl acid digestion as outlined by the 150 
U.S. Department of Agriculture (USDA) and Natural Resources Conservation Service (NRCS) 151 
(Soil Survey Staff, 2011). If detailed geographical coordinates were not explicitly provided, we 152 
assigned the observation of the nearest latitude and longitude based on available information 153 
about its location. Two approaches (linear interpolation and extrapolation by soil type) were used 154 
to extrapolate the limited observational data to provide global estimates of Mn distributions in 155 
soils. 156 

2.1.1 Linear Interpolation 157 
Our first approach was to linearly interpolate observed soil Mn concentrations according to their 158 
geographical coordinates and extrapolate them on a global map (Figure 1a) using inverse 159 
distance method in GRIDDATA function on board with Interactive Data Language. Because 160 
directly extrapolating all available soil Mn data is a straightforward, the constructed soil map 161 
from linear interpolation was a fairly good representation of observations (r = 0.66; Figure 1a). 162 
Nonetheless, the correlation was weaker than one would expect for linear interpolation due to the 163 
model grid resolution and the fact that many observational sites clustered in a single grid. 164 
Because ice and glaciers were not considered as soil, and available observations near the poles 165 
were lacking, Mn concentrations in glaciated areas (mostly Greenland and Antarctica) were 166 
masked and assigned a minimum value. 167 
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 168 
Figure 1. (a) Map of estimated global soil Mn concentration constructed from linear 169 
interpolation and (b) by soil-order extrapolation. The base map is compared to 2068 individual 170 
observational points (mg kg-1 Mn in surface soils), which are spatially averaged and plotted as 171 
circles filled with colors corresponding to their Mn concentration (Abanda et al., 2011; Alfaro et 172 
al., 2015; Alongi et al., 2004; Andruszczak E., 1975; Asawalam & Johnson, 2007; Becquer et al., 173 
2010; Beygi & Jalali, 2018; Bibak et al., 1994; Boente et al., 2017; Bradford et al., 1996; 174 
Buccolieri et al., 2010; Burt et al., 2011; Cabrera et al., 1999; Cancela et al., 2002; Cassol et al., 175 
2020; Chen et al., 1991; Chen et al., 1999, 2000; da Silva Costa et al., 2017; da Silva et al., 2015; 176 
Dantu, 2010a, 2010b; Darwish & Poellmann, 2015; de Souza et al., 2015; do Nascimento et al., 177 
2018; Dolan et al., 1990; Fernandes et al., 2018; Foulds, 1993; Franklin et al., 2003; Ghaemi et 178 
al., 2015; Haynes & Swift, 1991; Hsu et al., 2016; Hua et al., 2013; Ikem et al., 2008; Imran et 179 
al., 2010; Iñigo et al., 2011; Ivezic et al., 2011; Jahiruddin et al., 2000; Joshi et al., 2017; 180 
Kassaye et al., 2012; Kloss et al., 2014; Lavado & Porcelli, 2000; Lindell et al., 2010; Ma et al., 181 
1997; Mashi et al., 2004; McKenzie, 1957; Michopoulos et al., 2004, 2017; Mikkonen et al., 182 
2017; Miko et al., 2003; Morales Del Mastro et al., 2015; Nalovic & Pinta, 1969; Nanzyo et al., 183 
2002; Natali et al., 2009; Navas & Lindhorfer, 2005; Nguyen et al., 2018; Njofang et al., 2009; 184 
Nygard et al., 2012; Papadopoulos et al., 2009; Papastergios et al., 2011; Patel et al., 2015; Paye 185 
et al., 2010; Preda & Cox, 2002; Rashed, 2010; Rekasi & Filep, 2012; Richards et al., 2012; 186 
Roca et al., 2012; Roca-Perez et al., 2004, 2010; Rusjan et al., 2006; Saglam, 2017; Sako et al., 187 
2009; Salonen & Korkka-Niemi, 2007; Sheikh-Abdullah, 2019; Sheppard et al., 2009; Skordas et 188 
al., 2013; Smeltzer et al., 1962; Stajković-Srbinović et al., 2018; Stankovic et al., 2012; 189 
Stehouwer et al., 2010; Steinnes et al., 2000; Sterckeman et al., 2006a; Sterckeman et al., 2006b; 190 
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Su & Yang, 2008; Tsikritzis et al., 2002; Tume et al., 2011; Tyler, 2004; Vance & Entry, 2000; 191 
Vejnovic et al., 2018; Wen et al., 2018; Wilcke et al., 2005; Xianmo et al., 1983; Yalcin et al., 192 
2007; Yang et al., 2012; Yang et al., 2013; Yilmaz et al., 2003; Yu et al., 2012; Zhang et al., 193 
2009; Zorer et al., 2009). (c) Scatter plot showing how well the linearly interpolated map 194 
represents the observations (n = 2068, r = 0.66). (d) Same as (c), except for targeting the soil-195 
order extrapolated map. Model values equal observational values along the blue dotted diagonal 196 
(n = 2068, r = 0.08). Colors indicate the locations of studies listed in the legend. Citations of 197 
each study and details on its extraction/digestion methods are included in the supporting 198 
information (Data Set S1). 199 
 200 
2.1.2 Extrapolation by Soil Type 201 
In our second approach, we categorized Mn concentration observations according to their soil 202 
taxonomic classification. Using the same method as in Wong et al. (2021), we processed Mn 203 
concentration from 1574 (out of 2068) data points which provided in-situ soil classification 204 
information in either the United States Department of Agriculture (USDA), Food and 205 
Agriculture (FAO) taxonomic system, or the World Reference Base for Soil Resources (WRB) 206 
(the latter two were converted into USDA classification). A median value was assigned for each 207 
of the 12 USDA soil orders and the Mn concentration was extrapolated to the 1° × 1° USDA-208 
NRCS Global Soil Regions map based on a reclassification of the FAO-UNESCO Soil Map of 209 
the World (Figure 1b) (Batjes, 1997). In addition to the 12 soil orders, the map also identified 210 
lands that were not covered by soils, including ice/glaciers, moving sands, rocky terrains, and 211 
water bodies, whose Mn concentration was masked and set to the minimum.  212 
 213 
Nonetheless, because the Mn variability within soil orders were shown to be on the same level as 214 
that between soil orders (Figure S1), Mn concentration might not be well-distinguished in 215 
different soil orders. In addition, the number of available soil measurements varied greatly 216 
between different orders (Table S1) so that in cases where very few observations existed (e.g. 217 
gelisol), the median value of the soil Mn concentration would be much less representative. Our 218 
soil data inventory reflected the heterogeneous nature of the spatial distribution of the soil and its 219 
Mn content, which could not be well-represented by soil-type extrapolation. Overall, the soil-220 
order based map did not compare as well to the in-situ soil Mn observations as the linear 221 
interpolation (Figure 1d). Therefore, the soil map and model simulations constructed using linear 222 
interpolation were primarily considered in data analysis and interpretation, with results obtained 223 
by soil-type extrapolation listed in supplementary materials and minorly concerned. Given the 224 
scarce nature of soil Mn observations, we kept the soil-type extrapolation method, as it might 225 
still be a reasonable approach to estimate and constrain soil Mn values, especially in regions 226 
lacking direct observations, such as the higher latitudes.  227 
 228 
2.2 Atmospheric Modeling 229 
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We simulated global atmospheric Mn emissions, transport, and deposition using the Community 230 
Atmosphere Model, version 6 (CAM6), the atmospheric component of the Community Earth 231 
System Model (version 2; CESM2) developed at the National Center for Atmospheric Research 232 
(NCAR) (Hurrell et al., 2013; Liu et al., 2011), with the four-mode (Aitken, accumulation, 233 
coarse, and primary) modal aerosol model (MAM4) (Liu et al., 2016). Three out of the four 234 
modes contain dust aerosols which are modeled as eight different types of dust mineral 235 
components (Liu et al., 2011; Scanza et al., 2015; Hamilton et al., 2019; Li et al., 2021, 2022). 236 
Model simulations were conducted for four years, with the last three years (2013-2015) used for 237 
analysis (Computational and Information Systems Laboratory, 2019). We nudged the model 238 
toward MERRA2 meteorology fields (Gelaro et al., 2017). 239 
 240 
The model simulates three-dimensional transport and wet and dry deposition for gases and 241 
particles which are internally/externally mixed within/between the modes. The dry deposition 242 
parameterization follows Petroff and Zhang (2010) as previously impletmented in CAM6 (Li et 243 
al., 2022 ; see descriptions therein for the wet deposition scheme as well). We modified the 244 
model to allow for the advection of Mn from different sources. Both natural and anthropogenic 245 
sources were determined to possess large uncertainties in strength. We used a first estimate 246 
assuming that the full uncertainty range is one order of magnitude. Therefore, we included a 247 
range of values (typically a factor of 10) for the Mn contribution from each source (Table 1). To 248 
better fit the observational data, we “tuned” the model making a particular effort to adjust 249 
anthropogenic emissions both because of their larger uncertainties compared to natural emissions 250 
and because the largest discrepancies occurred over industrialized regions (see below). The 251 
choice of the “tuning” for each source was done using a trial-and-error method using 252 
observational evidence. In addition, we report our best estimates and assume a large uncertainty: 253 
in most cases at least one order of magnitude because of the limited data as previous studies 254 
suggest (e.g. Nriagu, 1989; Mahowald et al., 2018). 255 
 256 
Table 1 257 
Mn Emission Factor (composition) in Sources and Atmospheric Mn Budgets Based on 258 
Simulations from the Community Atmosphere Model (CAM) (v6) 259 
 260 
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 261 
Note. Desert and agricultural dust Mn budget values were obtained from the dust model 262 
simulations which used as input the Mn composition of soils constructed using linear 263 
interpolation from Section 2.1.1. Alternatively, soil-type extrapolation yielded 570 Gg yr-1 and 264 
230 Gg yr-1 for desert dust and agricultural dust, respectively. aNriagu (1989). bMahowald et al. 265 
(2018). 266 
 267 
2.2.1 Desert Dust 268 
The desert dust sources of Mn refer to mineral particles entrained into the atmosphere by strong 269 
winds at the soil surface in arid unvegetated or loosely vegetated regions, where soils are prone 270 
to wind erosion, and play a major role in the global aerosol budget (Vandenbussche et al., 2020; 271 
Boucher et al., 2013; Zender et al., 2003). The emissions, transport, and deposition of dust 272 
aerosols, including seasonal and interannual variability, are all prognostic in the model. We 273 
applied the same dust emission scheme (Kok et al., 2014a, 2014b) as in Wong et al. (2021), and 274 
tuned the model to obtain a global mean aerosol optical depth (AOD) of 0.03 (Li et al., 2022) 275 
based on observational estimates (Ridley et al., 2016). Transport and deposition of Mn were 276 
simulated separately according to the size mode (Liu et al., 2016), following treatment on dust 277 
aerosols as described in Albani et al. (2014). In addition, to improve the simulation of aerosols in 278 
the coarse and accumulation modes, we modified the model by using the geometric median 279 
diameter (GMD) as that initialized in CAM5 and geomeric standard deviation as well as the 280 
edges of the predicted coarse-mode GMD following Li et al. (2022). 281 
 282 

Source Mn composition Composition 
citation 

Global source Mn 
(Gg yr-1) [ranges] 
(% fine) 

Global source 
Mn (Gg yr-1) 
from 
reference*  

Desert dust 0.1-5479 mg kg-1  This study 950 [290-4800] 
(1.7) 

42-400a 
900b 

Agricultural dust 0.1-5479 mg kg-1  This study 390 [120-1900] 
(1.7) 

 

Sea-salt aerosols 95 μg kg-1 Nriagu 
(1989) 

0.26 [0.13-1.3] 
(3.3) 

0.02-1.7a 

Volcanoes 12E-4 Mn/S Nriagu 
(1989) 

3.9 [2.0-20] (47) 4.2-80b 

Primary biogenic 
particles 

60 mg kg-1 Nriagu 
(1989) 

2.0 [1.0-10] (2.3) 4-50a 

Wildfires Fine: 0.23 mg g-1 

Coarse: 10.58 mg g-1
This study  43 [21-210] (94) 1.2-45a 

Industrial dust 0.01-0.05 Mn/Fe Rathod et al. 
(2019) 

73 [36-360] (54) 10a 
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Because desert dust is generated from soil, we assumed that the soil Mn concentration is the 283 
same as the Mn in the dust, regardless of particle size, as we had no information on the size 284 
segregation of the soil Mn. With linear interpolation, we derived the amount of Mn emissions to 285 
be 950 Gg yr-1, which was higher than 570 Gg yr-1 resulting from the soil map extrapolated 286 
(Table 1). Both exceeded the range (42-400 Gg yr-1) provided in Nriagu (1989) and the former is 287 
comparable to the value (900 Gg yr-1) given by Mahowald et al. (2018). This result indicated the 288 
high uncertainty in the amount of Mn from dust rising from different interpolation methods and 289 
the large variability in soil observations; therefore, a large range of 290-4800 Gg Mn yr-1 was 290 
assigned. 291 
 292 
2.2.2 Agricultural Dust  293 
Agricultural land use and land cover change induced by human activities can boost mineral dust 294 
emissions through various mechanisms that increase soil erodibility, such as increasingly 295 
exposing soil surface and altering hydrologic cycles (Ginoux et al., 2012; Webb & Pierre, 2018). 296 
Satellite-based analysis suggests that it represents 25% of global dust emissions (Ginoux et al., 297 
2012). To account for agricultural dust, we applied datasets of crop fraction of present 298 
agricultural land from the Coupled Model Intercomparison Project Phase 5 (CMIP5) datasets 299 
(Hurtt et al., 2011). We separately computed the crop sources of dust (identified using the above 300 
dataset) and tuned these sources for each region to match those estimated from satellites, with the 301 
exception of Australia, where we assumed only 15% of the dust is anthropogenic, consistent with 302 
other studies (e.g., Bullard et al., 2008; Mahowald et al., 2009; Webb & Pierre, 2018). The 303 
discrepancy in Australia between the results of Ginoux et al. (2012) and other studies (Table S2) 304 
may be caused by the large drought during the time period studied by Ginoux et al. (2012). No 305 
clear evidence indicated that agriculture significantly alters the Mn concentration at the soil 306 
surface. Therefore, we assumed the same Mn fraction as desert dust and used the same 307 
approaches for estimation, deriving a global emissions of 390 Gg Mn yr-1 with a range of 120-308 
1900 Gg Mn yr-1 (Table 1). 309 
 310 
2.2.3 Sea spray 311 
Sea spray aerosols are produced by the bubble-bursting process typically resulting from whitecap 312 
generation under high wind conditions in the boundary layer (O'Dowd & de Leeuw, 2007). We 313 
used prognostic sea spray included in CAM6 (Liu et al, 2011) and assumed a constant 314 
concentration of 95 μg Mn kg-1 in sea-spray aerosols (Nriagu, 1989). Sea-spray aerosols were 315 
estimated to emit 0.26 Gg Mn yr-1 with an uncertainty range of 0.13-1.3 Gg Mn yr-1 (Table 1), 316 
falling within the range given by Nriagu (1989).  317 
 318 
2.2.4 Volcanoes 319 
Studies have shown that volcanoes can be an important contributor to trace elements in aerosols, 320 
such as Mn, through eruptive activities and degassing (Mahowald et al., 2018; Sansone et al., 321 
2002). We assumed only non-eruptive sources for this study (Spiro et al., 1992), with a constant 322 
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source across the time periods. For volcanic sources, the concentration of trace elements is 323 
commonly expressed using their ratio to sulfur (S). We adopted a mass-based ratio of 12 × 10-4 324 
Mn/S from Nriagu (1989) and multiplied it with the concentration of sulfur given in the data set 325 
(Spiro et al., 1992) to derive Mn. We estimated non-eruptive volcanic emissions to be 3.9 Gg Mn 326 
yr-1 with a range of 2.0-20 Gg Mn yr-1, lying at the lower end of the range provided by Nriagu 327 
(1989) (Table 1). 328 
 329 
2.2.5 Primary Biogenic Particles 330 
Primary biogenic particles (PBPs) are a diverse group of airborne particles such as bacteria, 331 
fungal spores, pollen, viruses and algae that are directly released from the biosphere into the 332 
atmosphere (China et al., 2020; Després et al., 2012). Like volcanoes, they are not explicitly 333 
simulated in the default CAM6 model but act as a non-negligible aerosol metal source 334 
(Mahowald et al., 2018). Following Brahney et al. (2015), we adopted parameterized PBP data 335 
that are temporally constant and based on the assumption of a leaf area index dependent source 336 
for vegetative and insect debris. We also included a pollen source based on (Heald & Spracklen, 337 
2009) and a bacteria parameterization (Burrows et al., 2009). The emission, transport, and 338 
deposition of PBPs were simulated using a separate tracer. We assumed the Mn fraction to be 60 339 
mg kg-1 in PBPs (Nriagu, 1989) and estimated its emission to be 2.0 Gg Mn yr-1 with a range of 340 
1.0-10 Gg Mn yr-1 (Table 1). 341 
 342 
2.2.6 Wildfires 343 
Aerosols emitted from wildfires can significantly contribute to atmospheric Mn (Nriagu, 1989), 344 
especially in densely forested regions that are fire-prone (Krawchuk et al., 2009). Various 345 
emission datasets that use satellite-based remote sensing or other black carbon (BC) proxies are 346 
available for wildfires (van der Werf et al., 2004; Van Marle et al., 2017). Here, we employed 347 
the Coupled Model Intercomparison Project (CMIP6) wildfire dataset as the source of BC 348 
emissions (Van Marle et al., 2017), taking advantage of its coverage of both natural fires and 349 
human influence on wildfires, including deforestation fires and control of current wildfires. To 350 
convert BC to Mn concentrations, we calculated the Mn to BC ratios in coarse (PM10) and fine 351 
(PM2.5) fractions (similar to Mahowald et al., 2005; Hamilton et al., 2022) using observational 352 
data at specific sites located in the Amazon rainforest and upper southern Africa dominated by 353 
wildfires (Maenhaut et al. 1999, 2000, 2002). We derived a ratio of 10.58 mg g-1 for the coarse 354 
fraction and 0.23 mg g-1 for the fine fraction and estimated global wildfire contributions to be 43 355 
Gg Mn yr-1 with a range of 21-210 Gg Mn yr-1 (Table 1). These values are higher than those 356 
reported in Nriagu (1989) based on more observations. 357 
 358 
2.2.7 Industrial Emissions 359 
Industrial emissions of Mn include anthropogenic fossil-fuel combustion, biomass burning, and 360 
related activities. Because Mn has many biogeochemical properties similar to those of  Fe 361 
(Canfield et al., 2005), we assumed the co-occurrence of Mn with Fe and used an updated 362 
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detailed Fe emission inventory for 2010 developed using a Speciated Pollutant Emissions Wizard 363 
(SPEW) (Bond et al., 2004; Rathod et al., 2020). This inventory covers Fe emission from fossil 364 
fuel burning, wood combustion, and smelting in the industrial, transport, and residential sectors 365 
globally (Alves et al., 2011; Arditsoglou et al., 2004; Block & Dams, 1976; Córdoba et al., 2012; 366 
Davison et al., 1974; de Souza et al., 2010; Dreher et al., 1997; Hansen et al., 2001; Huffman et 367 
al., 2000; Koukouzas et al., 2007; Linak et al., 2000a, 2000b; Machado et al., 2006; Mamane et 368 
al., 1986; Martinez-Tarazona et al., 1990; Meij, 1994; Querol et al., 1995; Schmidl et al., 2008; 369 
Smith et al., 1979; Steenari et al., 1999; Stegemann et al., 2000; Tsai & Tsai, 1998; Watson et al., 370 
2001; Zhang et al., 2012). We then used estimates of the ratio of Mn to Fe in each type of source 371 
to obtain a new emission inventory for Mn (Table S3). Detailed data and citations are provided 372 
in Data Set S3. We estimated the global industrial emission to be 73 Gg Mn yr-1 with a range of 373 
36-360 Gg Mn yr-1 (Table 1). There is still a large uncertainty in these first estimates of Mn, and 374 
we consider elevated sources as well in later sections to better match the observational data. 375 
 376 
2.3 Atmospheric Observations 377 
Atmospheric observations of Mn concentrations in particulate matter (PM) were compiled and 378 
compared with the model output to assess the performance and tune the model. We compiled 379 
atmospheric Mn observational data from a variety of global dataset networks and sites 380 
(Wiedinmyer et al., 2018). The available data were collected using a variety of time periods and 381 
using different chemical speciation analyses as described in detail in each study (Data Set S2).  382 
Most of the data were collected with size segregation between PM2.5 and PM10 size categories 383 
(e.g. Hand et al., 2019). Some observational studies used coarse (PM10-2.5 with aerodynamic 384 
diameter between 2.5 and 10 μm) and fine (PM2.5) size categories instead (e.g. Maenhaut et al. 385 
1999, 2000, 2002). In this case, the two sizes were summed to compute PM10 for model 386 
comparison. X-ray fluorescence is the most frequently used detection method to measure Mn 387 
concentrations. The Mn quantification was unavailable at some stations if concentrations were 388 
lower than their method detection limit (MDL). In other sites Mn was measured using 389 
Inductively coupled plasma mass spectrometry (ICP-MS). In total, we obtained more data points 390 
for PM2.5 (N = 699) than PM10 (N = 204) because many sites focused only on PM2.5, such as 391 
from the Interagency Monitoring of Protected Visual Environments (IMPROVE) remote/rural 392 
network in the US (Hand et al., 2017; Hand, 2019). Detailed descriptions of site and method, as 393 
well as other elemental/total Mn PM data can be found within each referenced study (Data Set 394 
S2). While there exists limited deposition elemental data, there was not enough data to warrant 395 
detailed comparisons here, and the absolute values of dry deposition were often difficult to 396 
measure (Prospero et al., 1996; Schutgens et al., 2016). We ignored particles larger than 10 µm 397 
in aerodynamic diameter here, because of the limited data, although the missed fraction of 398 
aerosols could be important for biogeochemistry in some regions (Adebiyi et al., 2023). 399 
 400 
Hand et al. (2019) reported that collocated sites from the US Environmental Protection Agency 401 
(EPA) and IMPROVE recorded different coarse aerosol mass (PM10-2.5), with the value at EPA 402 
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sites being 10% higher than at IMPROVE sites and a 28% difference between these estimates, 403 
suggesting that different samplers could have different acuteness of size fractionation for PM10 404 
and PM2.5 (Hand et al., 2019). Overall, with a correlation coefficient of 0.9 and a slope of 0.9, the 405 
two sets of sites agreed with each other, but the difference brought by sampler biases should still 406 
be noted during later analysis and evaluation (Hand et al., 2019). 407 
 408 
For comparison with the model, we computed annual means of atmospheric Mn concentration 409 
for each site. Particulate Mn has very low concentrations (< 1 μg-m-3), and therefore in many 410 
cases the data can be below the detection limit. We applied the same procedure used by Wong et 411 
al. (2021) to correct for this potential bias. If a site had more than half of its data values above 412 
the detection limit, we set the value of any samples below MDL at this site to be one-third of the 413 
MDL (shown in dataset S2). If more than 50% of the data was below the MDL at a site, we did 414 
not include it in comparison to the model. These data were instead used to compute an upper 415 
bound based on their respective detection limits. Since many sites were close together in regions 416 
such as Europe and US, to better display the data and show the model comparison, observational 417 
data from different sites were averaged spatially within a grid cell that was two times the model 418 
resolution, or ~2° × 2° (Schutgens et al., 2016).  419 
 420 
2.4 Estimation of “Pseudo” Turnover Time 421 
The importance of atmospheric Mn deposition to the soil Mn reservoir was evaluated by 422 
calculating the soil Mn turnover time, which is defined as the total mass of soil Mn (estimated to 423 
1 m depth) in each grid cell divided by the estimated atmospheric deposition flux from 424 
simulation. The Mn mass was calculated using the Mn concentration from both estimated soil 425 
maps multiplied by an average bulk density of soil, 1.4 g cm-3 (Yu et al., 1993). The turnover 426 
time estimated here is “pseudo-turnover time” (Wong et al., 2021) because we could not assume 427 
soil Mn to be in a steady state. The characterization of the turnover time and comparison on a 428 
global scale allowed us to assess the ecological significance of atmospheric Mn deposition in the 429 
soil Mn reservoir in units of years (Okin et al., 2004).  430 
 431 
2.5 Correlation Analysis and Interpretation of Ecological Relevance 432 
Whalen et al. (2018) suggested Mn limitation as a mechanism for reduced decomposition under 433 
enhanced atmospheric N deposition, therefore, it might be helpful to consider Mn deposition 434 
together with N deposition. We adopted a modeled annual N deposition dataset (2° × 2°) 435 
(Brahney et al., 2015b) and re-gridded our model output of the Mn deposition onto its resolution 436 
(2° × 2°), followed by raster calculation of the ratio of atmospheric Mn deposition to N 437 
deposition, which might provide useful insights for the relative susceptibility of soil to Mn 438 
limitation following N deposition. We compared the Mn over N ratio in deposition to the 439 
concentration ratio in soils using total N concentration data at available NCSS sites. The ratio 440 
was computed using both natural Mn deposition and total Mn deposition (natural + 441 
anthropogenic) to understand how and where human activities altered this ratio.  442 
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 443 
To examine how atmospheric Mn deposition potentially influences the Mn limitation that could 444 
be related to decomposition and soil C storage in forest ecosystems (Kranabetter et al., 2021; 445 
Moore et al., 2021; Stendahl et al., 2017; van Diepen et al., 2015; Whalen et al., 2018), we 446 
performed a spatial correlation analysis between Mn deposition and topsoil (0-5 cm) C density 447 
derived from SoilGrids 2.0, a digital soil database that includes 230,000 soil profile observations 448 
from the WoSIS and applies machine learning methods (Poggio et al., 2021) to map the global 449 
distribution of soil properties at 250 meters, resampled to our model resolution (1° × 1°). We 450 
identified the ecosystem type at each grid cell using the plant functional types in the Community 451 
Land Model, version 5 (Lawrence et al., 2019), taking the rubric of having more than 80 percent 452 
of the area covered by forest biomes. Because different forest ecosystems may have distinct soil 453 
Mn status and limitation conditions (Berg et al., 2010), they were divided into three subsystems: 454 
temperate forests, tropical forests, and boreal forests, with the correlation analysis conducted 455 
both combinedly and separately.  456 
 457 
Because soil organic matter decomposition has long been understood to be controlled by a 458 
combination of several different factors, Mn deposition cannot be interpreted separately from 459 
other commonly outlined predictors such as precipitation (moisture), temperature, and N 460 
deposition (Berg & Matzner, 1997a; Frey et al., 2014; Hartley et al., 2021; Sierra et al., 2015; 461 
Woo & Seo, 2022; Zak et al., 2017; Zhang et al., 2019; Zhao et al., 2021b). To include these 462 
potential constraints, simple and multilinear regression analyses were carried out with the 463 
addition of the 3 other factors: precipitation, temperature (long-term mean data from Terrestrial 464 
Air Temperature and Precipitation: 1900-2014 Gridded Monthly Time Series data provided by 465 
the NOAA PSL, Boulder, Colorado, USA, from their website at https://psl.noaa.gov), and N 466 
deposition to test the significance of Mn deposition on topsoil C storage. The multilinear 467 
regression was calculated following the ordinary least squares (OLS) method. 468 

3 Results 469 

3.1 Mn Concentration in Atmospheric Particulate Matter (PM) 470 
Mn in the model output was compared with the Mn concentration in atmospheric PM 471 
observation on a global scale. Here, we present three cases (Figures 2 and 3) for the simulation 472 
with dust emission schemes created by linear interpolation (Section 2.1.1) to better examine the 473 
model sensitivity to anthropogenic emissions. We used the bounded observational data (Section 474 
2.3) for all comparisons and scatter plots.  475 
 476 
The natural case (Figure 2a) was simulated without any emission from anthropogenic sources 477 
(industrial emission + agricultural dust). With only natural contributions, the model 478 
underestimated Mn concentration significantly in the PM10 size fraction (Figure 2b), especially 479 
over industrialized regions in Asia, Europe, and southern Africa, where the world’s largest Mn 480 
mining industry is located (U.S. Geological Survey, 2022). The model also poorly simulated the 481 



manuscript submitted to Global Biogeochemical Cycles 

 

relatively high Mn concentrations reported by several sites across North America. Only close to 482 
dust desert dominated regions in North Africa does the model simulate the concentrations well 483 
(Figure 2a). The spatial distribution of Mn in western North Africa agrees with the observations 484 
on the location Mn rich dust sources (Rodríguez et al., 2020). 485 
 486 
When anthropogenic sources were added, using the default values described in Section 2.2, the 487 
model improved the simulation in industrialized regions (Figure 3b). The value of the correlation 488 
coefficient (r) increased 3-fold with root mean squared error on the same level (RMSE) (r = 489 
0.089, RMSE = 0.025 in Figure 2b; r = 0.27, RMSE = 0.023 in Figure 3b), suggesting that the 490 
model performance improved with the addition of anthropogenic contributions. However, Mn 491 
concentrations at the major proportion of sites were still underestimated compared with the 492 
observations. Using trial and error, we found that the atmospheric concentrations were best 493 
matched when we increased the anthropogenic emissions by a factor of 2. In comparison, 494 
adjusting natural sources only had a minimal effect on improving the overall model performance 495 
and could sometimes lower the accuracy. Natural sources other than desert dust and wildfires 496 
contributed little to the total aerosol budget (Table 1), and the most underestimated industrial 497 
regions were barely subjected to aerosol deposition associated with desert dust or wildfires. We 498 
define our “best case” as the case with elevated anthropogenic emissions (Figures 3a and b) and 499 
denoted the unmodified scenario the “low anthro” case (Figure 3c). While some stations were 500 
overestimated in the best estimate case, much fewer stations were, and the data spots were 501 
distributed more uniformly along the 1:1 line of the scatter plots, with r increased to 0.36. In 502 
many of the sites, there was a mismatch between the date of the measurement and the model 503 
simulation because of limited observations. 504 
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 505 
Figure 2. (a) Global distribution of the atmospheric Mn concentration at the surface in the PM10 506 
size fraction from the model simulation results (contours) using only natural sources with a dust 507 
scheme constructed by linear interpolation and from bounded observations (circles). 508 
Observations were spatially averaged to a ∼2° × 2° grid and compared to the Community 509 
Atmosphere Model (CAM) (v6) results. (b) Scatterplot comparison of model simulated 510 
atmospheric concentration with observations in the natural case (n = 203, r = 0.089, RMSE = 511 
0.025). Colors of points indicate the locations of studies listed in the legend. 512 
 513 
We noticed that a few sites with high Mn concentrations across North America including several 514 
peaks in the central United States, were still missed by the model in the best estimate case, 515 
suggesting that our estimation of anthropogenic source contributions could be lower than the 516 
actual in this region. Overall, our model agreed on the same order of magnitude of Mn 517 
concentration in atmospheric PM10 as the observations and had the ability to, at least, partially 518 
represent the variability in their spatial distribution.  519 
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 520 
Figure 3. (a) Global distribution of the atmospheric Mn concentration at the surface in the PM10 521 
size fraction from the model simulation results (contours) using the dust scheme constructed by 522 
linear interpolation in the best estimate case and from bounded observations (circles). 523 
Observations were spatially averaged to a ∼2° × 2° grid and compared to the Community 524 
Atmosphere Model (CAM) (v6) results. (b) Scatterplot comparison of model simulated 525 
atmospheric concentration with observations in the best estimate case (n = 203, r = 0.36, RMSE 526 
= 0.025). Colors of points indicate the locations of studies listed in the legend. (c) Same as (b), 527 
except for the low anthropogenic model case (n = 203, r = 0.27, RMSE = 0.023). 528 
 529 
Despite the dominance of the PM10 size fraction of the atmospheric Mn budget due to the coarse 530 
nature of dust (Table 1), Mn in atmospheric PM2.5 is also important because of the high 531 
percentage of fine fraction in wildfires and industrial dust (Table 1) and the potential health risks 532 
that could be induced by inhalation of Mn in PM2.5 in ambient air (Cavallari et al., 2008; 533 
Expósito et al., 2021). Generally, we obtained similar global distribution patterns and results of 534 
the model-observation comparison as in PM10. With a more than tripled number of atmospheric 535 
Mn observations in the PM2.5 size fraction, especially in the U.S., the model simulation better 536 
matched the observations across North America (Figure 4a). The highest observation values 537 
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were reported over industrialized regions in Europe and Asia and regions affected by desert dust 538 
generated in North Africa. Our model showed elevated atmospheric Mn levels in Europe and 539 
Asia compared to the Americas. Similarly, atmospheric Mn over industrialized regions was 540 
underrepresented by the model simulations in the natural case (Figure S2), and we derived our 541 
best estimate by tuning the level of anthropogenic emissions towards the higher end by a factor 542 
of 2. With the best estimate case, our model showed a moderately good representation of the 543 
observations (Figure 4b and c). Having more observational sites might explain the slightly better 544 
performance of the comparison in the PM2.5 size fraction than in the PM10 size fraction.  545 
 546 

 547 
Figure 4. Same as Figure 3, but for the PM2.5 size fraction. (a) Global distribution of the 548 
atmospheric Mn concentration at the surface from the model simulation results (contours) using 549 
the dust scheme constructed by linear interpolation in the best estimate case and from bounded 550 
observations (circles). Observations were spatially averaged to a ∼2° × 2° grid and compared to 551 
the Community Atmosphere Model (CAM) (v6) results. (b) Scatterplot comparison of model 552 
simulated atmospheric concentration with observations in the best estimate case (n = 698, r = 553 
0.53, RMSE = 0.006). Colors of points indicate the locations of studies listed in the legend. (c) 554 
Same as (b), except for the low anthropogenic model case (n = 698, r = 0.53, RMSE = 0.005).  555 
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 556 
We performed the same analysis using model simulations with a percent Mn in dust using soil-557 
type extrapolation (Section 2.1.2) and found the results changed quantitively but not qualitatively 558 
(Figure S3). Both methods produced simulation results that were on the same order of magnitude 559 
as the observations.  560 
 561 
3.2 Atmospheric Mn Budget and Source Apportionment 562 
Our model predicted the global total Mn emission to be 1500 Gg Mn yr-1 with a range of 460-563 
7300 Gg Mn yr-1 due to the uncertainty in each source (Table 1). The estimate was similar in 564 
magnitude to the reference value of 1000 Gg Mn yr-1 given by Mahowald et al. (2018). The 565 
model-simulated budget for each source was within or close to the estimated range from previous 566 
studies (Mahowald et al., 2018; Nriagu, 1989). The model estimated that 1000 Gg Mn yr-1 was 567 
emitted from natural sources with a range of 310-5000 Gg Mn yr-1, while 460 Gg Mn yr-1 was 568 
emitted from anthropogenic sources with a range of 150-2300 Gg Mn yr-1 (Table 1), suggesting 569 
that approximately 32% (best estimate case) of the atmospheric Mn arose from anthropogenic 570 
contribution.  571 
 572 
While anthropogenic sources contributed to a significant portion of the total atmospheric Mn 573 
budget, our model suggested that their main influence was in the Northern Hemisphere, where 574 
the ratio of total to natural deposition was significantly greater than 1 (Figure 5), and there was a 575 
high percentage of anthropogenic or industrial dust (Figures 6c and d), especially over 576 
industrialized regions in Asia, Europe, and the northeastern U.S. Hot spots in the Southern 577 
Hemisphere included eastern and southeastern Brazil, Peru, Chile, and southern Africa. High 578 
ratios of total to natural deposition in these regions indicated strong human perturbations (up to 579 
10 times higher) on the Mn deposition rates (Figure 5c). Industrial emissions were responsible 580 
for major regions dominated by anthropogenic deposition, while the distribution of agricultural 581 
deposition was more dispersed, with a wider coverage of cultivated areas worldwide (Figures 6c 582 
and d).  583 
 584 
Desert dust represented over 90% of all natural sources of the atmospheric Mn deposition (Table 585 
1). It dominated deposition within major deserts in North Africa, inland Australia, and Asia as 586 
well as regions that were affected by the transportation of desert dust produced in these systems 587 
(Kellogg & Griffin, 2006). For example, the intercontinental transport of African dust to South 588 
America has been identified as an important source of new atmospheric deposition of P in the 589 
Amazon and could have a fertilization effect (Okin et al., 2004; Ridley et al., 2012; Yu et al., 590 
2015). The dominance of desert dust and other natural sources (sea salts and volcanoes, which 591 
represented a very small fraction) was complementary with anthropogenic sources: desert dust 592 
dominated most of the Southern Hemisphere but became less influential at higher latitudes in the 593 
Northern Hemisphere as anthropogenic emissions concentrated there (Figure 6a).  594 

 595 
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 596 
Figure 5. (a) Global pattern of the current (anthropogenic + natural sources) atmospheric Mn 597 
deposition (μg m-2 yr-1) as simulated in the Community Atmosphere Model (CAM) (v6) in the 598 
best estimate case. (b) Same as (a), except for including natural sources of emissions only. (c) 599 
Ratio of total atmospheric Mn deposition to natural deposition. 600 
 601 
Although wildfires have a much lower budget than desert dust, they are the second-largest 602 
natural source of atmospheric Mn (Table 1). Together with primary biogenic particles, they 603 
dominated regions such as the Amazon rainforest, upper southern Africa (and Madagascar), 604 
Indonesia, northern Canada and Alaska (Figure 6b). Wildfires can displace large amounts of 605 
nutrients, including Mn, from terrestrial ecosystems (Kauffman et al., 1995; Mahowald et al., 606 
2005) which were then replenished by transported dust and sea salts, as well as anthropogenic 607 
depositions, similar to what was reported by Wong et al. (2021) in the case of molybdenum (Mo).  608 
 609 



manuscript submitted to Global Biogeochemical Cycles 

 

 610 
Figure 6. Source apportionment of the atmospheric Mn deposition in the best estimate case 611 
shown by percentage of different sources in the Community Atmosphere Model (CAM) (v6): (a) 612 
desert dust, sea sprays, and volcanoes, (b) primary biogenic particles and wildfires, (c) combined 613 
anthropogenic aerosols (agricultural dust + industrial emissions) and (d) industrial aerosols. 614 
 615 
3.3 Soil Mn “Pseudo Turnover” Times 616 
The “pseudo” turnover time provides a metric of the ecological importance of atmospheric Mn 617 
deposition to the topsoil Mn reservoir (Okin et al., 2004). Using the two approaches (Section 2.1), 618 
we divided the estimated soil Mn concentration by the model simulated Mn deposition rates to 619 
compute “pseudo” turnover times in topsoils (Okin et al., 2004). The estimated soil Mn “pseudo” 620 
turnover time varied spatially, ranging from 1,000-10,000 years in regions dominated by desert 621 
dust to over 10,000,000 years at higher latitudes (Figures 7a and b). We found that anthropogenic 622 
sources significantly shortened the soil Mn “pseudo” turnover times in industrialized regions 623 
regardless of the interpolation method. For example, the atmospheric deposition sourced from 624 
anthropogenic emissions shortened the soil Mn “pseudo” turnover time by 1-2 orders of 625 
magnitude from millions of years to as low as tens of thousands of years in eastern China and 626 
across Europe (Figures 7a and c; b and d). These trends indicate that human perturbation has the 627 
potential to accelerate Mn turnover in different terrestrial systems if the amount of anthropogenic 628 
activity remains at the same level or even rises in the future.  629 
 630 
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 631 
Figure 7. “Pseudo” turnover times (kiloyears) of the surface soil Mn from current (natural + 632 
anthropogenic sources) atmospheric Mn deposition as simulated in the Community Atmosphere 633 
Model (CAM) (v6) using the dust scheme constructed from (a) linear interpolation (and 634 
calculated using the linear-interpolated soil Mn map) and (b) soil order extrapolation (and 635 
calculated using the soil-order extrapolated soil Mn map). (c and d) Same as (a and b) except for 636 
the inclusion of only natural Mn deposition in the calculation of turnover times. 637 
 638 
Compared to the Mo “pseudo” turnover time of 1,000-2000,000 years (Wong et al., 2021), the 639 
estimated range of soil Mn “pseudo” turnover times was wider, and the mean turnover time was 640 
longer, which is closer to the estimated range of P “pseudo” turnover time (~104 to ~107 years) in 641 
Okin et al. (2004). In the Amazon region, the soil Mn “pseudo” turnover time ranged from 642 
hundreds of kiloyears in the northeast corner, which was subject to deposition from transported 643 
African dust, to thousands of kiloyears moving toward the central and southwestern regions. 644 
Compared to the turnover times from other studies of macronutrients, the estimated Mn “pseudo”  645 
turnover time here was orders of magnitude longer than the N turnover time of 177 years 646 
globally (Rosswall, 1976) and the P turnover time of 50 years averaged across several stations in 647 
the Amazon rain forest (Mahowald et al., 2005), which was accelerated by human-induced land 648 
use change such as deforestation and biomass burning (Andela et al., 2017; Hansen et al., 2013). 649 
Overall, these comparisons illustrate the spatial variability of the soil Mn “pseudo” turnover 650 
times and suggest that atmospheric deposition of Mn may play a non-negligible role in the 651 
terrestrial surface Mn cycle in many regions world-wide. 652 
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 653 
3.4 Linkage to N deposition and C storage 654 
3.4.1 Mn to N Ratio in Deposition 655 
In addition to characterizing the atmospheric Mn cycle itself, it is important to look at its linkage 656 
to the biogeochemical cycles of two major elements, C and N. The Mn limitation has been 657 
proposed to explain the reduced organic matter decomposition in soils under chronic atmospheric 658 
N deposition (Moore et al., 2021; Whalen et al., 2018), which has the potential to regulate carbon 659 
sequestration in forest soils. Therefore, using the N deposition/concentration ratio to normalize 660 
the Mn deposition/concentration ratio (deriving Mn-to-N ratios) could make our results more 661 
interpretive in such a way that it could reveal the soil’s vulnerability to the Mn limitation (if N is 662 
sufficient) and thus relates to soil C dynamics. As anthropogenic emissions have significantly 663 
perturbed the cycling of atmospheric N (Dentener et al., 2006; Galloway et al., 2014; Kanakidou 664 
et al., 2016) and Mn, it is likely that humans have also altered this ratio of Mn to N, affecting soil 665 
C accumulations and introducing further feedbacks on climate. 666 
 667 
The ratio of Mn to N in the atmospheric deposition varies globally by several orders of 668 
magnitude. It could be as low as 5 × 10-5 in the northern latitudes and over 0.02 in desert dust 669 
dominated regions, where there is little nitrogen fixation in soils, and the dust composition is 670 
almost entirely of mineral nature (Davies-Barnard & Friedlingstein, 2020). Anthropogenic 671 
emissions increased the depositional ratio of Mn to N in most parts of the world (even in 672 
Antarctica), with the impact in industrialized regions being the most substantial (Figure 8a). 673 
When only considering the natural sources, we estimated that the Mn-to-N ratio is moderately 674 
low in major industrialized regions including northern Europe, eastern China, and the 675 
northeastern U.S., with the U.S. having lower ratios than Asia and Europe in general (Figure 8b). 676 
Anthropogenic sources enhanced the Mn-to-N ratio in all these regions, with a stronger effect in 677 
China and Europe than in the U.S. Other areas with low Mn-to-N ratio under current deposition 678 
were either around the equator, where much nitrogen fixation occurred (Davies-Barnard & 679 
Friedlingstein, 2020), or at higher latitudes. These regions were generally affected only by desert 680 
and anthropogenic dust and had relatively large wildfire and PBP contributions in deposition 681 
(Figure 6b). This could be best illustrated in the Amazon forest, where the northernmost portion 682 
influenced by African dust transportation (Ridley et al., 2012) had a much higher Mn-to-N ratio 683 
than the central part (Figures 8a and b).  684 
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 685 
Figure 8. (a) Ratio of Mn to N in atmospheric deposition calculated using the current Mn 686 
deposition simulated in the Community Atmosphere Model (CAM) (v6) and the N deposition 687 
from Brahney et al. (2015b). (b) Same as in (a), except for the inclusion of only natural Mn 688 
deposition in the calculation. (c) Box plot showing the Mn-to-N ratio in surficial soils at 689 
available sites and in depositions (current + natural). 690 
 691 
We compared the M-to-N ratio in atmospheric deposition to the in-situ ratio of Mn to N 692 
concentration in surficial soils at 1319 available sites (mainly across the U.S.). For example, 693 
Kranabetter et al. (2021) reported 541 mg kg-1 Mn and 0.77% total N in surficial soils in a 694 
temperate forest located on southern Vancouver Island. With the measurements in the 695 
abovementioned study, we calculated the in-situ Mn-to-N ratio in soil to be 0.068, which was 696 
over two orders of magnitude larger than the depositional Mn-to-N ratio of 0.00052 calculated 697 
using our gridded model output and the N deposition dataset (extracting the value of the grid in 698 
which Vancouver Island was located). Considering all available soil observational sites that 699 
contained valid measurements of Mn and N concentrations (mainly from the NCSS dataset), we 700 
obtained a median depositional Mn-to-N ratio of 0.00042 versus a median soil Mn-to-N ratio of 701 
0.21. We found that the current depositional ratio was typically one to three orders of magnitude 702 
lower than the soil concentration ratio, and the difference was larger with natural deposition 703 
(Figure 8c). Considering the relatively higher Mn-to-N ratio in soils, regions with 704 
disproportionally low Mn-to-N ratios in atmospheric deposition were interpreted to be the most 705 
vulnerable to potential Mn limitation (if deposition makes soil N sufficient), such as temperate 706 



manuscript submitted to Global Biogeochemical Cycles 

 

and boreal forests in northeastern U.S., Canada, and northern Europe, in agreement with current 707 
field experimental results (Kranabetter et al., 2021; Stendahl et al., 2017; Whalen et al., 2018).  708 
 709 
3.4.2 Correlation with Topsoil C Density  710 
To test the significance of atmospheric Mn deposition in removing soil Mn limitation and thus 711 
facilitating decomposition in forest ecosystems on a global scale, we correlated our simulated 712 
atmospheric Mn deposition with the topsoil (0-5 cm) C density derived from SoilGrids 2.0 713 
(Poggio et al., 2021), with both values extracted from grid cells where the plant functional type 714 
was identified as (sub)tropical, temperate, or boreal forest. In each case, a simple linear 715 
regression between topsoil C density and each of the four factors was carried out, including Mn 716 
deposition. Our results revealed fairly good negative correlations (r  < -0.5) between C density 717 
and Mn deposition in temperate (r  = -0.67) and (sub)tropical forests (r  = -0.54; Figure 9a). A 718 
similar negative relationship was determined between C density and N deposition in temperate 719 
forests (r  = -0.69; Figure 10b), where a significant positive relationship was obtained in the case 720 
of precipitation (r  = 0.71; Figure 10d). In addition, a negative correlation between C density and 721 
temperature was found only in subtropical forest, though relatively weaker (r = -0.46; Figure 722 
10c). When we combined the three forest ecosystems for simple regression analysis, all factors 723 
showed statistically significant correlation, with Mn deposition (r = -0.37, p < 0.0001) having the 724 
third strongest coefficient of determination (Table 2). 725 

 726 
Figure 9. Scatterplots with simple linear regression lines between topsoil (0-5 cm) C density (hg 727 
m-3) and (a) Mn in current atmospheric deposition (μg m-2 yr-1), (b) N in current atmospheric 728 
deposition (mg m-2 yr-1), (c) long-term mean temperature (°C), and (d) long-term mean annual 729 
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precipitation (cm) in temperate, boreal, and tropical forests. “P = 0.0” legend suggests a p-value 730 
< 0.0001. 731 
 732 
Results from multilinear regression confirmed the negative relationship between C density and 733 
Mn deposition to remain statistically significant along with the inclusion of the other factors into 734 
the model (Table 2). Overall, the R-squared value of the OLS model reached 0.434, with the 735 
skew (-0.115), kurtosis (3.033), and Jarque-Bera test (1.506, p = 0.471) likely indicating 736 
normally distributed residuals. To check for multicollinearity, we computed a correlation matrix 737 
(Table S4) and found a positive correlation between Mn deposition and N deposition (r = 0.61, p 738 
< 0.0001), providing the possibility that the negative correlation between C storage and Mn 739 
deposition was a “byproduct” of the positive correlation between Mn and N deposition. A 740 
calculation of variance inflation factors (VIF) obtained values < 2 for all individual variables 741 
(Table S4), suggesting that variables were only moderately correlated with each other, and 742 
multicollinearity was likely not problematic. Therefore, it is reasonable to conclude that the Mn 743 
deposition could be a predictor of topsoil C density along with N deposition and other climatic 744 
factors in forest ecosystems (predominantly temperate and tropical). In fact, Mn addition to soils 745 
has been shown to increase C losses (e.g., CO2 and dissolved organic carbon) during litter 746 
decomposition, suggesting increased Mn supply could result in decreased soil C storage (Trum et 747 
al., 2015; Jones et al., 2020). 748 

 749 
Table 2 750 
Result statistics of simple and multilinear regression between topsoil C content and Mn 751 
deposition, N deposition, temperature, and precipitation. 752 

 753 
 754 
4 Discussion 755 
4.1 Model-observation Discrepancy 756 
Although our model simulation results had a moderately good representation of the atmospheric 757 
observations under the best estimate scenario, many stations were still under- or over-predicted 758 
(Figures 4 and 5). The discrepancy between the model and observations could arise from a 759 
variety of processes, with errors in the sources, deposition or transport pathways all contributing 760 
(Mahowald et al., 2011; Loosmore, 2003).  For example, we were not able to include the 761 
emissions from direct volcanic eruptions due to the lack of data and thus constrained to apply 762 
non-eruptive degassing data only. Errors in estimates of dust deposition are thought to be of 763 
order of a factor of 10 (Mahowald et al., 2011).  Because we derived Mn from industrial sources 764 

Variable Name Simple linear regression multilinear regression 
r p-value coef t P > |t| 

Intercept   500.2603 39.248 0.000 
Mn deposition -0.372 < 0.0001 -0.0085 -4.369 0.000 

N deposition -0.493 < 0.0001 -0.0693 -7.977 0.000 
Temperature 0.270 < 0.0001 4.1265 9.313 0.000 
Precipitation 0.472 < 0.0001 8.8977 9.964 0.000 



manuscript submitted to Global Biogeochemical Cycles 

 

from a correlation with Fe (since these are the only spatially explicit mining emissions available: 765 
Rathod et al., 2019), emissions from nonferrous industries such as silico-manganese alloy, 766 
synthetic pyrolusite, and Mn chemical manufacturing plants were neglected (Parekh, 1990). 767 
Estimates of fugitive emissions from mining are not available, and thus not included in this study.  768 
  769 
Another limitation was that, except for desert and agricultural dust, we used a constant emission 770 
factor for each source because we did not have sufficient data to assess the spatial variability of 771 
the Mn emission factors from different sources such as PBP, sea sprays, and volcanoes, which 772 
could vary within the ranges given in Nriagu (1989). For example, trace element composition 773 
can vary in materials formed by biological production in different water masses (Kuss & 774 
Kremling, 1999). With the constant emission factor assumption, our model could over- or 775 
underestimate the observations, depending on the location of the site and its source 776 
apportionment.  777 
 778 
Our regression model was not able to determine a statistically significant negative correlation 779 
between topsoil C density and our simulated atmospheric Mn deposition in boreal forests. This 780 
seems contradictory with the results from a direct observational study carried out in northern 781 
Swedish boreal forests, where Mn was found to act as a critical factor regulating C accumulation 782 
(Stendahl et al., 2017). This apparent discrepancy might be attributed to the limited number of 783 
soil observations within the boreal regime, introducing large uncertainty at the higher latitudes in 784 
our linear-interpolated soil map, thus reducing the model’s ability to accurately predict the 785 
relationship in boreal ecosystems on a global scale. With most soil observations located around 786 
the middle latitudes, it would not be surprising that our model has the greatest confidence there. 787 
 788 
4.2 Anthropogenic Perturbation and Implications for C Cycling 789 
Our model and observations suggest that anthropogenic perturbations played an important role in 790 
global atmospheric Mn cycling, for which 32% of the total emissions were attributed to 791 
anthropogenic sources. As the dominant contributor of emissions in most industrialized regions, 792 
the influence of anthropogenic sources could be equal to or exceed that of natural sources, 793 
especially in the northern hemisphere (Figure 7), where they significantly accelerated the Mn 794 
turnover times in surficial soils by enriching the atmospheric deposition in which the Mn-to-N 795 
ratio was boosted. Human activities, including industrialization and agricultural practices, likely 796 
alter Mn cycles by a factor of two or more in many associated areas (Figure 6), on the same order 797 
of magnitude as the perturbation to the cycling of other metals such as Mo, aluminum (Al), lead 798 
(Pb), mercury (Hg), and vanadium (V) (Rauch & Pacyna, 2009; Schlesinger et al., 2017; Selin, 799 
2009; Sen & Peucker-Ehrenbrink, 2012; Wong et al., 2021). 800 
 801 
Our results reinforce the negative correlation between Mn and soil C storage in temperate and 802 
boreal forests on a global scale (Kranabetter et al., 2021; Stendahl et al., 2017), indicating that 803 
the Mn availability is likely a limiting factor on the soil organic matter decomposition that 804 
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consumed C from storage in these ecosystems. This implies that if atmospheric deposition is the 805 
major source of Mn in surficial soil layers, it has the potential to facilitate oxidative C 806 
decomposition by removing the limitation by Mn, and in regions that are sensitive to 807 
anthropogenic activities, humans might indirectly alter the C cycle by releasing aerosols 808 
composed of Mn into the atmosphere through industrial and agricultural activities. While a 809 
significant proportion of global C is stocked in the soils and vegetation of boreal and temperate 810 
forests in combination (IPCC, 2000), increased C emissions in these systems from 811 
decomposition promoted by Mn addition could be important to global C dynamics and climate 812 
feedbacks, exacerbating the ongoing escalating C emissions in boreal forests subjected to 813 
wildfires (Phillips et al., 2022; Zhao et al., 2021a).  814 
 815 
However, to quantitatively characterize the extent of the Mn deposition’s influence on C cycling, 816 
more field measurements and experimental studies are required. For example, our current 817 
understanding would be improved if soil organic matters at different stages of decomposition 818 
could be distinguished. Berg et al. (2007) points out that Mn addition has a stronger effect on 819 
late-stage decomposition by enhancing lignin-degrading enzymes because microbes tend to 820 
decompose lignin after the more labile organic substrates (Berg, 2014; Berg & Matzner, 1997). 821 
In addition, we focused on modelling the total extractable and/or acid digested Mn in soils and 822 
atmospheric deposition and did not consider Mn bioavailability explicitly, which is crucial to the 823 
microorganisms that are responsible for decomposition and can be regulated by the cycling of 824 
Mn in different oxidation states (Keiluweit et al., 2015). Incorporation of mechanisms 825 
constraining the bioavailability, mobility, and reactivity of Mn (Keiluweit et al., 2015) in future 826 
model calibrations is essential for a more accurate interpretation. Finally, our estimated “pseudo” 827 
turnover time and the Mn-to-N ratio could only partially represent the Mn status in soils because 828 
we did not include fluxes from other reservoirs in the Mn cycle. For instance, release of Mn(II) 829 
from clay mineral weathering and Mn(III, IV)-oxide reduction (Canfield et al., 2005) could 830 
increase the available Mn concentration in soils, creating the gap between the Mn-to-N ratio in 831 
deposition and in soils. 832 
 833 
4.3 Limitations of the Observational Data 834 
Our collected atmospheric observations of Mn are spread over 6 out of 7 continents, but high 835 
spatial coverage is mostly restricted to industrialized countries. To improve our understanding of 836 
atmospheric contribution to the Mn cycle, more observations of the concentration and deposition 837 
in currently less-observed areas such as the polar regions are needed to further constrain the 838 
tuning of the model.  839 
 840 
There are more locations with soil Mn measurements  than atmospheric observations, but they 841 
are concentrated mostly in Europe and the U.S. Because of the uneven distribution of the soil 842 
observations and the limited number of them across many countries, we are not able to capture 843 
the variability of the soil Mn concentration at small scale. For example, we did not include 844 
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measurements of Mn concentration at metal-contaminated sites associated with mining or other 845 
industries (Lv et al., 2022) in either interpolation approach. With the currently available soil data, 846 
the linear interpolation approach is uncertain in areas where in-situ soil observations are sparse 847 
and less representative, whereas the problem with soil order extrapolation is that several soil 848 
orders show a lack of sufficient measurements to calibrate the median value. While we gained a 849 
better estimation of the dust emission scheme with a soil order extrapolation in our specific case, 850 
many studies (Baize, 2010; Wong et al., 2018; Okin et al., 2008) have shown that  suggested that 851 
soil orders, which are the highest level of taxonomic classification, are typically inadequate when 852 
dealing with trace element concentrations in soils, and the intra-order variation could be large. 853 
Better estimation might be achieved with more refined classification at lower taxonomic levels 854 
such as suborders and great groups, or even quantitatively with particle size distribution. 855 
However, fewer sites specify the abovementioned information, and at such levels, the conversion 856 
between different classification systems is more complex. 857 
 858 

5 Conclusions 859 

In this study, we present, for the first time, a spatially explicit estimation of the global 860 
atmospheric Mn sources, distribution, and deposition using a combined model-observation 861 
approach. We estimate that anthropogenic sources (390 Gg Mn yr-1) represent approximately 32% 862 
of the total atmospheric Mn budget (1500 Gg Mn yr-1). Including this portion of Mn emissions in 863 
the model enhanced Mn deposition in many industrialized regions, which could accelerate soil 864 
Mn turnover as high as 100-fold and boost the Mn-to-N ratio in atmospheric deposition. 865 
Deposition of the anthropogenic Mn from human activities have a high potential to facilitate 866 
SOM decomposition in temperate and (sub)tropical forest ecosystems, thus influencing C storage 867 
and the global C cycle. Given the sparsity of observations and limited understanding of 868 
atmospheric Mn sources, uncertainties are high in these estimations. We need more atmospheric 869 
and soil observations across different landscapes to refine our model in the future and thus 870 
quantification of the global Mn cycle.  871 
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