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Abstract

The Antarctic ice sheet is buttressed by floating ice shelves that calve icebergs along large fractures called rifts. We report

the first-ever seismic recording of a multiple-kilometer rift propagation event located in Pine Island Glacier Ice Shelf. The rift

grew 10.5 km at a speed of 34.8 m/s, the fastest known ice fracture at this scale. We simulate ocean-coupled rift propagation

and find that hydrodynamics control rupture velocities. During rift propagation, ocean water flows into the rift at a rate of

at least 2300 m3/s and causes mixing in the subshelf cavity. Our observations support the hypotheses that large ice shelf rift

propagation events are brittle, hydrodynamically limited, and exhibit sensitive coupling with the surrounding ocean.
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Key Points: 10 

● We observe rift propagation faster than 10 m/s, suggesting that rifting presents a 11 
mechanism of rapid ice shelf change or collapse. 12 

● Rift fracture mechanics and fluid flow in the subshelf cavity act in concert to control the 13 
precise speed of rift propagation. 14 

● Rapid rifting induces mixing in the subshelf cavity comparable in magnitude to mixing 15 
induced by calving from marine terminating glaciers.  16 
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Abstract 17 

The Antarctic ice sheet is buttressed by floating ice shelves that calve icebergs along 18 
large fractures called rifts. We report the first-ever seismic recording of a multiple-kilometer rift 19 
propagation event located in Pine Island Glacier Ice Shelf. The rift grew 10.5 km at a speed of 20 
34.8 m/s, the fastest known ice fracture at this scale. We simulate ocean-coupled rift propagation 21 
and find that hydrodynamics control rupture velocities. During rift propagation, ocean water 22 
flows into the rift at a rate of at least 2300 m3/s and causes mixing in the subshelf cavity. Our 23 
observations support the hypotheses that large ice shelf rift propagation events are brittle, 24 
hydrodynamically limited, and exhibit sensitive coupling with the surrounding ocean. 25 

Plain Language Summary 26 

 The flow rate of glaciers in Antarctica is regulated by floating bodies of ice called ice 27 
shelves. Ice shelves contain huge cracks called rifts that extend for many kilometers. On many 28 
ice shelves, these rifts grow until they disconnect a large iceberg from the rest of the ice shelf. In 29 
this study, we use satellite data and seismic recordings to observe over 10 km of rift growth at 30 
Pine Island Glacier, an important glacier in West Antarctica. The rift growth event we report is 31 
the fastest instance of rift growth ever observed. Using a computer simulation, we model the rift 32 
growth process. We find that the ice shelf interacts with the ocean as it cracks, and this 33 
interaction determines how quickly rifts can grow. Our observations and simulation also suggest 34 
that rift growth causes mixing in the ocean underneath the floating ice shelf.  35 

1 Introduction 36 

The possibility of rapid ice mass loss from the West Antarctic ice sheet has remained 37 
contentious for over forty years (Hughes et al., 1981). The seminal collapse of the Larsen B ice 38 
shelf provided incontrovertible evidence linking ice shelf fracturing to rapid ice mass loss 39 
(Scambos et al., 2004), with more recent work emphasizing spatial variability in ice shelf 40 
vulnerability (Fürst et al., 2016; Lai et al., 2020; Reese et al., 2018) and pervasive damage 41 
(Borstad et al., 2012; Lhermitte et al., 2020). In contrast to such progress in understanding large-42 
scale dynamics, the detailed nature of the fracturing processes that may (or may not) contribute 43 
to rapid ice mass loss has remained controversial. Significant research foci include hydrofracture, 44 
a process that is clearly implicated in ice shelf collapse (Banwell et al., 2013; Lai et al., 2020; 45 
Robel & Banwell, 2019), and the marine ice-cliff instability (Bassis et al., 2021), a process by 46 
which rapid ice mass loss is hypothesized to occur (DeConto & Pollard, 2016) and whose 47 
validity has been critically examined on observational (Pattyn et al., 2018) and theoretical (Clerc 48 
et al., 2019) grounds. Yet among all ice shelf fracture processes, rift propagation is the 49 
mechanism by which the largest calved icebergs are created, i.e., icebergs with areal extent 50 
ranging from 1 km2 to 1x104 km2 (Greene et al., 2022). Although calving due to rift propagation 51 
is generally thought of as a natural cyclic process on decadal timescales (Greene et al., 2022), 52 
recent studies have examined the deterioration of this natural cycle (Arndt et al., 2018) and 53 
associated increases in ice mass loss (Joughin et al., 2021). Given the enormous scale of tabular 54 
iceberg calving, it is therefore important to better understand the rift propagation process in order 55 
to understand whether deviations from the natural rifting-calving cycle are a harbinger of 56 
Antarctic ice shelf dynamics in a warming climate.  57 
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Rifting remains a challenging physical process to observe. Many rifts in Antarctica's 58 
largest ice shelves, like Ross Ice Shelf, appear to be stable on decadal timescales with minimal 59 
propagation in the observational record (Walker et al., 2013). In contrast, rifts on highly dynamic 60 
ice shelves like Pine Island Glacier initiate, propagate, and calve icebergs every few years (Jeong 61 
et al., 2016, Olinger et al., 2019; Walker et al., 2013). While remote sensing provides an accurate 62 
and effective method of measuring many aspects of ice shelf evolution, the wide range of rift 63 
propagation timescales prevents the full spectrum of rift behavior from being observed by remote 64 
sensing alone. Because the interval between most satellite instruments is several days, rift 65 
propagation on timescales of seconds to hours is inherently aliased in remotely sensed 66 
observations. The need for high-resolution observations of rift propagation has been answered in 67 
part by deploying seismic arrays to continuously monitor the elastic wave emissions from rifts on 68 
short timescales (Bassis et al., 2005, Olinger et al., 2019). However, despite the promising results 69 
of rift seismology, the logistical complexity and hazard of field campaigns in active areas of ice 70 
shelf deformation mean that only a handful of seismic arrays have been deployed near rifts. 71 
Furthermore, seismic studies have been unable to capture any instances of truly rapid rifting 72 
despite evidence that such events do occur (Banwell et al., 2007).  73 

In this study, we analyze rift propagation at Pine Island Glacier Ice Shelf (PIG), a fast-74 
flowing ice shelf in West Antarctica that was the single largest Antarctic contributor to sea level 75 
rise in the period 1979–2017 (Rignot et al., 2019). Since 1992, tabular icebergs have calved from 76 
PIG every 2–6 years along rifts that propagated from the northern and southern shear margins, 77 
maintaining a relatively consistent ice front position and orientation (Arndt et al., 2018). In 2015, 78 
calving occurred along a rift that initiated in the ice shelf’s center for the first time, resulting in 79 
substantial ice front retreat and reorientation (Jeong et al., 2016) that has continued to the 80 
present. Before this change in ice front geometry, the last calving event occurred in 2013 along a 81 
rift that propagated from the northern shear margin across the ice shelf, hereinafter referred to as 82 
R2011 for the year of its initiation. Here, we overcome the perennial limitation of studies of 83 
calving processes –namely, a lack of in situ observations (Benn et al., 2007)– and present the 84 
first-known near-field seismic observations of a large ice shelf rift propagation event. 85 

2 Observations 86 

2.1. Identifying rift propagation in SAR data 87 

We manually examine synthetic aperture radar data collected by the TerraSAR-X (TSX) 88 
satellite (Pitz, & Miller, 2010) to identify an episode of rapid propagation during the rifting that 89 
preceded the 2013 calving event. One of the northern shear margin fractures, hereinafter referred 90 
to as R2012, propagated across the ice shelf and connected with R2011. TSX data from May 8, 91 
2012 04:04 UTC show the PIG ice shelf before the episode of rift extension (Fig. 1A). The rift 92 
R2011 spanned 33.8 km across the ice shelf from the northern shear margin, and a band of ∼20 93 
shorter parallel fractures spanned ∼5 km from the northern shear margin. The data show no 94 
major rifts besides R2011. TSX data from May 11, 2012 03:13 show the PIG ice shelf after the 95 
episode of rift extension (Fig. 1B), providing a three-day time window around the episode of rift 96 
extension. A high-resolution digital elevation model of PIG (Shean et al., 2019) shows that the 97 
tip of R2012 was located in a basal trough before propagation, consistent with previous 98 
observations that suggest basal channels strongly influence rift propagation on PIG and other ice 99 
shelves (Alley et al., 2019; Dow et al., 2018).  100 
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2.2. Identifying rift propagation in seismic data 101 
We identify the rift seismic signal within data recorded by three Nanometrics Trillium 102 

120 seismometers deployed on the PIG ice shelf and three Nanometrics Trillium 240 103 
seismometers deployed across West Antarctica (Holland & Bindschadler, 2012). Seismic data 104 
recorded in the time window established by TSX data contains a single notable signal, recorded 105 
on May 9, 2012 at 18:03 (Fig. 1C). We hypothesize that this signal, the largest amplitude signal 106 
within the three-day window, was generated by the extension of R2012 observed in TSX data. 107 
We use the cumulative amplitude distribution of the signal to estimate a duration of 2.09 hours, 108 
longer in duration than all other signals in the time window by an order of magnitude. The May 9 109 
event has a peak vertical ground velocity of 0.234 mm/s and peak vertical ground displacement 110 
of 0.195 mm at a distance of 12 km and uniquely contains significant energy at periods up to 111 
1000 s. The sensitivity of the Trillium 120 seismometer is reduced below its natural period of 112 
120 s, suggesting that the amplitudes recorded between periods of 120 s and 1000 s may 113 
underestimate actual ice shelf velocities at those periods. Between 1000 s and 1 s periods, the 114 
signal exhibits high-frequency-first dispersion characteristic of flexural gravity (FG) waves (Fig. 115 
1D), a wave type that propagates as a coupled beam flexural and ocean surface wave (Abrahams 116 
et al., 2022; Press & Ewing, 1951; Sergienko, 2017; Squire, 2007). At frequencies above 1 Hz, 117 
the signal consists of body and surface waves that gradually increase in amplitude before 118 
abruptly decaying after 302 s (Fig. 1E). These higher-frequency phases are also recorded by 119 
regional POLENET stations DNTW, THUR, and UPTW, respectively located 250, 294, and 360 120 
km from PIG.  121 

3 Methods 122 

3.1. Mapping rift extent 123 
We employ a semi-automated scheme to identify the extent of R2012 before and after 124 

propagation. We use TSX data from May 5, 2012 03:22:11 and May 11, 2012 03:13:39, which 125 
were captured from similar incidence angles and span the same spatial extent. To remove the 126 
effect of ice shelf advection, we cross-correlate windows containing the rift tip from each TSX 127 
data to obtain the optimal shift between the two data. We then use the computed shift to align the 128 
two data. To measure the increase in length of R2012, we normalize the data from May 5 and 129 
May 11 such that pixels with values close to 1 correspond to dark features like rifts. We then 130 
subtract the pre-extension image from the post-extension image to remove all features constant 131 
between May 5 and May 11, including shear margin fractures and R2011. We extract the largest 132 
1-valued region from the differenced data, corresponding to the increase in the area of R2012. 133 
We then skeletonize the binary rift image, measure the length of the skeleton's main branch in 134 
pixels, and multiply by the TSX data's pixel size to extract the increase in length between May 5 135 
and May 11. Finally, we sum the binary rift image to obtain the area of the rift in pixels, multiply 136 
by the TSX data's pixel size to obtain the rift area in square meters, then divide by the increase in 137 
length of R2012 to obtain an estimate of the average rift width. We estimate an increase in length 138 
of 10473.26 meters and a final average width of 132 meters. We follow the same procedure to 139 
estimate the initial length and width of R2012, finding an initial length of 3889.94 meters and an 140 
initial width of 91.25 meters. 141 
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3.2. Seismic location 156 
To locate the candidate rift event, we first employ a grid search algorithm using arrival 157 

times at locally and regionally-deployed stations. To obtain the relative arrival times of high-158 
frequency waves (1.5-5 Hz) at each station, we cross-correlate the filtered signal recorded at 159 
PIG2, the closest station to R2012, with the filtered signal recorded at each other station. Next, 160 
we calculate the velocity of the waves recorded at each station by dividing the known distance 161 
between PIG2 and each station by the difference between the arrival time at PIG2 and each 162 
station. We carry out this procedure using vertical, north-south, and east-west component data 163 
recorded at stations PIG2, PIG4, PIG5, THUR, BEAR, DNTW, and UPTW. We then conduct 164 
the grid search by iterating through possible origin times and spatial locations and computing the 165 
expected arrival time at each station using the previously-estimated phase velocity. We calculate 166 
the root mean square error (RMSE) between the observed and expected arrival times for all 167 
components and stations, giving a single estimate of the misfit in arrival times across the array. 168 
We then calculate RMSE for each possible origin time and for every spatial point in a regular 169 
grid to obtain a map of error. The event location is finally determined by identifying the spatial 170 
point and origin time that correspond to the lowest RMSE. 171 

To further constrain the source location, we use the polarization direction of horizontal 172 
waves recorded at on-ice stations PIG2, PIG4, and PIG5 to compute an epicentral back-azimuth. 173 
By performing the principal component analysis (PCA) on the east-west and north-south 174 
seismograms, we obtain the PCA first component, a vector corresponding to the direction along 175 
which the majority of the variation in the data occurs. We infer the polarization direction from 176 
the PCA first component, which corresponds to one of two possible propagation directions 177 
separated by 180 degrees. To resolve this 180-degree ambiguity, we identify the two stations 178 
farthest from the array centroid in both possible directions of propagation, which are expected to 179 
record the first arrivals for incoming plane waves from either propagation direction. We then 180 
adjust the sign of the PCA first component to match the propagation direction whose predicted 181 
first arrival agrees with the observed first arrival. We repeat this procedure using data recorded at 182 
each station and sum the PCA first component vectors from each station to obtain an average 183 
propagation direction. Finally, we retrieve a back-azimuth by taking the arctangent of the 184 
quotient of the two elements of the PCA component vector. We repeat the entire procedure for 185 
each 50 s time window in the event, resulting in a distribution of back-azimuths calculated for 186 
each time window within the event. We obtain a single event back-azimuth by taking the circular 187 
mean of the back-azimuths calculated from each time window, with the back-azimuth from each 188 
time window weighted by the norm of the summed PCA components across the array for that 189 
window. 190 

3.3. Ocean-coupled fracture modeling 191 

We model the coupled ocean-rift system using simple linear elastic fracture mechanics and 192 
fluid dynamics. Given the relatively limited observations of rift growth, we have pursued a 193 
simplified model. Modeling efforts with increased complexity inherently lead to a greater 194 
number of model variables that, in our case, cannot be compared to observations. In the absence 195 
of more detailed observations, added complexity offers little benefit compared to the simplified 196 
case.  197 

We utilize a coordinate system where the ice shelf base has a vertical position of 0, the ice 198 
front has a position of 0 in the y-direction, and the back of the rift has a position of 0 in the x-199 
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direction. Our modeling employs the following equations, which are derived or discussed in 200 
more detail in Supporting Information Text S2-S7.  201 
 202 
The conservation of water mass in the rift (derived in Text S2) is:      203  204 𝑢 = 𝑤𝐿 + 𝑤𝜂 + 𝐿𝜂                                                             1  205 

 206 
where 𝜂 is the water level within the rift, 𝑤 is the width of the rift, and 𝑢 is the water flow rate, 207 𝐻  is the subshelf cavity height (assumed uniform), and L is the rift length. Although spatial 208 
variations in 𝐻  exist (Muto et al, 2016; Shean et al., 2019) and could play a role in higher order 209 
dynamics, we assume uniformity in order to describe only the most basic features of ocean-rift 210 
coupling.  211 
 212 
We write the conservation of fluid momentum (derived in Text S3-S4) as:      213  214 𝐿 𝑑𝑢𝑑𝑡 + 𝐻 − 𝐻 𝑑𝜂𝑑𝑡 = 𝑔 𝐻 − 𝐻 − 𝜂                                         2  
 215 
where 𝐿  is the horizontal position of the rift and 𝐻  is the height from the ice shelf base to the 216 
hydrostatic water line.  217 
 218 
The depth integrated rift extensional stress (discussed in Text S5) is:     219 
 220 𝜎 = 𝑅 + 𝜌 𝑔𝜂2𝐻 − 𝜌 𝑔𝐻2  

 221 
The rift width (discussed in Text S6) is:    𝑤 = 𝑤 + ∗ 𝐿                         222 
 223 
where 𝜇∗ = 𝜇/ 1 − 𝜈 , 𝜇 is the shear modulus, and 𝜈 is Poisson's ratio. 224 
The rift tip equation of motion (discussed in Text S7) is:         225 
 226 𝑑𝐿𝑑𝑡 ≈ 𝑐 1 − 𝐾𝐾                                                                 3  

 227 
where 𝐾  is the stress intensity factor experienced by the rift and 𝐾  is the fracture toughness of 228 
ice. 229 
 230 

We seek to solve the system of ordinary differential equations (ODEs) defined by Eq. 1, Eq. 231 
2, and Eq. 3 for 𝐿 and 𝜂. We utilize a widely-available class of ODE solvers that handle systems 232 
of equations with the form, 233 

 234 𝑥′ = 𝑓 𝑥, 𝑥′   235 
 236 
i.e. systems that only have a dependence on the first derivatives 𝑥′ of the state vector 𝑥. Through 237 
algebraic manipulation, we write Eq. 1, Eq. 2, and Eq. 3 in this form. This requires introducing a 238 
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variable 𝜒 = 𝜂′ so the 2nd derivative 𝜂′′ can be written as a first derivative. This also requires us 239 
to obtain an equation for 𝜒′′. We accomplish this by rearranging Eq. 2, analytically computing all 240 
the necessary derivative terms, and substituting. This process yields a set of equations written in 241 
a convenient way for numerical solutions. However, the equations in the previous sections are 242 
more physically interpretable, so the forms used in obtaining a numerical solution are not 243 
reproduced here. In our simulations, we first compute the ice shelf extensional stress 𝑅  244 
necessary for a fracture of the prescribed initial geometry to experience a stress intensity factor 245 
that barely exceeds the fracture toughness of ice. We then use compute the stress and stress 246 
intensity factors corresponding to 𝑅  assuming an initial steady-state water surface height of 247 𝜂 = 𝐻 𝜌 /𝜌 . This initiates fracture propagation at a rate determined by Eq. 3. 𝑅  is held fixed 248 
through the simulation, and the stress applied to the rift evolves through time as 𝜂 changes. 249 

4 Results 250 

4.1. Origin of observed seismic signal 251 
A previous study of fracture at PIG identified FG waves generated by gradual 252 

propagation of R2011 (Olinger et al., 2022), suggesting the extension of R2012 is a reasonable 253 
source for the May 9 event. In addition to rift propagation, FG waves on ice shelves are 254 
generated by incoming ocean waves (Chen et al., 2020). However, ocean wave sources cannot 255 
account for seismic phases recorded by regional stations hundreds of kilometers away, and we 256 
therefore conclude that incoming ocean waves must not have generated the rift signal. 257 
Additionally, the spectrum of the May 9 event is markedly different than teleseismic earthquake 258 
spectra recorded by the same instrument (Fig. S1), and we conclude that teleseismic waves must 259 
not have generated the May 9 event signal. A grid-search inversion of arrival times at locally and 260 
regionally-deployed seismic stations finds its lowest-error region where R2012 connects to 261 
R2011 (Fig. 1B), further supporting the hypothesis that the extension of R2012 generated the 262 
May 9 event. The polarization of waves recorded at locally-deployed stations corresponds to a 263 
back-azimuth of 308.1±6.2 degrees (Fig. 1B), in agreement with the back-azimuth of R2012, 264 
confirming that the recorded waves propagated to the local seismic stations from the direction of 265 
R2012. Because the best-fit event location coincides with R2012 and because both teleseismic 266 
and ocean wave sources are inconsistent with the seismic observations, we conclude that the 267 
May 9, 18:03 event was the seismic signal generated by the extension of R2012. 268 

4.2. Rate of observed rift propagation  269 
To understand the dynamics of the observed rift propagation, we estimate the rupture 270 

velocity using the duration of radiated body and surface waves and the increase in length 271 
estimated from TSX data. Radiated body and surface waves gradually crescendo, consistent with 272 
an accelerating rupture or a seismic source that moves progressively closer to the seismometers 273 
(our limited station geometry precludes distinguishing between these two scenarios). Seismic 274 
waves then abruptly stop after 302 s (Fig. 1E), indicating the conclusion of propagation when 275 
R2012 collided with R2011. Such a “stopping phase” is highly unusual; stopping phases are not 276 
typically observed in tectonic earthquakes, for example. We thus infer that the observed 10.5 km 277 
of rift extension occurred over 302 s, corresponding to an average rupture velocity of 34.8 m/s. 278 
To the best of our knowledge, this is the fastest rift propagation speed ever observed. R2012 279 
extended over a duration of time two orders of magnitude below the Maxwell time of ice, which 280 
is around 11 hours (Ultee et al., 2020), supporting the hypothesis that the observed rift extension 281 
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occurred through dynamic brittle fracturing. However, elastodynamic theory predicts opening 282 
mode fracture propagation at rates approaching the Rayleigh wave speed of the fracturing 283 
material (Freund, 1990), which is between 1500 and 2000 m/s in the ice (Kim et al, 2010). Why, 284 
then, did R2012 propagate two orders of magnitude below the Rayleigh wave speed? 285 

4.3. Modeled ocean-coupled rift dynamics 286 
We hypothesize that coupling between rift propagation and water flow within the rift 287 

explains rupture at a small fraction of the Rayleigh wave speed. To test the hypothesis, we 288 
develop a simple model of rift propagation that couples brittle fracture and water flow. The rift is 289 
represented by a sharp fracture in a linear elastic plate subject to uniform far-field tension. Water 290 
flows through the subshelf cavity into the rift is represented using the unsteady Bernoulli flow 291 
approximation. To initiate rift extension, we apply the stress required for a fracture of a chosen 292 
initial geometry to experience a stress intensity factor that just exceeds the fracture toughness of 293 
ice. As the rift propagates, the total volume within the rift increases, and water rushes in to fill 294 
the rift. However, water flow into the rift is not rapid enough to maintain the hydrostatic water 295 
line, causing a reduction in the average water height within the rift and a decrease in the depth-296 
integrated water pressure acting to open the rift (Fig. 2A). The lower water pressure reduces the 297 
total resolved stress that drives rift opening, and in turn, limits the rate of propagation. This 298 
effect results in a far lower rupture velocity than predicted for a rift with a static water height. If 299 
propagation stops abruptly, fluid inflow continues due to inertia and overshoots the steady-state 300 
water line, resulting in simple harmonic oscillations about the steady-state water line (e.g., Fig. 301 
2B after t=300 s). These simple harmonic oscillations occur at the sloshing period, 𝑇 =302 2𝜋 𝑀/𝑔, where 𝑀 = 𝐿 𝑤/𝐻 + 𝐻 − 𝐻  is a measure of the effective cross-sectional area of 303 
water being transported, 𝐿  is the distance from the rift to the ice front, 𝑤 is the width of the rift, 304 𝐻  is the distance from the seafloor to the base of the ice shelf, and 𝐻  is the distance from the 305 
seafloor to the water surface. The sensitivity of modeled rupture velocities to ice shelf geometry 306 
and 𝑅  are shown in the Supporting Information (Figs. S2-S4). 307 

To test whether the proposed model can explain the observed propagation rate of R2012, 308 
we model R2012 using an initial length of 3.9 km and an initial width of 90 m that were 309 
measured from TSX data. We assume that the ice shelf has a uniform ice thickness of 400 m, 310 
estimated from a high-resolution digital elevation model of PIG from 2012 (Shean et al., 2019), 311 
and a uniform water depth of 840 m, estimated from a gravity-derived model of Pine Island Bay 312 
bathymetry (Muto et al., 2016). The rift is subjected to a spatially-uniform extensional stress 313 𝑅 . The magnitude of 𝑅  is obtained by computing the stress required for a rift with the 314 
measured initial geometry to begin unstable propagation and identifying the additional stress 315 
needed for the rift to grow 10.5 km in 302 s. The modeled rift begins propagating when an 316 
extensional stress of approximately 161 kPa is applied. This is consistent with a previous 317 
estimate which found that the central region of PIG ice shelf had a mean 𝑅  of approximately 318 
124 kPa (Lai et al., 2020) (Fig. S5). Once propagation begins, the rift propagates 10.5 km over a 319 
duration of 302 s at an average rate of 34.8 m/s (Fig. 2E). The predicted rupture velocity of 34.8 320 
m/s agrees with the observed rupture velocity, strongly supporting the hypothesis that coupling 321 
between rift propagation and water flow limited the observed rupture velocity to a small fraction 322 
of the Rayleigh wave speed. Without fluid coupling, a fracture of the same initial geometry 323 
subjected to the same magnitude of stress reaches 99% of the Rayleigh wave speed in 302 s, 324 
highlighting how significantly the mechanism we propose influences the dynamics of rift 325 
propagation.   326 
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327 
Fig. 2. Ocean-coupled model of rift propagation. In all panels, black curves show a rift coupled to 328 
hydrodynamics, and orange curves show a rift uncoupled to hydrodynamics. (A) Illustration of the 329 
proposed mechanism for rift propagation at a small fraction of the Rayleigh wave speed (𝑐 ). (B) 330 
Modeled perturbation from hydrostatic water level during rift propagation. In the coupled case, the water 331 
level initially decreases because water flow into the rift is not fast enough to maintain the hydrostatic 332 
water level. Once propagation concludes, flow overshoots the hydrostatic water level and oscillates at the 333 
sloshing period 𝑇 . In the uncoupled case, the water level in the rift does not change. (C) Modeled rift 334 
propagation rate through time. In the coupled case, decreasing water pressure limits propagation to a 335 
small fraction of 𝑐 . In the uncoupled case, propagation approaches 𝑐  rapidly. (D) Modeled rift length 336 
through time for 500 s of rift propagation. (E) Modeled rift length through time for 302 s of rift 337 
propagation. In the coupled case, the rift length increases by 10.5 km at an average rate of 34.8 m/s, in 338 
agreement with the observed propagation rate of R2012. In the uncoupled case, the rift propagates at a 339 
rate far exceeding the observation.  340 



 
 

11 
 

5 Discussion 341 

Our observations suggest that ice shelf rift propagation occurs more rapidly than 342 
previously known (Walker et al., 2013). An immediate conclusion from this observation is that 343 
the timescale of fracture at R2012 is well within the regime of brittle fracture. Yet our 344 
observations and modeling show that the rift propagation of R2012 was not purely governed by 345 
the laws of linear elastic fracture mechanics because rift propagation was slowed down by 346 
interaction with the ocean. Several aspects of R2012 warrant further discussion.  347 

5.1. Rapid rifting and ice shelf stability 348 

Rapid rift propagation represents a possible mechanism of sudden ice front retreat or ice 349 
shelf collapse. While previous observations of rift propagation have overwhelmingly captured 350 
gradual or episodic propagation (Bassis et al., 2005; Bassis et al., 2007; Jeong et al., 2016; 351 
Walker et al., 2013), we show that rift propagation on the order of 10 km can occur in a matter of 352 
minutes. It is unknown whether this represents a rare class of rift behavior or a relatively 353 
common class of rift behavior that has remained undetected until now due to the temporal 354 
aliasing of remotely-sensed observations and a scarcity of ice shelf seismic deployments. As PIG 355 
continues to accelerate, elevated stresses and shear margin weakening are expected to enhance 356 
rift propagation (Lhermitte et al., 2020; Lipovsky, 2020), which can, in turn, lead to ice front 357 
retreat, buttressing loss and further acceleration (Joughin et al., 2021). Our observations suggest 358 
that such feedback at PIG and other unstable ice shelves across Antarctica may progress more 359 
rapidly than anticipated. 360 

5.2. Flexural gravity waves generated by rift propagation 361 
We use the wave impedance tensor (Lipovsky, 2018) to compute the maximum flexural 362 

stresses carried by FG waves recorded at each local station and estimate a mean flexural stress of 363 
3.26 kPa, consistent with typical ocean wave-induced flexural stresses on Ross Ice Shelf (Aster 364 
et al., 2021; Lipovsky, 2018) and potentially large enough to trigger additional fracturing within 365 
the ice shelf. However, PIG typically experiences a lower degree of ocean wave excitation than 366 
Ross Ice Shelf (Chen et al., 2018), so FG waves generated by rift propagation may exert a greater 367 
influence than ocean waves on the stability of fractures on PIG.  368 

The 600 s dominant period of the recorded FG waves is between the gravest ice shelf 369 
resonance period (∼ 1600 s) and the sloshing period (𝑇  ∼ 100 s), suggesting that both of 370 
these processes are involved in generating the observed FG wave field. Accounting for radiative 371 
losses at the ice front using the relevant reflection coefficient (Abrahams et al., 2022) results in 372 
an underestimate of the e-folding duration (i.e., time to achieve decay by a factor of 1/e) of the 373 
wave field as 16.7 minutes. However, it takes 38.2 minutes for recorded FG waves to decay by a 374 
factor of 1/e. The e-folding duration is therefore plausibly attributed to wave generation by water 375 
sloshing within the rift that continues after rift propagation ceases (see, for example, Fig. 2B). 376 

5.3. Mixing induced by rapid rifting 377 
We infer that large rift propagation events induce diapycnal mixing in the subshelf cavity, 378 

i.e., vertical flow in the presence of horizontal density surfaces (Holland et al., 2019; Jacobs et 379 
al., 2011). In the context of smaller-scale calving, Meredith et al. (2022) recently observed such 380 
mixing following a calving event with potential energy change (0.6-2.4)x1012 J . At R2012, we 381 
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estimate the potential energy change 1.2x1012 J over the five-minute duration of rift propagation 382 
and 879x1012 J over the subsequent several days of rift opening (Text S7). Whether the internal 383 
tsunami mixing mechanism proposed by Meredith et al. (2022) is able to operate at the timescale 384 
of the longer-duration potential energy change depends on the water column stratification 385 
through the buoyancy oscillation frequency (Gill, 1982), information which is not available 386 
during the time of R2012. However, for both cases, the scale of energy associated with vertical 387 
diapycnal flow implies significant subshelf mixing during rift growth, contrary to earlier reports 388 
(Meredith et al., 2022).  389 

During the several minutes of rift propagation, we calculate the vertical water volume 390 
flux to be at least 2300 m3/s. PIG is known to have a complex basal topography with pervasive 391 
longitudinal basal crevasses that penetrate as much as 30% of the ice thickness (Vaughan et al., 392 
2012) and that are perpendicular to the propagation direction of the rift. On other ice shelves, 393 
such features have been shown to guide the direction of rift propagation (De Rydt et al., 2018). 394 
Such basal crevasses do not play a significant role in our simplified model since we do not 395 
attempt to model the rift propagation path. If the R2012 rift did follow a basal crevasse with a 396 
height of 30% the ice thickness, this would reduce our vertical flow estimate by the same 397 
percentage. 398 

Rifting-induced mixing suggests the existence of positive feedback between these 399 
processes. Despite significant thermocline variability, sub-shelf waters in the vicinity of the rift 400 
R2012 are deep enough to consistently reach the depth of warm circumpolar deep waters 401 
(Christianson et al., 2016). Rift propagation in this setting may therefore elevate isothermal 402 
contours and cause warming of the ice–ocean interface. Localized and repeated rift propagation 403 
in areas like the northern shear margin of PIG (Fig. 1A) may then initiate feedback wherein rift 404 
propagation induces mixing and localized melting that contributes to marginal weakening 405 
(Lipovsky, 2020) and the formation of basal melt channels (Alley et al., 2019; Dow et al., 2018), 406 
thereby promoting further rift propagation. 407 

 408 

6 Conclusions 409 

We conclude that rifts can propagate rapidly through brittle fracture and that the ocean 410 
exerts a profound influence on rift propagation. Whereas the largest fracturing events on land, 411 
i.e., tectonic earthquakes, are ultimately inertially limited (Dunham, 2007), our observations and 412 
models imply that the largest fracturing events in ice, e.g., ice shelf rift propagation events, are 413 
ultimately hydrodynamically limited. We therefore add to the body of literature documenting 414 
diverse ice-ocean interactions and demonstrate that extreme ice shelf sensitivity to ocean 415 
conditions extends to the fine-scale dynamics of rift propagation.  416 
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