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Abstract

A supervised convolutional neural network (CNN) was developed to automatically identify electromagnetic ion cyclotron (EMIC)

wave events from spectrograms. These events have usually been identified manually, which can be a time-consuming process.

Statistical analyses of larger datasets would be facilitated if this process were simplified. The neural network model was trained

on spectrogram images from the Halley magnetometer station that had been manually identified as either containing or not

containing an EMIC wave event anywhere in the spectrogram. This model was tested on an unseen set of spectrograms,

achieving a perfect true positive rate of 1. Size, time, frequency, and pixel color information was extracted from each identified

event and exported into a spreadsheet for easier analysis. This method has the capability of reducing time and effort required

to identify important spectrogram features by hand. Such an automated method could be applied to other space weather data

stored in spectrograms.
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Key Points 7 

• Automatic identification of EMIC wave events in spectrograms is accomplished with an 8 
image classifying convolutional neural network 9 

• Information about the size, time and frequency range, and power of each event is produced 10 
and output to a spreadsheet for analysis 11 

• The method applied to 3 years of spectrograms from the Halley, Antarctica ground 12 
magnetometer station gives a true positive rate of 1 13 

 14 

Abstract 15 

A supervised convolutional neural network (CNN) was developed to automatically identify 16 
electromagnetic ion cyclotron (EMIC) wave events from spectrograms. These events have 17 
usually been identified manually, which can be a time-consuming process. Statistical analyses of 18 
larger datasets would be facilitated if this process were simplified. The neural network model 19 
was trained on spectrogram images from the Halley magnetometer station that had been 20 
manually identified as either containing or not containing an EMIC wave event anywhere in the 21 
spectrogram. This model was tested on an unseen set of spectrograms, achieving a perfect true 22 
positive rate of 1. Size, time, frequency, and pixel color information was extracted from each 23 
identified event and exported into a spreadsheet for easier analysis. This method has the 24 
capability of reducing time and effort required to identify important spectrogram features by 25 
hand. Such an automated method could be applied to other space weather data stored in 26 
spectrograms. 27 

 28 

Plain language summary 29 

Electromagnetic ion cyclotron waves in the earth’s magnetosphere are often represented in 30 
spectrogram images, and wave events have usually been identified by a human examining the 31 
images by eye. To speed up the data collection process, an automatic method to extract 32 
information about each event has been developed. 33 

  34 
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1. Introduction 35 

 Space weather wave events have usually been identified by examining spectrograms by 36 
eye and recording the frequency and time ranges of notable wave events. This process is time-37 
consuming and slows down the analysis of space weather data even as the amount of available 38 
data has increased. Previous work has sought to develop methods to automate this process, 39 
including use of Fourier Transform methods to analyze the power spectral density of wave data 40 
(Bortnik et al., 2007; Kim et al., 2018; Di Matteo et al., 2021; Inglis et al., 2015; Inglis et al., 41 
2016; Murphy et al., 2020), discrete wavelet transforms (Omondi et al., 2022), and trigger 42 
algorithms that look for cases of simultaneity between two or more variables known to correlate 43 
with the events of interest (Carson et al., 2013). Few studies have explored the use of image 44 
analysis and object identification algorithms to automatically detect wave events directly from 45 
spectrogram images (Antonopoulou et al., 2022). However, neural network image analysis is a 46 
common method of object identification in remote sensing, used to locate and count craters 47 
(DeLatte et al., 2019), map water levels (Mandlburger et al., 2021), and map coral reefs (Li et al., 48 
2020) among other applications. In all of these examples, the basic task is the same as is needed 49 
for space weather spectrograms: identifying shapes in image data and recording their location 50 
and characteristics such as size and color. 51 

 This work shows a convolutional neural network (CNN) developed to identify 52 
electromagnetic ion cyclotron (EMIC) wave events in spectrograms measured at the Halley, 53 
Antarctica ground magnetometer station between November 2006 and December 2009. The 54 
algorithm identifies and records both the time frame and frequency range of each EMIC wave 55 
event. The algorithm also outputs a rough estimate for wave power by recording the ratio of 56 
pixels in several color bins to the total number of pixels in the event. This aids the human 57 
researcher to filter which events should be further examined, or which events should be included 58 
in statistical analyses depending on particular research needs. 59 

 60 

2. Model Training and Event Extraction 61 

2.1. Model Training 62 

 A convolution neural network (CNN) was trained using the open-source PyTorch 63 
framework in Python (Paszke et al., 2019). A set of 1130 spectrograms from the Halley, 64 
Antarctica magnetometer station spanning November 2006 to December 2009 were used to train 65 
and test the model. These were manually divided into three classes: “no signals” (483 66 
spectrograms), “broadband signals” (324 spectrograms), or “EMIC events” (323 spectrograms). 67 
The entire dataset was split into training and test sets in a 70:30 ratio. This was done using 68 
stratified sampling in order to maintain the same overall class distribution in each set. The CNN 69 
was trained on the training set, and then tested on the “unseen” spectrograms in the test set. The 70 
predicted classes were compared to the true classes and a confusion matrix was produced from 71 
which various metrics including the overall accuracy and the true positive rates of each class 72 
were calculated. Fifty epochs were used to train the models. This number was chosen by 73 
examining the training and validation loss, which did not show significant decreases after this 74 
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point. The CNN consisted of a linear layer, a Tanh activation layer, a second linear layer, and 75 
finally a log softmax layer. A batch size of 64 was used. The Python code used to perform this 76 
model training has been uploaded to a Zenodo repository (Capman, 2023). 77 

2.2. Event Extraction 78 

After model testing, a Laplacian of Gaussian (LoG) “blob detection” algorithm was 79 
applied to only the spectrograms classified as containing events (Python library scikit-image, van 80 
der Walt et al., 2014). This algorithm produces circles indicating the location of identified events 81 
in pixels. A lookup table was created to relate the pixel locations with the time and frequency 82 
information on the x- and y-axes in the spectrograms. This lookup table depends on all 83 
spectrograms input into the algorithm having the same layout, dimensions, and axis limits. The 84 
identified events are automatically recorded in a spreadsheet which contains the approximate 85 
frequency and time frame of the events. This method determines the frequency and time frame of 86 
each event by recording the coordinates of the left-, right-, top-, and bottom-most edges of the 87 
circle produced by the LoG method. As the LoG identification circles do not always precisely 88 
encircle each event, these edges are only estimates. However, they do give a general location in 89 
each axis. Also recorded is the total number of pixels in each event circle and the number of 90 
pixels in each event circle belonging to each of six color bins (white, red, orange, yellow, green, 91 
and blue/black). These color bins were defined in relation to the colors used for plotting the wave 92 
power, and as such, the ratio of pixels in each color bin to total pixels in the event circle can be 93 
used as a rough estimate of the average power of each EMIC event. The total number of pixels in 94 
each event circle gives a rough estimate of the size of each EMIC event. These two pieces of 95 
information can help the user to determine which events are worth investigating. 96 

 97 

3. Classification and Event Extraction Results 98 

Three metrics are used to evaluate the success of the classification model: accuracy, true 99 
positive rate (TPR), and Heidke Skill Score (HSS). The accuracy is simply the ratio of correct 100 
predictions to total number of predictions. The TPR is calculated as TP/P, where TP is the 101 
number of true positives predicted and P is the total number of positives. Finally, the HSS is a 102 
measure of how well a model performed relative to the success of a random chance model 103 
(Heidke, 1926; calculations as in Ganushkina et al., 2015). The HSS can take values between 104 
negative infinity and +1, with +1 indicating a perfect prediction, 0 indicating that the model 105 
performed no better than random chance, and negative values indicating that the model 106 
performed worse than random chance. The model shown in the confusion matrix of Figure 1 has 107 
an accuracy of 86.4%, an HSS of 0.738, and most importantly a true positive rate of TPR = 1, 108 
when the “EMIC event” class is defined as the positive class, and both “no signals” and 109 
“broadband signals” as the negative classes. A TPR of 1 means that we correctly identified 110 
events 100% of the time. The accuracy and HSS weight false positives and false negatives 111 
equally. We consider the cost of false positives (i.e. a spectrogram with no event being identified 112 
as containing an event) to be much less than the cost of a false negative (i.e., missing an event). 113 
Therefore, the most important metric for this type of identification problem is the TPR. 114 
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The LoG algorithm identified larger events well. The algorithm also tended to identify 115 
many small and/or weak features that were not of interest, which were filtered out by a minimum 116 
radius cutoff. However, this cutoff requires some optimization to balance filtering out 117 
unimportant features with removing features of interest that happen to fall under the radius 118 
cutoff. For example, in Figure 2, Blobs 1 and 6 do not indicate EMIC events of interest and 119 
ideally would have been filtered out. However, increasing the minimum radius cutoff to exclude 120 
Blobs 1 and 6 would also have excluded Blob 4 which has the same radius as Blobs 1 and 6, but 121 
which contains a weak event of possible interest. This tradeoff is specific to each user’s needs 122 
and the characteristics of each dataset. 123 

It is important to note that broadband signals are only filtered out on a whole-spectrogram 124 
basis by the previous CNN step. For example, Blob 5 in Figure 2 is broadband but was still 125 
identified as a possible event. As this spectrogram had a strong event, it was classified into the 126 
“event” category despite the presence of broadband elsewhere in the spectrogram. The user must 127 
determine which identified blobs are useful and which are broadband based on size and overall 128 
color/wave power. Despite this drawback, the CNN/LoG combined method greatly reduces the 129 
work necessary to sort through spectrograms, and greatly limits the number of spectrograms to 130 
be examined by eye.  131 

 132 

4. Discussion 133 

One improvement needed for this method is in identifying true EMIC events in the 134 
presence of broadband signals in the blob detection algorithm. Currently, broadband is filtered 135 
out on a whole-spectrogram basis by the CNN classification. The model tends to classify 136 
spectrograms with large, clear events into the “EMIC event” class, regardless of the presence of 137 
broadband signal elsewhere in the spectrogram. Once these spectrograms are processed by the 138 
LoG blob detection algorithm, broadband signals are identified and recorded alongside the true 139 
EMIC events, and it is not always obvious from the spreadsheet output which events are 140 
broadband and which are true EMIC events. Conversely, the model classifies most spectrograms 141 
with strong broadband into the “broadband signal” class, regardless of the presence of smaller 142 
EMIC events, and as such these EMIC events are missed. Typically, broadband signals are 143 
identified by the LoG algorithm as being much larger than most EMIC events, since the 144 
broadband signals cover a larger portion of the spectrogram in the frequency axis. Based on this 145 
fact, the user may be able to filter out broadband signals by applying a maximum radius cutoff 146 
for each blob. However, this may also eliminate very large EMIC events which are especially 147 
important for analysis, and also not be capable of filtering out smaller broadband blobs, such as 148 
Blob 5 in Figure 2. Therefore, such a solution has a high potential cost. Further work is needed to 149 
improve the discrimination between true EMIC events and broadband signals. 150 

 In this study, we opted to divide the data into 3 classes (“no signals”, “broadband 151 
signals”, and “EMIC events”). This improved the model success, since otherwise broadband 152 
signals were often confused with EMIC events. Another choice is to divide the data into 2 153 
classes: “no signals”, and “EMIC events”. In this case, the user would have the option to alter the 154 
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prediction threshold, making it more or less likely for a given spectrogram to be classified into 155 
either class. The softmax layer outputs a predicted probability that a given spectrogram is of one 156 
or the other class. The default classification threshold choice is 0.5: spectrograms with 157 
probabilities greater than or equal to 0.5 are placed in the positive class (“EMIC event”), and 158 
those with probabilities less than 0.5 are placed in the negative class (“no signals”). However, if 159 
there is a class imbalance in the dataset, or if one or the other misclassification is more costly, a 160 
threshold other than 0.5 might be appropriate, weighting more heavily towards the positive or 161 
negative classes. Finding an optimal threshold may be aided with the use of a ROC curve. 162 
However, we ultimately determined that dividing this data into three classes produced better 163 
results than to use two classes, regardless of threshold optimization. 164 

 165 

5. Conclusions 166 

The CNN/LoG combined method described here greatly reduces the time and effort 167 
required to identify spectrogram features by hand and could also be applied to other space 168 
weather data stored in spectrograms. With appropriate optimization, the method could eventually 169 
be used to rapidly produce a dataset of event statistics from a large set of spectrograms with little 170 
to no input from the human user. 171 

  172 
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Table 1. Spreadsheet output from the LoG identification of the spectrogram in Figure 2. For each 272 
blob identified, the approximate time and frequency ranges are recorded, as well as numbers of 273 
pixels in each color bin corresponding to different power ranges. These pixel color counts, along 274 
with the total number of pixels in the blob, help the user to make rough estimates of event size 275 
and average power. The user can then decide which events are worth investigating further or 276 
including in additional analyses. 277 

   Pixel counts in each color bin 

Blob 
ID 

Approx. 
time range 

(hr) 

Approx. 
freq. range 

(mHz) 

# white 
10-1 to 100 

nT2Hz 

# red 
10-2 to 

10-1 
nT2Hz 

# orange 
10-3 to 

10-2 
nT2Hz 

# yellow 
10-4 to 10-

3 nT2Hz 

# green 
10-5 to 

10-4 
nT2Hz 

# blue, 
black 
10-8 to 

10-5 
nT2Hz 

Total # in 
blob 

1 8-11 0-200 0 0 0 0 9 73 82
2 9-14 200-900 0 52 8 266 208 730 1264
3 14-18 200-800 0 3 5 172 200 386 766
4 19-21 400-600 0 0 0 1 16 116 133
5 21-24 300-700 0 0 0 22 119 299 440
6 22-24 0-200 0 0 0 0 4 133 137


