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Abstract

The long-term net sink of carbon (C), nitrogen (N) and greenhouse gases (GHGs) in the northern permafrost region is projected
to weaken or shift under climate change. But large uncertainties remain, even on present-day GHG budgets. We compare
bottom-up (data-driven upscaling, process-based models) and top-down budgets (atmospheric inversion models) of the main
GHGs (CO2, CH4, and N20) and lateral fluxes of C and N across the region over 2000-2020. Bottom-up approaches estimate
higher land to atmosphere fluxes for all GHGs compared to top-down atmospheric inversions. Both bottom-up and top-down
approaches respectively show a net sink of CO2 in natural ecosystems (-31 (-667, 559) and -587 (-862, -312), respectively) but
sources of CH4 (38 (23, 53) and 15 (11, 18) Tg CH4-C yr-1) and N20 (0.6 (0.03, 1.2) and 0.09 (-0.19, 0.37) Tg N20O-N yr-1)
in natural ecosystems. Assuming equal weight to bottom-up and top-down budgets and including anthropogenic emissions,
the combined GHG budget is a source of 147 (-492, 759) Tg CO2-Ceq yr-1 (GWP100). A net CO2 sink in boreal forests and
wetlands is offset by CO2 emissions from inland waters and CH4 emissions from wetlands and inland waters, with a smaller
additional warming from N2O emissions. Priorities for future research include representation of inland waters in process-based
models and compilation of process-model ensembles for CH4 and N2O. Discrepancies between bottom-up and top-down methods
call for analyses of how prior flux ensembles impact inversion budgets, more in-situ flux observations and improved resolution

in upscaling.
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Abstract

The long-term net sink of carbon (C), nitrogen (N) and greenhouse gases (GHGs) in the northern
permafrost region is projected to weaken or shift under climate change. But large uncertainties
remain, even on present-day GHG budgets. We compare bottom-up (data-driven upscaling, process-
based models) and top-down budgets (atmospheric inversion models) of the main GHGs (CO,, CH,,
and N,0O) and lateral fluxes of C and N across the region over 2000-2020. Bottom-up approaches
estimate higher land to atmosphere fluxes for all GHGs compared to top-down atmospheric
inversions. Both bottom-up and top-down approaches respectively show a net sink of CO; in natural
ecosystems (-31 (-667, 559) and -587 (-862, -312), respectively) but sources of CH4 (38 (23, 53) and
15 (11, 18) Tg CH4-C yr-1) and N20O (0.6 (0.03, 1.2) and 0.09 (-0.19, 0.37) Tg N20O-N yr-1) in
natural ecosystems. Assuming equal weight to bottom-up and top-down budgets and including
anthropogenic emissions, the combined GHG budget is a source of 147 (-492, 759) Tg CO,-Ceq yr-1
(GWP100). A net CO, sink in boreal forests and wetlands is offset by CO, emissions from inland
waters and CH, emissions from wetlands and inland waters, with a smaller additional warming from
N,O emissions. Priorities for future research include representation of inland waters in process-based
models and compilation of process-model ensembles for CH, and N,O. Discrepancies between
bottom-up and top-down methods call for analyses of how prior flux ensembles impact inversion

budgets, more in-situ flux observations and improved resolution in upscaling.
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Introduction

The northern permafrost region covers 22% of the northern hemisphere land mass, is dominated by
taiga and tundra ecosystems, and is an important component in the global cycles of carbon (C) and
nitrogen (N) (Obu et al., 2019; Schuur et al., 2022). The permafrost region warms at rates 2-4 times
faster than the global average and climate-driven changes in the extent and temperature of permafrost
have been observed (Biskaborn et al., 2019; Rantanen et al., 2022). As soils become warmer or thaw,
increased microbial decomposition of soil organic matter (SOM) is projected to cause net losses of C
and N to the atmosphere or to aquatic ecosystems (Schuur et al., 2022). Climate change and
permafrost thaw also affect and interact with other ecosystem properties, including vegetation
dynamics, different disturbance regimes, and the distribution and flow of water through the landscape
(Treharne et al., 2022). All of these factors affect the seasonal and annual budgets of the important
greenhouse gases (GHGs) carbon dioxide (CO,), methane (CHy), and nitrous oxide (N,O) as well as

downstream lateral fluxes of C and N.

Permafrost is ground that is at or below 0°C for at least two consecutive years and underlies circa 14
million km® of land in the Northern Hemisphere (Obu, 2021). The northern permafrost region by
definition also includes areas with spatially discontinuous permafrost coverage, and covers circa 22
million km? of land when permafrost-free areas within the region are included (Obu, 2021). Warming
of the active layer and permafrost, gradual thaw and abrupt thaw are occurring across the permafrost
domain (Nitze et al., 2018; Runge et al., 2022; Smith et al., 2022) and may increase decomposition of
SOM, rich in both C and N, which has accumulated over millenia under cold and wet conditions.
Permafrost region soils are estimated to store 1000200 Pg of organic C and 60+£20 Pg of N in the
upper three metres (Hugelius et al., 2014; Mishra et al., 2021; Palmtag et al., 2022). Of the total C
storage, about 33080 Pg C is stored in peatlands (Hugelius et al., 2014, 2020), and the rest in mineral
soil, often enriched in C by repeated deposition or frost heave processes (Tarnocai et al., 2009).
Deeper unconsolidated sedimentary deposits store an additional 400-1000 Pg C, making the
permafrost region the largest terrestrial C and N pool on Earth (Strauss et al., 2021).

As soils thaw or become warmer, enhanced microbial processing of soil C and N causes release of
GHGs (CO,, CH4 and N,O) into the atmosphere which cause further warming and forming a positive
refer to it as the “permafrost GHG feedback”, to include non-carbon feedbacks, such as from N,O.
The sixth assessment report of the Intergovernmental Panel on Climate Change (IPCC) (Canadell et
al. 2021) estimated that the permafrost GHG feedback from CO, per degree of global warming at the
end of the century is 18 (3.1 to 41, 5-95% range) PgC °C"', with an additional permafrost GHG
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feedback from CH, of 2.8 (0.7 to 7.3) PgCeq °C'. However, this IPCC estimate does not fully include
abrupt permafrost thaw processes which cause strong additional release of CO, and CH,4 at decadal to
centennial time scales, especially from release of CH, from water-logged post-thaw environments
(Turetsky et al., 2020). Abrupt thaw, including thaw-lake formation, collapse of permafrost peatlands,
and thaw-slump formation, can rapidly affect permafrost at depths of several metres, causing rapid
melting of ground ice, land subsidence and a complete restructuring of the landscape. In addition to
uncertainties in how climate warming drives increased respiration, there is large uncertainty
regarding mediating effects from increased vegetation productivity (and CO, uptake) caused by longer
growing seasons, increased CO, concentrations, and additional nutrient release from thawing
permafrost (Abbott et al., 2016; Liu et al., 2022; McGuire et al., 2018). While uncertainties remain
large, many studies based on observational GHG flux time series show enhanced net GHG emissions
from warming and thawing permafrost soils (Kuhn et al., 2021; Marushchak et al., 2021; Natali et al.,
2015; Rodenhizer et al., 2022; Voigt et al., 2017, 2019).

A potential shift from a net GHG sink to a source remains uncertain in projections using Earth System
models (ESMs). A recent study using the CMIP6 ensemble of ESMs projects a sustained northern
CO; sink from 2015-2100 across a broad range of human emissions scenarios (Qiu et al., 2023).
However, the majority of the CMIP6 models do not include an explicit representation of permafrost,
or GHG feedbacks from thaw, and are thus likely unable to properly project changes in permafrost
GHG balance under future warming. A previous intercomparison of process-models with
representation of gradual permafrost thaw found that the northern permafrost region would act as a
sustained net C sink under medium emission scenarios (RCP4.5), but would likely act as a C source
under higher emissions scenarios, at least over the long term (McGuire et al., 2018). However, there
was significant spread between different models, largely reflecting limited representation of processes
affecting vegetation productivity, soil respiration and permafrost dynamics. There is also mounting
evidence that other localized disturbance processes, still lacking in global models, play an important
role in the mobilization of permafrost C and N. This includes disturbances associated with abrupt
thaw, coastal erosion, fires, pests or windfalls (Foster et al., 2022; Holloway et al., 2020; Hugelius et
al., 2020; Marushchak et al., 2021; Walker et al., 2019). While progress is continuously being made,
model simulations of the interactions between permafrost and disturbances are in their infancy
(Treharne et al., 2022) and are often only relevant for specific field sites (Aas et al., 2019; Brown et
al., 2015; Lopez-Blanco et al., 2022). Similarly, the lateral export of C in the form of dissolved
organic C (DOC) is missing in most ESMs. Moreover, dedicated simulations of permafrost region
N,O fluxes are still scarce and process information is insufficiently available (Lacroix et al., 2022;

Voigt et al., 2020).
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Improved understanding of GHG exchange in the permafrost region is therefore crucial for
constraining global GHG budget estimates and reducing discrepancies between methods
(Friedlingstein et al., 2022; Saunois et al., 2020; Tian et al., 2020). Estimates of GHG budgets are
typically done using bottom-up (data-driven ecosystem flux upscaling - hereafter referred to as
ecosystem flux upscaling - or process-based models) or top-down (from inversions of atmospheric
GHG mole fractions - hereafter referred to as atmospheric inversion models) approaches (Ciais et al.,
2022). Budgets based on ecosystem flux upscaling combine observations of GHG fluxes with
geospatial datasets, while process-based model budgets are based on mathematical representations of
ecosystem processes characterizing the functioning of biogeophysical systems. Here, we also compare
the other bottom-up approaches to a terrestrial model-data fusion (MDF) approach, where a process-
model is calibrated at pixel-scale using a Bayesian algorithm and spatially coherent observations
interpolated from field data and satellite-based Earth Observation (EO). Atmospheric inversion
models use advanced mathematical methods to estimate surface-to-atmosphere net GHG fluxes by
combining atmospheric GHG concentration information (in-situ or flask measurements from surface
stations, or total column abundances estimated from satellites), gridded prior flux information, and
atmospheric transport models. The first comprehensive GHG budget synthesizing bottom-up and top-
down GHG estimates for the Arctic tundra was published in 2012 as part of the REgional Carbon
Cycle Assessment and Processes project (RECCAP, McGuire et al., 2012) and highlighted the high
variability between budgeting methods thus calling for more efforts to identify and reduce the sources
of discrepancies. Although much progress has been made in the decade that followed, some of these
issues remain unresolved and there has been no systematic review of GHG budgets for the full
permafrost region (including boreal and tundra biomes) that compares and reconciles different
budgeting approaches (bottom-up and top-down).

Here we present comprehensive budgets of GHGs (CO,, CHy4, and N,0) and lateral fluxes of C and N
for the period 2000-2020 across the northern permafrost region. We compare estimated GHG fluxes
from the permafrost region using bottom-up and top-down approaches and identify remaining
research gaps that must be addressed in order to reconcile the different budget estimates and improve
interpretations of GHG budgets. The budgets also include estimated anthropogenic emissions of CO,
and CHy. These permafrost regional budgets are part of the REgional Carbon Cycle Assessment and
Processes-2 (RECCAP2) project of the Global Carbon Project that aims to collect and integrate
regional GHGs budgets covering all global lands and oceans (Ciais et al., 2022)

(https://www.globalcarbonproject.org/reccap/).
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Methods

Study area

The spatial extent of permafrost defined in this study includes areas within the northern permafrost
region as defined in Obu et al. (2021) and restricted to the Boreal Arctic Wetlands and Lakes Dataset
area (BAWLD), (Olefeldt et al., 2021) (Fig 1). This restriction was made due to constraints in data
availability for ecosystem flux upscaling. As a consequence the targeted BAWLD-RECCAP2
permafrost domain does not take into account areas underlain by permafrost in Central Asia and the
Tibetan plateau (blue areas outside the black line in figure 1). The BAWLD-RECCAP2 permafrost
region considered in this study is 18.42 million km? (excluding ice sheets and glaciers). Because much
of the region is underlain by spatially discontinuous permafrost in a mosaic of different land forms
and ecosystems, areas and land cover types without permafrost are included to the domain. All flux
estimates and models were run or rescaled to 0.5 x 0.5 degree spatial resolution and masked to match
the BAWLD-RECCAP2 permafrost region (hereafter permafrost region). We differentiated tundra
and boreal forest areas within the permafrost region using a biome delineation (Dinerstein et al.,
2017). The study area overlaps several other RECCAP?2 regions (Ciais et al., 2022) but no specific
effort to harmonize the budgets presented here with the RECCAP2 budgets of those regions are made
in this paper.
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Figure 1: Map of the extent of the study area, defined as were the northern permafrost region (blue shades, data
from Obu et al., 2021) overlaps with the spatial extent of the Tundra and Boreal forest biomes (hatched areas) as
represented Boreal Arctic Wetlands and Lakes Dataset (BAWLD, Olefeldt et al., 2021). Because the permafrost
extent in non-continuous in much of the region, it includes large areas of permafrost-free ecosystems in a
mosaic within the broader region. Figure S1 in the supplement shows the additional areas that recorded
mean annual air temperature (MAAT) below 0°C between 1990 and 2000 (full extent of ISIMIP3
permafrost model intercomparison), but which were excluded from this budget estimate because they

are outside the BAWLD extent.

Summary of overall budget approach

This paper presents full annual budgets of C and N fluxes in the form of the main GHGs (CO,, CHy
and N,O) and as lateral fluxes in streams and rivers and from coastal erosion for the time period 2000-
2020. All budgets are expressed on a C and N mass basis (i.e., for GHGs as CO,-C, CH4-C and N,O-
N yr'). Budgets are reported as Tg C or N and are reported as mean fluxes with 95% confidence

intervals (CI). In this paper we aim to present the most complete available budget estimates derived
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from data-driven ecosystem upscaling (all values from Ramage et al., in prep.), process based models
(typically Dynamic Global Vegetation Models, Land Surface Models or ecosystem models) and from
atmospheric inversion models. Figure 2 shows a generalized overview of the approach. Consistent
with global GHG budgets (Friedlingstein et al., 2022; Saunois et al., 2020; Tian et al., 2020) sinks into
the biosphere are reported as negative numbers while sources to the atmosphere are reported as
positive numbers. Ecosystem upscaling and process-based model ensembles are considered as
bottom-up inventories, while the inverse atmospheric model ensembles are viewed as top-down
atmospheric constraints. To estimate the total combined radiative balance of the permafrost region
GHG budgets, all budgets are combined to a common unit of CO,-C equivalents. This is calculated as
Global Warming Potential (GWP) for a 100 year time period (GWP-100 from table 7.15 in IPCC,
2023).

Greenhouse gas (GHG) and lateral flux budgets for 2000-2020

Inverse model GHG budgets
(CO,, CH, and N,0)

Top-down
GHGs

Decadal budgets of GHGs Separate inventories for:

. . . - Anthropogenic CO, and CH,
'ncmdmg anthropogenlc - Rivers and coastal erosion

emissions and lateral C+N flux - Geological CH,

Full budgets

Process-based models Data-driven ecosystem GHG

for terrestrial CO, and Inventories
wetland CH, flux (CO,, CH, and N,0)

Bottom-up
GHGs

Figure 2: Conceptual figure summarizing the overall approach, including top-down and bottom-up, to compile the
RECCAP?2 permafrost GHG and lateral flux budgets. Main budget components are presented in blue boxes. The bottom-up
process-based models include both ensembles of process-models as well as model-data fusion (MDF) with CARDAMOM.
Additional budget components in blue text (white box) include separate inventories of anthropogenic fluxes, lateral fluxes
(rivers and coastal erosion) and geological emissions which are used to complete the budgets. Data-driven ecosystem GHG

inventories and estimates of lateral fluxes and geological CH4 are taken directly from Ramage et al. (in prep.)

CO,-C budget from process-based models

Estimates of terrestrial ecosystem fluxes of CO, were extracted from an ‘ensemble of opportunity’

consisting of 73 process-based model simulations that have been generated over the past 10 years as
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part of model intercomparison projects. Supplemental table SI summarizes all the models included,
which model intercomparison project they belonged to, the last year of simulation, and whether they
represent processes relevant to fires as well as permafrost carbon. These include one variant of each
model taken from the available historical simulations in the following projects: the Coupled Model
Intercomparison project phase 5 and 6 (CMIP5 and CMIP6) historical coupled climate simulations
(Eyring et al., 2016; Taylor et al., 2012) and the Land Surface, Snow and Soil Moisture Model
Intercomparison Project (LS3MIP) land-history simulations driven by observed meteorology (Van
Den Hurk et al., 2016). These simulations were performed by various modelling groups and are
available from either the CMIP5 archive (https://esgf-node.llnl.gov/search/cmip5) or the CMIP6
archive (https://esgf-node.llnl.gov/search/cmip6). We downloaded and extracted carbon stocks and
fluxes from both the Permafrost Carbon Network (PCN) and Multi-scale Synthesis and Terrestrial
Model Intercomparison Project (MsTMIP) ensembles via the ORNL DAAC (McGuire et al., 2022
and (Huntzinger et al, 2018, respectively). Data from the Inter-Sectoral Impact Model
Intercomparison Project phase 2a and 2b (ISIMIP2a and ISIMIP2b) were downloaded from
https://www.isimip.org. In the case of ISIMIP2a, only the ensemble members driven by Global Soil

Wetness Project version 3 (Dirmeyer et al., 2006) data were included. For ISIMIP2b, only the
ensemble members driven by bias-corrected climate data from the IPSL-CMS5SA-LR Earth System
model submitted to the CMIP5 archive were considered. The other available ensemble members were
very similar, which, if included, would mean ISIMIP2a/2b would contribute the overall majority of
the models to the ensemble of opportunity. Supplemental Table 1 shows which model simulations
represent permafrost carbon. Initial results from ISIMIP3a/3b simulations are also shown for four
models (i.e., JULES, ORCHIDEE-MICT, JSBACH, and ELM-ECA). Results from these model

simulations are previously unpublished and described in more detail in the paragraph below.

The ISIMIP3 modelling output was from:

(i) The Joint UK Land Environment Simulator (JULES) which was driven by GSWP3 meteorology
bias corrected by the W5ES data set (Lange, 2019), denoted GSWP3-WS5ES under the ISIMIP3a
protocol. JULES is the land surface component of UKESM (Sellar et al., 2019). The configuration of
JULES presented here includes the representation of C and N cycling (Wiltshire et al., 2021) but not
vertically resolved soil carbon.

(i) ORCHIDEE-MICT was also driven by GSWP3-WSES following the ISIMIP3a protocol.
ORCHIDEE-MICT (Guimberteau et al., 2018) is a version of ORCHIDEE with permafrost C
representation in a multilayered vertically discretized model, interactions between soil C, soil
temperature and hydrology, and a fire module which burns litter and vegetation. The version used in
ISIMIP3a is further improved with representation of grassland management (Chang et al., 2021) and
northern peatlands (C. Qiu et al., 2020).
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(iii)) JSBACH-wet and JSBACH-dry were driven by GFDL-ESM4 historical forcing, following the
ISIMIP3b protocol. JSBACH is the land surface component of the Max Planck Institute for
Meteorology Earth System Model MPI-ESM version 1.2 (Mauritsen et al., 2019), with methane cycle
according to (Kleinen et al., 2020). The “wet” and “dry” configurations cover plausible ranges of soil
parameters leading to wetter and dryer soil conditions (De Vrese et al., 2023).

(iv) ELM-ECA was driven by climate data from GFDL-ESM4 submitted to the CMIP6 archive.
GFDL-ESM4 was bias-corrected by the WSES data that was also used in ISIMIP3a. This simulation
follows the ISIMIP3b protocol. ELM-ECA is a land model from the Energy Exascale Earth System
Model (E3SM) (Zhu et al., 2019). It simulates C, N, phosphorus, water and energy cycles for major
terrestrial ecosystems (e.g., forest, shrub, grassland, wetland). ELM-ECA considers multiple nutrient
competitions among plants, microbial immobilizer, nitrifier, denitrifier, and mineral surfaces to
resolve the resource partitioning among different competitors. The version used in ISIMIP3b has

improved the parameterization on wetland inundation and upland plant carbon-nutrient interactions.

All of the models (supplemental table S1) contain their own individual C cycle processes with a range
of complexities. Eighteen of the 73 simulations include a representation of permafrost C and were
analysed as a separate sub-ensemble (layered and bulk C, respectively). The multi-annual mean
estimate of the carbon stocks and fluxes was defined for the period 1980 to the end of the model
simulation (supplemental table S1). The mean residence time of dead organic matter (MRTsuR) is
defined as the sum of C stored in SOM and litter content divided by heterotrophic respiration. All of
these models estimate the net ecosystem productivity of CO, (NEP = NPP - SHR), where NPP is the
net primary productivity and SHR is the soil heterotrophic respiration and positive values are a land
sink. Some of the process-models used here also consider the additional impact of aboveground C
emissions from fire but none estimate belowground C loss from fire. In this case the net biosphere
productivity is defined which additionally includes the fire emissions (NPP - SHR - fire). This is of
particular note given the majority of fire carbon emissions in the circumpolar domain are from
belowground sources: roughly 84-90% in arctic-boreal North America and 57-74% in Eurasia (Potter
et al., 2023; Veraverbeke et al., 2021; Walker et al., 2020). Other disturbances, such as pest or storm
damage to forests, are not considered here. Fluxes from rivers and lakes are also excluded, as well as
those from abrupt permafrost thaw since these processes are not represented by the included models.
Carbon use efficiency (CUE), defined as the ratio of net primary productivity (NPP = GPP - plant
respiration (R,)) to GPP, is an emergent property of the models which quantifies vegetation efficiency
at storing C fixed via photosynthesis on annual timescales. In addition, full ecosystem budgets for
CHy4 and N,O fluxes from process-based models were either not available or not provided for the
model intercomparisons (but see separate section for process-based model budgets of wetland CHy

flux).
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Observation-informed estimates of terrestrial C stocks, fluxes and ecosystem traits (e.g. MRTgspRr)
within a consistent mass-balanced framework are essential to support evaluation of the model
ensembles described above. To generate these estimates we use the CARbon DAta MOdel fraMework
(CARDAMOM) ( Anthony Bloom et al., 2016), which has been previously used to inform our
understanding of Arctic C-cycling (Lopez-Blanco et al., 2019). CARDAMOM is a model-data fusion
framework that uses a Bayesian approach within an adaptive-proposal Markov chain Monte Carlo
(AP-MCMC) (Haario et al., 2001) to train a process-model of intermediate complexity, DALEC (A.
A. Bloom & Williams, 2015; Smallman et al., 2021; Smallman & Williams, 2019). CARDAMOM
estimates ensembles of parameter sets for each location independently from each other as a function
of location specific data-constraints. These location specific parameter ensembles result in DALEC
simulations consistent with the assimilated datasets, their associated uncertainties and ecological and
dynamical constraints (for details see Famiglietti et al., 2021). From these parameter ensembles
CARDAMOM can generate pixel-level estimates of terrestrial C-cycling and their associated
uncertainty, allowing a more rigorous evaluation of more complicated process-oriented models which
have a less direct connection to data (Caen et al., 2022). Specifically in this analysis, CARDAMOM
analysed terrestrial C-cycling at a monthly time step and 0.5 x 0.5 degree spatial resolution for 19
years (2001-2019). The meteorological drivers were drawn from the GSWP3-W5ES dataset, while
fire was imposed as a function of MODIS burned area (Giglio et al. 2015) and forest loss was
constrained using global forest watch (Hansen et al., 2013). Assimilated information was time series
estimates of leaf area index (Copernicus Service Information 2021), woody biomass for 2017 and
2018 (Santoro et al., 2021), and net biome exchange of CO, (Koren 2020). Moreover, the Northern
Circumpolar Soil Carbon Database (NCSCD) provided a pixel specific prior for the initial soil C
content (G. Hugelius et al., 2013; G Hugelius et al., 2013). Finally a globally applied prior for the
ratio of autotrophic respiration and photosynthesis of 0.46 +/- 0.12 (Collalti & Prentice, 2019). For a
more detailed description of CARDAMOM, DALEC and its drivers and observational constraints see
the supplemental text and figure S2.

Estimated wetland CH,4 emissions from process based models

Because of limited data availability, no full ecosystem flux budgets of CH; from process-based
models are available. But there are global-scale estimates of CH4 budgets for the wetland component
of the terrestrial land surface, produced for the Global Methane Budget (Saunois et al., 2020). This
study defined wetlands as peatlands (bogs and fens), mineral soil wetlands (swamps and marshes),
and seasonal or permanent floodplains. This excludes exposed water surfaces without emergent
macrophytes (such as ponds, lakes and rivers) and coastal vegetated ecosystems. In Saunois et al
(2020) 13 land surface models which represent CH, exchanges were run for the time period 2000-

2017, using a common climatic forcing (see table 2 in Saunois et al., 2020). For the permafrost region
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budget, only model runs with wetland extent constrained by the Wetland Area Dynamics for Methane
Modeling dataset (WAD2M) (Zhang et al., 2021) were used (called “diagnostic model runs” in
Saunois et al., 2020). The annual modelled CH4 wetlands budgets were extracted for the permafrost
region and summarised per decade. Although the spatial extent of wetlands in BAWLD is not exactly
the same as in WAD2M, the two datasets are similar. They are based on partly identical source data
and the definition of wetlands applied in WAD2M is consistent with definitions in BAWLD. We
therefore consider the estimates to be sufficiently similar that it supports comparison of CH, budgets
from ecosystem upscaling with estimates from process-based models (i.e. differences between the
methods themselves are much larger than differences in wetland area). Supplementary table S2

summarizes the process-based models used to estimate CH4 wetland fluxes.

Data driven bottom-up ecosystem GHG budgets and lateral flux budgets

All values reported for data-driven ecosystem flux upscaling of GHG budgets and lateral fluxes
presented here are from Ramage et al., (in prep). The methods used by Ramage et el., (in prep) are
briefly described below, but we refer to the original paper for full details.

Ramage et al (in prep) calculated C and N budgets (2000-2020) by summing GHG uptake and
emissions from terrestrial ecosystems, inland waters, and from disturbances (fire and abrupt thaw), as
well as lateral fluxes and geological emissions using several synthesis datasets. The land cover
classification used for the analysis was adapted from the BAWLD land cover classification (Olefeldt
et al., 2021). The original 19 terrestrial land cover classes in BAWLD were aggregated into five
classes: Boreal forest, Non-permafrost wetlands, Dry tundra, Tundra wetlands and Permafrost bogs.
The classes Dry tundra, Tundra wetlands, and Permafrost bogs are underlain by surface permafrost
and differ largely based on wetness and organic soil depth. Because of spatially discontinuous
permafrost coverage, Boreal forests include both permafrost and permafrost-free ecosystems. Mean
annual fluxes of CO,, CHy, and N,O were obtained for each of the five terrestrial land cover classes
by modifying three comprehensive GHG flux dataset compilations for CO, fluxes (A.-M. Virkkala et
al., 2022), CH, fluxes (Kuhn et al., 2021); and for N,O fluxes (Voigt et al., 2020) (with addition of
N,O fluxes for Boreal forest).

Similarly, inland waters fluxes of CO, and CH, to the atmosphere were calculated by upscaling mean
annual fluxes from lakes and rivers using the estimated surface area of these aquatic classes from the
BAWLD classification, adjusted to the permafrost region adjusting for ice-covered duration and
fluxes during ice break-up (see Ramage et al., in prep for details). To estimate lake fluxes of N,O
from inland waters, gridded global data of annual flux from (Lauerwald et al., 2019) were used.
Estimates of river and stream CO, flux were calculated from gridded monthly flux data (Liu et al.,
2022) (data from https://doi.org/10.5061/dryad.d7wm37pz9), using adjusted surface areas. Riverine

CH,4 emissions were determined using the mean CH, diffusive flux reported in the MethDB database
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(Stanley et al., 2016). To estimate river fluxes of N,O, gridded global data of annual full landscape
flux were used (Maavara et al., 2019).

Monthly fire emissions of CO, and CH4 were extracted for the study region from the Global Fire
Emission Database version 4s (GFED; van der Werf et al., 2017). The GFED spans from 1997-2016
and is driven by estimates of burned areas derived from satellite-based remote sensing data at a spatial
resolution of 0.25 degrees (Van Der Werf et al., 2017).

Fluxes of CO, and CH, from landforms caused by abrupt thaw (thermokarst) were extracted from an
inventory-based abrupt thaw model (Turetsky et al., 2020), in which emissions are estimated for three
generalized types of abrupt thaw terrains: mineral-rich lowlands, uplands/hillslopes, and organic-rich
wetlands. The abrupt thaw model was initialized for a historical assessment period (1900-2000) and
was then run for the period 2000-2020 to assess CO, and CH4 emissions from active and stabilized
abrupt thaw features. To prevent double counting, fluxes from mineral-rich lowlands and organic-rich
wetlands were counted as a sub-flux (not added to the total) of terrestrial land cover fluxes.

Lateral C and N fluxes from riverine transport and coastal erosion (i.e., DOC and DON losses from
the permafrost region to the ocean) are taken from (Terhaar et al., 2021), representative for all land
north of 60° N. Emissions from coastal erosion were calculated by multiplying spatially resolved
estimates of coastal erosion rates by estimates of C content in coastal soils (Lantuit et al., 2012).
Estimates of geological emissions of CHy (from subsurface fossil hydrocarbon reservoirs) are taken
from an upscaled circumpolar permafrost region estimate for gas seeps along permafrost boundaries
and lake beds (Walter Anthony et al., 2012). No separate estimates of geological emission for CO, or

N,O are available for the permafrost region.

Combined best-estimate for bottom-up budgets

To reconcile the differences between the varying bottom-up approaches integrated bottom-up GHG
budgets were created by combining results of the ensembles of process-based models and ecosystem
upscaling. The integrated bottom-up estimate is calculated as the mean of the process-based models
and ecosystem upscaling for upland and wetland ecosystems, respectively, but adding some
components which are lacking in the process-based models. The calculator is based on the subset of
the process-based model ensembles which include fire flux. Because inland waters are not included in
process-based models the numbers from ecosystem upscaling are added to the total. Because models
do not account for abrupt thaw wetlands, estimated fluxes from such processes are added to the
budgets from process-model wetland flux (with corrections of model fluxes proportional to the

respective areas occupied by inland waters and abrupt thaw wetlands).
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GHG budgets from atmospheric inversions models

Independent decadal budgets for CO,, CH4 and N,O are derived from ensembles of inverse flux
estimates. Budgets for 2000-2010 are reported for all GHGs. Due to differing data availability during
the second decade, the GHG budgets are reported for different time periods; 2010-2020 for CO,,
2010-2017 for CHy, and 2010-2019 for N,O. Inverse systems for estimating GHGs vary significantly
in the time scale of the analysis, the spatiotemporal resolution of the inferred fluxes, or the inverse
modeling framework used (Gaubert et al., 2019; Peylin et al., 2013), all of which result in differences
in the inferred flux estimates. To get the best estimates of GHG budget from atmospheric inversion
models, a common method is therefore to derive a mean or median flux estimate and the spread
among the estimates from the different atmospheric inversion models (Ciais et al., 2022; Philip et al.,
2022). The inverse model systems used to derive annual GHG budgets in this study are summarized in
supplemental table S3.

The analyses followed the RECCAP2 protocol to estimate CO,, CH, and N,O fluxes (Ciais et al.,
2022). The specific methodology used to calculate the budgets for CO,, CH4 and N,O are described in
more detail in (Friedlingstein et al., 2022) for CO,, (Saunois et al., 2020) for CHy, and (Tian et al.,
2020) for N,O. These data were retrieved from the GCP/MPI-BGC/RECCAP-2 data portal
(https://www.bgc-jena.mpg.de/geodb/) where the total number of inverse modelling estimates
available was 6 for CO,, 22 for CH, and 3 for N,O. For CO,, these 6 estimates have undergone a
spatial adjustment for differences in the used fossil fuel, cement emissions and cement carbonation
sink. One additional CO, flux estimate was added (Chandra et al., 2022) to make a total of 7, with a
strong overlap with the older versions of these systems used in (Z. Liu et al., 2022). Inversion
estimates for CO, and CH, were derived from either in-situ (surface) observations of atmospheric
GHG mole fractions or satellite derived total column estimates. Note that satellite estimates of CO,
and CH, are available primarily from 2009 onwards (e.g., from JAXA’s GOSAT and NASA’s OCO-2
missions). However, among the 22 available estimates for CHy, there were multiple submissions from
the same group using different configurations of the atmospheric data or errors associated with the
data. These submissions were first averaged and then the average estimate was used alongside
estimates from the other groups. This resulted in 14 final inverse model estimates that were used to
calculate the mean CH,4 budget. There is considerable variability between the analysis systems and a
comprehensive assessment of accuracy of individual estimates is lacking for CH; and N,O; but
(Friedlingstein et al., 2022) provide an assessment of the skill of inversions against independent
aircraft observations for CO, (for 6 out of the 7 used here). We calculate the budget using the mean
annual value from these ensembles of estimates. For estimates of N,O, the estimates from one model
system deviated more than an order of magnitude from the other two systems, and these data were not
used further. With these changes, the included number of inverse modelling estimates available were

7, 14 and 2, for CO,, CH,4 and N,O, respectively (Supplemental table S2). There was a large variation
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in the spatial resolution of inverse model systems. In all cases, the permafrost mask, which was
available at ~1°, was regridded to the resolution of the estimates from the individual models, then the
flux estimates were sampled using the permafrost mask and finally averaged using area-weighting to
generate a single value at monthly time steps for the permafrost study domain. This procedure follows
the protocol outlined in previous RECCAP2 studies (Ciais et al., 2021). Supplemental tables S5, S6
and S7 (for CO,, CH, and N,O, respectively) contain mean monthly GHG fluxes across the full study
domain, for each specific inverse model used to calculate decadal means.

Top-down estimated fluxes of CO, from fires (not added to the total, reported as sub-flux) are
extracted from a separate study combining satellite retrievals and atmospheric inversion of carbon
monoxide (CO) converted to CO,-C emissions using fixed emission factors (Zheng et al., 2023).
Gridded  estimates of fire CO,-C fluxes from this study were retrieved
(https://doi.org/10.6084/m9.figshare.21770624, resolution of 3.75°x1.9°), clipped to the extent of our
study domain and summarized for the relevant time periods. To report separate sub-fluxes of CH,4
from fires, data was extracted from the Global Methane Budget inventory using the Biomass and
biofuel burning component of the top-down ensemble of global inversion estimates (Saunois et al.,
2020), available for 2000-2017. These are inventory-based, but methodologically consistent with the

CH, inversions.

Anthropogenic emissions

Estimates of anthropogenic CO, emissions of fossil fuel combustion (coal, gas and oil estimated
separately), cement production and cement carbonization were extracted from the Global Carbon
Project’s gridded dataset for fossil CO, emissions and related O, combustion (GCP-GridFED) (M. W.
Jones et al., 2021), updated for the 2022 edition of the Global Carbon Budget (GCP-
GridFEDv2022.2; Jones et al., 2022). In GCP-GridFED, the emissions of fossil CO, relate to the
combustion and use of fossil fuels and the production of cement clinkers. These estimates are
consistent at the national and annual level with the emissions inventory compiled by the Global
Carbon Project (Friedlingstein et al., 2022; Andrew and Peters, 2022). Emissions are gridded at 1 km
resolution based on the Emissions Database for Global Atmospheric Research (EDGAR) dataset,
version 4.3.2 (Janssens-Maenhout et al., 2019), and distributed across the months of each year using a
relationship with heating and cooling degrees (years 1959-2019) and Carbon Monitor to reflect the
impact of COVID-19 (year 2020), as described by Jones et al. (2021, 2022).

Estimates of anthropogenic CH, emissions were estimated using the Fossil fuel plus Agriculture and
waste components of the top-down ensemble of global inversion estimates from Saunois et al. (2020)
(available for 2000-2017). We refer to Saunois et al., (2020) for more details on how these datasets

were derived. No separate estimates for anthropogenic N,O fluxes are included in the study.
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Results and discussion

Bottom-up budgets from models and upscaling

Bottom-up ecosystem CO, budgets from process-based models

The process-models are divided into two ensembles based on whether they include (layered C) or
exclude (bulk C) an explicit representation of permafrost C (Figure 3). From the 73 available models
55 include permafrost C. The model ensembles are also compared with the observationally-informed
CARDAMOM analysis to provide independent quantification of the likelihood of the process-model
estimates. Process-model ensemble outputs can be further separated into tundra or boreal, as defined

in the BAWLD database (Figures S3 and S4).

The land surface area in the permafrost region is estimated to be a net sink of CO, by both model
ensembles (including (layered C) or excluding (bulk C) representation of permafrost C) and the
CARDAMOM analysis (Figure 3). When considering net ecosystem productivity (NPP - SHR), the
full model ensemble suggests a net sink of -420 (-80 to -1020) Tg CO,-C y" with CARDAMOM
showing a net uptake of -960 (sink of -1880 to source of 20) Tg CO,-C y™' (table 1). Out of the 73
process-based model runs, 40 runs did not include fire and as a result are excluded from the net biome
productivity (NPP - SHR - Fg,.) reported (supplemental table S1). The 33 models that include fire,
albeit not including combustion of belowground sources, estimate fire emissions of 120 (10 to 460)
Tg CO,-C y' . This estimate is larger and has a much greater spread than CARDAMOM which has
values of 60 (50 to 100) Tg CO,-C y™'. The inclusion of fire emissions reduces the net land uptake
(only the models which include fire emissions) to -340 (-90 to -930) Tg CO,-C y"', while
CARDAMOM estimates a reduced net land uptake of -870 (sink of -1780 to source of 160) Tg CO,-C
y! (Figure 3). Although not reflected in the model ensembles, CARDAMOM’s ensemble shows the
source/sink boundary falls between the 75th and 90th quantile and thus the permafrost region could be

a small net source of C.
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Figure 3. Carbon fluxes, stocks and relevant ecosystem properties from the process-based models listed in supplemental
table S1 over the BAWLD region. The top row shows the following simulated multi-annual mean C fluxes (left to right) -
heterotrophic respiration (SHR); gross primary productivity (GPP); net primary productivity (NPP); autotrophic respiration
(R,) all in Pg CO,-C y™'. Also shown on the top row are the carbon use efficiency (CUE, dimensionless) and the fire C flux
(Fpre in Pg CO,-C y'l). The bottom row shows C stocks (soil and litter carbon and vegetation carbon, both in Pg C), the net
ecosystem productivity (NPP - SHR in Pg CO,-C y'); and the net biosphere productivity (NPP - SHR - Fg,, in Pg CO,-C y™)
for the models that include fire emissions. The final plot at the bottom right shows the mean residence time of dead organic
matter (MRTsyg; years). The model ensemble is divided into two sub ensembles depending on whether they have a
representation of permafrost carbon. In each subplot the left hand box plot (“bulk C”, n=55) represents models without
permafrost carbon representation and the right hand box plot (“layered C”, n=18) represents models which include
permafrost carbon. The grey shading represents the likely range estimated by the observationally-informed CARDAMOM
analysis. The solid grey line indicates the 50 % quantile, i.e. most likely estimate. The dark grey zone defines the 50 %
confidence interval around the 50 % quantile while the light grey zone is the 95 % confidence interval also around the 50 %
quantile. In the (NPP - SHR) and (NPP - SHR - Fg) plots the red line is at zero and positive values are a net uptake of

carbon.

In terms of the plant based C fluxes (i.e. GPP, R,, NPP and CUE), there is no significant difference
(Mann-Whitney, p < 0.01) between the /ayered C models and the bulk C models (Figure 3).
CARDAMOM’s data-informed analysis falls within the spread of the process models. However, the
spread of values simulated by the process models is considerably larger than that suggested by
CARDAMOM. This is in contrast to the (NPP - SHR) and (NPP - SHR - Fg.) fluxes discussed
above.

The MRTsur is significantly longer in models with explicit permafrost C (265 years, layered C) than
those without (81 year, bulk C) (Mann-Whitney p < 0.01; Figure 3). Longer MRTgyr in layered C
models more closely aligns with CARDAMOM’s observationally-informed analysis. Furthermore, the
overall majority of the layered C models fall within CARDAMOM’s 95 % CI. The ones that fall
outside have a longer MRTsgg than CARDAMOM. In contrast only a small fraction of the bulk C
models are consistent with the CARDAMOM MRTgyr with the remainder of the models having a
shorter MRTsyr than CARDAMOM. The /ayered C models also have a significantly larger soil C
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stock which combined with the differences in MRTgyr lead to simulating a similar magnitude of
regional heterotrophic respiration as the bulk C models. It is not unexpected that the heterotrophic
respiration is similar between the two model ensembles - the additional soil carbon that has been
added in the deeper layers is mostly frozen and therefore has very slow heterotrophic respiration.
Thus, the bulk C models estimate regional heterotrophic respiration which is consistent with both
CARDAMOM and layered C models but the layered C models have the potential for large changes in
respiration in the future, whereas the bulk C models do not.

The models within this process based model ensemble were run for several different model
intercomparison projects so they are not directly comparable in terms of protocol or time period
covered. A more constrained ensemble may reduce the uncertainties in the budget estimates.
However, the spread of model estimates are still smaller than that from the observationally

constrained CARDAMOM assessment.

Bottom-up estimate of natural wetland CH, fluxes from process-based models

Full model ensemble budgets are only available for CO,, but for CH,4 a process-based model ensemble
(n=13) of natural wetland CH, flux estimates was available from the global CH4 budget (Saunois et
al., 2020). The ensemble annual mean is a wetland CHy4 source of 12 (8.6, 16) Tg CH4-C yr-1 (Table
1). The interannual variability of the ensemble is low (annual means between 11.2 and 14.1), but there
is very large spread within the model ensemble, with annual means over the period varying from 4.9

to 28 Tg CH4-C yr-1 for individual models (table S2).

Bottom-up ecosystem GHG budgets from data driven upscaling

Bottom-up estimates of GHG budgets from data driven upscaling used for the GHG budgets presented
here are all based on Ramage et al. (in prep). More in depth results and discussion can be found in that
paper. Table 2 summarizes the main findings for the larger budgets posts of the three bottom-up data
driven ecosystem GHG budgets from that paper. All numbers are annual means estimated over the
full reporting period of 2000-2020.

The total budget of CO, is near neutral, but with a large uncertainty range 0.4 (-620, 652) Tg-CO2-C
yr-1 (table 2). Sinks of CO,, mainly in Boreal forest (-270 (-540, -1) Tg-CO,-C yr-1) and Permafrost-
free wetland land cover types (-69 (-125, -14) Tg-CO,-C yr-1) are offset by sources of CO, from fires
(109 (84, 135) Tg-CO,-C yr-1) and inland waters (streams, rivers, lakes and ponds combined; 231
(132, 360) Tg-CO,-C yr-1). The land cover types Dry tundra ecosystems, Permafrost bogs and Tundra
wetlands have CO, budgets within £3 Tg of neutral.

The total bottom-up data driven budget for CH4 shows a net source of 38 (21, 53) Tg CH4-C yr-1
(table 2). The strongest CH4 sources are Permafrost-free wetlands and inland waters (21 (14, 27) and
9.4 (4.5, 13) Tg CH4-C yr-1, respectively). In addition, all other land cover types types, as well as
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fires and geological emissions, represent weak sources of CHy to the atmosphere (from 1.2 to 3.3 Tg
CH4-C yr-1), with the exception of Boreal forests which are a weak sink (-1.1 (-2.2, 0) CH4-C yr-1).
The total bottom-up data driven budget for N,O shows a net source of 0.62 (0.03, 1.2) Tg N,O-N yr-1
(table 2). All land cover types, and fires represent net sources of N,O to the atmosphere. The strongest
sources are Boreal forest and Dry tundra ecosystems (0.14 (-0.01, 0.3) and 0.23 (0.04, 0.42)Tg N,O-N
yr-1 respectively).

Table 2. Summary of all main budget posts for the three GHGs from bottom-up ecosystem upscaling as presented by
Ramage et al., (in prep).

Due to the large formats, tables are submitted in a separate Excel file which is hopefully more

convenient

Integrated bottom-up budget combining process models and ecosystem upscaling

Integrated bottom-up GHG budgets were created by combining results of the ensembles of process-
based models and ecosystem upscaling, but adding fluxes from components known to be missing in
process-based models (abrupt wetland thaw and inland water fluxes, Table 3). These integrated
bottom-up budgets are viewed as a best-estimate of bottom-up methods to be contrasted against the
top-down atmospheric inversions constraints.

For CO,, the combined sinks estimated using data-driven upscaling for upland ecosystems and
wetlands is somewhat lower than ecosystem sink estimated by the adapted process-based model
ensemble estimate (-230 and -293 Tg-CO,-C yr'', respectively). When adding inland water fluxes, the
integrated bottom up estimate for CO2 is a weak sink with a wide uncertainty range on either side of a
neutral budget (-31 (-667, 559) Tg-CO,-C yr'"). For CH, the picture is similar, with the combined sum
of data-driven ecosystem types and fires being similar to the combined wetland process-based models
plus wetland abrupt thaw fluxes (27 and 31 Tg CH4-C yr-1, respectively). When adding inland water
fluxes the integrated bottom up estimate for CHy is a source of 38 (23, 53) Tg-CH,-C yr'. For N,O,
only the data-driven upscaling estimate is available, so this is used as a best estimate for the bottom-

up budget (a sink of 0.62 (0.03, 1.2) Tg N,O-N yr-1).

Table 3. Summary of the different budget components used to generate an integrated bottom-up budget for all three GHGs.

Due to the large formats, tables are submitted in a separate Excel file which is hopefully more

convenient
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Top-down ecosystem GHG budget from atmospheric inversion models

Top-down ecosystem GHG budgets are derived from ensembles of atmospheric inversion model
systems. To facilitate comparison to bottom-up estimates, the top-down inversion budgets are
ecosystem budgets, excluding anthropogenic emissions (these are reported below).

The ensemble of atmospheric inversion models for CO, (n=7) indicates that the ecosystems of the
permafrost region is a total net CO, sink with a multi-annual mean of -587 (-862, -312) Tg-CO,-C yr™'
(2000-2020, Table 4). Included within this net sink are CO, sources from fires, estimated by one
inverse model system as 78 (51, 104) Tg-CO,-C yr''. The inversion systems shows a stronger mean
annual sink in 2010-2020 compared to 2000-2009 (-643 (-917, -369) and -526 (-802, -250) Tg-CO,-C
yr', respectively).

The ensemble of inversion models analyzing CH4 (n=14) shows a multi-annual mean source from
natural ecosystems of 15 (11, 18) Tg CH4-C yr-1 (2000-2017; table 4). This estimated source includes
small fluxes from fires (1.4 (1.2,1.6) Tg CH4-C yr-1).

For N,O, only two separate inverse model estimates are available and they show a neutral balance or
weak source of N,O, with a multi-annual mean of 0.09 (-0.19, 0.37) Tg N,O-N yr-1 (table 4). There is
no notable difference between the first and second decade for CHy, but the N,O source was weaker in

2010-2019 compared to 2000-2009 (Table 4).

Table 4: Summary table of GHG emissions (annual mean and 95% CI) from the RECCAP2 permafrost domain from
atmospheric inversion models. The reported inverse model fluxes are the ecosystem fluxes, not including anthropogenic

emissions. Sub-fluxes from fires (already included in the total) are also shown for CO, and CH,.
Due to the large formats, tables are submitted in a separate Excel file which is hopefully more

convenient

There are no previous studies synthesizing atmospheric inversion model estimates of these three
GHGs for permafrost regions, but the results are in line with studies of similar scope. A tundra biome
synthesis from the first generation of RECCAP (McGuire et al., 2012) estimated a net CO, sink (-120
Tg C yr ") between 2000-2006 but with very large differences between individual flux estimates in the
ensemble (range -440, +210). Since then, more global top-down inverse GHG flux estimates have
become available (Friedlingstein et al., 2022), and some recent studies provided GHG budgets for
northern regions. (Bruhwiler et al., 2021) analyzed inverse model ensembles across Boreal (50-60 N)
and Arctic (60-90 N) domains and describe sinks of CO, (-290 and -130 Tg CO,-C yr™', respectively
for 1980-2017) and sources of CH, (16 and 9 Tg CH4-C yr'', respectively for 2000-2017). Using a
similar time series of estimates from atmospheric inversion models, Liu et al. (2022) found that the
permafrost region changed from being CO, neutral (1980-2000) to a CO,; sink in 2000-2017 (ca. -
200100 Tg CO,-C yr'"). There are no previous atmospheric inverse modelling estimates of N,O for

the permafrost region with which we can compare our results.
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Comparison of bottom-up and top-down ecosystem GHG budgets

Synthesis and comparison of the different methods show both convergence and divergence in the
different GHG budgets (Figure 4). Below the budgets for individual GHGs as well as total C and N

stock change budgets are discussed.

GO, (Tg CO,-Cyr') CH, (TgCH,-Cyr) NO (Tg N.O-N yr')
Top-down atmosperic inversions '—El E—- -—E—-
Bottom-up integrated budget -—ﬂ—- E——' '—ll
Fires |:-|' |] D
Inland waters B—' E—' |
Sum wetlands -H E—' -—E—-
Sum uplands -—E—- —H—- E—-
Data-driven total budget I | — [——
Model ensemble wetland CH, flux -—-
CARDANOM (NPP-SHR-F, ) — [
Full model ensemble (NPP- SHR - F, ) —
-1000 0 0 20 40 00 0.4 08 1:2

D Top-down atmosperic inversions I:l Bottom-up integrated budget I:I Data-driven synthesis . Process-based models
Figure 4. Summary of main budget items for all three GHGs over the time period 2000-2020 calculated using different

methods. The error bars represent the 95% confidence interval.

Budgets of CO,

The CO, budget for natural ecosystems (excluding anthropogenic fluxes) using bottom-up approaches
is a weak sink of -31 (-667, 559) Tg-CO,-C yr' while atmospheric inversion models show a stronger
sink of -587 (-862,-312) Tg-CO,-C yr''. The 95% CI range of the bottom-up budget is wide and spans
across the top-down budget, while the range of the top-down budget is narrower and remains a clear
sink. In comparison to top-down and bottom-up budgets, the observationally constrained
CARDAMOM system (figure 3, table 1) estimates a stronger sink of CO2 -870 (-1780, 160) Tg-CO,-
C yr’', but CARDAMOM'’s ensemble estimates crosses the source/sink boundary between the 75th
and 90th quantile and may be consistent with the other bottom-up sources. Especially for the Tundra
biome, process-based models (and CARDAMOM) have CO, budgets close to neutral, in line with
data-driven upscaling for terrestrial land cover types in that region.

Altogether, bottom-up and top-down approaches both show a sink of CO, in the region, but of

different magnitude, and with some approaches not excluding a shift to a weak source.
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Because we present a simplified top-down view in this paper (i.e. no analyses of spatial patterns in
individual or ensemble models), it is difficult to pin-point the sources of discrepancies between top-
down and bottom-up approaches. However, for the two bottom-up methods of CO, budget estimation,
the components can be contrasted. Boreal forest and wetland ecosystems are consistent sinks across
the bottom-up approaches, but in the integrated bottom-up CO, budget, this sink is offset by fluxes
from inland waters and fires. Only data-driven upscaling approaches are available to estimate inland
water fluxes, which are typically not represented in process-models. If inland waters are excluded
from ecosystem upscaling, the net budget for terrestrial land cover types, including fires, is very
similar to the (NPP - SHR - Ffire) flux of process models with layered soil C pools (table 3 and figure
3). This suggests that the CO, budget for these ecosystems is in agreement between the observational
datasets and the generation of models which explicitly represents soil layers and permafrost. It further
suggests that process-based models would likely project a weaker CO, sink with better representation
of inland waters. The three separate methods for calculating fire fluxes spread with estimates of 120,
60, 77 and 110 Tg CO,-C yr', from process-based models, CARDAMOM, one atmospheric
inversion, and the GFED inventories respectively. Comparison of different inventories and process-
based models in this paper shows that fluxes not represented in the process-based models are
potentially large, and should be targeted for inclusion within these complex models. In addition to
natural ecosystem fluxes, there may be geological sources of CO, which we do not account for, as no
separate estimates are available from the permafrost region. The full global geological CO, emissions
are estimated to 160 Tg CO,-C yr-1 (Mdrner & Etiope, 2002), and it is likely that a small fraction of

those fluxes occurs within our study region, but unaccounted for in this budget.
Budgets of CHy

For the natural balance of CH,4, both the integrated bottom-up budget and the top-down atmospheric
inversion models show consistent sources, albeit of different magnitudes at 38 (23, 53) and 15 (11,
18) Tg CH4-C yr-1, respectively. Even though both the bottom-up and top-down methods show a
source of CHy, their uncertainty ranges do not overlap, suggesting that there may be a systematic bias
between the methods.

In the data-driven upscaling, fluxes of CH,4 are characterized by high fluxes per areal unit from the
different wetland land cover types, while other classes with more extensive areal coverage such as
Boreal forests and Dry tundra are neutral or even weak sinks due to CH,4 oxidation occurring in dry
soils. Land cover types with high CH, fluxes are often spatially heterogeneous (with large
uncertainties in total area of classes) and sometimes fluxes can be especially large along the margins
of these land cover patches. These conditions make CH,4 challenging to upscale, and it also means that
the spatial landscape heterogeneity, and the spatial resolution of upscaling or modelling becomes very

important for determining accurate budgets (Treat et al., 2018a). For inverse models, this scale issue
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should not have large effects on how the systems adjust between prior and posterior fluxes. But the
resolution and magnitude of the prior flux ensembles may affect the budget.

There are no full CHs budgets available from process-based models, but the bottom-up budget
includes a model ensemble (n=13) of wetland CH4 flux estimates a source of 12 (8.6, 16) Tg CH4-C
yr-1. This is circa half of the data-driven ecosystem upscaling estimates of combined wetland flux of
25 (17, 32) Tg CH4-C yr-1. Much of this difference may be explained by the lack of abrupt thaw
wetlands in the models, which are included among data-driven land cover types and to the integrated
bottom-up budget. In addition, the discrepancy may be partly explained by the poor representation of
cold-season methane emissions in process-based models, which tend to be underestimated relative to
field-based observations (Treat et al., 2018b). The large differences between estimates suggest that
future development of process-based model estimates should target inclusion of inland waters, abrupt

thaw, but also upland ecosystems and the potential CH4 oxidation occurring there.

Budgets of N20

For N,O, both the bottom-up ecosystem flux upscaling and the top-down atmospheric inversion
models show sources but with large differences between estimates (0.62 (0.03, 1.23) and 0.09 (-0.19,
0.37) Tg N,O-N yr-1, respectively). Both methods have relatively wide uncertainty ranges that
overlap each other, and the inverse model estimate cannot with confidence be distinguished from a
neutral budget. The bottom-up estimates are seven times higher than the top-down estimates, showing
a clear need to further refine the methods and to gather more observational data. The high bottom-up
budget is mainly driven by fluxes from large areas of upland Dry tundra and Boreal forest (despite
small per unit area fluxes), but uncertainty ranges are wide for all land cover classes and the mean
values for classes may be driven up by preferential reporting from measurement sites with high
fluxes..

Tian et al., (2020) presented a global quantification of N20O sources and sinks, where top-down and
bottom-up estimates were very similar (ca. 17 Tg N,O-N yr-1) Although they do not present numbers
specifically by biome, the estimates for northern regions in Tian et al. (2020) are generally low, and
more consistent with our top-down estimates. We provide no model ensemble estimates for N,O, as
few process-based models simulate cycling of N,O in permafrost ecosystems. One exception is a
recent study using the QUINCY model to estimate an average mean annual flux of 4 mg N,O-N m-2
year-1 across several tundra ecosystem sites (Lacroix et al., 2022). If upscaled to the full tundra
domain (5.58 M km?2 including classes Wet tundra and Dry tundra), this would yield an annual flux of
0.022 Tg N,O-N yr-1, an order of magnitude lower than our bottom-up estimates for these same
classes. Conversely, another recent model study estimates much higher N,O fluxes. An ongoing study
(in review) uses the TEM model to estimates a pan-Arctic N,O budget between 1.1 - 1.2 Tg N,O-N

yr-1 (Yuan et al., 2023), which surpasses any previous estimates presented in this study. We note that
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the cited study is currently in the form of an open discussion paper and we interpret this estimate
cautiously. It underscores, however, that the uncertainty of the N,O budget for the permafrost region

is still very large and that modelling work is in its infancy.

Anthropogenic CO, and CH, emissions, lateral export of C and N and total
budgets of C

Separate estimates of anthropogenic emissions are available from global gridded data for CO, and
CHy (table 5, see table S8 for more details). For both these gases, the emissions are dominated by
combustion of fossil fuels occurring within the permafrost region. Anthropogenic emissions of CO2
are estimated to be 73 (56, 89) Tg-CO,-C yr', mainly from gas and oil (26 (19, 34) and 32 (27, 36)
Tg-CO,-C yr’', respectively) (table S8). Anthropogenic emissions of CH4 are estimated to be 5.3 (3.8,
6.7) Tg-CH4-C yr™', mainly from Fossil fuels but with a small contribution from Agriculture and waste
(4.7 (3.4, 6.0) and 0.54 (0.43, 064) Tg-CH,-C yr', respectively) (table S8). These anthropogenic
fluxes have not been included to bottom-up and top-down budgets reported above, but are included
for total budgets of C as well as calculation of the full combined Global Warming potential of all
three GHGs.

In addition to the natural and anthropogenic GHG exchange with the atmosphere, C and N is laterally
exported from the permafrost region to the Arctic Ocean via riverine transport and coastal erosion
(Table 5). The lateral fluxes of organic C were estimated at 94 (79, 110) Tg C y'l, with riverine
transport of dissolved organic carbon contributing 78 (70, 87) Tg C y™' and coastal erosion of soil and
sediment organic C contributing 15 (9, 24 ) Tg C y™'. Lateral export of N from the permafrost region
is estimated to be 2.6 (1.9, 3.6) Tg N y ™' with a smaller component of riverine transport (1.0 (0.9, 1.1)
Tg N y') compared to coastal erosion (1.6 (1.0, 2.5) Tg N y™). The ratio of C:N lost via lateral
transport is very high (ca. 80) while the C:N ratio in material lost via coastal erosion (ca. 10) is
consistent with mature mineral soil organic matter in the permafrost region (Harden et al., 2012).
Combining the net CO, and CH,4 budgets with lateral fluxes yields annual estimated organic C stock
change budgets. The sign and magnitude of combined organic C stock change budgets depend on
whether bottom-up or top-down approaches to GHG budgeting are used (101 (-565, 723) and -479 (-
772, -183) Tg C y', respectively). Using a mean of the bottom-up and top-down budgets for GHGs,
we estimate a net sink of C from the atmosphere into the terrestrial permafrost region of -189 (-669,
270) Tg C y”'. Because we do not account for all N fluxes, we cannot close the full N budget. Our
combined N20 and lateral flux data spreads less between bottom-up and top-down approaches than
for C. The mean estimate shows a net loss of nitrogen to the atmosphere and ocean of 2.9 (1.8, 4.4) Tg
Ny (Table 5). As there is a net sink of C in the region, and the overall ecosystem C:N (in soil and
vegetation) is unlikely to grow increasingly wider, we expect that if a full N budget was available, a

net source of N is more likely. This suggests an unquantified source of N into the system not
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quantified in our budgets. If we assume that the total ecosystem C:N ratio (for vegetation and 0-1 m
soils) is stable over time at a value around 15-20 (Palmtag et al., 2022), a total N source of 11-14 Tg
Ny would be needed to balance the N budget in relation to the C budget. Likely missing N sources
to balance the budget may be atmospheric N deposition or biological N, fixation, both important
sources of available N for subarctic and arctic ecosystems (Rousk et al., 2018; Yuan et al., 2023).
Yuan et al. (2023) report an estimated N deposition between 10 and 15 Tg N yr-1 for the pan-Arctic, in
close agreement with the fluxes needed to close the budget. Mean N, fixation rates of boreal forest (0.12
g N m-2 y-1) and tundra ecosystems (0.33 g N m-2 y-1) (Yu & Zhuang, 2020) would yield an
additional N sinks of 1.2 and 2.1 Tg N yr-1, respectively, if upscaled to the full spatial extent of the
Boreal forests and tundra biomes within the region. Although these estimates of additional N sinks
into ecosystems are uncertain, they suggest that our estimated net loss of N via N,O flux and lateral
losses from the domain are a small component of the N cycle, and that a balanced full N-budget
would be in agreement with an organic C stock change budget based on a GHG C-flux calculated as

the mean between bottom-up and top-down approaches.

Table 5. Summary of all main budget posts for the three GHGs, including anthropogenic fluxes as well as lateral fluxes and

total sum changes of C and N.
Due to the large formats, tables are submitted in a separate Excel file which is hopefully more

convenient

Estimated combined Global Warming Potential of the permafrost region

Using a common unit of CO,-C equivalents over 100 years (GWP100), and including both
ecosystems and anthropogenic emissions, the net balance of the three GHGs from bottom-up
approaches shows a net source of 579 (-317, 1432) Tg CO,-C eq yr' while top-down atmospheric
inversions show a sink of -242 (-576, 83) Tg CO,-C eq yr' (Figure 5, Table 6). Using the mean of the
two approaches gives an estimated combined GHG source of 147 (-492, 759) Tg CO,-C eq yr' ). In
this mean GWP100 estimate, a CO, sink (-237 (-708, 212) Tg CO,-C eq yr'") is offset by sources of
CH, (343 (225, 455) Tg CO,-C eq yr') and N,O (40 (-9.3, 92) Tg CO,-C eq yr')). Our results
highlight the importance of monitoring non-CO2 trace gases, since they are responsible for the
regions crossing over to a net source of CO,-C equivalents. Because of their different properties, life
times and concentrations in the atmosphere, the total radiative balance of the three GHGs together
varies depending on the timescale. Therefore, the estimates of the combined GHG sink or source
strengths based on GWP calculations should be interpreted with care. Supplementary table S9 shows a
summary of annual GHG budgets converted to CO2-Ceq using 20- and 500-year Global Warming
Potential (GWP20 and GWP500). Using CO,-C equivalents over shorter time-scales (GWP20) yields
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net sources from both bottom-up and top-down approaches (1,361 (168, 2512) and 81 (-399, 533), Tg
CO,-C eq yr’' respectively) with a mean source of 721 (-115, 1522) Tg CO,-C eq yr"'. Over multiple
centuries (GWP500), the bottom-up estimate remains a source (124 (-310, )), but both the top-down
and mean estimates are of net GHG sinks (-451 (-789, -116) and -132 (-664, 377) Tg CO,-C eq yr’,
respectively)

The uncertainty ranges of the combined GHG budgets (using GWP100), in both bottom-up and top-
down approaches, span across a neutral budget. Because the budget is so close to neutral, recent and
future shifts in disturbance regimes may shift the sign of the net GHG budget. The combined effect of
fire (from bottom-up scaling) is a source of ca 130 Tg CO,-Ceq yr''. Without fires, the mean net GHG
balance would be close to neutral, but unusually strong fire years can significantly increase the net
GHG source. For instance, in the summer of 2021, global boreal fire emissions were nearly three
times larger than the 2000-2020 mean (Zheng et al., 2023). Emissions of CO,,CHy4, and N,O from
abrupt thaw landforms, both at present and in the future, is a large but highly uncertain source of
GHGs. Abrupt thaw (thermokarst) may expand or shift rapidly over time and can be triggered by fires
or by unusually warm summers (Turetsky et al., 2020). The estimated fluxes from abrupt thaw lakes
and wetlands are conservative in the bottom-up data driven upscaling used for this assessment, but

they may be as large as 300 CO,-Ceq yr-1 for the 2000-2020 period (see Ramage et al. (in prep.))

1500
1000

500

TgCOCeyr'

-500

Co, CH, N,O Total GHGs

. Bottom-up (plus anthrop.) D Top-down (plus anthrop.) D Mean bottem-up/top-down (plus anthrop.)

Figure 5. Annual GHGs budgets for bottom-up, top-down approaches, as well as the mean between these two approaches.
All numbers converted to CO,-equivalents (Tg CO,-Ceq, with 95% CI) using a 100-year Global Warming Potential (GWP-

100). Table 6 complements this figure by showing more detailed sub-fluxes for the different categories.

Table 6. Summary of annual GHGs budgets for all main budget posts, converted to CO,-equivalents (Tg CO,-Ceq, with
95% CI) using a 100-year Global Warming Potential (GWP-100) from bottom-up approaches, top-down atmospheric
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inversion models and from anthropogenic fluxes. A GWP-100 of 29.8 for CH, and 273 or N,O relative to CO2 was used
(IPCC, 2023; Table 7.15).

Due to the large formats, tables are submitted in a separate Excel file which is hopefully more

convenient

Main sources of uncertainty within and between GHG budgets

The spread between methods in this study is smaller than in some earlier studies (McGuire et al.,
2012; Saunois et al., 2020), the differences between bottom-up and top-down estimates are
substantial. Combined for all three GHGs over natural ecosystems, the bottom-up ecosystem scaling
predicts a source of 449 (-415, 1272) Tg CO,-Ceq yr-1 while the top-down inversions estimate a sink
of -414 (-765, -74) Tg CO,-Ceq yr-1 (table 6, excluding anthropogenic fluxes). Both the systematic
discrepancies between bottom-up and top-down methods, and the wide uncertainty ranges of data and
model estimates point to a need for further refinement of methods, process representation and
additional observational data.

The flux estimates from the global GHG inversions for the permafrost region show a relatively large
spread between the different systems (tables S5-S7). This large range may partly be explained by a
relatively limited set of atmospheric concentration observations being available for the region (from
the surface networks or satellite observing systems). Furthermore, the resolution at which fluxes are
estimated is relatively coarse in comparison to the large landscape heterogeneity of the studied region
- this might increase variability between different inversion systems and contribute to the systematic
differences in relation to bottom-up approaches.

For all three GHGs, the ecosystem flux upscaling estimates suggest stronger sources than the
atmospheric inverse models. Because the budgets presented here integrate the full permafrost domain,
it is challenging to assess where and why differences occur between bottom-up and top-down
estimates. These consistent differences between bottom-up and top-down methods may indicate a
systematic bias in either or both of the methods, possibly related to the representativeness of the
observations used, as atmospheric mole fraction measurements have a larger footprint compared to
EC observations. Strong sources and sinks of all GHGs are associated with certain land cover classes,
land forms or processes (e.g. wetlands, inland waters, thermokarst lakes, and fires). It would be of
interest for further studies to analyze the spatial patterns of inversion budgets relative to the
distribution of specific land cover types or processes in the landscape.

A potential source of mismatch between bottom-up and top-down estimates is the source of
information used to estimate prior fluxes for the GHG inversion systems. It is possible that if prior
flux ensembles consistently included all of the land cover types and processes included in bottom-up
estimates, they would be more similar. For instance, the global inversions do not include emissions

from inland water as prior knowledge for the inversion system (supplemental table S3 and references
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therein). For CO, the prior fluxes are based on land surface models and fire inventories as well as
anthropogenic emissions, with systems optimized to estimate fluxes from the natural ecosystems
(Friedlingstein et al., 2022). For CH,, the prior fluxes included only emissions estimated from
process-based models for wetlands and anthropogenic sources (Saunois et al., 2020). Inland waters
are important sources of all GHGs, with a combined emission of 330 (180, 500) Tg CO,-Ceq yr’'
(Table 6). Adding inland water emissions to the prior flux ensemble may help reconcile bottom-up
and top-down estimates. We note that the budgets estimated by the inversion ensembles are relatively
similar to the budgets estimated process-based models which have been used as priors. The NEE as
well as wetland CHy4 fluxes derived from process-model ensembles are similar to the atmospheric
inverse model CO, and CH, budgets, respectively (-420 and -587 Tg CO,-C y™' as well as 12 and 15
Tg CH4-C yr-1, respectively). It is possible that in regions with limited atmospheric observations to
correct concentration, the posterior inverse model fluxes do not deviate much from the priors. This
problem may be particularly important during the long cold season. Shoulder-seasons and winter
fluxes of both CO, and CH, are significant parts of the annual budgets in field measurements across
multiple sites but process-based models (used as inversion priors) capture these emissions poorly
(Natali et al., 2019; Treat, et al., 2018b). This bias may be further exacerbated by systematic lack of
observational constraints during winter. The observational networks for GHG fluxes in the permafrost
region during winter are very sparse, especially in Canada and Russia (Pallandt et al., 2022). Further,
the inverse model systems that use satellite instruments need enough insolation to measure the CO, or
CH, atmospheric columns. In practice, this restriction means that the high latitudes are rarely sampled
by satellites around the winter hemisphere.

But even with updated prior fluxes, it is probable that estimates from bottom-up approaches would
still be higher than the atmospheric constraint and the balance of global GHG budgets. This suggests a
need for further revising the bottom-up upscaling methods in parallel with development of top-down
methods and datasets. The spatial products used to delineate the surface area of land cover types for
this study remain coarse (Olefeldt et al., 2021), both in terms of spatial resolution and the diversity of
land form classes (Ramage et al., in prep). The next generation of remote sensing products are likely
to improve estimates of areas of different important land cover classes in the near future. In addition
to uncertain areal coverage of key land cover classes, the bottom-up budgets for all GHGs are strongly
affected by average fluxes from individual landcover classes. Because of the heterogeneous nature of
GHG fluxes in both space and time, it is challenging to generate datasets with unbiased and accurate
annual GHG budgets (RoBger et al., 2019; Treat, et al., 2018a). There is a risk of biases toward
measurements of high fluxes associated with spatial and temporal variability both within and across
landcover types. There is also a risk for higher reporting prevalence from sites with high emissions, or
that land cover types that may be weak sinks of GHGs (but may cover large areas) are under-reported.
For example, the importance of spatially widespread but weak soil CH, sinks in determining the full

landscape CH,4 budget has been shown for Arctic tundra in Greenland and Siberia (Juncher Jorgensen
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et al., 2015; Juutinen et al., 2022). Larger regional gaps in observational flux networks may also be
important (Pallandt et al., 2022; Virkkala et al., 2018), because different regions can have highly
diverse environmental conditions and rates of warming and permafrost thaw which can impact GHG
fluxes in various ways. The formation and past history of permafrost deposits in different regions also
influence the potential permafrost GHG feedback strengths (Jones et al., 2023), which may bias
estimates if field data is unevenly spaced. Better representation is also needed from sites affected by
different disturbance regimes. This includes both fluxes from disturbance events as well as post-
disturbance trajectories, such as CO2 sinks after fire (Walker et al., 2019) or biological pest outbreaks
(Lund et al., 2017). If the assemblage of sites used for calculating average GHG fluxes is not broadly
representative of areas in long-term recovery trajectories, it may well underestimate C sinks in post-
disturbance ecosystems. Another large source of uncertainty is how abrupt permafrost thaw affects
GHG budgets. In our budgets, it is partly included in the data-driven upscaling (via specific land
cover or lake types types in BAWLD), but entirely missing in the process models. The spatial extent
and annual fluxes of abrupt thaw landforms remain poorly constrained (Turetsky et al., 2020). In
addition, abrupt thaw landforms and other disturbed soils may emit N,O (Voigt et al., 2020), but this
is not included in any of our budgeting approaches. Further improvements to data-driven bottom-up
budgets could be made by i) an increased number of observations, including more spatially distributed
data and non-growing season measurements, ii) consistent reporting of net-zero or negative fluxes to
prevent biased site selection and reporting in published literature and iii) upscaling using techniques
that can simultaneously consider several environmental conditions and their variability across the

entire permafrost region (Hugelius et al., 2020; Natali et al., 2019; Virkkala et al., 2021)
Conclusions

We present the first synthesis of GHG budgets for CO,, CH4 and N,O as well lateral fluxes of C and
N across the northern terrestrial permafrost region using bottom-up (ecosystem flux upscaling and
process-based models) and top-down (atmospheric inversion models) approaches for the period 2000-
2020. In comparison, bottom-up approaches consistently yield estimates of stronger GHG sources
compared to top-down. Both approaches show a net sink of CO, in natural ecosystems, but they
diverge by several hundred Tg CO,-C yr-1 (-31 (-667, 559) and -587 (-862, -312), respectively). The
Boreal biome, especially Boreal forest land cover, is a stronger net sink while the tundra biome is
neutral, or even a source when accounting for fluxes from inland waters. Bottom-up and top-down
approaches both show sources of CH,, but the 95% CI ranges do not overlap (38 (23, 53) and 15 (11,
18) Tg CH4-C yr-1, respectively). The strongest sources of CH, are permafrost-free wetlands, and
inland waters. Estimates of N,O are highly uncertain, but both methods estimate sources to the
atmosphere (0.6 (0.03, 1.2) and 0.09 (-0.19, 0.37) Tg N,O-N yr-1). Anthropogenic emissions from the
region are 73 (56, 89) Tg CO,-C yr-1 and 5.4 (3.8, 7.1) Tg CH4-C yr-1, in both cases dominated by
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combustion of fossil fuels (estimates not available for N20O). Assuming equal weight to bottom-up
and top-down budgets, the combined global warming potential at a 100 year timescale (GWP100) is a
net GHG source of 147 (-492, 759) Tg CO,-Ceq yr-1, The CO, sink is more than offset by the CH,
source, with a small source contribution from N,O (-285, 343 and 40 Tg CO,-Ceq yr-1, respectively).
When calculating global warming potential over decadal time-scales (GWP20) both bottom-up and
top-down approaches show net sources of GHGs. The estimated total annual budgets of C and N,
when anthropogenic and lateral fluxes are included (but not accounting for N deposition or N2
fluxes), are -189 (-669, 270) Tg C yr-1 and 2.9 (1.8, 4.4) Tg N yr-1.

Inverse model datasets have not been extensively used for studies of the permafrost region, but are
highly useful for broad-scale budgets and should be utilized to a greater degree in future studies. The
consistently lower land to atmosphere fluxes from top-down inversions compared to bottom up points
to potential systematic biases in both methods. Future efforts should focus on improved observational
networks to support atmospheric inversions in the region and comparison of spatial patterns within
atmospheric inversion models, including analysis of how prior fluxes affect the posterior budgets.
Data-driven bottom-up estimates are still data-limited and further refinement of the spatial resolution
and GHG balances for individual classes could improve estimates. Process-based model estimates are
highly useful and complementary to other budgeting approaches. With future addition or
improvement of key processes, such as fire, abrupt thaw and inland water dynamics, it is likely that
budgets from process-based models would be similar to data-driven upscaling. If it can be shown that
process-based models mimic data-constrained estimates for present day budgets, it increases
confidence in using models for projections of future GHG dynamics.

In summary, we cannot currently reconcile bottom-up and top-down GHG budgets for the permafrost
region. The bottom-up budget may be biased in ways that increase estimated fluxes to the atmosphere
from high-emitting land cover types while top-down atmospheric inversion budgets may be biased in
ways that decrease fluxes to the atmosphere by not including ecosystem types that are known net
GHG sources in prior flux estimates. Considering these constraints, a mean between the integrated
bottom-up and top-down budget approaches can be seen as the most robust best estimate under the
current state of knowledge. We conclude that while uncertainties remain, the budgets are sufficiently
well constrained to shows the northern permafrost region as a net sink of organic C, but a net source
of combined global warming potential over decadal to century time-scales. The boreal biome is likely
a GHG sink, or neutral, but the tundra biome is a GHG source. Ongoing and projected future
permafrost thaw as well as intensification of disturbance regimes, including droughts, storms, pests

and fires are likely to strengthen GHG sources across the whole region.
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Supplementary text and figures

BAWLD-RECCAP2
Permafrost extent

. North America
. Europe
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- South Asia
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Figure S1. The spatial extent of permafrost defined in this study - the BAWLD-RECCAP2 permafrost
region shown in relation other RECCAP2 regions as well as the full permafrost extent. The spatial
extent of the permafrost region defined in this study as an overlap of the RECCAP2 permafrost extent
and the Boreal Arctic Wetlands and Lakes Dataset (BAWLD, Olefeldt et al., 2021). The colours show
regional overlap with different RECCAP2 regions (Ciais et al., 2022). The grey shades show the full
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northern permafrost extent as defined by the combination of data from Obu et al. (2021) plus areas
that recorded mean annual air temperature (MAAT) below 0°C between 1990 and 2000, which is

consistent with the area used in the ISIMIP3 model intercomparison.

Detailed method description for CARDAMOM

The DALEC intermediate complexity model for terrestrial ecosystems simulates the C stocks, inputs
(photosynthesis), outputs (respiration, fire and removals) and internal flows (allocation / turnover) of
4 biomass (labile, foliage, roots and wood) and two dead organic matter (litter and soil) pools (Bloom
& Williams 2015; Smallman & Williams 2019). Photosynthesis is simulated by the ACM-GPP-ET
model which estimates photosynthesis as a function of available CO,, temperature, absorbed
shortwave radiation, leaf area. Available CO, is a function of stomatal conductance which is itself
determined by opening the stomatal until the additional photosynthate gained falls below a critical
threshold or the limits of water supply from the soil via the roots is reached (for details see Smallman
& Williams 2019). Photosynthate is allocated to autotrophic respiration and plant tissues based on
fixed fractions. Allocation of labile to the canopy and canopy senescence are determined as a function
of day of year. Turnover of wood and fine roots follows first order kinetics. Decomposition of litter to
soil, and heterotrophic respiration from both litter and soil mineralisation follow first order kinetics
modified by an exponential temperature response function. Each pool, and flux within DALEC and its
exchanges with its environment are governed by parameters retrieved by CARDAMOM for each

location independently, but as a function of local information.

CARDAMOM analysed terrestrial C-cycling at a monthly time step and 0.5 x 0.5 degree spatial
resolution for 19 years (2001-2019). CARDAMOM combines information contained within the
DALEC model structure, DALEC’s drivers, the assimilated observations and ecological knowledge to
estimate ensembles of local parameters. From these ensembles of parameters we can explicitly
quantify at pixel scale uncertainty in both the underlying parameters and C-cycling. Meteorological
drivers are drawn from the GSWP3-WS5ES dataset, fire is imposed as a function of MODIS burned
area and forest loss is imposed using global forest watch (Hansen et al., 2013). Assimilated
information are time series estimates of leaf area index (Copernicus Service Information 2021),
woody biomass for 2017 and 2018 (Santoro et al., 2021), and net biome exchange of CO2 (Koren
2020). NCSCD provides pixel specific prior for the initial soil C content while a globally applied prior
for the ratio of autotrophic respiration and photosynthesis (of 0.46 +/- 0.12, Collalti & Prentice 2019).
Ecological knowledge is applied using ecological and dynamical constraints (EDCs) which ensure
rejection of parameter combinations which are ecologically unrealistic, such as wood turnover being
faster than fine root or inappropriate exponential changes in C stocks (for details see Bloom et al.,

2016).
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Figure S2: Steady state C-budget for RECCAP2-Permafrost. Numbers show median estimate of fluxes
(alongside arrows) and of stocks (in boxes). Units are MgC ha-1 for stocks and MgC ha-1 yr-1 for fluxes. 95%
confidence intervals are shown in a fractional form with 2.5 and 97.5 percentile as numerator and denominator.
Black fluxes are biogenic, including net primary production (NPP), mortality (Mort), autotrophic respiration
(Ra), and heterotrophic respiration (SHR). NEE = Ra + SHR - GPP. NBE = NEE + Etotal. Red fluxes are fire-

driven emissions (E).

Process based model result separated to the Boreal and Tundra biomes

Boreal region
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Figure S3.Carbon fluxes, stocks and relevant ecosystem properties from the process-based models listed in supplemental

table S1 for the boreal region. The top row shows the following simulated multi-annual mean C fluxes (left to right) -
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heterotrophic respiration (SHR); gross primary productivity (GPP); net primary productivity (NPP); autotrophic respiration
(R,) all in Pg CO,-C y™'. Also shown on the top row are the carbon use efficiency (CUE, dimensionless) and the fire C flux
(Fiires in Pg CO,-C y']). The bottom row shows C stocks (soil and litter carbon and vegetation carbon, both in Pg C), the net
ecosystem productivity (NPP - SHR in Pg CO,-C y™); and the net biome productivity (NPP - SHR - Fg in Pg CO,-C y™)
for the models that include fire emissions. The final plot at the bottom right shows the mean residence time of dead organic
matter (MRTgyg; years). The model ensemble is divided into two sub ensembles depending on whether they have a
representation of permafrost carbon. In each subplot the left hand box plot (“bulk C”, n=55) represents models without
permafrost carbon representation and the right hand box plot (“layered C”, n=18) represents models which include
permafrost carbon. The grey shading represents the likely range estimated by the observationally-informed CARDAMOM
analysis. The solid grey line indicates the 50 % quantile, i.e. most likely estimate. The dark grey zone defines the 50 %
confidence interval around the 50 % quantile while the light grey zone is the 95 % confidence interval also around the 50 %

quantile. In the (NPP - SHR) and (NPP - SHR - Fy,.,) plots the red line is at zero and positive values are a net uptake of

carbon.
Tundra region
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Figure S4. Carbon fluxes, stocks and relevant ecosystem properties from the process-based models listed in supplemental
table S1 for the tundra region. The top row shows the following simulated multi-annual mean C fluxes (left to right) -
heterotrophic respiration (SHR); gross primary productivity (GPP); net primary productivity (NPP); autotrophic respiration
(R,) all in Pg CO,-C y™'. Also shown on the top row are the carbon use efficiency (CUE, dimensionless) and the fire C flux
(Ffires in Pg CO,-C y']). The bottom row shows C stocks (soil and litter carbon and vegetation carbon, both in Pg C), the net
ecosystem productivity (NPP - SHR in Pg CO,-C y™); and the net biome productivity (NPP - SHR - Fpe, in Pg CO,-C y™)
for the models that include fire emissions. The final plot at the bottom right shows the mean residence time of dead organic
matter (MRTgyg; years). The model ensemble is divided into two sub ensembles depending on whether they have a
representation of permafrost carbon. In each subplot the left hand box plot (“bulk C”, n=55) represents models without
permafrost carbon representation and the right hand box plot (“layered C”, n=18) represents models which include
permafrost carbon. The grey shading represents the likely range estimated by the observationally-informed CARDAMOM
analysis. The solid grey line indicates the 50 % quantile, i.e. most likely estimate. The dark grey zone defines the 50 %
confidence interval around the 50 % quantile while the light grey zone is the 95 % confidence interval also around the 50 %
quantile. In the (NPP - SHR) and (NPP - SHR - Fy.,) plots the red line is at zero and positive values are a net uptake of

carbon.



Table 1. Summary of annual budgets from process-based model ensembles and the model data-fusion approach
CARDAMOM. For CO2 the mean from the full ensemble of models that include fire is presented as well as the annual
budgets from CARDAMOM. For CH4 the annual fluxes from wetlands are reported. No process-based model results are
available for N20

Process-based models, annual budgets

CO2 2.5% CI 97.5% CI CH4 2.5% CI 97.5% CI
Tg CO2-Cyr-1 Tg CH4-C yr-1
Model ensemble: NPP- SHR - Ffire -340 -930 90 NA
Model ensemble: NPP - SHR -420 -1020 -80
Model ensemble: Ffire 120 10 460
CARDAMOM: NPP- SHR - Ffire -870 -1780 160 NA
CARDAMOM: NPP - SHR -960 -1880 20
CARDAMOM: Ffire 60 50 100

Model ensemble wetland CH4 flux NA 12 8.6 16




Table 2. Summary of all main budget posts for the three GHGs from bottom-up ecosystem upscaling as presented by Ramage et al.,

(in prep).

Data-driven upscaling (All numbers from Ramage et al. in prep)

Surface arei  CO2 2.5% CI 97.5% CI CH4 2.5% ClI 97.5% ClI N20 2.5% ClI 97.5% ClI
106 km2 Tg CO2-C yr-1 Tg CH4-C yr-1 Tg N20O-N yr-1

Total budget 17.05 0.4 -620 652 37.7 21.3 52.8 0.62 0.03 1.19

Sum all terrestrial land cover: -340 -836 156 25.6 14.69 36.4 0.55 -0.03 1.14

Sum uplands 14.2 -267 -687 153 1 -2.6 4.5 0.37 0.03 0.72

Boreal forests 9 -270 -540 -1 -1.1 -2.2 0 0.14 -0.01 0.3

Dry tundra 5.2 2.9 -148 154 2.1 -0.4 4.5 0.23 0.04 0.42

Sum wetlands 2.8 -72 -148 4 24.6 17.29 31.9 0.18 -0.06 0.42

Non-permafrost wetlands 1.6 -69 -125 -14 21 14 27 0.07 -0.03 0.17

Permafrost bogs 0.86 -0.05 -0.8 0.73 0.7 0.29 1.1 0.1 -0.03 0.23

Tundra wetlands 0.4 -2.7 -23 17 3.3 2.7 3.9 0.01 0 0.02

Fires 1.1 109 84 135 1.2 0.93 1.45 0.07 0.057 0.083

Inland waters 1.4 231 132 360 9.4 4.5 13.1 0.002 0.001 0.003
Geological emissions NA NA NA 1.5 1.2 1.8 NA




Table 3. Summary of the different budget components used to generate an integrated bottom-up budget for all three

GHGs.
CO2 2.5% ClI 97.5% CI CH4 2.5% ClI 97.5% CI N20 2.5% ClI 97.5% CI
Tg CO2-Cyr-1 Tg CH4-Cyr-1 Tg N20O-N yr-1
Data-driven synthesis Total budget 0.4 -620 652 38 21 53 0.6 0.03 1.2
Sum upland landcover types -267 -687 153 1 -2.6 4.5 0.37 0.03 0.72
Sum wetlands -72 -148 4 25 17 32 0.18 -0.06 0.42
Fires 109 84 135 1.2 0.9 1.5 0.07 0.06 0.08
Inland waters 231 132 360 9.4 4.5 13 0.002 0.001 0.003
Abrupt thaw wetland flux (not included in data-driven upscaling total) 19 13 26 19 12 26
Process-based models Model ensemble NEE (NPP- SHR - Ffire) -340 -930 90 NA NA
Model ensemble CH4 wetland flux NA 12 8.6 16 NA
Integrated bottom-up budget Natural ecosystems (including fires) -31 -667 559 38 23 53 0.6 0.03 1.2
Mean vegetated upland+wetland ecosystems (with fire) -262 -799 200 29 18 40 NA
Data-driven, sum upland+wetland landcover types -230 -757 292 27 15.6 37.9 0.6 0 1.2
Model ensemble NEE plus and wetland abrupt thaw -293 -842 109 NA NA
Model ensemble wetland CH4 flux and abrupt wetland thaw 31 21 42
Inland waters (from data-driven synthesis) 231 132 360 9.4 4.5 13 0.002 0.001 0.003




Table 4: Summary table of GHG emissions (annual mean and 95% Cl) from the RECCAP2 permafrost domain from atmospheric
inversion models. The reported inverse model fluxes are the ecosystem fluxes, not including anthropogenic emissions. Sub-fluxes

from fires (already included in the total) are also shown for CO2 and CH4.

CO2 CH4 N20
Tg CO2-Cyr-1 2.5% CI 97.5% CI Tg CH4-Cyr-1 25%Cl 97.5%Cl Tg N20-Nyr-1 2.5% Cl 97.5% ClI
Inversion ensemble 2000-2009* -526 -802 -250 14 11 18 0.01 -0.24 0.27
Fire sub-flux** 72.8 48.048 97.552 1.235 1 1.47 NA
Inversion ensemble 2010-2020* -643 -917 -369 15 12 18 0.16 -0.14 0.46
Fire sub-flux** 82.1 54.186 110.014 1.6 1.4 1.7 NA
Inversion ensemble 2000-2020* -587 -862 -312 15 11 18 0.09 -0.19 0.37
Fire sub-flux** 77.7 51.282 104.118 1.4 1.2 1.6 NA

* GHG are reported for different periods: 2000-2020 for CO2, 2000-2017 for CH4, and 2000-2019 for N20
**Fire sub-flux of CO2 from Zheng et al., (2023) CI range assumed to be proportional to reported ClI for trends in that
paper. Fire sub-flux of CH4 is biomass and biofuel burning extracted by mask from global methane budget datasets

used in Saunois et al (2020).



Table 5. Summary of all main budget posts for the three GHGs, including anthropogenic fluxes as well as lateral fluxes
and total sum changes of C and N.

CO2 2.5% CI 97.5% ClI CH4 25%C 97.5% CI N20 25%Cl 97.5% CI
Tg CO2-Cyr-1 Tg CH4-C yr-1 Tg N20O-N yr-1
Bottom-up integrated budget All ecosystems (including fires) -31 -667 559 38 23 53 0.6 0.03 1.2
Top-down atmosperic inversions All ecosystems (including fires) -587 -862 -312 15 11 18 0.09 -0.19 0.37
Anthropogenic emissions Total budget 73 56 89 54 38 7.1 NA
Fossil fuels 73 56 89 49 33 6.5 NA
Agriculture and waste NA 0.54 0.44 0.64 NA
Carbon stock changes Nitrogen stock changes
Tg Cyr-1 2.5% CI 97.5% ClI Tg Nyr-1 2.5% Cl  97.5% CI
Mean gas C (CO2+CH4) and N (N20) budge' Bottom-up 7 -644 612 0.6 0.03 1.2
Top-down -573 -851 -294 0.09 -0.19 0.37
Lateral flux C and N budgets 94 79 111 2.6 1.9 3.6
Riverine flux 78 70 87 1.0 0.9 1.1
Coastal erosion 15 9.2 24 1.6 1.0 2.5
Sum C and N changes Bottom-up 101 -565 723 3.2 1.93 4.8
Top-down -479 =772 -183 2.7 1.7 4.0

Mean bottom-up/top-down -189 -669 270 2.9 1.8 4.4




Table 6. Summary of annual GHGs budgets for all main budget posts, converted to CO2-equivalents (Tg CO2-Ceq, with

95% CI) using a 100-year Global Warming Potential (GWP-100) from bottom-up approaches, top-down atmospheric

inversion models and from anthropogenic fluxes. A GWP-100 of 29.8 for CH4 and 273 or N20 relative to CO2 was used

(IPCC, 2023; Table 7.15).

GWP100 CO2 2.5% Cl 97.5% CI CH4  2.5%Cl 97.5% ClI N20 2.5%Cl 97.5% Cl [Total GHGs 2.5% Cl  97.5% ClI
Tg CO2-Ce yr-1 Tg CO2-Ce yr-1 Tg CO2-Ce yr-1 Tg CO2eq yr-1

Integrated bottom-up budge Natural ecosystems (including fires) -31 -667 559 410 248 572 70 3.5 140 449 -415 1272
Mean vegetated upland+wetland ecosyste -262 -799 200 313 194 432 NA 52 -605 632

Data-driven, sum upland+wetland landcovy] -230 -757 292 292 168 409 70 0 140 132 -588 841

Model NEE and wetland abrupt thaw -293 -842 109 NA NA -293 -842 109

Model wetland CH4 flux and abrupt wetland thaw 335 227 454 335 227 454

Inland waters (from data-driven synthesis) 230 132 359 102 49 140 0.23 0.12 0.35 332 181 500

Fires (from data-driven synthesis) 109 80 136 13 10 16 8.2 7.0 9.3 130 97 162
Top-down atmospheric invel Natural ecosystems (including fires) -587 -862 -312 162 119 194 11 -22 43 -414 -765 -74
Fires (from one inversion system) 78 51 104 NA NA 78 51 104

Anthropogenic fluxes Fossil fuel, agriculture and waste, cement 73 56 89 57 41 72 129 98 161
Summary of all fluxes Bottom-up plus anthropogenic 41 -611 648 467 290 644 70 3.5 140 579 -317 1432
Top-down plus anthropogenic -514 -806 -223 219 160 266 11 -22 43 -285 -668 86

Mean bottom-up/top-down plus anthropogenic -237 -708 212 343 225 455 40 -9.3 92 147 -492 759
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