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Abstract

Fault geometry is a key factor in controling the mechanics of faulting. However, there is currently limited theoretical knowledge

regarding the effect of non-planar fault geometry on earthquake mechanics. Here, we address this gap by introducing an

expansion of the relation between fault traction and slip, up to second order, relative to the deviation from a planar fault

geometry. This expansion enables the separation of the effects of non-planarities from those of planar faults. This expansion is

realised in the boundary integral equation, assuming a small fault slope. It provides an interpretation for the effect of complex

fault geometry on fault traction, for any fault geometry and any slip distribution. Hence the results are also independent of the

friction that applies on the fault. The findings confirm that fault geometry has a strong influence on in-plane faulting (mode II)

by altering the normal traction on the fault and making it more resistant to slipping for any fault geometry. On the contrary,

for out-of-plane faulting (mode III), fault geometry has a much smaller influence. Additionally, we analyse some singularities

that arise for specific fault geometries often used in earthquake simulations and provide guidelines for their elimination. To

conclude this study, we discuss the limits of the small strain approximation when non-planar faults are considered.

In-plane opening
(mode I) 

The opening direction is 
changing along the fault

The slip direction is changing 
along the fault

The slip direction is constant

In-plane shear
(mode II) 

Out-of-plane shear
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Abstract10

Fault geometry is a key factor in controling the mechanics of faulting. However,11

there is currently limited theoretical knowledge regarding the effect of non-planar12

fault geometry on earthquake mechanics. Here, we address this gap by introducing13

an expansion of the relation between fault traction and slip, up to second order,14

relative to the deviation from a planar fault geometry. This expansion enables the15

separation of the effects of non-planarities from those of planar faults. This expansion16

is realised in the boundary integral equation, assuming a small fault slope. It provides17

an interpretation for the effect of complex fault geometry on fault traction, for any18

fault geometry and any slip distribution. Hence the results are also independent of19

the friction that applies on the fault. The findings confirm that fault geometry has a20

strong influence on in-plane faulting (mode II) by altering the normal traction on the21

fault and making it more resistant to slipping for any fault geometry. On the contrary,22

for out-of-plane faulting (mode III), fault geometry has a much smaller influence.23
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Additionally, we analyse some singularities that arise for specific fault geometries24

often used in earthquake simulations and provide guidelines for their elimination. To25

conclude this study, we discuss the limits of the small strain approximation when26

non-planar faults are considered.27
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1 Introduction28

In-plane opening
(mode I) 

The opening direction is 
changing along the fault

The slip direction is changing 
along the fault

The slip direction is constant

In-plane shear
(mode II) 

Out-of-plane shear
(mode III) 

Figure 1: Description of the different modes of slip for a non-planar fault. Please note that

we are using a slight abuse of language by calling them mode I, mode II, and mode III.

Understanding the mechanical effect of fault geometry is an important question for seis-29

mology, as it can influence various aspects of earthquake mechanics, such as the areas of30

the fault that will nucleate, the size of the rupture, or the slip distribution (Aki , 1979; King31

and Nabelek , 1985; Schwartz and Sibson, 1989; Klinger et al., 2006;Wesnousky , 2006, 2008;32

Milliner et al., 2015). Previous theoretical efforts to understand the effect of fault non-33

planarities have been primarily focusing on particular fault geometries such as sinusoidale34

geometry (Saucier et al., 1992; Chester and Chester , 2000), or rough faults (Dieterich and35

Smith, 2009; Dunham et al., 2011; Fang and Dunham, 2013), limiting the generalizability36
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of the results.37

In this paper, we extract the effect of non-planarities from the effect of planar fault by38

performing an expansion of the boundary integral equation. It makes the results presented39

in this paper very general as they do not depend on one specific geometry, or one specific40

slip distribution. It also makes the results presented here independent of the friction law41

that applies on the fault.42

Our emphasis will be on the two modes of shearing fault: in-plane faulting and out-of-43

plane faulting. However, the results presented in this paper can also be applied to opening44

faults, and the associated findings can be found in Appendix G. We will use a slight abuse45

of language by sometimes calling mode I, mode II, and mode III what should respectively be46

called in-plane opening, in-plane shearing, and out-of-plane shearing. Mode I corresponds47

to pure opening, Mode II corresponds to a pure shear fault, where the direction of rupture48

is parallel to the direction of slip. Mode III corresponds to a pure shear fault where the49

direction of rupture is perpendicular to the direction of slip (see Fig. 1). The primary50

objective of this paper is to provide a comprehensive explanation of the main effects of51

non-planar fault geometry on the traction that applies on the fault.52
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2 Tractions on a non-planar fault53

Fault
1

2

h(y1)

m(y1)

x

x1

x2

y

y1

y2

|κt(y1)| =
1

radius
The slope between any two 
points of the fault is small

Figure 2: Definition of the parameters used in this study. The flat fault approximation

is when the slope between any two points of the fault is considered small. This figure is

modified from Romanet et al. (2020).

This paper derives exact semi-analytical solutions for the strains and stresses within a54

homogeneous, infinite, linear, static, two-dimensional (2D) medium caused by a finite,55

non-planar fault (see Appendix G, H and I). It can be viewed as the static, 2D extension56

of the previous work by Romanet et al. (2020), where the semi-analytical solution was57

derived for a fully-dynamic, three-dimensional (3D) medium using the Einstein notation.58

The geometry of the fault is described by a function h(y1) representing the height of59

the fault at given position y = (y1, y2) = (y1, h(y1)) (Fig. 2). The derivative of the height60

with respect to the coordinate y1 (the fault slope) is denoted as m(y1) =
d

dy1
h(y1). When61

the fault slope is small (m(y1) << 1), the second order derivative of height with respect62
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to the coordinate y1 can be linked to the curvature along the fault κt by:63

κt(y1) =

d
dy1

m(y1)

(1 +m2(y1))
3
2

≃ d

dy1
m(y1) =

d2

dy21
h(y1), if m(y1) << 1

(1)

The absolute value of the fault curvature |κt| can be interpreted geometrically as the inverse64

radius of the tangential circle to the fault (see Fig. 2). When the fault is locally flat, the65

curvature is zero (κt(y1) = 0).66

Non-planar fault Planar fault

+
Correcting terms for 

non-planar fault

Mechanically 
equivalent 

on-fault stresses

Figure 3: A non-planar fault can be made equivalent to a planar fault with additional

on-fault stresses correction. This is not working for off-fault stresses.

This paper demonstrates that the semi-analytical solution for the on-fault stresses can67

be significantly simplified when assuming a small fault slope. For the on-fault stresses,68

it is possible to identify the exact mechanical corrections that renders a planar fault me-69

chanically equivalent to a non-planar fault by including additional terms that account for70

the non-planar geometry (see Fig. 3). In order not to distract the reader from the main71

points of this paper, most of the derivation is provided in appendix B. In the following,72

we just provide a summary of the principal steps involved in the derivation:73

1. We start from the representation theorem (Aki and Richards (2002), chapter 2.5)74
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which allows to calculate the displacement uk anywhere in the medium by evaluating75

an integral over the fault involving the Green’s function Gkp (Tada and Yamashita,76

1997) and the displacement discontinuity ∆ui across the fault. The subscripts refer77

to specific component of the vector, for example uk is the kth component of the slip78

vector u. cijpq is the Hooke tensor, and n is the normal vector to the fault.79

uk(x) = −
∫

fault

cijpq∆ui(y)nj(y)
∂

∂xq

Gkp(x,y)dl(y) (2)

2. By using the strain definition ϵcd = 1
2

(
∂

∂xc
ud +

∂
∂xd

uc

)
and the Hooke’s law (σab =80

cabcdϵcd), we can obtain the stresses σab at any point within the medium. It leads to81

an integral linking the stresses to the Green’s function and the displacement discon-82

tinuity along the fault. Unfortunately the resulting integral is hypersingular for the83

on-fault stresses. This hypersingularity arises because of the second-order derivative84

of the Green’s functions. As a result, conventional numerical integration technics85

cannot be used (Koller et al., 1992; Tada and Yamashita, 1997).86

σab(x) = −cabcd

∫

fault

cijpq∆ui(y)nj(y)
∂

∂xq

∂

∂xd

Gcp(x,y)dl(y) (3)

3. We regularize this integral using the tangential differential operator (Bonnet , 1999;87

Sato et al., 2020) and project the slip vector onto the fault (Romanet et al., 2020).88

This makes appear the curvature term and the gradient term into the equation:89
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σij(x) =

∫

fault

cabcdcijpq
∂

∂xq

Gcp[ndtj − njtd]ti
︸ ︷︷ ︸

Kernel

∂

∂yt
∆u(y)

︸ ︷︷ ︸
Gradient of slip

dl(y)

︸ ︷︷ ︸
Gradient term

+

∫

fault

cabcdcijpq
∂

∂xq

Gcp[ndtj − njtd]ni

︸ ︷︷ ︸
Kernel

κt(y)∆u(y)
︸ ︷︷ ︸
Curvature × Slip

dl(y)

︸ ︷︷ ︸
Curvature term

(4)

This equation is now Cauchy integrable, and no longer hypersingular. In the gradi-90

ent term, ∂
∂yt

∆u(y) represents the derivative along the fault direction (see Appendix91

B.1). In the curvature term, the local curvature of the fault κt can be seen. The t92

upper-script emphasizes that the curvature is the one in the direction of the tangential93

vector to the fault t.94

4. For on-fault shear (τel = tiσijnj) and normal (σel = niσijnj) tractions only, we95

can develop the integrand that consists of Green’s function and Hooke tensor while96

making the small slope approximation of the fault geometry (see Fig. 2, Romanet97

et al. (2020); Romanet and Ozawa (2021)). This approach allows to derive a simplified98

expansion for the elastic tractions on the fault due to a slip distribution:99

τel(x)︸ ︷︷ ︸
Full solution

Elastic shear traction

= τ 0el(x1)︸ ︷︷ ︸
0th order

+ τ 1el(x1)︸ ︷︷ ︸
1st order

+ ...︸︷︷︸
higher orders

σel(x)︸ ︷︷ ︸
Full solution

Elastic normal traction

= σ0
el(x1)︸ ︷︷ ︸

0th order

+σ1
el(x1)︸ ︷︷ ︸

1st order

+ ...︸︷︷︸
higher orders

(5)

The 0th order terms in the previous equation represent terms that are independent100

of the slope between any two points of the fault. The 1st order terms are terms101

whose integrands are proportional to the fault slope ∝ x2−y2
x1−y1

, and the 2nd order102
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terms are terms whose integrands are proportional to the square of the fault slope103

∝
(

x2−y2
x1−y1

)2

and so on. This decomposition process may appear complex, but it offers104

two significant advantages when it comes to decomposing shear and normal traction:105

(a) Interpretability: Breaking down the tractions into terms based on fault slope106

provides a clearer understanding of the physical processes at play. Each order of107

terms corresponds to a specific level of importance regarding the effect of fault108

geometry, allowing for easier interpretation and analysis.109

(b) Approximation: The small slope approximation in the decomposition process110

enables us to simplify the mathematical expressions and calculations involved.111

This approximation is often valid in many practical scenarios, because faults112

are more or less linear structures. As a result, more computationally efficient113

numerical methods can be employed while still capturing essential aspects of114

fault behavior (Romanet and Ozawa, 2021).115

The discretisation of the integrals needed for the calculation of the stresses (eq.(4)) and116

the on-fault shear and normal traction (eq. (5)) is done using a piecewise discretisation of117

the fault geometry, together with a piecewise discretisation of the slip (see Appendix 17).118
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2.1 In-plane shear (mode II)119
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Figure 4: Assuming the fault geometry (as shown by the x-axis) and the slip distribution

∆u(y1) = (1−4
y21
L2 )

3/2 (red curve), L being the length of the fault, the shear traction (upper

panels) and the normal traction (lower panels) term can be decomposed into 0th order term

and 1st order term. The 0th order and the 1st order (blue lines), are respectively calculated

using the expressions (8) and (9) (more precisely the spectral version of these equations

as given by (74) and (76) in appendix H). The full solution and associated gradient and

curvature terms (black lines) are calculated using eq. (72).
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By employing the small slope approximation, the shear and normal tractions can be ex-

panded as:

τel︸︷︷︸
Elastic shear traction
of a non-planar fault

= τ 0el︸︷︷︸
Planar fault response

+ τ 1el︸︷︷︸
Shear traction drag

+ ...︸︷︷︸
Higher order terms

(6)

σel︸︷︷︸
Elastic normal traction

Only if the fault is non-planar

= σ0
el︸︷︷︸

Normal traction perturbation

∝κt∆ut

+ σ1
el︸︷︷︸

1storder
Normal traction perturbations

+ ...︸︷︷︸
Higher order terms

(7)

with the expressions:120

τ 0el(x1) = −µ

π

(
1− c2s

c2p

)∫ +∞

−∞

[
1

x1 − y1

d

dy1
∆ut(y1)

]
dy1

σ0
el(x1) = −µ

π

(
1− c2s

c2p

)∫ +∞

−∞

[
1

x1 − y1
κt(y1)∆ut(y1)

]
dy1

(8)

τ 1el(x1) =
µ

π

(
1− c2s

c2p

)∫ +∞

−∞

[
m(y1)

x1 − y1
− x2 − y2

(x1 − y1)2

]
κt(y1)∆ut(y1)dy1

σ1
el(x1) =

µ

π

(
1− c2s

c2p

)∫ +∞

−∞

[
2m(x1)

x1 − y1
− m(y1)

x1 − y1
− x2 − y2

(x1 − y1)2

]
d

dy1
∆ut(y1)dy1

(9)

Contrary to the general expression given in eq. (5), the integrals in this decomposition are121

over the line (dy1) and not over the fault (dl(y)). An example of this decomposition of shear122

and normal traction into 0th order term and 1st order term is illustrated in figure 4. The123

exemple considers a rough fault with an assumed slip distribution ∆u(y1) = (1− 4
y21
L2 )

3/2,124

where L is the length of the fault. It can be observed that for a rough fault, the 0th125

and 1st order terms are already capturing a significant portion of the physics of the shear126

and normal traction. In the subsequent section, a physical interpretation of the 0th and127

1st order terms for both shear and normal traction is provided. Additionally, analytical128

results and possible other approximations will be presented.129
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The 0th order contribution to shear traction τ 0el: the planar fault response130
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Figure 5: Assuming a flat fault geometry and the slip distribution ∆u(y1) = (1 − 4
y21
L2 )

3/2

(red curve), L being the length of the fault , the shear traction can be calculated analytically

(black dash line, see appendix E). It is compared with the full solution as given by eq (72),

and the 0th order solution as calculated by eq. (74) in the spectral domain. The 0th order

solution for the shear traction is exactly the one for a planar fault. The slight difference

between the analytical solution and the 0th order solution are coming from the fact that

the calculation was performed in spectral domain, hence there is a periodic replication of

the fault that slighly increase the shear traction of the 0th order solution.

The 0th order response of the shear traction, denoted as τ 0el, is exactly the same as if131

the fault was flat (Segall (2010), section 4.7). In other words, It means that the main132

contribution for the shear traction of a non-planar fault is the flat fault response. In133

figure 5, the shear traction response for a rough fault that is subject to a slip distribution134

∆u(y1) = (1−4
y21
L2 )

3/2 in meter, L being the length of the fault, can be seen. This represents135

the shear traction for a right lateral fault. Inside the fault, the shear traction exhibits a136

globally negative value, resulting in decreasing the shear traction on the fault. This overall137
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shear traction reduction is usually called the shear stress drop in seismology. On the other138

hand, outside the fault, the presence of the fault increases the shear traction.139

The 0th order contribution to normal traction σ0
el: the main source of normal140

traction variations141
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Figure 6: Zoom on the normal traction in Fig. 4. It can be seen that minimums and

maximums of the normal traction correspond to area where the fault is locally flat (κt = 0).

One of the main effect of non-planar geometry on an in-plane shear fault is the introduction142

of normal traction variations. This effect is well-documented in the literature (Nielsen and143

Knopoff , 1998; Dunham et al., 2011; Romanet et al., 2020; Cattania and Segall , 2021).144

Figure 6 provides a closer look at the normal traction depicted in figure 4, for a rough145

fault whose slip distribution is assumed. It can be seen that the maximums and minimums146

of normal traction correspond to the areas where the fault is locally flat (κt = 0). This147

relationship can be analytically demonstrated with the 0th order elastic normal traction148
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(which is the main contribution to the normal traction) given by:149

σ0
el(x1) = −µ

π

(
1− c2s

c2p

)∫ +∞

−∞

1

x1 − y1
κt(y1)∆ut(y1)dy1 (10)

To identify the areas of minimums and maximums of normal traction, we can differentiate150

the previous expression and find where the derivative equals zero.151

d

dx1

σ0
el(x1) =

µ

π

(
1− c2s

c2p

)

︸ ︷︷ ︸
>0

∫ +∞

−∞

1

(x1 − y1)2︸ ︷︷ ︸
>0

κt(y1)∆ut(y1)

︸ ︷︷ ︸
>0

dy1 (11)

Since the slip is always positive, the only way that the previous integral to be 0 is if the152

curvature reverses sign. Moreover, due to the weight 1/(x1 − y1)
2, the maximums and153

minimums of normal traction occur very close to the areas where the curvature changes154

sign. Although it may not precisely coincide with the location of the curvature reversing155

sign, it generally occurs very close. Similar reasoning can be applied for the extremas of156

the shear traction for pure opening faults (see appendix G).157

Lastly, it is worth noting an interesting approximation for a rough fault that is not158

applicable to general fault geometries. If the slip distribution in Fourier domain has mainly159

low wavelength, so that it exists kc such that ∆ut(k > kc) = 0, and that the curvature160

along the fault in Fourier domain has mainly high wavelength such that κt(k < kc) = 0,161

then the Hilbert transform of the curvature that multiplies the slip can be simplified using162

Bedrosian’s theorem (Bedrosian (1963)):163

σ0
el(x1) ≃ −µ

π

(
1− c2s

c2p

)
∆ut(x1)

∫ +∞

−∞

κt(y1)

x1 − y1
dy1. (12)

Although this approximation is not entirely accurate as the slip and curvature do have164

overlapping bandwidth, it can be considered a reasonable assumption for rough faults, as165
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shown in Fig. 7.166
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Figure 7: Assuming the fault geometry and the slip distribution ∆u(y1) = (1 − 4
y21
L2 )

3/2,

the full solution for normal traction (black curved) can be calculated using equation (72).

The solution using the Bedrosian’s approximation eq. (12) (blue dash curve) is very close

to the full solution and allows to give some interpretations.
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Scaling of slip vs geometry167
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Figure 8: Scaling of geometry and slip distribution for a static, in-plane shear (mode II)

fault subject to a constant loading and that follows Coulomb friction. The black dash line

is the planar fault solution. The solution for a non-planar fault geometry is shown as a

blue line: a) a rough fault, b) a seamount fault geometry, c) an arctan fault geometry and

d) a sum of two sinusoidal functions geometry.
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First and foremost, please note that in this section, we are introducing a new approach by168

solving the mechanical problem using the momentum balance equation, without assuming169

a specific slip distribution along the fault. If the fault follows the Coulomb friction law (f170

being the friction coefficient) and that the loading can be considered constant at 0th order171

along the fault, we can write the momentum balance equation at 0th order as:172

−f(σ0
el + σ0

load)︸ ︷︷ ︸
Friction

= τ 0el︸︷︷︸
Shear traction
due to elasticity

+ τ 0load︸︷︷︸
Loading

. (13)

By utilizing the momentum balance equation mentioned above, it becomes possible to solve173

for the distribution of slip along the fault.174

This approach was applied for the different non-planar fault geometry in figure 8. The175

figure illustrates a clear scaling relationship between the geometry of the fault and the slip176

distribution: locally flat areas exhibit extrema of slip while highly curved areas show a177

strong slip gradient. It can be seen that this scaling is not working near the edges of the178

fault. Remarkably, the scaling appears to be linear and preserves the wavelength of the179

fault geometry. Indeed, in figure 8-d, the fault geometry is a sum of two sinusoids with180

different amplitude and wavelength. The amplitude and wavelength of the fault geometry181

can be retrieved in the resulting slip distribution.182

This scaling has been analytically derived in Romanet et al. (2020), and is presented183

again in this paper for consistency. This scaling arises from the relationship between the184

shear traction and the normal traction through the friction law. For an in-plane shear185

fault, as shown in the previous section, the shear traction τ 0el is mainly controlled by the186

gradient term along the fault while the normal traction σ0
el is mainly controlled by the187

curvature term:188
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τ 0el(x1) = −µ

π

(
1− c2s

c2p

)∫ +∞

−∞

[
1

x1 − y1

d

dy1
∆ut(y1)

]
dy1

σ0
el(x1) = −µ

π

(
1− c2s

c2p

)∫ +∞

−∞

[
1

x1 − y1
κt(y1)∆ut(y1)

]
dy1

(14)

The Coulomb friction on the fault links the curvature term (the fault geometry) that con-189

trols normal traction and the gradient term (the slip distribution gradient) that controls190

shear traction. It is possible to invert the two Hilbert’s transform, by using Chebitchev191

polynomials (Segall (2010), section 4.1), to obtain a non-linear ordinary differential equa-192

tion:193

d

dx1

∆ut(x1)

︸ ︷︷ ︸
Gradient of slip

+ fκt(x1)∆ut(x1)

︸ ︷︷ ︸
Effect of geometry

= − fσload + τ load

µ(1− c2s/c
2
p)

x1 − L/2

L
√
(1− 4(x1−L/2)2

L2 )︸ ︷︷ ︸
Effect of loading

, (15)

In the center of fault the effect of loading cancels so that we obtained the scaling:194

d∆ut

∆ut
= −fdm. (16)

where the property κtdx = dm has been used.195

This scaling exist only for in-plane shear fault (mode II) as shown in Fig. 8, but not196

for out-of-plane shear fault (mode III) as depicted in Fig. 13. Although his scaling has not197

been yet confirmed in observations (Bruhat et al., 2020), it was verified for fully-dynamic198

simulations using rate and state friction (Romanet and Ozawa, 2021).199

This scaling is an important theoretical finding as it provides a link between three200

crucial parameters of the fault, i.e. the fault geometry, the slip distribution and the friction201

coefficient.202
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The shear traction drag τ 1el203
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Figure 9: Calculation of the exact shear traction drag as expressed by equation (18) for

different geometries. The fault geometry is shown as the x-axis. a) a finite rough fault.

In the case of the rough fault geometry, the theoretical shear traction drag derived by

Fang and Dunham (2013) is also shown as a black line. b) a finite fault with a seamount

geometry, c) a finite fault with arctan geometry, and d) a finite fault whose geometry is the

sum of two sinusoidal functions. The calculation is done for the prescribed slip distribution

∆u(y1) = (1− 4
y21
L2 )

3/2 in meter, where L is the length of the fault.

19



A key theoretical result on rough fault was obtained by Dieterich and Smith (2009) and204

Fang and Dunham (2013). It states that a rough fault is harder to slip than a flat fault. In205

other words, it says that a rough fault has an additional shear resistance when compared206

to a flat fault. This term will be referred as the shear traction drag in the following.207

Originally, it was derived as the 1st order effect∗ of a rough fault on the shear traction208

. They have shown that this term is mainly resisting movement. Figure 9 illustrates209

the 1st order term for shear traction for different fault geometries when assuming the slip210

distribution ∆u(y1) = (1− 4
y21
L2 )

3/2.211

τ 1el(x1) =
µ

π

(
1− c2s

c2p

)∫ +∞

−∞

[
m(y1)

x1 − y1
− x2 − y2

(x1 − y1)2

]
κt(y1)∆ut(y1)dy1 (17)

This figure shows that the additional shear resistance coming from the shear traction drag212

is not only valid for rough fault (Fig. 9, a), but for any non planar fault geometry (Fig.213

9, b,c,d). It can be seen that as long as the fault is non-planar, this term is resisting to214

movement. It leads to the very intuitive result that it is harder to slide a fault if it is215

non-planar. Contrary to the expression given in Fang and Dunham (2013), the expression216

presented here for the shear traction drag is exact for any fault geometry, and any slip217

distribution. It can be viewed as the generalisation of their work. It is also independent218

of the friction on the fault, making it a highly general result. Here are some properties of219

the shear traction drag:220

1. The shear traction drag is valid for any geometry and any slip distribution. There is221

more resistance to slip for a non-planar fault compared to a planar fault (for in-plane222

shear -mode II-).223

2. It is only associated with in-plane faulting (mode II), there is no shear traction drag224

∗A 2nd order effect, but there is a mistake in their derivation.
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for out-of-plane shearing (mode III).225

3. Since the stresses in the Fourier domain in three dimensional can be understood as226

a combinaison of of mode II and mode III (Geubelle and Rice, 1995), the analytical227

result mentionned above can be used to calculate the shear traction drag in 3D.228

4. Since the curvature term for shear traction as given by equation (4), and the 1st229

order term (equation (9)) are the same at order 1, the two terms can both be used230

to calculate the shear traction drag.231

5. An interpretation is that for equivalent slip distribution, the shear stress drop will be232

higher for a non-planar fault than for a planar fault. This interpretation may seem233

to contradict the fact that the fault is more difficult to slip, but this is not the case.234

To get an equivalent slip, the loading traction on a non-planar fault will be required235

to be higher than on a planar fault, hence it is more difficult to slip on a non planar236

fault.237

6. This definition of the shear traction drag includes the result obtained by Fang and238

Dunham (2013) for the shear traction drag on a rough fault: τ 1th = −8π3α2µ
(
1− c2s

c2p

)
∆ut

λmin
.239

The previous result was derived for a constant slip on an infinite friction less fault,240

where α represents the amplitude to wavelength ratio, and λmin is the minimum241

roughness wavelength.242

In the following, we will show that our result encompasses the result by Fang and243

Dunham (2013). Assuming that the slip is constant, and that the fault slope is small244

(m << 1), it is possible to replace the curvature by the second order derivative of the245

height of the fault: κt(x) = m′(x)

(1+m(x)2)3/2
≃ m′(x). The previous exact equation for the shear246

traction drag simplifies to247
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τ 1el(x1) =
µ

π

(
1− c2s

c2p

)
∆ut

∫ +∞

−∞

[
m(y1)

x1 − y1
− x2 − y2

(x1 − y1)2

]
m′(y1)dy1 (18)

Another simplification can be made because the term x2−y2
(x1−y1)2

is usually small compare to248

m(y)
x1−y1

. Then the equation becomes:249

τ 1el(x1) =
µ

π

(
1− c2s

c2p

)
∆ut

∫ +∞

−∞

[
m(y1)

x1 − y1

]
m′(y1)dy1 (19)

Finally, using the Bedrosian theorem (Bedrosian, 1963), it can be obtained:250

τ 1el(x1) =
µ

π

(
1− c2s

c2p

)
∆ut(x1)m(x1)

∫ +∞

−∞

[
m′(y)

x1 − y1

]
dy1 (20)

which is the same equation A61 as in Fang and Dunham (2013). Hence the mean roughness251

drag can be written as:252

τ 1th = −8π3α2µ

(
1− c2s

c2p

)
∆ut

λmin

(21)

To further validate our derivations and assess the accuracy of the approximations made,253

we conducted numerical tests comparing the two expressions. In figure 10-a, we computed254

the shear traction drag (red line) using eq. (18) for an infinitely long fault with constant255

slip. To achieve the infinite fault, we calculated the shear traction drag in the spectral256

domain (eq. (76)), hence it is infinite with periodic replication. The theoretical expression257

proposed by Fang and Dunham (2013) is shown in black. The mean value of our definition258

for the shear traction drag closely aligns with the expression derived in Fang and Dunham259

(2013). Additionally, in figure 10-b, we calculated the relative difference between the mean260

of the exact expression (eq. (18)) and the theoretical expression (eq (21)) for the shear261

traction drag for 100,000 different rough fault profiles. The mean of the relative difference262
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is less that 1%, with a standard deviation of approximately 5%. The discrepancy can be263

explained by the neglect of the term x2−y2
(x1−y1)2

, and the utilization of the Bedrosian theorem264

whose assumptions are not entirely verified. These numerical comparisons further support265

the validity and accuracy of our derived expressions.266

Finally, it can be demonstrated through an integration by parts that the expression for267

the shear traction drag , under the assumptions that x2−y2
(x1−y1)2

can be neglected and that268

the Bedrosian theorem can be applied, is always negative :269

τ 1el(x1) =
µ

π

(
1− c2s

c2p

)∫ +∞

−∞

1

x1 − y1
∆ut(y1)m(y1)

d

dy1
m(y1)dy1

=
µ

π

(
1− c2s

c2p

)
∆ut(x1)

∫ +∞

−∞

1

x1 − y1

1

2

d

dy1
m2(y1)dy1

= − µ

2π

(
1− c2s

c2p

)

︸ ︷︷ ︸
>0

∆ut(x1)

∫ +∞

−∞

1

(x1 − y1)2
m2(y1)

︸ ︷︷ ︸
>0

dy1

(22)

The last expression, which is valid for any fault geometry, is always opposite sign of270

the slip ∆ut, hence resisting movement.271
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Figure 10: a) Exact -red line- (from eq (18)) and theoretical -black line- (from eq (21)) shear

traction drag for an infinite rough fault. The exact shear traction drag was calculating in

the Fourier domain (eq. (76), in appendix H) to make it infinite with periodic replication.

b) In order to check the equivalence of the two expressions in the case of an infinite rough

fault, we generated 100000 rough fault profiles and computed the distance of the mean

value for the exact shear traction drag compared with the theoretical shear traction drag.

The mean difference is less than 1% with a standard deviation of 5.5%.
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1st order response of normal traction272
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Figure 11: The 1st order effect on normal traction. If can seen that the main effect is to

slightly reduce the minimums and maximums of the normal traction. The full solution was

calculated with the equation (72) in appendix H.

Although there is a 1st order response on normal traction, its effect is not as important as273

the shear traction drag. The main effect is to slightly oppose the effect of the 0th order,274

so that the full normal traction at maximum and minimums are slightly reduced compare275

to the 0th order effect. This effect can be seen on figure 11, where the maximums and276

minimums of normal traction at 0th order σ0
el are slighly reduced by the 1st order of normal277

traction σ1
el.278
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2.2 Out-of-plane shear (mode III)279
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Figure 12: Total elastic traction for an out-of-plane fault (mode III). Assuming the fault

geometry (as shown by the x-axis) and the slip distribution ∆u(y1) = (1−4
y21
L2 )

3/2 in meter

(red curve), the full solution, the gradient term and the curvature term (black lines) can be

calculated using equation (77) (more precisely using the spectral expressions eq. (79) and

eq. (81)). The 0th order and the 1st order (blue lines), are respectively calculated using

the expressions (25) and (26).

Similarly as for the in-plane (mode II) case, the out-of-plane (mode III) shear and normal

traction can be decomposed into 0th and 1st order responses.

τel︸︷︷︸
Elastic shear traction
of non-planar fault

= τ 0el︸︷︷︸
Planar fault response

+ τ 1el︸︷︷︸
=0

+ ...︸︷︷︸
Higher order terms

(23)

σel︸︷︷︸
Elastic normal traction

=0

= σ0
el︸︷︷︸

=0

+ σ1
el︸︷︷︸

=0

+ ...︸︷︷︸
Higher order terms

=0

(24)

However, in this case, only the shear traction at 0th order is non-zeros.280
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τ 0t (x1) =
µ

2π

∫ +∞

−∞

1

x1 − y1

d

dy1
∆us(y1)dy1

σ0
n(x1) = 0

(25)

τ 1t (x1) = 0

σ1
n(x1) = 0

(26)

For an out-of-plane shear fault, the contribution of non-planar fault geometry to the stresses281

is only a 2nd order effect. This means that fault geometry has a small effect for an out-282

of-plane shear fault (mode III). Figure 13 illustrates the slip distribution for non-planar283

fault geometries with Coulomb friction and constant loading, using the same parameters284

as in the in-plane shear case (mode II) shown in Figure 8. In the case of out-of-plane shear285

(mode III), there is no scaling of the slip distribution with respect to fault geometry. The286

slip distribution for the planar fault (dashed black line) perfectly overlaps with the slip287

distributions for the non-planar faults (continuous blue lines).288
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Figure 13: Scaling of geometry and slip distribution for a static, out-of-plane shear (mode

III) fault subject to a constant loading and that follows Coulomb friction. The black dash

line is the planar fault solution. The slip distribution does not show any scaling with fault

geometry. Fault geometry: a) a rough fault, b) a seamount fault geometry, c) an arctan

fault geometry and d) a sum of two sinusoidal functions geometry.
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3 Discussion289

3.1 Physical singularities that appear on non-planar fault290

3.1.1 Non-zeros slip at kinks of the fault.291

Evaluation 
point

Fault element
Fa

ult e
lement

Figure 14: Figure showing the grid dependency of a kinked faults. a) The geometry of the

fault and the momentum equation. b) The slip distribution versus position along the fault.

The slip distribution is changing with gridsize. Please note the only physically acceptable

slip at the kink is zero. c) The shear traction distribution versus the position along the

fault. The shear traction is closely following the normal traction because they are linked

by the friction law. It is also diverging with the refinement of the mesh. d) The normal

traction distribution vs position along the fault. The normal traction is diverging with the

refinement of the mesh.
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Many literature sources make the mistake of modeling kinks while assuming small strain292

elasticity and no opening (Tada and Yamashita, 1996; Aochi et al., 2000a; Duan and293

Oglesby , 2005; Ely et al., 2009; Lozos et al., 2011; Fukuyama and Hok , 2015; Sathiaku-294

mar and Barbot , 2021). A kink on a fault with non-zeros slip create a 1/r singularity,295

where r is the distance from the kink. This is a non-physical singularity that results to296

infinite strain energy near the kink. We can demonstrate this result in the small slope297

approximation, for the 0th order on normal traction:298

σ0
el(x1) = −µ

π

(
1− c2s

c2p

)∫ +∞

−∞

[
1

x1 − y1

d

dy1
m(y1)∆ut(y1)

]
dy1 (27)

If we assume that the curvature is κt(y1) =
d

dy1
m(y1). For a kink at the position y1 = 0,299

the slope is discontinuous so that we can assume that m(y1) = AH(y1), where H is the300

Heaviside function and A the fault slope after the kink. In this case, the previous equation301

becomes:302

σ0
el(x1) = −µ

π

(
1− c2s

c2p

)∫ +∞

−∞

[
A∆u(y1)

x1 − y1
δ(y1)

]
dy1

= −µ

π

(
1− c2s

c2p

)
A∆ut(0)

x1

(28)

This reveals a 1/x1 singularity of normal traction on the fault. One straightforward way to303

eliminate this singularity is by imposing the slip to be null at the kink ∆ut(0) = 0, which is304

evident from the previous equation. Another approach would be to allow for fault opening305

or adding a third fault and imposing the closure of slip at the kink (Andrews , 1989). In306

the boundary element method, the maximum normal traction concentration due to the307

discretization is typically proportional to the gridsize ∆s. Thus, the maximum normal308
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traction on the fault is:309

σ0
el(x1 = 0) ∝ −µ

π

(
1− c2s

c2p

)
A∆ut(0)

∆s
(29)

The problem is that the usual gridsize for the modeling of fault is of the order ∆s ∼ 1000m,310

as a result, the stress concentration at the kink, which is normally infinite, is of the order311

of σ0
el(x1) ≃ 1 MPa for typical shear modulus µ (30 GPa), P-wave velocity (5000 m/s) and312

S wave velocity (3000 m/s) and a slip at the kink of ∆ut(0) = 1m. This is why the issue of313

diverging traction at kinks has remained unknown in numerical work so far. An example314

of this effect is shown in figure 14, where the slip, normal traction and shear traction was315

calculated for a fault following Coulomb friction with constant loading. The maximum316

values of normal traction and shear traction are largely underestimate (∼ 1MPa) for the317

gridsize ∆s = 500 m. It is worth noting that adding plasticity or viscosity is not an entirely318

satisfying solution. In most of seismological research, the small strain approximation is used319

together with plasticity/viscosity and the plastic/viscous effects are driven by the linear320

elastic interaction. If the elastic interactions are underestimated, the plastic/viscous effect321

will also be significantly underestimated. It means all the quantitative work done using322

kinks in linear elasticity (with the small strain assumption) is grid-dependent and does not323

converge numerically.324

Finally, it is still possible to observe that modeling a kink is still possible in out-of-plane325

faulting (mode III), because there is no curvature term.326

3.1.2 Discontinuous curvature along the fault327

A discontinuity in the curvature of the fault also creates a singularity in stresses. However,328

this singularity can be compensated by a singularity in the slip derivative (hence the slip329

will still be continuous). Using the scaling of slip vs curvature -that is valid only when the330
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fault follows Coulomb friction- (eq. (16)):331

d

dx1

∆ut(x1) = −fκt(x1)∆ut(x1). (30)

So that if the curvature has a discontinuity of Amplitude B at x1 = 0, κt(x1) = BH(x1),332

the discontinuity in slip gradient will be: d
dx1

∆ut(x1) = −fBH(x1)∆ut(x1). This effect333

is well observed on figure 15-b, where there is a discontinuity in slip gradient due to the334

discontinuity of the curvature along the fault.335
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Figure 15: Figure showing the grid dependency of a bended fault with discontinuous curva-

ture. a) The geometry of the fault and the momentum equation. b) The slip distribution

versus position along the fault. The slip distribution is changing with gridsize. c) The

shear traction distribution versus the position along the fault. The shear traction is closely

following the normal traction because they are linked by the friction law. It is also diverg-

ing with the refinement of the mesh. d) The normal traction distribution vs position along

the fault. The normal traction is diverging with the refinement of the mesh.

The discontinuity in curvature creates a singularity of the stresses that is∝ log(x1) when336

x1 → 0. Because this singularity is less strong than 1/
√

(x1), this discontinuity in curvature337
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does not lead to infinite strain energy, hence it is a physically acceptable singularity. Let’s338

show the previous result using the small slope approximation and assuming constant slip339

distribution. For a bended fault like in Fig. 15-a, the curvature can be written κt(y1) =340

B(H(y1 − a)−H(y1 + b)), where B is the curvature in the bended portion of the fault. It341

leads to the normal traction distribution (Hilbert transform of a characteristic function):342

σ0
el(x1) = −µ

π

(
1− c2s

c2p

)
∆ut

∫ +∞

−∞

[
1

x1 − y1
B(H(y1 − a)−H(y1 + b)

]
dy1

= −µ

π

(
1− c2s

c2p

)
B∆ut log

∣∣∣∣
x1 − a

x1 − b

∣∣∣∣
(31)

Where we found a log singularity when x1 → a or x1 → b. The last comment is that,343

again, there is no such a problem in out-of-plane shear, because the stresses and strains344

are independent of the curvature term (see eq. 77 in appendix I ).345
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3.2 Limits of linear elasticity346

Initial fault geometry

For small strain, the elastic 
response is linear

For large displacement, the 
elastic response is non-linear

Figure 16: Figure showing the limits of linear elasticity in the modeling of non-planar fault

geometries.

The small strain approximation is commonly used in seismology and is necessary to lin-347

earises the strain tensor with the displacement field. However, when considering non planar348

fault geometry, the strains and stresses will keep increasing with on-going slip breaking the349

small strain approximation. At a certain point, the small strain approximation becomes350

invalid as depicted in figure 16. In such cases, finite elasticity should be considered to351

prevent the strains and stresses from growing without bounds (Romanet et al., 2020; Tal ,352

2023). Various approaches have been proposed in the litterature to address the issue of353
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unbounded increase or decrease in normal traction with ongoing slip (Duan and Oglesby ,354

2005; Dunham et al., 2011; Heimisson, 2020; Cattania and Segall , 2021), for example the355

inclusion of viscosity or plasticity while retaining the small strain approximation of linear356

elasticity. However, this approach may lead to a significant overestimation of the effect of357

plasticity and viscosity in fault mechanics.358

While we acknowledge the likelihood of non-linear anelastic phenomena occurring (such359

as damage, plasticity, or viscosity), we disagree with the interpretation that they are a360

necessary condition for preventing the stresses and strains from growing indefinitely with361

ongoing slip on non-planar faults (Dieterich and Smith, 2009; Shi and Day , 2013), as this362

does not consider the effect of finite elasticity.363

It is important to recognize that small strain elasticity is violated when dealing with364

very small asperities, and even regularization techniques may not provide accurate results.365

One possible direction is to move towards finite elasticity and thoroughly test the limits of366

linear elasticity in current earthquake simulations.367

4 Conclusion368

Opening fault (mode I) In-plane shear fault (mode II) Out-of-plane shear fault (mode III)

Shear traction τ 0

(0th order)

Mainly controlled by the fault geometry

∝ κt∆un

Same as the planar fault response Same as the planar fault response

Shear traction τ 1

(1st order)

Nearly no effect

(depends on the gradient of slip)

Shear traction drag,

the fault is resisting slip

= 0

No effect of fault geometry

Normal traction σ0

(0th order)
Same as the planar fault response

Mainly controlled by the fault geometry

∝ κt∆ut

= 0

No effect of fault geometry

Normal traction σ1

(1st order)

Normal traction drag,

the fault is resisting opening

Slightly reduce the minimums and

maximums of normal traction changes

= 0

No effect of fault geometry

Table 1: Summary of the results. Please note that there is an effect of geometry for

out-of-plane shear, but this effect only appears at 2nd order.
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This work advances the limited theoretical knowledge regarding the effect of non-planar369

fault geometries on earthquake mechanics. By expanding the relation of fault traction and370

slip, up to second order relative to the deviation from a planar fault, this study allows for371

the interpretation of complex fault geometry and its impact on fault traction (see Table372

1).373

The results of this study confirm that fault geometry plays a significant role in in-374

plane faulting (mode II) by modifying the normal traction on the fault and increasing its375

resistance to slipping. We provide a general expression independent of fault geometry and376

fault slip for the shear traction drag (Fang and Dunham, 2013), making it a general result.377

We also provide some useful simplification for the effect of rough fault on normal traction,378

which can be simplified as an Hilbert transform of the curvature by using Bedrosian’s379

theorem.380

Conversely, for out-of-plane faulting (mode III), the influence of fault geometry is neg-381

ligible. There is no effect of fault geometry up to the second order. We also showed that,382

in this case, there is no scaling between the slip distribution and the geometry.383

The paper also examines singularities that arise in specific fault geometries commonly384

used in earthquake simulations and provides guidelines for their elimination.385

Ultimately, this study highlights the limitations of the small strain approximation when386

considering non-planar faults, emphasizing the need to consider finite elasticity for more387

accurate modeling of non-planar faults.388
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A Table of parameters399

Symbol Description

h Height of the fault

m Slope of the fault

x Point of evaluation

xd dth component of the point x

y Point of evaluation, usually over which an integral is performed

yd dth component of the point y

κt Curvature of the fault

uk kth component of the displacement vector

cijpq ijpq component of the Hooke tensor

∆un
i ith component of the slip vector for opening (mode I)

∆ut
i ith component of the slip vector for in-plane shear (mode II)

∆us
i ith component of the slip vector for out-of-plane shear (mode III)

nj jth of the vector normal to the fault

Gkp kp component of the Green’s functions

l Length along the fault

ϵcd cd component of the strain tensor

σab ab component of the stress tensor

tj jth component of the tangential vector to the fault

∂
∂yt

Derivative along the fault ( ∂
∂yt

= t1
∂

∂x1
+ t2

∂
∂x2

)

τel Total elastic shear traction along the fault

τ 0el Elastic shear traction at 0th order along the fault

τ 1el Elastic shear traction at 1th order along the fault

σel Total elastic normal traction along the fault

σ0
el Elastic normal traction at 0th order along the fault

σ1
el Elastic normal traction at 1th order along the fault

L Length of the fault, used for the prescribed slip definition

µ Shear modulus

cs Shear wave speed

cp Compressional wave speed

Table 2: Table of parameters
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Symbol Description

σ0
load Constant normal traction loading

τ 0load Constant shear traction loading

f Coulomb friction parameter

τ 1th Theoretical shear traction drag as given in Fang and Dunham (2013)

α Amplitude to wavelength ratio for a self-similar fault

λmin Minimum roughness wavelength

H Heaviside function

δ Dirac function

λ Lamé’s first parameter

θ Angle between the axis 1 and the fault (see Fig. 18)

Table 3: Table of parameters (continue)

B Derivation400

In the following, the convention for stress is chosen as tension positive and compression401

negative.402

B.1 Formulas403

Here, we just recall some formulas that will be used in the following section for the deriva-404

tion.405

The momentum balance equation:406

cijpq
∂

∂xj

∂

∂xq

Gpn(x,y) = 0 (32)

Symmetry of the Green’s function:407

∂

∂xq

Gij(x,y) = − ∂

∂yq
Gij(x,y) (33)
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Definition of the tangential differential operator on a function f (Bonnet , 1999):408

Dij[f(y)] = ni(y)
∂

∂yj
f(y)− nj(y)

∂

∂yi
f(y) (34)

Definition of the derivative along the fault, if t is the tangential vector to the fault:409

∂

∂yt
f = t1

∂

∂y1
f + t2

∂

∂y2
f (35)

The expression for the Green’s function can be found in Tada and Yamashita (1997):410

Gij(x,y) =
1

4πµ
[γiγj(1− c2s/c

2
p)− δij(1 + c2s/c

2
p) log(r)], for i, j ∈ {1, 2}

G33(x,y) =
−1

2πµ
log(r)

(36)

where γ1 = x1−y1
r

, γ2 = x2−y2
r

, and r =
√

(x1 − y1)2 + (x2 − y2)2 is the distance between411

the points x and y.412

B.2 Derivation413

We start from the representation theorem (Tada and Yamashita, 1997):414

uk(x) = −
∫

fault

cijpqnj(y)∆ui(y)
∂

∂xq

Gkp(x,y)dl(y) (37)

From the previous equation, by deriving under the integral it can be obtained:415

∂

∂xl

uk(x) = −
∫

fault

cijpqnj(y)∆ui(y)
∂

∂xq

[
∂

∂xl

Gkp(x,y)

]
dl(y) (38)

The reason to do so is that both the strains (ϵkl =
1
2

(
∂

∂xk
ul +

∂
∂xl

uk

)
) and the stresses (σab =416

cabklϵkl) can be obtained by linear combinaison of the previous equation. To regularise this417
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integral we need to work on the integrand of the previous integral. Using the symmetry of418

second derivatives, we can replace the derivatives with respect to x with derivatives with419

respect to y.420

∂

∂xl

uk(x) = −
∫

fault

cijpqnj(y)
∂

∂yq

[
∂

∂yl
Gkp(x,y)

]
dl(y) (39)

Then, we used the definition of the tangential differential operator together with the mo-421

memtum balance equation (eq. (32)):422

cijpqnj(y)
∂

∂yl

∂

∂yq
Gkp = cijpq

[
Djl

∂

∂yq
Gkp + nl(y)

∂

∂yj

∂

∂yq
Gkp

]

= cijpqDjl
∂

∂yq
Gkp

(40)

Please note that this derivation is due to Daisuke Sato (Sato et al., 2020) for the 2D423

case. The equivalent 3D case derivation was done by Marc Bonnet (Bonnet , 1999), and424

can also be found in Romanet et al. (2020).425

We then developed the differential tangential operator in the local coordinate system426

of the fault, and used the fact that the derivative perpendicular to the fault direction are427

null:428

Djk[f(y)] =

[
nj(y)

∂

∂yk
− nk(y)

∂

∂yj

]
f(y)

=

[
nj(y)

(
tk(y)

∂

∂yt
+ nk(y)

∂

∂yn

)
− nk(y)

(
tj(y)

∂

∂yt
+ nj(y)

∂

∂yn

)]
f(y)

= [nj(y)tk(y)− nk(y)tj(y)]
∂

∂yt
f(y)

(41)

It can be checked easily that the previous equation is 0 for any pair in (1, 2), because429

t1 = n2 and t2 = −n1.430

Then, we replace the integrand in eq. (39), using eq. (40) and eq. (41):431
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∂

∂xl

uk(x) = −
∫

fault

cijpq∆ui[nj(y)tl(y)− nl(y)tj(y)]
∂

∂yt
∂

∂yq
Gkp(x,y)dl(y) (42)

Finally, it is possible to perform an integration by parts to regulatize the hypersingular432

integral given previously (eq. (43)):433

∂

∂xl

uk(x) = −
∫

fault

cijpq[nj(y)tl(y)− nl(y)tj(y)]
∂

∂yt
∆ui

∂

∂yq
Gkp(x,y)dl(y) (43)

For numerical calculation and the discretisation of the fault slip, it is best to use eq. (43).434

However for facilitate interpretation, the slip vector can be projected on the local basis as:435

∆ui = ∆unni, for mode I

∆ui = ∆utti, for mode II

∆ui = ∆ussi, for mode III

(44)

where ∆un, ∆ut, and ∆us are respectively the opening, the in-plane slip and the out-of-436

plane slip. The derivative of slip with respect to the direction of the fault ∂
∂yt

∆ui can then437

be replaced by:438

∂

∂yt
[∆unni] = ni

∂

∂yt
∆un − ti∆unκt, for mode I

∂

∂yt
[∆utti] = ti

∂

∂yt
∆ut + ni∆unκt, for mode II

∂

∂yt
[∆ussi] = si

∂

∂yt
∆us = δ3i

∂

∂yt
∆us, for mode III

(45)

where δ3i is the Kronecker delta.439
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C Discretization440

Evaluation 
point

Fault element

ξj−1
ξj

ξj+1

ξj+2

∆uj−1
∆uj

∆uj+1

Figure 17: Figure showing the discretisation of the fault.

The discretisation is using the same strategy as in Romanet et al. (2020). It consists441

into discretizing the slip and the tangential vector as constant over a straight line. It is442

convenient for this part to use the curvilinear abcisse ξ instead of the position along the443

fault y(ξ). Also, to simplify the demonstration, we will just keep the scalar t instead of444

one component of the tangential vector ti.445

t(ξ) =
∑

j

tj[H(ξ − ξj)−H(ξ − ξj+1)]

∆u(ξ) =
∑

j

∆uj[H(ξ − ξj)−H(ξ − ξj+1)]

(46)
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The discretisation is using a piecewise contant slip and a straight element over.446

∫

fault

K(x,y)
∂

∂yt
[t∆u] dl(y) =

∫

fault

K(x,y)t
∂

∂yt
[∆u] dl(y)+

∫

fault

K(x,y)∆u
∂

∂yt
[t] dl(y) =

∫

fault

K(x,y)t
∂

∂yt

[∑

j

∆uj[H(ξ − ξj)−H(ξ − ξj+1)]

]
dl(y)+

∫

fault

K(x,y)∆u
∂

∂yt

[∑

j

tj[H(ξ − ξj)−H(ξ − ξj+1)]

]
dl(y) =

∑

j

[K[x,y(ξj)]t(ξj)−K[x,y(ξj+1)]t(ξj+1)]∆uj+

∑

j

[K[x,y(ξj)]∆u(ξj)−K[x,y(ξj+1)]∆u(ξj+1)]tj

(47)

We can then replace t(ξj) and ∆u(ξj) by (H(0) = 1/2):447

t(ξj) = (1− 0.5)tj−1 + 0.5tj =
tj−1 + tj

2

∆u(ξj) =
∆uj−1 +∆uj

2

(48)

which gives:448

∫

fault

K(x,y)
∂

∂yt
[t∆u] dl(y) =

∑

j

[K[x,y(ξj)]
tj + tj−1

2
−K[x,y(ξj+1)]

tj+1 + tj
2

)]∆uj

︸ ︷︷ ︸
Gradient term

+

∑

j

[K[x,y(ξj)]
∆uj +∆uj−1

2
−K[x,y(ξj+1)]

∆uj+1 +∆uj

2
]tj

︸ ︷︷ ︸
Curvature term

(49)

This way of discretising the integral allows for the separation of the curvature and gradient449
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terms.450

D The small slope approximation451

D.1 It transforms the integrals along the fault to integral along452

a straight line453

Starting from a regularized boundary element method, and applying the small slope ap-454

proximation, it is possible to obtain the 0th and 1st order solution of the stress on the fault455

due to a slip distribution for the different mode of slip. Please notice that all the integrals456

that were along the fault become along the y1 axis only. This is due to the fact that if457

y2 = h(y1) and the slope derivative is small d
dy1

h(y1) << 0, and changing the variable of458

the integral:459

∫

fault

f(y1)dl(y1) =

∫ +∞

−∞
f(y1)

√
1 + h′2(y1)dy1

≃
∫ +∞

−∞
f(y1)(1 + h′2(y1)/2)dy1

≃
∫ +∞

−∞
f(y1)dy1

(50)

46



D.2 It provides an expression for the normal and tangential vec-460

tor to the fault461

Figure 18: Figure showing the simplification that happens in the small slope approximation

for the normal and tangential vectors.

The normal and tangential vectors can be simplified in the small slope approximation (see462

Fig. 18), indeed:463

m(y1) = tan[θ(y1)] ≃ θ(y1) (51)

so that in the small slope approximation:464

n(y1) =



− sin(θ(y1))

cos(θ(y1))


 ≃



−m(y1)

1




t(y1) =



cos(θ(y1))

sin(θ(y1))


 ≃




1

m(y1)




(52)

47



E A particular solution for the semi-analytical formu-465

lation466

The slip/opening distribution for the result section is chosen as following:467

∆u(y1) = (1− y21)
3/2 (53)

The reason for this particular form of slip (or opening) distribution compared to the468

classic distribution in linear fracture mechanics (∆u(y1) =
√

1− y21) is because it brings469

finite stress concentrations outside the fault (hence the numerical result are converging)470

and that there is an analytical solution for the stresses in the case of planar fault:471

1

2π

∫ 1

−1

1

x1 − y1

d

dy1
∆u(y1)dy1 =

3

4





1− 2x2
1 − 2x1

√
x2
1 − 1, if x1 < −1

1− 2x2
1, if − 1 ≤ x1 ≤ 1, inside the fault

1− 2x2
1 + 2x1

√
x2
1 − 1, if x1 > 1

(54)

The previous solution was used to check our numerical scheme against the analytical for-472

mulation. Obtaining this solution is not straightforward. For the case −1 < x1 < 1, the473

solution can be obtained by using Chebychev polynomial (Mason and Handscomb (2002),474

section 9.5.1). The solution outside |x1| > 1 can be obtained by doing a first change of475

variable y1 → sin(θ) and checking that sin(θ) cos2(θ)
x1−sin(θ)

is symmetric at π/2. That allows us to476

make the integration over the whole circle and take half the value. If we start from the477

following integral:478

1

2π

∫ 1

−1

1

x1 − y1

d

dy1
∆u(y1)dy1 = − 3

2π

∫ 1

−1

y1
√

1− y21
x1 − y1

dy1 (55)
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And then do the first change of variable:479

1

2π

∫ 1

−1

1

x1 − y1

d

dy1
∆u(y1)dy1 = − 3

2π

∫ π/2

−π/2

sin(θ) cos(θ)| cos(θ)|
x1 − sin(θ)

dθ

= − 3

2π

∫ π/2

−π/2

sin(θ) cos2(θ)

x1 − sin(θ)
dθ

= − 3

4π

∫ 3π/2

−π/2

sin(θ) cos2(θ)

x1 − sin(θ)
dθ

(56)

A second change of variable is using z = eiθ, where sin(θ) = z−1/z
2i

and cos(θ) = z+1/z
2

.480

− 3

4π

∫ 3π/2

−π/2

sin(θ) cos2(θ)

x1 − sin(θ)
dθ = − 3i

16π

∫

C

(z2 − 1)(1 + z2)2

z3[z − (ix+
√
1− x2)][z − (ix−

√
1− x2)]

dz

(57)

For x < −1, there are two poles at z = 0 and z = i(x +
√
x2 − 1), so that applying the481

residue theorem gives:482

1

2π

∫ 1

−1

1

x1 − y1

d

dy1
∆u(y1)dy1 = 2πiRes(f, z = 0) + 2πiRes(f, z = i(x1 +

√
x2
1 − 1)

=
3

4
(1− 2x2

1 − 2x1

√
x2
1 − 1)

(58)

where Res(f,z) is the residue of f in z483

For x > 1, there are also two poles at z = 0 and z = i(x1 −
√
x2
1 − 1), so that the484

residue theorem yields:485

1

2π

∫ 1

−1

1

x1 − y1

d

dy1
∆u(y1)dy1 = 2πiRes(f, z = 0) + 2πiRes(f, z = i(x1 −

√
x2
1 − 1)

=
3

4
(1− 2x2

1 + 2x1

√
x2
1 − 1)

(59)
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F Definition of the Fourier Transform486

In the following part, the 0th and 1st order solution for both normal and shear traction are487

provided. Their expression depends on the choose of the definition of the Fourier transform.488

We define the Fourier transform as following:489

F [f ](k) =

∫ +∞

−∞
f(x1)e

−ikx1dx1 (60)

490

F−1[f ](x1) =
1

2π

∫ +∞

−∞
f(x1)e

ikx1dk (61)

where k is the wavenuber and is linked to the wavelength λ by k = 2π/λ. In particular,491

we will use the two Fourier transform:492

F [1/x1](k) = −iπsign(k)

F [1/x2
1](k) = −π|k|

(62)

G In-plane opening (mode I)493

The mode I correspond to opening. One common assumption for an opening fault is the494

traction free condition at the surface.495
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Figure 19: Assuming the fault geometry and the opening distribution ∆u(y1) = (1−4
y21
L2 )

3/2

in meter (red curve), the full solution, the gradient term and the curvature term can be

calculated using equation (67). The 0th order and the 1st order, are respectively calculated

using the expressions (65) and (66).

By making the small slope approximation is can be shown that the main contribution496

for the shear and normal tractions are:497

τel︸︷︷︸
Elastic shear traction

Only if the fault is non-planar

= τ 0el︸︷︷︸
Shear traction perturbation

∝κt∆ut

+ τ 1el︸︷︷︸
1storder

Shear traction pertubation

+ ...︸︷︷︸
Higher order terms

(63)

σel︸︷︷︸
Elastic normal traction

Of non-planar fault

= σ0
el︸︷︷︸

Planar fault response

+ σ1
el︸︷︷︸

Normal traction drag

+ ...︸︷︷︸
Higher order terms

(64)

with498
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τ 0t (x1) =
µ

π

(
1− c2s

c2p

)∫ +∞

−∞

1

x1 − y1
κt(y1)∆un(y1)dy1

σ0
n(x1) = −µ

π

(
1− c2s

c2p

)∫ +∞

−∞

1

x1 − y1

d

dy1
∆un(y1)dy1

(65)

τ 1t (x1) =
µ

π

(
1− c2s

c2p

)∫ +∞

−∞

[
m(y1)

x1 − y1
− x2 − y2

(x1 − y1)2

]
d

dy1
∆un(y1)dy1

σ1
n(x1) =

µ

π

(
1− c2s

c2p

)∫ +∞

−∞

[−2m(x1)

x1 − y1
+

m(y1)

x1 − y1
+

x2 − y2
(x1 − y1)2

]
κt(y1)∆un(y1)dy1

(66)

On figure 19 an example of a in-plane opening fault is given for a rough geometry.499

An interesting feature is that the on-fault shear traction mainly (0th order) depends upon500

the geometry, because it the 0th order shear traction depends on the local curvature (a501

geometrical parameter) that multiplies the opening. On the contrary, the normal traction502

depends mainly on the derivative of opening along the fault. That means that it is more503

dependent on the opening distribution than the fault geometry. By looking at the 0th order504

solution, it is interesting to see that the result of opening on a non -planar fault leads to505

the apparition of shear traction on this fault. If we assume traction free condition, the506

only solution to remove the shear traction that appears it that mode II is also involve.507

One result from that is that mode I on a non-planar fault, with the traction free condition508

cannot exist without the existence of mode II.509
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G.1 Full solution510

In the following ∗ represents the convolution operation.511

ϵ11(x) =
1

2π(λ+ 2µ)

∫

fault

[
n1

γ2
r
(2λγ2

1 + µ(3γ2
1 + γ2

2)) + n2
γ1
r
(2λγ2

2 + µ(γ2
2 − γ2

1))
] d

dyt
∆un(y)dl(y)

+
1

2π(λ+ 2µ)

∫

fault

[
−n2

γ2
r
(2λγ2

1 + µ(3γ2
1 + γ2

2)) + n1
γ1
r
(2λγ2

2 + µ(γ2
2 − γ2

1))
]
κt(y)∆un(y)dl(y)

ϵ22(x) = − 1

2π(λ+ 2µ)

∫

fault

[
n2

γ1
r
(2λγ2

2 + µ(γ2
1 + 3γ2

2)) + n1
γ2
r
(2λγ2

1 + µ(γ2
1 − γ2

2))
] d

dyt
∆un(y)dl(y)

− 1

2π(λ+ 2µ)

∫

fault

[
n1

γ1
r
(2λγ2

2 + µ(γ2
1 + 3γ2

2))− n2
γ2
r
(2λγ2

1 + µ(γ2
1 − γ2

2))
]
κt(y)∆un(y)dl(y)

ϵ12(x) = − λ+ µ

2π(λ+ 2µ)

∫

fault

[
(n1

γ1
r

+ n2
γ2
r
)(γ2

1 − γ2
2)
] d

dyt
∆un(y)dl(y)

− λ+ µ

2π(λ+ 2µ)

∫

fault

[
(−n2

γ1
r

+ n1
γ2
r
)(γ2

1 − γ2
2)
]
κt(y)∆un(y)dl(y)

σ11(x) =
µ

π

(
1− c2s

c2p

)∫

fault

[
n1(y)(3γ

2
1 + γ2

2)
γ2
r

− n2(y)(γ
2
1 − γ2

2)
γ1
r

] d

dyt
∆un(y)dl(y)

− µ

π

(
1− c2s

c2p

)∫

fault

[
n2(y)(3γ

2
1 + γ2

2)
γ2
r

+ n1(y)(γ
2
1 − γ2

2)
γ1
r

]
κt(y)∆un(y)dl(y)

σ22(x) = −µ

π

(
1− c2s

c2p

)∫

fault

[
n2(y)(γ

2
1 + 3γ2

2)
γ1
r

+ n1(y)(γ
2
1 − γ2

2)
γ2
r

] d

dyt
∆un(y)dl(y)

− µ

π

(
1− c2s

c2p

)∫

fault

[
n1(y)(γ

2
1 + 3γ2

2)
γ1
r

− n2(y)(γ
2
1 − γ2

2)
γ2
r

]
κt(y)∆un(y)dl(y)

σ12(x) = −µ

π

(
1− c2s

c2p

)∫

fault

[
(n1γ1 + n2γ2)

(
γ2
1

r
− γ2

2

r

)]
d

dyt
∆un(y)dl(y)

− µ

π

(
1− c2s

c2p

)∫

fault

[
(n1γ2 − n2γ1)

(
γ2
1

r
− γ2

2

r

)]
κt(y)∆un(y)dl(y)

τt(x) = n1(x)n2(x)(σ11(x)− σ22(x)) + (n2
2(x)− n2

1(x))σ12(x)

σn(x) = n2
1(x)σ11(x) + 2n1(x)n2(x)σ12(x) + n2

2(x)σ22(x)

(67)

53



G.2 Zeroth Order512

G.2.1 Space-time513

σ11(x1) = −µ

π

(
1− c2s

c2p

)∫ +∞

−∞

1

x1 − y1

d

dyt
∆un(y1)dy1

σ22(x1) = −µ

π

(
1− c2s

c2p

)∫ +∞

−∞

1

x1 − y1

d

dyt
∆un(y1)dy1

σ12(x1) =
µ

π

(
1− c2s

c2p

)∫ +∞

−∞

1

x1 − y1
κt(y1)∆un(y1)dy1

τt(x1) = σ0
12

=
µ

π

(
1− c2s

c2p

)∫ +∞

−∞

1

x1 − y1
κt(y1)∆un(y1)dy1

σn(x1) = σ0
22

= −µ

π

(
1− c2s

c2p

)∫ +∞

−∞

1

x1 − y1

d

dyt
∆un(y1)dy1

(68)

G.2.2 Spectral-time514

σ11(k) = −µ

π

(
1− c2s

c2p

)
π|k|F [∆un]

σ22(k) = −µ

π

(
1− c2s

c2p

)
π|k|F [∆un]

σ12(k) = −µ

π

(
1− c2s

c2p

)
iπsign(k)F [κt(y1)∆un(y1)]

τt(k) = −µ

π

(
1− c2s

c2p

)
iπsign(k)F [κt(y1)∆un(y1)]

σn(k) = −µ

π

(
1− c2s

c2p

)
π|k|F [∆un]

(69)
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G.3 First Order515

G.3.1 Space-time516

σ11(x1) = −µ

π

(
1− c2s

c2p

)∫ +∞

−∞

[
3

x2 − y2
(x1 − y1)2

− m(y1)

x1 − y1

]
κt(y1)∆un(y1)dy1

σ22(x1) = −µ

π

(
1− c2s

c2p

)∫ +∞

−∞

[
− m(y1)

x1 − y1
− x2 − y2

(x1 − y1)2

]
κt(y1)∆un(y1)dy1

σ12(x1) = −µ

π

(
1− c2s

c2p

)∫ +∞

−∞

[
− m(y1)

x1 − y1
+

x2 − y2
(x1 − y1)2

]
d

dyt
∆un(y1)dy1

τt(x1) = −m(σ0
11 − σ0

22) + σ1
12

=
µ

π

(
1− c2s

c2p

)∫ +∞

−∞

[
m(y1)

x1 − y1
− x2 − y2

(x1 − y1)2

]
d

dyt
∆un(y1)dy1

σn(x1) = −2mσ0
12 + σ1

22

=
µ

π

(
1− c2s

c2p

)∫ +∞

−∞

[−2m(x1)

x1 − y1
+

m(y1)

x1 − y1
+

x2 − y2
(x1 − y1)2

]
κt(y1)∆un(y1)dy1

(70)

G.3.2 Spectral-time517

σ11(k) = −µ

π

(
1− c2s

c2p

)
(−3π|k|(h ∗ F [κt∆un]−F [hκt∆un]) + iπsign(k)F [mκt∆un])

σ22(k) = −µ

π

(
1− c2s

c2p

)
(iπsign(k)F [mκt∆un] + π|k|(h ∗ F [κt∆un]−F [hκt∆un]))

σ12(k) = −µ

π

(
1− c2s

c2p

)(
iπsign(k)F

[
m

d

dy1
∆un

]
− π|k|

(
h ∗ F

[
d

dy1
∆un

]
−F

[
h

d

dy1
∆un

]))

τt(k) =
µ

π

(
1− c2s

c2p

)(
−iπsign(k)F

[
m

d

dy1
∆un

]
+ π|k|

(
h ∗ F

[
d

dy1
∆un

]
−F

[
h

d

dy1
∆un

]))

σn(k) =
µ

π

(
1− c2s

c2p

)
(2iπsign(k)m ∗ F

[
κt∆un

]
− iπsign(k)F

[
mκt∆un

]

− π|k|(h ∗ F
[
κt∆un

]
−F

[
hκt∆un

]
))

(71)
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H In-plane shear (mode II)518

In the following, γ1 =
x1−y1

r
, γ2 =

x2−y2
r

, and ∗ represents the convolution operation.519

H.1 Full solution520

ϵ11(x) =
1

2π(λ+ 2µ)

∫

fault

[
n2

γ2
r
(2λγ2

1 + µ(3γ2
1 + γ2

2))− n1
γ1
r
(2λγ2

2 + µ(γ2
2 − γ2

1))
] d

dyt
∆ut(y)dl(y)

+
1

2π(λ+ 2µ)

∫

fault

[
n1

γ2
r
(2λγ2

1 + µ(3γ2
1 + γ2

2)) + n2
γ1
r
(2λγ2

2 + µ(γ2
2 − γ2

1))
]
κt(y)∆ut(y)dl(y)

ϵ22(x) =
1

2π(λ+ 2µ)

∫

fault

[
n1

γ1
r
(2λγ2

2 + µ(γ2
1 + 3γ2

2))− n2
γ2
r
(2λγ2

1 + µ(γ2
1 − γ2

2))
] d

dyt
∆ut(y)dl(y)

− 1

2π(λ+ 2µ)

∫

fault

[
n2

γ1
r
(2λγ2

2 + µ(γ2
1 + 3γ2

2)) + n1
γ2
r
(2λγ2

1 + µ(γ2
1 − γ2

2))
]
κt(y)∆ut(y)dl(y)

ϵ12(x) = − λ+ µ

2π(λ+ 2µ)

∫

fault

[(
n2

γ1
r

− n1
γ2
r

)
(γ2

1 − γ2
2)
] d

dyt
∆ut(y)dl(y)

− λ+ µ

2π(λ+ 2µ)

∫

fault

[(
n1

γ1
r

+ n2
γ2
r

)
(γ2

1 − γ2
2)
]
κt(y)∆ut(y)dl(y)

σ11(x) =
µ

π

(
1− c2s

c2p

)∫

fault

[
n2(3γ

2
1 + γ2

2)
γ2
r

+ n1(γ
2
1 − γ2

2)
γ1
r

] d

dyt
∆ut(y)dl(y)

+
µ

π

(
1− c2s

c2p

)∫

fault

[
n1(3γ

2
1 + γ2

2)
γ2
r

− n2(γ
2
1 − γ2

2)
γ1
r

]
κt(y)∆ut(y)dl(y)

σ22(x) =
µ

π

(
1− c2s

c2p

)∫

fault

[
n1(γ

2
1 + 3γ2

2)
γ1
r

− n2(γ
2
1 − γ2

2)
γ2
r

] d

dyt
∆ut(y)dl(y)

− µ

π

(
1− c2s

c2p

)∫

fault

[
n2(γ

2
1 + 3γ2

2)
γ1
r

+ n1(γ
2
1 − γ2

2)
γ2
r

]
κt(y)∆ut(y)dl(y)

σ12(x) =
µ

π

(
1− c2s

c2p

)∫

fault

[
(n1

γ2
r

− n2
γ1
r
)(γ2

1 − γ2
2)
] d

dyt
∆ut(y)dl(y)

− µ

π

(
1− c2s

c2p

)∫

fault

[
(n1

γ1
r

+ n2
γ2
r
)(γ2

1 − γ2
2)
]
κt(y)∆ut(y)dl(y)

τt(x) = n1(x)n2(x)(σ11(x)− σ22(x)) + (n2
2(x)− n2

1(x))σ12(x)

σn(x) = n2
1(x)σ11(x) + 2n1(x)n2(x)σ12(x) + n2

2(x)σ22(x)

(72)
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H.2 Zeroth Order521

H.2.1 Space-time522

σ11(x1) = −µ

π

(
1− c2s

c2p

)∫ +∞

−∞

[
1

x1 − y1
κt(y1)∆ut(y1)

]
dy1

σ22(x1) = −µ

π

(
1− c2s

c2p

)∫ +∞

−∞

[
1

x1 − y1
κt(y1)∆ut(y1)

]
dy1

σ12(x1) = −µ

π

(
1− c2s

c2p

)∫ +∞

−∞

[
1

x1 − y1

d

dyt
∆ut(y1)

]
dy1

τt(x1) = σ0
12

= −µ

π

(
1− c2s

c2p

)∫ +∞

−∞

[
1

x1 − y1

d

dyt
∆ut(y1)

]
dy1

σn(x1) = σ0
22

= −µ

π

(
1− c2s

c2p

)∫ +∞

−∞

[
1

x1 − y1
κt(y1)∆ut(y1)

]
dy1

(73)

H.2.2 Spectral-time523

σ11(k) =
µ

π

(
1− c2s

c2p

)
iπsign(k)F [κt∆ut]

σ22(k) =
µ

π

(
1− c2s

c2p

)
iπsign(k)F [κt∆ut]

σ12(k) = −µ

π

(
1− c2s

c2p

)
π|k|F [∆ut]

τt(k) = −µ

π

(
1− c2s

c2p

)
π|k|F [∆ut]

σn(k) =
µ

π

(
1− c2s

c2p

)
iπsign(k)F [κt∆ut]

(74)
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H.3 First Order524

H.3.1 Space-time525

σ11(x1) =
µ

π

(
1− c2s

c2p

)∫ +∞

−∞

[
3

x2 − y2
(x1 − y1)2

− m(y1)

x1 − y1

]
d

dyt
∆ut(y1)dy1

σ22(x1) =
µ

π

(
1− c2s

c2p

)∫ +∞

−∞

[
− m(y1)

x1 − y1
− x2 − y2

(x1 − y1)2

]
d

dyt
∆ut(y1)dy1

σ12(x1) =
µ

π

(
1− c2s

c2p

)∫ +∞

−∞

[
m(y1)

x1 − y1
− x2 − y2

(x1 − y1)2

]
κt(y1)∆ut(y1)dy1

τt(x1) = −m(σ0
11 − σ0

22) + σ1
12

=
µ

π

(
1− c2s

c2p

)∫ +∞

−∞

[
m(y1)

x1 − y1
− x2 − y2

(x1 − y1)2

]
κt(y1)∆ut(y1)dy1

σn(x1) = −2mσ0
12 + σ1

22

=
µ

π

(
1− c2s

c2p

)∫ +∞

−∞

[
2m(x1)

x1 − y1
− m(y1)

x1 − y1
− x2 − y2

(x1 − y1)2

]
d

dyt
∆ut(y1)dy1

(75)

H.3.2 Spectral-time526

σ11(k) =
µ

π

(
1− c2s

c2p

)(
−3π|k|

(
h ∗ F

[
d

y1
∆ut

]
−F

[
h
d

y1
∆ut

])
+ iπsign(k)F

[
m

d

y1
∆ut

])

σ22(k) =
µ

π

(
1− c2s

c2p

)(
iπsign(k)F

[
m

d

y1
∆ut

]
+ π|k|

(
h ∗ F

[
d

y1
∆ut

]
−F

[
h
d

y1
∆ut

]))

σ12(k) =
µ

π

(
1− c2s

c2p

)
(−iπsign(k)F [mκt∆ut] + π|k|(h ∗ F [κt∆ut]−F [hκt∆ut]))

τt(k) =
µ

π

(
1− c2s

c2p

)
(−iπsign(k)F [mκt∆ut] + π|k|(h ∗ F [κt∆ut]−F [hκt∆ut]))

σn(k) =
µ

π

(
1− c2s

c2p

)(
−2iπsign(k)m ∗ F

[
d

dy1
∆ut

]
+ iπsign(k)F

[
m

d

dy1
∆ut

]

+ π|k|
(
h ∗ F

[
d

dy1
∆ut

]
−F

[
h

d

dy1
∆ut

]))

(76)
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I Out-of-plane (mode III)527

In the following, γ1 =
x1−y1

r
, γ2 =

x2−y2
r

, and ∗ represents the convolution operation.528

I.1 Full solution529

ϵ13(x) =
1

4π

∫

fault

γ2
r

d

dyt
∆us(y)dl(y)

ϵ23(x) = − 1

4π

∫

fault

γ1
r

d

dyt
∆us(y)dl(y)

σ13(x) =
µ

2π

∫

fault

γ2
r

d

dyt
∆us(y)dl(y)

σ23(x) = − µ

2π

∫

fault

γ1
r

d

dyt
∆us(y)dl(y)

τt(x) =
µ

2π

∫

fault

γ1
r

d

dyt
∆us(y)dl(y)

σn(x) = 0

(77)

I.2 Zeroth Order530

I.2.1 Space-time531

σ13(x1) = 0

σ23(x1) = − µ

2π

∫ +∞

−∞

1

x1 − y1

d

dy1
∆us(y1)dy1

τt(x1) = − µ

2π

∫ +∞

−∞

1

x1 − y1

d

dy1
∆us(y1)dy1

σn(x1) = 0

(78)
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I.2.2 Spectral-time532

σ13(k) = 0

σ23(k) = − µ

2π
π|k|F [∆us]

τt(k) = − µ

2π
π|k|F [∆us]

σn(k) = 0

(79)

I.3 First Order533

I.3.1 Space-time534

σ13(x1) =
µ

2π

∫ +∞

−∞

x2 − y2
(x1 − y1)2

d

dyt
∆us(y1)dy1

σ23(x1) = 0

τt(x1) = 0

σn(x1) = 0

(80)

I.3.2 Spectral-time535

σ13(k) = − µ

2π

(
πkh ∗ F [∆us] + πik2F [h∆us]

)

σ23(k) = 0

τt(k) = 0

σn(k) = 0

(81)
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