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Abstract

Numerous variations of Invasion-Percolation (IP) models can simulate multiphase flow in porous media across various scales

(pore-scale IP to macroscopic IP); here, we are interested in gas flow in water-saturated porous media. This flow occurs either

as continuous or discontinuous flow, depending on the flow rate and the porous medium’s nature. Literature suggests that IP

models are well suited for the discontinuous gas flow regime; other flow regimes have not been explored. Our research compares

four existing macroscopic IP models and ranks their performance in these “other” flow regimes. We test the models on a

range of gas-injection in water-saturated sand experiments from transitional and continuous gas flow regimes. Using the light

transmission technique, the experimental data is obtained as a time series of images in a 2-dimensional setup. To represent

pore-scale heterogeneities, we ran each model version on several random realizations of the initial entry pressure field. We use a

diffused version of the so-called Jaccard coefficient to rank the models against the experimental data. We average the Jaccard

coefficient over all realizations per model version to evaluate each model and calibrate specific model parameters. Depending on

the application domain, we observe that some macroscopic IP model versions are suitable in these previously unexplored flow

regimes. Also, we identify that the initial entry pressure fields strongly affect the performance of these models. Our comparison

method is not limited to gas-water systems in porous media but generalizes to any modelling situation accompanied by spatially

and temporally highly resolved data.
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Abstract15

Numerous variations of Invasion-Percolation (IP) models can simulate multiphase flow16

in porous media across various scales (pore-scale IP to macroscopic IP); here, we are in-17

terested in gas flow in water-saturated porous media. This flow occurs either as contin-18

uous or discontinuous flow, depending on the flow rate and the porous medium’s nature.19

Literature suggests that IP models are well suited for the discontinuous gas flow regime;20

other flow regimes have not been explored. Our research compares four existing macro-21

scopic IP models and ranks their performance in these “other” flow regimes. We test the22

models on a range of gas-injection in water-saturated sand experiments from transitional23

and continuous gas flow regimes. Using the light transmission technique, the experimen-24

tal data is obtained as a time series of images in a 2-dimensional setup. To represent pore-25

scale heterogeneities, we ran each model version on several random realizations of the26

initial entry pressure field. We use a diffused version of the so-called Jaccard coefficient27

to rank the models against the experimental data. We average the Jaccard coefficient28

over all realizations per model version to evaluate each model and calibrate specific model29

parameters. Depending on the application domain, we observe that some macroscopic30

IP model versions are suitable in these previously unexplored flow regimes. Also, we iden-31

tify that the initial entry pressure fields strongly affect the performance of these mod-32

els. Our comparison method is not limited to gas-water systems in porous media but gen-33

eralizes to any modelling situation accompanied by spatially and temporally highly re-34

solved data.35

1 Introduction36

Gas flow in water-saturated porous media is a specific case of multiphase flow. The37

gas phase flowing through a water-saturated porous medium can be miscible or immis-38

cible with the water phase. We explore the immiscible flow of gas in this study.39

Patterns created by the immiscible flow of gas in water-saturated porous media re-40

sult from an interplay between capillary forces, viscous forces, and gravitational forces41

(Ewing & Berkowitz, 1998; Morrow, 1979; Løvoll et al., 2005; Van De Ven & Mumford,42

2019). Lenormand et al. (1988) investigated the interplay between capillary forces and43

viscous forces, for the immiscible flow of fluids in a porous medium, with varying vis-44

cosity ratios. They identified three immiscible flow regimes: stable displacement (when45

a more viscous fluid displaces a less viscous fluid), viscous fingering (when a less viscous46
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fluid displaces a more viscous fluid), and capillary fingering (in the absence of viscous47

forces). Their experiments and simulations involved multiphase flow in a horizontal setup,48

and the fluids used in their study did not have a considerable density contrast.49

In the specific case of gas flow in water-saturated porous media, there is a substan-50

tial contrast in density between gas and water; thus, the influence of gravitational forces51

cannot be ignored. It has been observed that the interface between the fluids can be ei-52

ther stabilized or destabilized in the presence of gravitational forces (Glass et al., 2000;53

Ewing & Berkowitz, 1998; Van De Ven & Mumford, 2019; Frette et al., 1992; Glass &54

Yarrington, 1996; Wilkinson, 1984). For example, when a low-density fluid displaces a55

high-density fluid from above or when a high-density fluid displaces a low-density fluid56

from below in a vertical setup, buoyant forces stabilize the interface. In the other sce-57

narios, destabilization of the interface occurs, generating fingers (Gravity fingering, Glass58

and Nicholl (1996)).59

When gas is injected from below into water-saturated sand, depending on the in-60

terplay between gravitational, capillary, and viscous forces, gas-water interfaces exhibit61

gravity fingering combined with one or more of Lenormand et al. (1988)’s flow regimes.62

In the same porous medium, this combination depends primarily on gas injection rates.63

At low gas injection rates, the viscous effects are less relevant. Therefore, the flow is con-64

trolled by a combination of capillary forces (capillary fingering regime) and gravitational65

forces. Upon increasing the injection rates, the control shifts to a combination of viscous66

forces (viscous fingering regime) and gravitational forces. These gas flow regimes are clas-67

sified as continuous, transitional, and discontinuous, depending on the grain size68

of the porous media and the rate of gas flow (Geistlinger et al., 2006). In continuous69

flow regime, the gas phase flows as a continuous phase, and in the case of discontin-70

uous flow regime, gas flows as discrete gas bubbles, or clusters (Geistlinger et al., 2006;71

Glass et al., 2000; K. G. Mumford et al., 2009; Ben-Noah et al., 2022). The Transitional72

flow of gas has characteristics from both the continuous and discontinuous regime. As73

a result of the balance of forces, the gas-flow regime tends to be discontinuous at low gas-74

flow rates and in coarser porous media moving towards the continuous regime as the flow75

rate increases or for finer porous media (Geistlinger et al., 2006).76

Gas flow in water-saturated porous media has been investigated using gas-injection77

experiments in water-saturated artificial (glass beads) as well as natural (sand) porous78

–3–



manuscript submitted to Water Resources Research

media (, e.g., Ji et al., 1993; M. C. Brooks et al., 1999; Selker et al., 2006; Stöhr & Khalili,79

2006; Geistlinger et al., 2006; K. G. Mumford et al., 2009, to name a few). Besides lab-80

oratory experiments, numerical models are often used for understanding multiphase flow81

in porous media. These models can be essential tools to encode and test hypotheses about82

the multiphase flow mechanisms at work and to make useful predictions for many real-83

world engineering applications. Both continuum and (stochastic) discrete growth mod-84

els can be used. Continuum models are fully physics-based (relying on partial differen-85

tial equations) with disadvantages like being slow and computationally expensive. Dis-86

crete growth models simplified abstractions of the real systems, are fast and computa-87

tionally inexpensive but have comparatively stronger underlying assumptions.88

Gas flow in saturated porous media is susceptible to perturbations at the pore scale.89

Continuum models require an extremely fine mesh for the numerical discretization to ap-90

propriately capture such local perturbations (Samani & Geistlinger, 2019; Oldenburg et91

al., 2016). This further slows down the continuum-model simulations and increases their92

computational cost (Glass et al., 2001; Oldenburg et al., 2016). Both laboratory exper-93

iments and numerical model formulations of a real-world system are not free from un-94

certainties. While laboratory experiments can have uncertainty associated with exper-95

imental control, measurements or data processing techniques, numerical models can suf-96

fer from conceptual and parameter uncertainty, affecting their prediction quality. Stochas-97

tical analysis of these real-world systems helps address these uncertainties appropriately.98

However, due to their computational cost and complexity, continuum models are not fit99

candidates for such stochastic analysis. In contrast, discrete growth models are ideal can-100

didates for such analysis. Out of many discrete growth models in the multiphase liter-101

ature (e.g., Diffusion limited aggregation (DLA) (Paterson, 1984; Witten & Sander, 1983),102

Invasion Percolation (IP) (Wilkinson & Willemsen, 1983), anti-DLA (Meakin & Deutch,103

1986)), we are specifically interested IP models.104

Invasion Percolation (IP) models are (stochastic) discrete growth models often used105

for simulating displacement of immiscible fluids through porous media in the capillary106

fingering regime (Lenormand et al., 1988). The term Invasion Percolation was first coined107

by Wilkinson and Willemsen (1983) for a pore-scale model, which incorporated phase108

accessibility rules to standard Percolation models of Broadbent and Hammersley (1957)109

to assure connectivity within a phase.110
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Many IP model versions with variations in the underlying rules have been devel-111

oped to match the behaviour of specific fluids in specific porous media under specific con-112

ditions (, e.g., Ewing & Berkowitz, 1998, 2001; Birovljev et al., 1991; Kueper & McWhorter,113

1992; Frette et al., 1992; Ioannidis et al., 1996; Glass et al., 2001; K. G. Mumford et al.,114

2015; Trevisan et al., 2017, to name a few). However, all of them have the following typ-115

ical conceptual and numerical implementation:116

1. At first, a pore network of blocks/nodes is generated with a given connectivity by117

assigning each pore an invasion/entry threshold selected from some distribution.118

This network can be 2D (2-dimensional) or 3D (3-dimensional).119

2. Initially, all the blocks are occupied by the defending fluid. Then the invading fluid120

is injected at some point in the network. For example, in our study, water is the121

defending fluid, and gas is the invading fluid.122

3. Pores with connection to the invaded pore are evaluated for their entry thresh-123

olds, and, based on some criterion (mostly minimum entry threshold), one of the124

connected blocks is then invaded.125

IP models also need to incorporate buoyancy effects to simulate gas invasion in water-126

saturated porous media. Several studies have therefore used IP models with gravitational/127

buoyant force effects to model gas-water flow systems or fluid systems with significant128

density-difference in porous media (, e.g., Frette et al., 1992; Birovljev et al., 1991; Meakin129

et al., 1992; Ioannidis et al., 1996; Held & Illangasekare, 1995; Glass & Yarrington, 1996;130

Tsimpanogiannis & Yortsos, 2004; Cavanagh & Haszeldine, 2014; Trevisan et al., 2017,131

to name a few). Further, to accurately simulate gas flow from the discontinuous regime132

(slow gas flow rate), a rule allowing re-invasion of water into gas-filled blocks is added133

to the IP models (Wagner et al., 1997). This re-invasion can cause fragmentation or mo-134

bilization of the gas clusters.135

The pore-scale IP models described above must be upscaled to use them for large136

engineering applications: like subsurface contaminant remediation, oil extraction, geo-137

logic gas storage etc.; i.e., any scale larger than the pore-scale. Studies like Kueper and138

McWhorter (1992); Ewing and Gupta (1993); Ioannidis et al. (1996) abstracted processes139

from the pore-scale IP model to then use them at the larger scales of their problems. The140

Near-Pore Macro-Modified Invasion Percolation (NP-MMIP) model of Glass et al. (2001)141

is one such macroscopic IP model used to simulate carbon dioxide injection in a water-142
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saturated macro-heterogeneous porous media. In the work of Glass and Yarrington (2003),143

an upscaled rule for pore-scale re-invasion of water was added to NP-MMIP to simulate144

gas flow in the discontinuous regime. In these macroscopic IP models, the model blocks145

represent a network of pores instead of single pores.146

Traditional IP models, at any scale, do not incorporate viscous effects and have not147

been tested before in gas flow regimes other than discontinuous flow (slow-injection of148

gas): the transitional and continuous gas flow regimes. Experimental data from gas in-149

jection in homogeneous water-saturated sand shows that, with increasing gas injection150

rate, viscous forces dominate the injection zone, making the gas flow radial around the151

injection point (Selker et al., 2006; Van De Ven & Mumford, 2019). However, once the152

gas propagates further away from the injection point, gravitational effects overcome the153

viscous effects (Van De Ven et al., 2020). Hence, the upward movement of gas is observed154

as multiple fingers (referred to as gravity fingering in Glass and Nicholl (1996)). Thus,155

at higher gas injection rates, ignoring viscous effects near the gas injection point as in156

traditional IP models is not a valid assumption.157

The addition of several rules to IP models makes them potential candidates for tran-158

sitional or continuous flow regimes. For example, Glass et al. (2001) used an invasion of159

more than one block per step for their NP-MMIP model, adding more gas volume per160

invasion step. This rule is supported by evidence from their gas-injection experiments161

(Glass et al., 2000) that more gas is pushed into the system for a higher injection rate,162

and more than one finger is produced. Further, Ewing and Berkowitz (1998) developed163

a generalized growth model for dense non-aqueous phase liquid (DNAPL) migration at164

the macroscopic scale by including invasion rules to capture viscous effects. The rule for165

stochastic selection in the Stochastic Selection and Invasion (SSI) model of Ewing and166

Berkowitz (1998) was adapted to use in simulating gas migration in water-saturated ho-167

mogeneous sand (K. G. Mumford et al., 2015).168

In general, numerical models must be compared to experimental data sets to test,169

calibrate and validate their underlying hypotheses, leading to their refined formulations.170

Although traditional macroscopic IP models are designed for use in regimes of low gas171

flow rate, our goal is to test their performance in the transitional and continuous flow172

regimes, from which direction for further model refinement can be derived. Thus, we use173

four models in this study:174
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1. NP-MMIP model of Glass et al. (2001) without viscous modifications.175

2. Macro-IP model involving the rule for re-invasion of water (Glass & Yarrington,176

2003; K. G. Mumford et al., 2015).177

3. A combination of Macro-IP model with the rule of more than one invasion block178

per step (including the original viscous modification as in Glass et al. (2001)).179

4. A combination of Macro-IP model and modified stochastic selection rule of SSI180

model of Ewing and Berkowitz (1998) adapted from K. G. Mumford et al. (2015).181

These IP models at a macroscopic scale have been compared to experiments individu-182

ally and each at a certain flow regime, but no study has performed an inter-comparison183

of these model hypotheses using experimental data (across all three regimes of gas flow:184

continuous, transitional and discontinuous).185

Thus, in this work, we test four different macroscopic IP model versions with data186

from nine gas-injection experiments in homogeneous water-saturated sand. These ex-187

periments belong to the transitional and continuous gas flow regimes (Van De Ven & Mum-188

ford, 2019), controlled by varying the injection rate. Thus, we assess the model perfor-189

mance under gas-flow conditions other than the discontinuous or slow-gas flow regime.190

In our previous work (Banerjee et al., 2021), we developed and tested a quantitative method191

of comparison between IP-type models and laboratory gas-injection data from the dis-192

continuous flow regime. In Banerjee et al. (2021), we demonstrated our method using193

a single macroscopic IP model based on K. G. Mumford et al. (2015). Now, we use this194

method to test and rank the four macroscopic IP model versions for gas flow from con-195

tinuous and transitional regimes. Our key research questions are:196

1. Can any of these models be used for simulating gas flow in the continuous or tran-197

sitional flow regimes?198

2. If yes, which ones are more suitable?199

3. What can we learn from the comparison of more or less successful model strate-200

gies and their remaining weaknesses to derive recommendations for future mod-201

elling efforts?202

We organize our model comparison study as follows. At first, we introduce the ex-203

periments and describe the formulation of the four macroscopic IP model versions used204

in this study in Section 2. Then, in Section 3, we detail the method or tool of compar-205
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ison we use for evaluating and ranking the models against the experimental data. Also,206

we discuss the overall implementation of the method for the inter-comparison of mod-207

els in Section 3. We report the results from this implementation and provide insights about208

the model performance and its parameters in Section 4. Finally, we summarize our con-209

clusions and recommendations for future work in Section 5.210

2 Experiments and Models211

In this section, we describe the experimental data sets (Section 2.1) and the four212

macroscopic IP model versions (Sections 2.2-2.3) used for our model comparison study.213

All four model versions are at the same scale and share some similarities. Fig. 1 shows214

the conceptual building of the 4 model versions used in this study. To facilitate the un-215

derstanding of the models, first, we describe the model version (we call it Model 1) based216

on the NP-MMIP of Glass et al. (2001) (Section 2.2). Model 1 does not include the mod-217

ifications for viscous effects from the NP-MMIP model of Glass et al. (2001). Then, in218

Section 2.3, we introduce Model 2, which has additional rules of re-invasion of water219

at the macroscopic scale, same as in Glass and Yarrington (2003); K. G. Mumford et al.220

(2015) (see Fig. 1). Model 3 (Section 2.4) is a combination of Model 2 and a rule for221

producing thicker fingers from the viscous modification of NP-MMIP model of Glass et222

al. (2001) (see Fig. 1). Finally, Model 4 in Section 2.5, which is built by combining Model 2223

and a modified rule for stochastic invasion from Ewing and Berkowitz (1998) (see Fig.224

1). Model 4 is based on K. G. Mumford et al. (2015). All the model versions used here225

generate binary images (gas-presence/gas-absence) as output.226

2.1 Experiments227

For this study, we use nine gas-injection experiments from Van De Ven and Mum-228

ford (2019), which were conducted in triplicate at 10ml/min (10-A, 10-B, 10-C), 100ml/min229

(100-A, 100-B, 100-C) and 250ml/min (250-A, 250-B, 250-C). The gas flow patterns of230

the different regimes are distinguished using the ratio of Bond number, Bo (ratio of grav-231

itational force to capillary force) to Capillary number, Ca (ratio of viscous force to cap-232

illary force) (Van De Ven & Mumford, 2019). The triplicate experiments at 10ml/min233

(10-A, 10-B, 10-C) belong to the transitional flow regime, with Bo/Ca = −1.61×102234

(Van De Ven & Mumford, 2019). The triplicate at 100ml/min (100-A, 100-B, 100-C) with235

Bo/Ca = −1.61×101 and at 250ml/min (250-A, 250-B, 250-C) with Bo/Ca = −6.45×236
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Figure 1. Flowchart illustrating the building process of the competing model versions of this

study.

100 belong to the continuous flow regime, with increasing influence of viscous forces (Van237

De Ven & Mumford, 2019). The experimental setup and data processing details are found238

in Van De Ven and Mumford (2019). We present a summary of the data relevant to un-239

derstanding our study.240

Gas (air) is injected in water-saturated homogeneous sand (grain size 0.713±0.023241

mm), filled into a quasi-2D acrylic cell of dimensions 250mm ×250mm ×10 mm. A con-242

tinuous wet-packing procedure was used to ensure that the resulting sand distribution243

was homogeneous and free of trapped gas. Air was then injected into the saturated sand244

packs at the defined rates of 10, 100 and 250 ml/min using a syringe pump. To ensure245

that no grain rearrangement occurred during injection, a confining lid was placed at the246

top of the system. The gas movement and resulting gas presence within the sand pack247

were measured using the light transmission method (Niemet & Selker, 2001; Tidwell &248

Glass, 1994). In this method, the back of the cell is lit, and intensity images are collected249

at a specific frame rate for the total duration of the experiment. Individual pixel inten-250

sity values of these raw images are averaged over a block size of 1×1 mm, and the in-251

tensity values of the block are used to calculate the optical density (OD) (Kechavarzi et252
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al., 2000) values. For any block, OD > 0.02 is considered as the presence of gas. We thus253

obtain a time series of binary (gas/no gas) images.254

Please note that, for the experimental replicates at a particular injection rate, the255

sand is washed and repacked with the same procedure to obtain a homogeneous pack-256

ing after each experiment. Nevertheless, with a new arrangement of all grains, each ex-257

perimental outcome is unique. The final time images for the nine experiments used in258

this study are shown in Fig. 2. Note, for experimental triplicate at an injection rate of259

10ml/min (first row of Fig. 2), the gas finger of 10-B moves towards the side of the do-260

main, instead of being centrally aligned like in 10-A and 10-C. Also, for experiment 100-261

A (second row of Fig. 2), the multiple gas fingers are quite spread out, but those in 100-262

C merge to produce thicker fingers along the way (second row of Fig. 2). These differ-263

ences in the images support the uniqueness of each experimental outcome owing to the264

re-packing of the sand.265

2.2 Model 1266

Our Model 1 is based on the NP-MMIP model of Glass et al. (2001), briefly intro-267

duced in Section 1. We adopt a 2D grid description of the porous medium in accordance268

with the experimental data. In this model, the gas is placed at the injection block (po-269

sition of the gas injection needle in the experiment), and the invasion thresholds (Te) [cm270

of H2O] of the neighbouring blocks are calculated:271

Te = Pe + Pw, (1)272

where Pe is the local entry pressure of the block [cm of H2O], and Pw is the pressure of273

the water phase [cm of H2O]. Pe is the specific value of capillary pressure (Pc) required274

by gas to percolate a water-occupied block. Pw incorporates the buoyant effects and is275

calculated assuming hydrostatic conditions:276

Pw = ρwgz. (2)277

Here, ρw is the density of water [kg/m3], g is the acceleration due to gravity [m/s2],278

and z is the height [m] from the top of the acrylic glass cell. At each model step, the neigh-279

bouring block with the minimum invasion threshold (Te) is invaded by gas.280
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Figure 2. Final time binary experimental images for experiments 10-A, 10-B, 10-C, 100-A,

100-B, 100-C, 250-A, 250-B, 250-C. These gas presence/absence images are not free from pixel

noise. Zones of the images where too many noisy pixels aggregate have been cleaned prior to use

in this study.
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The Pe field of a porous medium depends on the pore-scale arrangement of the solid281

and its interaction with the fluids. A precise measurement of the Pe field at the scale of282

our experiments (block size of 1mm x 1mm) is practically impossible. Therefore, it is283

typical to use random Pe fields, i.e. a randomly generated value per block. Since Pe is284

a point on the capillary pressure (Pc)–saturation (S) curve, we randomly sample the Pe285

values that we assign individually to all model blocks, using the Brooks-Corey Pc−S286

relationship (R. Brooks & Corey, 1964) for our material of interest (homogeneous sand287

of 0.7mm average grain size):288

Se =

(
Pc

Pd

)−λ

. (3)289

Here, Se is the effective wetting phase saturation (R. Brooks & Corey, 1964), Pc290

is capillary pressure [cm of H2O], Pd is the macroscopic displacement pressure [cm of291

H2O], and λ is the pore-size distribution index. The value of λ varies typically between292

1-4 and can be up to 7 for very uniform sands. We sample the Pe values from the inverse293

of the cumulative distribution function of Pc (using Equation 3):294

Pe = PdU− 1
λ . (4)295

Here, U is a random number from the standard uniform distribution on the inter-296

val [0, 1]. This sampling method is called the Inverse Transform sampling method, which297

has been used in the works of Glass et al. (2001); K. G. Mumford et al. (2015); Baner-298

jee et al. (2021). The Pe values thus assigned to the blocks are not spatially correlated,299

but this extension could easily be achieved via geostatistical simulation.300

2.3 Model 2301

Our Model 2 has the same setup and follows the same rules for invasion of gas as302

specified for Model 1 (Section 2.2). This means it follows Equations 1 — 4 and also obeys303

the rule of invading the neighbouring block with the minimum Te. Furthermore, it has304

a rule for re-invasion of water into gas-occupied blocks to simulate the fragmentation and305

mobilization events observed for discontinuous gas flow (Glass & Yarrington, 2003; K. G. Mum-306

ford et al., 2015; Banerjee et al., 2021). This rule is an upscaled version of the re-invasion307

rule of the pore-scale model of Wagner et al. (1997).308
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In Wagner et al. (1997), the re-invasion of water into the gas-filled pores is real-309

ized by a withdrawal pressure threshold. At the scale of our model, the threshold for re-310

invasion, also known as the terminal threshold (Tt) [cm of H2O], is calculated as the sum-311

mation of the terminal pressure (Pt) [cm of H2O] and the hydrostatic pressure (Pw).312

Tt = Pt + Pw. (5)313

Pt is calculated using the Pe− to −Pt ratio (α) obtained from the characteristic314

drainage and imbibition curves for the porous medium of interest, which takes capillary-315

pressure hysteresis into account (Gerhard & Kueper, 2003; K. G. Mumford et al., 2009).316

Pt = αPe (6)317

Water re-invades a gas-occupied block if:318

Tt,g > Te,w, (7)319

where g and w stand for gas- and water-occupied blocks, respectively (K. G. Mumford320

et al., 2015). In the model, this rule is implemented by comparing the maximum of the321

Tt,g values of the gas cluster with the invasion threshold value of the most gas invasion322

favourable neighbouring water-occupied grid block (minimum Te value). When water re-323

invades a gas-occupied block, the model assumes that it completely expels gas from that324

block. If the re-invasion of water occurs in blocks on the periphery of the gas cluster, mo-325

bilization occurs. If the re-invasion causes a disconnection in the gas cluster, fragmen-326

tation occurs. A gas cluster is allowed to grow (based on the rules of Model 1) only when327

connected to the gas cluster containing the injection point. Thus, only re-arrangement328

of blocks is possible for gas clusters disconnected from the injection point.329

2.4 Model 3330

Our Model 3 includes an invasion rule of Glass et al. (2001) into our Model 2 im-331

plementation. In this regard, our model formulation follows the rules specified by the332

Equations 1 − 7. The difference is that multiple neighbouring blocks (nb) are invaded333

instead of one block per step. This means that not only the easiest-to-invade block is in-334
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vaded, but the nb easiest ones among all candidate blocks. This weakens the influence335

of Te and hence resembles a reduced dominance of capillary effects in favour of viscos-336

ity effects. The number of blocks to invade is chosen by observing the gas fingers from337

the experimental data.338

Please note that, in our implementation, the number of blocks invaded is chosen339

dynamically until the number of blocks specified at the beginning of the simulation is340

available for invasion. For example, in a model run specified to invade nb = 10 blocks341

per step, initially, when the number of available neighbours is < 10, all the available ones342

are invaded. Ten neighbouring blocks are invaded only when the gas cluster around the343

injection point is big enough to have ≥ 10 neighbouring blocks. After the invasion of344

multiple blocks, fragmentation and mobilization is carried out in a similar manner as de-345

scribed in Model 2. This means that the simulation of the fragmentation and mobiliza-346

tion event in Model 3 does not involve gas invasion of multiple water-occupied neighbour-347

ing blocks.348

2.5 Model 4349

Model 4 is implemented following the formulations specified by Equations 1 − 7.350

Model 2 selects the neighbouring block with a minimum invasion threshold (Te) for in-351

vasion. In contrast, in Model 4, the neighbouring block is chosen using a modified rule352

for stochastic selection from the Stochastic Selection and Invasion (SSI) model of Ewing353

and Berkowitz (1998). This rule allows gas to invade not strictly only the block with the354

minimum invasion threshold (Te) but also less easy-to-invade blocks based on a partially355

randomized choice. The difference between Model 3 and Model 4 is that Model 3 dimin-356

ishes the influence of Te deterministically for many blocks per step, while Model 4 achieves357

the same stochastically for a single block per step.358

In the modified rule for stochastic selection:359

1. The list of Te values of the neighbouring blocks (n) of the gas cluster are arranged360

in an ascending order Te,asc and the cumulative sum Te,cum is evaluated:361

Te,cum[i] =

j=i∑
j=1

Te,asc[j]; i = 1, 2, 3, . . . , n. (8)
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2. Then the first block (value of i) where the rule specified by Equation 9 is found362

true is invaded by the gas:363

Te,cum[i] > Rc

j=n∑
j=1

Te[j]. (9)

Here, R is a uniformly distributed random number between [0, 1] and c is the cell364

selection weighting factor (Ewing & Berkowitz, 1998). Please note that although365

R and U from Equation 4 are from the same distribution, their seed numbers and366

generator types are different. Hence we use different symbols here.367

In the stochastic selection rule, c controls the strength of randomness, and its value368

lies in the range of (0,∞). When c → ∞, the value of Rc → 0 for almost all values369

of R. In this case, the first block on the list of Te,asc (block with the lowest Te value)370

will be invaded deterministically by gas. The resulting lightning-bolt-like gas finger is371

the same as the gas finger generated by Model 2. In fact, for c → ∞, Model 4 becomes372

identical to Model 2. However, the lower the c value, the higher the RHS of Equation373

9, which ensures that the higher Te[j] are picked more often; this generates gas fingers374

that are not moving strictly upward, but have a wider spatial distribution. Please note375

that the re-invasion of water events that result in fragmentation or mobilization of gas376

clusters are carried out exactly as in Model 2, i.e. without any stochastic modification.377

Table 1 shows the model parameter values used in this study.378

The conceptual difference in the model versions is illustrated using a schematic in379

Fig. 3. Fig. 3b displays a gas invasion event in Model 1, which gives rise to a lightning-380

bolt-like gas finger. The fragmentation of the gas cluster owing to water re-invasion, as381

per Model 2, is shown in Fig. 3c. Fig. 3d shows the gas invasion of three blocks (three382

most favoured blocks according to Te values) in the injection cluster following a fragmen-383

tation event, according to Model 3. Fig. 3e displays the invasion of a randomly chosen384

neighbouring block (not the most favourable block according to the Te values) follow-385

ing a fragmentation event according to Model 4.386

We will show outputs generated by the Models 1−4 with best fit to experimental im-387

ages from 10-A, 100-A and 250-A in Section 4.388
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Table 1. Model parameters used in this study.

Parameters [Units] Symbols Values

Common for models 1-4

Density of water [kg/m3] ρw 1000

Acceleration due to gravity

[m/s2]

g 9.82

Average Pt − Pe ratio [-] α 0.6 (K. G. Mumford et al., 2009)

Displacement pressure [cm of

H2O]

Pd 8.66 (Schroth et al., 1996)

Pore-Size distribution index [-] λ 5.57 (Schroth et al., 1996)

Model domain size [mm2] X − Z 250× 250

Block discretization [mm2] x− z 1× 1

Model 3 specific

Number of blocks to invade nb
{1, 2, ...10, 15, 20} for experiments

at 10ml/min

{1, 2, ...20, 25, 30, 35, 40, 50} for

experiments at 100ml/min and

250ml/min

Model 4 specific

Cell selection weighting factor c {5, 10, 15, 200, 500}

3 Method of Comparison389

We begin with a summarized description of our comparison method (Section 3.1),390

the details of which are in Banerjee et al. (2021). Then, we list the blur-radii chosen for391

the Diffused Jaccard coefficient in this study in Section 3.2. After that, we enumerate392

the steps of our model comparison study using the (Diffused) Jaccard Coefficient in Sec-393

tion 3.3.394
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Figure 3. Illustration of the conceptual difference between the four model versions: a is an

initial state of gas occupation in the domain, and the numbers denote the increasing order of

preference of gas invasion for the neighbouring blocks in the next step based only on Te values; b

displays gas filling in the next step according to Model 1; c displays fragmentation of gas cluster

in the next step according to Model 2; d displays a fragmentation event followed by an invasion

event involving three invasion blocks (nb = 3) according to Model 3; e displays a fragmentation

event followed by an invasion event according to Model 4. Light grey cells are the blocks chosen

by the respective model version, and the blue block is the injection site.

3.1 Experiment-Model Comparison by (Diffused) Jaccard Coefficient395

In Banerjee et al. (2021), we developed a method to compare IP-type models to396

image-based data. We used the method to compare a macroscopic IP model (Model 2397

of this study) with a gas-injection experimental data set from the discontinuous regime.398

Comparing IP-type models to laboratory or field data is challenging because they399

do not involve a time description. We overcome this challenge by implementing a volume-400

based time matching, where the volume of gas at each time step of the experiment (Vexp)401

is evaluated:402

Vexp(t) =

t=tend∑
t=texp

Qexp × t; t = texp, 2 · texp, 3 · texp, ...tend, (10)403

and volume of gas per model loop counter (Vmodel) is evaluated as:404
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Vmodel(nc) =

nc=ntop∑
nc=1

nblocks × ϕ× Sg × Vblock;nc = 1, 2, 3, ...ntop. (11)405

Here, Qexp is the gas-injection rate of the experiment [volume/time], texp is the time406

step in between the capture of two successive images in the experiment, tend is the time407

when the experiment ends, nblocks is the number of blocks invaded per loop counter nc408

of the model, ntop is the model loop counter when the gas reaches the top of the domain,409

Vblock is the volume of each discretized block of the model, ϕ is the porosity, and Sg is410

the gas saturation value assigned to the entire gas cluster based on the values observed411

in the experiments (Banerjee et al., 2021). We search the nearest neighbour in the Vexp412

vector for all the time-wise elements in the Vmodel vector. Then, we assign the exper-413

imental time to the corresponding nearest-neighbour model loop counter.414

After the volume-based time matching of the model output and the experimental415

data, we use the (Diffused) Jaccard coefficient to assess the fit quality between the model416

and the experimental data (images). As per the set theory, for two sets A and B, the Jac-417

card coefficient (J) is defined as:418

J(A,B) =
|A ∩B|
|A ∪B|

. (12)419

The Jaccard coefficient ranges between zero (implies: no similarity) and one (im-420

plies: complete similarity). For binary images (pixel values of gas present = 1 and gas421

absent = 0), it is calculated by counting the number of overlapping pixels (value 1) be-422

tween two images and dividing it by the combined total number of gas presence (value423

1) pixels in both the images, without double counting the already overlapped pixels (see424

Banerjee et al. (2021) for details).425

A pixel-by-pixel comparison as in Equation 12 could reject a perfect model due to426

minor offsets between experiment and model, which might be within the tolerance of some427

real-world applications (Banerjee et al., 2021). To avoid a strict pixel-by-pixel compar-428

ison of the images, we use a Diffused Jaccard coefficient (Jd) instead of the Jaccard co-429

efficient. To compute the Diffused Jaccard coefficient, we blur the time-matched images430

from the experiment and the model using Gaussian blurring by convoluting the images431

with a Gaussian kernel of specified width (standard deviation σ):432
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G(x, z) =
1

2πσ2
e−

x2+z2

2σ2 , (13)433

The σ value in Equation 13 is altered to increase or decrease the blurring radius.434

We specify the unit of blur-radius as the kernel size relative to the original domain size435

of the image. The blurring leads to non-binary pixel values in the images. Therefore, we436

evaluate the Diffused Jaccard coefficient (Jd) for the sets A = {ak : a ∈ R, k = 1, 2, ...np}437

and B = {bk : b ∈ R, k = 1, 2, ...np} using the non-binary formulation of the Jaccard co-438

efficient (also referred to as Ruzicka similarity coefficient (Deza & Deza, 2016)):439

Jd(A,B) =

∑np

k min (ak, bk)∑np

k ,max (ak, bk)
(14)440

where ak and bk are the grey-scale values of the originally black-white (binary) images441

from experiments and models. For simplicity, we restrict our analysis to the final (last442

in time) experimental images and the corresponding model images.443

3.2 Blur-radii for Diffused Jaccard Coefficient444

Further, we choose three different blur-radii for the Diffused Jaccard coefficient as445

a performance metric for ranking the models in this study.446

1. Low blur: We choose this blur-radius such that images from the experiments (see,447

Fig. 2) lose the sharpness of the pixels but do not lose their identity, i.e. the dif-448

ferent blurred experimental-images look different. This corresponds to any appli-449

cation where we forgive errors in individual pixel values but insist on a close match450

in shape (Low blur row of images in Fig. 4). The chosen value of σ for this blur-451

ring is 1.2% of the domain size, i.e. image width. The Diffused Jaccard coefficient452

calculated using this blur radius is denoted as Diffused Jaccard coefficient (low)453

(J low
d ) in this study.454

2. Medium blur: We choose this blur-radius such that images from the experimen-455

tal triplicate at any injection rate (each row of Fig. 2) look similar, but that the456

images across different injection rates look different. This corresponds to appli-457

cations where it is sufficient to identify diversion by flow-inhibiting structures and458

the overall direction of the growing finger (Medium blur row of images in Fig. 4).459

The chosen value of σ for this blurring is 4% of the domain size. Please note that460
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it is not entirely attainable, e.g., when a finger, like in experiment 10-B, favours461

a particular direction of flow, no amount of blurring can make it look like fingers462

from 10-A or 10-C where the flow is clearly in the centre of the cell. The Diffused463

Jaccard coefficient calculated using this blur radius is denoted as Diffused Jaccard464

coefficient (med) (Jmed
d ) in this study.465

3. High blur: We choose this blur-radius such that images from all the experiments466

(Fig. 2) lose the individual details in finger structure and start looking similar.467

This corresponds to any application where one is interested only in the macroscopic468

direction of the gas finger and in no further details (High blur row of images in469

Fig. 4). The chosen value of σ for this blurring is 8% of the domain size. Please470

note again that the images from all experiments cannot look the same with any471

meaningful blur radius. The higher flow rates have multiple fingers and more gas472

in the system and can thus handle more blurring than the lower injection rate ex-473

periments that generate a single finger. The Diffused Jaccard coefficient calculated474

using this blur radius is denoted as Diffused Jaccard coefficient (high) (Jhigh
d ) in475

this study.476

In Fig. 4, we show the resulting images of the experiments 10-A, 100-A, and 250-A, with477

and without the blurring.478

3.3 Steps of Model Comparison Study479

We present an overview of the model-comparison setup in Fig. 5.480

We have four competing model versions as described in Sections 2.2-2.5. In step481

2○, we run the models over several (500) invasion threshold (Te) realizations for all model482

versions (including the sub-versions discussed below) to appropriately account for the483

uncertainty involved with the entry threshold (Te) fields.484

Prior to this, step 1○ requires some parameter specifications. We run Model 3 (Sec-485

tion 2.4) for varying numbers of blocks to invade (nb) at each step, creating many sub-486

versions of this model to test the best-fitting value. At injection rates of 100ml/min and487

250ml/min, we expect a higher number of blocks to perform well because there is a high488

volume of gas injected into the system. We set the range of nb by visual inspection. For489

the experiments at injection rate of 10ml/min, nb takes the values {2, 3, 4, ...10, 15, 20}.490

We assign values of {2, 3, 4, ...20, 25, 30, 35, 40, 50} to nb for the experiments at injection491
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Figure 4. Final experimental image for experiments 10-A, 100-A and 250-A. Row 2-4 contains

the blurred version of the images of Row 1 for the three different blur-radii.
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Figure 5. Flow chart listing the steps of the model-comparison setup.

rates of 100ml/min and 250ml/min. Please note that larger nb values (> 50 blocks per492

step) would lead to inflated circular shapes instead of multiple gas fingers, and hence nb = 50493

was set as the upper limit.494

Further, we run Model 4 (Section 2.5) for some representative c values: {5, 10, 15, 200, 500}495

creating five sub-versions of this model to test the best-fitting value. We suppose that,496

while the transitional flow regime (10ml/min) would prefer higher c values (200 or 500),497

the continuous flow regime (100ml/min and 250ml/min) would prefer low c values, be-498

cause low c values allow the gas to spread more laterally instead of strictly moving up-499

wards. Please also note here that we ran the simulations for c < 5 values as well. But500

this did not lead to systematic improvements or more insightful results, so we excluded501

them from further analysis due to their very long runtime. Further, this study does not502

aim to formally optimize the c value for specific model variants with an extensive search503

over the feasible parameter space.504

In step 3○, we run the time matching procedure for all the model versions and sub-505

versions mentioned above. Additionally, to calibrate gas saturation values assigned per506

block of the model domain within the time matching, we conduct the time-matching by507

varying the Sg values in Equation 11 in the range of 0.02−0.44 (in accordance with ex-508

perimentally observed gas saturation values of Van De Ven et al. (2020)). In step 4○,509

we compute the J , J low
d , Jmed

d , and Jhigh
d values to assess the quality of fit between the510

experimental images and the corresponding time matched model images. Per Te field re-511
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alization, we want the model to choose its most suitable saturation value based on the512

maximum metric value. Also, these metrics are used for comparing the performance of513

the competing model versions.514

4 Results and Discussion515

We assess the performance of all four models (Section 2.2 - 2.5) and comment on516

their ranking (Section 4.1) for the different experiments (from Section 2.1) using the Jac-517

card coefficient and Diffused Jaccard coefficients enumerated in Section 3.2. In our dis-518

cussion, we use the term “metric” to address the Jaccard coefficient and the three lev-519

els of Diffused Jaccard coefficient (low, med, high) altogether. We further support our520

deductions from the metric-based ranking by visual evidence in Section 4.2. In Section521

4.3, we discuss the importance of the random entry threshold fields as model input. Also,522

we discuss the results from calibration of the gas-saturation parameter in the models in523

Section 4.4. Finally, we summarize our findings from this model selection study in Sec-524

tion 4.5525

4.1 Overall Ranking of Models526

We begin the discussion by commenting on the overall ranking of the competing527

models based on the maximum metric value out of the 500 Te field runs. The table spec-528

ified by Fig. 6 shows that for all metric values and across most experiments, Model 1529

and Model 2 rank poorly compared to Model 3 and Model 4. This is entirely expected530

for the experiments of the continuous flow domain (with injection rates 100 ml/min and531

250 ml/min) because Model 1 and Model 2 do not include rules incorporating the gas-532

fingering behaviour (viscous effects, multiple fingers etc.) at these injection rates.533

In the transitional flow domain (10 ml/min experiments), gas flow behaviour al-534

ready shows characteristics of the continuous flow regime (Van De Ven & Mumford, 2019),535

where capillary forces do not entirely dominate over the viscous forces (Section 1). Re-536

call from Sections 2.2 and 2.3 that Models 1 and 2 do not account for viscous effects and537

are completely formulated to be operated in the slow gas flow regime (discontinuous flow).538

Therefore, we note that the contrast in performance between Models (1,2) and (3,4) is539

higher for higher injection-rate experiments (the difference in metric values is higher for540

100ml/min and 250ml/min in the table specified by Fig. 6). On that account, for the541
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Figure 6. Table containing the maximum metric value for each model version out of the

500 Te field runs and for the best gas-saturation (Sg) value (see Section 4.4). For Model 3 and

Model 4, the metric corresponds to the respective best parameter value (see Table 2).

entire transitional and continuous flow regime, we do not recommend the use of Model 1542

and Model 2. Overall, in our study, Model 3 emerges as the best-performing model for543

most experiments and metrics, always (and often closely) followed by Model 4.544

The blurring of the images does not change the overall ranking of the models across545

all investigated scales of interest. The difference in the model outputs occurs (e.g. fin-546

ger width, finger direction etc.) even on larger scales. We discuss the effect of blurring547

further when we discuss the models’ relative performance across all 500 Te field realiza-548

tions (see Section 4.1.2).549

4.1.1 What about the Parameter Values of Models 3 and 4?550

Models 3 and 4 have additional parameter values nb and c, respectively, that have551

been tested on a range of values (see Section 3.3). In Table 2, we report the parameter552

values corresponding to the best-performing metric values of Fig. 6, i.e. again for the553

best-performing Te field per model.554
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Table 2. Table containing the values of the best respective parameter value for Models 3 and

4 for the best-performing gas-saturation (Sg) value (see Section 4.4), i.e., number of blocks (nb)

for Model 3 and c values for Model 4. The evaluation is based on Jaccard coefficient (J), Diffused

Jaccard coefficient (low) (J low
d ), Diffused Jaccard coefficient (med) (Jmed

d ), and Diffused Jaccard

coefficient (high) (Jhigh
d ).

Injection rate 10ml/min 100ml/min 250ml/min

Models 3 4 3 4 3 4

Parameters nb c nb c nb c

T
ri
p
li
c
a
te

E
x
p
e
ri
m
e
n
ts

A 8 10 50 5 50 5

J

B 3 15 40 5 50 5

C 5 5 30 5 50 5

A 8 10 40 5 50 5

J
lo
w

d

B 3 15 35 5 50 5

C 5 5 30 5 50 5

A 6 15 40 5 50 5

J
m

e
d

d

B 3 5 35 5 50 5

C 3 200 30 5 40 5

A 5 15 40 5 50 5 J
h
ig
h

d

B 4 5 35 5 50 5

C 3 10 30 5 40 5

As anticipated in Section 3.3, at injection rates of 100 ml/min and 250 ml/min, Model 3555

performs best with a higher number of blocks of invasion (see columns of 100 ml/min556

and 250 ml/min in Table 2). For Model 4, the best performing c values for injection rates557

of 100 ml/min and 250 ml/min are indeed the smallest on the list: c = 5 (see columns558

of 100 ml/min and 250 ml/min in Table 2), as already predicted in Section 3.3.559

We observe that, for the injection rate of 10 ml/min, the best c values of Model 4560

also correspond to the ones contributing to more inner randomness, i.e. the ones that561

assist in the radial spreading of the gas. This is unexpected at first sight: At an injec-562

tion rate of 10ml/min, viscous effects exist but are not predominant, i.e. we observe less563

radial spreading in the experiments (top row of Fig. 2). We have observed similar be-564
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haviour in one of our earlier works (Banerjee, Walter, et al., 2023), where the experimen-565

tal data belonged to the discontinuous gas flow regime.566

Two opposing arguments are relevant to understand these surprisingly low c val-567

ues at 10 ml/min. On the one hand, the higher c values (200 or 500) for a given inva-568

sion threshold are almost deterministic in their choice of the gas path. When these c val-569

ues meet the entry threshold (Te) field closest to the actual experiment conditions, the570

model can accurately produce the gas path with the highest similarity to the observed571

experimental gas finger. But for any threshold field with poor resemblance to the actual572

experimental conditions, models with these high c values produce poor-fitting gas fin-573

gers. On the other hand, models with lower c values are more flexible in their choice of574

a gas path for a given invasion threshold field (Te). Combining the two arguments, these575

best-performing low c values indicate that, in the absence of a good fit of the structure576

of the Te field to the experimental porous medium, the more flexible models fare well.577

4.1.2 Relative Performance of the Models across 500 Runs.578

Until now, we have discussed the model performance based on the overall maxi-579

mum metric value out of the 500 runs. To analyse the relative performance of the model580

versions and sub-versions (with varying parameters, see Section 3.3) across 500 runs per581

metric value, we inspect the percentage of ranks obtained by each of them. We present582

a few plots to aid our discussion in Figs. 7 and 8. Please note that these rankings are583

relative among the models (and model sub-versions) per individual experiment, and it584

thus does not indicate whether any of these models best fit the experiments used in this585

study.586

We observe from the rank-plots of experiments 10-A, 10-B, and 250-A using the587

Jaccard coefficient (Fig. 7, top row, and Fig. 8 top), that the Models 1 and 2 rank mediocre588

to poor amongst all the model (sub-) versions. Further, we notice that the best model589

according to the overall maximum metric value (Model 3, see table specified by Fig. 6)590

does not consistently rank well for all the 500 Te fields (This becomes visible by the pres-591

ence of red colour in the bars of Model 3 sub-versions in Fig. 7 and 8). This indicates592

that the Te field is an essential input for these models, which will be further discussed593

in Section 4.3.594

–26–



manuscript submitted to Water Resources Research

J
a

c
c

a
rd

 c
o

e
ff

ic
ie

n
t;

 E
x

p
e

ri
m

e
n

t:
1

0
A

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

Percentage of ranks at best gas saturation

J
a

c
c

a
rd

 c
o

e
ff

ic
ie

n
t;

 E
x

p
e

ri
m

e
n

t:
1

0
B

D
if

fu
s

e
d

 J
a

c
c

a
rd

 c
o

e
ff

ic
ie

n
t 

(h
ig

h
);

 E
x

p
e

ri
m

e
n

t:
1

0
A

1

2

3nb2
3nb3
3nb4
3nb5
3nb6
3nb7
3nb8
3nb9

3nb10
3nb15
3nb20

4c5
4c10
4c15

4c200
4c500

M
o

d
e

l 
v
e

rs
io

n
s

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

Percentage of ranks at best gas saturation

D
if

fu
s

e
d

 J
a

c
c

a
rd

 c
o

e
ff

ic
ie

n
t 

(h
ig

h
);

 E
x

p
e

ri
m

e
n

t:
1

0
B

1

2

3nb2
3nb3
3nb4
3nb5
3nb6
3nb7
3nb8
3nb9

3nb10
3nb15
3nb20

4c5
4c10
4c15

4c200
4c500

M
o

d
e

l 
v
e

rs
io

n
s

1 3 6 9 1
2

1
5

1
8

R
a

n
k

F
ig
u
re

7
.

B
a
r
p
lo
t
o
f
th
e
p
er
ce
n
ta
g
e
o
f
re
la
ti
v
e
ra
n
k
s
o
b
ta
in
ed

b
y
ea
ch

m
o
d
el

v
er
si
o
n
o
u
t
o
f
th
e
5
0
0
ru
n
s
fo
r
th
e
b
es
t
p
er
fo
rm

in
g
g
a
s-
sa
tu
ra
ti
o
n
va
lu
e
fo
r
th
e

co
rr
es
p
o
n
d
in
g
ru
n
.
T
h
e
p
lo
ts

a
re

fo
r
ex
p
er
im

en
t
n
u
m
b
er
s
1
0
-A

a
n
d
1
0
-B

,
a
n
d
th
e
co
rr
es
p
o
n
d
in
g
m
et
ri
cs

u
se
d
fo
r
ra
n
k
in
g
a
re

m
en
ti
o
n
ed

in
th
e
ti
tl
e
o
f
th
e
su
b
p
lo
ts
.

L
a
b
el
s
1
a
n
d
2
co
rr
es
p
o
n
d
to

M
o
d
el
s
1
a
n
d
2
o
f
th
is

st
u
d
y.

T
h
e
la
b
el

3
n
b
2
,
3
n
b
3
..
..

st
a
n
d
s
fo
r
M
o
d
el

3
w
it
h
n
b

=
2
,3
,.
..
in
va
d
ed

b
lo
ck
s
a
n
d
th
e
la
b
el

4
c5
,
4
c1
0
,.
..

st
a
n
d
s
fo
r
M
o
d
el

4
w
it
h
c
=

5
,1
0
,.
..
re
sp

ec
ti
v
el
y.

–27–



manuscript submitted to Water Resources Research

Jaccard coefficient; Experiment:250A

0

10

20

30

40

50

60

70

80

90

100
P

e
rc

e
n
ta

g
e
 o

f 
ra

n
k
s
 a

t 
b
e
s
t 
g
a
s
 s

a
tu

ra
ti
o
n

Diffused Jaccard coefficient (high); Experiment:250A

1 2

3
n
b
2

3
n
b
3

3
n
b
4

3
n
b
5

3
n
b
6

3
n
b
7

3
n
b
8

3
n
b
9

3
n
b
1
0

3
n
b
1
1

3
n
b
1
2

3
n
b
1
3

3
n
b
1
4

3
n
b
1
5

3
n
b
1
6

3
n
b
1
7

3
n
b
1
8

3
n
b
1
9

3
n
b
2
0

3
n
b
2
5

3
n
b
3
0

3
n
b
3
5

3
n
b
4
0

3
n
b
5
0

4
c
5

4
c
1
0

4
c
1
5

4
c
2
0
0

4
c
5
0
0

Model versions

0

10

20

30

40

50

60

70

80

90

100

P
e
rc

e
n
ta

g
e
 o

f 
ra

n
ks

 a
t 
b
e
st

 g
a
s 

sa
tu

ra
tio

n
1

4

8

12

16

20

24

28

31

Rank

Figure 8. Bar plot of the percentage of relative ranks obtained by each model version out of

the 500 runs for the best performing gas-saturation value for the corresponding run. The experi-

ment number 250-A and the corresponding metric used for ranking are mentioned in the title of

the subplots. Labels 1 and 2 correspond to Models 1 and 2 of this study. The label 3nb2, 3nb3....

stands for Model 3 with nb = 2, 3, ... invaded blocks and the label 4c5, 4c10,... stands for Model 4
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Also, we notice that Model 4 with larger c values representing more systematic be-595

haviour (relying primarily on the Te field) ranks the best for 10-A (e.g., see bars 4c200596

or 4c500 of the top row, left plot in Fig. 7), and those with c values representing some-597

what directionless randomness to partially overrule the Te field, rank better for 10-B (e.g.,598

see bars 4c5 or 4c10 of the top row, right plot in Fig. 7). In the experimental results of599

10-B, the gas finger moves towards the right boundary of the domain, indicating the sig-600

nificant influence of the Te field in this experiment compared to 10-A where the gas moves601

through the centre of the domain (see Fig. 2). The probability of a random Te field lead-602

ing to a good match with that of experiment 10-B is extremely low. To overcome this603

large uncertainty in the Te field in our models, the more flexible models (with more ran-604

domness at lower c values) perform better. In an overall conclusion, the Te field mat-605

ters for all models investigated here.606

For higher injection rates, Model 4 with different c values ranks the best for some607

realizations and worst for others (e.g., the red-blue bars from the top plot in Fig. 8). This608

confirms our earlier impression that these models have gas finger patterns resembling the609

experimental images only when accompanied by “good” Te fields. With Te fields far away610

from that of the experiment, these models perform the worst. Hence, the “very good” Model 4611

is highly sensitive to the Te field input.612

Blurring the images (i.e. comparisons at larger scales) makes the ranking less strict.613

Even weak models like 1 and 2 rank well for a higher percentage of times (see bottom614

row plots in Fig. 7) than they do for the non-blurred image comparison, i.e. using the615

plain Jaccard coefficient. However, for a high injection rate, blurring cannot help these616

models improve their ranking (bottom plot for Fig. 8) because the models are missing617

surrogate processes for viscosity, which is essential in this flow regime. The extensions618

proposed in Models 3 and 4 in this regard perform well.619

4.2 Detailed Discussion of the Model Selection Results620

We further support the rankings observed in Section 4.1 with more visual evidence621

and provide insights into the performance of the individual model (with its best Te field).622

Comparing the images (both blurred and non-blurred) of experiment 100-A and623

250-A of Fig. 4 to outputs from Model 1 and Model 2 (Fig. 9), one can see that they624

are incapable of producing branched gas-finger patterns resembling those from exper-625
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iments at higher injection rates. Even with a high blurring radius, Model 1 and Model 2626

produce patterns very different from the experiments at 100ml/min or 250ml/min, sim-627

ply because they are incapable of having high volumes of gas in the domain. We would628

refer the reader to the supplementary information of this manuscript for more visual ev-629

idence.630

Model 3, which emerges as the best model for almost all the metrics and experi-631

ments in Section 4.1, has more gas in the system (with many gas-occupied blocks in the632

domain) (Row 3 and columns 2 and 3 of Fig. 9). This is why it matches the higher in-633

jection rate experimental images better than Models 1 and 2.634

The experimental images for triplicate at any particular injection rate differ in struc-635

ture. Even with very high blurring, experimental images from 250-A (Fig. 4) and from636

250-C (Fig. S2) have different patterns. This difference is not observed in the respec-637

tive best-fitting outputs from Model 3 (see Fig. 10 and Fig. S13). The gas finger pat-638

terns produced by Model 3 are hardly distinct from one another (see Fig. 10).639

Model 4, due to the inherent randomness in the invasion decision, can have many640

gas-occupied blocks within the domain (Row 4 and columns 2 and 3 of Fig. 9), facili-641

tating a lateral spread of gas. However, unlike Model 3, it produces distinctive patterns.642

For example, in Fig. 10, the best-fitting Model 4 outputs to the various blurred versions643

of the experimental image of 250-A are not all alike. Note that although the patterns644

are distinct, they are not always completely similar to the experimental image.645

Therefore, we again recommend that Model 1 and Model 2 should not be used for646

transitional or continuous gas flow regimes. Model 3 can be used for the transitional gas647

flow regime (with single, slightly thick fingers). At higher flow rates with many-branched648

fingers (continuous flow regime), Model 3 can be used at large scales (with blurring), but649

with caution: Model 3 is not capable of differentiating between different gas cluster shapes650

and structures. Thus, using Model 3 in the continuous regime will likely misrepresent651

gas volumes, pathways, and gas-water contact with associated effects on storage and mass652

transfer estimates. The close runner-up model (Model 4) is a suitable candidate for use653

in transitional and continuous flow regimes (identifying the different shapes of gas clus-654

ters), but the underlying rules need to be modified to closely match the gas flow processes655

involved at high injection rates, which is beyond the scope of the present work.656
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Figure 9. Model images for the different model versions with the best fit to non-blurred ex-

perimental images (with highest Jaccard value) from experiment no. 10-A, 100-A and 250-A.
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versions of experimental image 250-A.

4.3 Importance of the Entry Threshold Fields657

From the discussions in the sections above, it is clear that the underlying structure658

of the Te field is an important input for these models. Recall that each of the best-performing659

metrics in Fig. 6 corresponds to a best-fitting Te field. Are there any similarities in the660

structures of these otherwise random best-fitting Te fields for the different models? We661

try to identify one path of least resistance through the Te fields by running Model 1 on662

them. This means that Model 1 runs on the best Te field for each model version eval-663

uated using the maximum Jaccard coefficient. We choose Model 1 because, in it, all pa-664

rameters except the Te field are assumed fixed. The overlay of the so-obtained gas fin-665

gers on the experimental image shows that they partially cover the actual paths of the666

gas finger (Fig. 11). This answers the question pertaining to the similarities in the un-667

derlying structure of the best-fitting Te fields.668

Further, this observation (from Fig. 11) provides strategies to handle the impor-669

tance of the Te fields in spite of its uncertainty for these models. The strategy of Trevisan670

et al. (2017) was to run their IP model over multiple realisations of their Te field to ac-671

count for the uncertainty of the geological heterogeneity in their experimental setup. This672

seems a viable approach in this regard. Additionally, our comparison metric can be used673

to identify the “good performing” Te fields for each model type. One could operate a (geo-674
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statistical) Bayesian inference to estimate (or conditionally simulate) the Te fields, e.g.,675

using Markov chain- Monte Carlo (MCMC) methods for random fields (Xu et al., 2020),676

a parameter Ensemble Kalman filter (EnKf) (e.g., Kalman Ensemble generator by Nowak677

(2009)) or transformed versions (Schöniger et al., 2012).678

4.4 Best-fitting Gas Saturation Values679

Recall that the results presented in the table specified by Fig. 6 used the best-fitting680

gas saturation values (Sg) resulting from the time matching procedure per model and681

realization (of Te field). Now, we investigate these best-fitting Sg values out of our pro-682

posed range for each model per metric (Section 3.3). Remember that our experimental683

data and model outputs are binary (gas-presence/gas-absence) images. The gas satu-684

ration values are an overall value provided to the entire gas cluster, i.e. all gas blocks685

in the binary image are replaced by the same gas saturation value. Varying the gas-saturation686

value varies the Vmod in Equation 11, thus altering the corresponding time-matched im-687

age from the model outputs. Thus, the value of the metric changes when we change the688

gas-saturation value. In Table A1 of Appendix A, we present the best-performing gas-689

saturation values corresponding to the best metric values for the three experimental trip-690

licate (table specified by Fig. 6). While some of the gas-saturation values reported in691

Table A1 are comparable to those found in the experimental data, some are infeasible.692

For example, a value of Sg = 0.02 (appears multiple times in Table A1) for the entire693

gas cluster is clearly too low.694

We further investigate the distribution of the gas saturation (Sg) values per model695

(sub-) version for all 500 Te field realizations. For that, we present a sample of nine scat-696

ter plots for Sg (matched per Te field realization), versus the metric (Jaccard coefficient697

and Diffused Jaccard coefficient (high)) for selected models (Model 1, Model 3 and Model 4)698

and experiments 10-A, 100-A, and 250-A in Fig. 12. We pick the sub-versions of Mod-699

els 3 and 4 with the best-performing parameter values: nb and c, for the corresponding700

cases (see Table 2).701

There is no clear optimal value of Sg, i.e. the values do not show a cluster of points702

at an exceptionally high metric value for any particular Sg value (see Figs. 12a, 12b, 12c,703

12f, 12g and 12h). It instead seems to be an individual choice of these models per Te704

field. For example, in the case of non-blurred images (evaluation using J), more strict705
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Figure 12. A sample of nine plots showing the gas saturation distribution per model (sub-)

version for all 500 realizations over the respective metric values for experiments 10-A, 100-A and

250-A. The title of the subplots 3nb8 and 3nb50 stands for Model 3 with nb = 8 and nb = 50,

respectively. The title of the subplots 4c5 stands for Model 4 with c value 5.

models (Models 1 and 2) stick to specific Sg values (see Fig. 12a). For blurred images706

of the same strict models, the spectrum of well-performing Sg values increases, but it707

still does not tend to one optimal value (see Fig. 12b). The blurring of the images spa-708

tially diffuses the pixels, and the actual structure of the gas finger becomes less relevant,709

which makes up for the conceptual weakness of Models 1 and 2, allowing them to cope710

with more varied Sg values. In other words, conceptually strong models are more flex-711

ible in their choice of Sg values. This is further supported by the observed spread of Sg712

values for Model 3 with nb = 8 (Fig. 12c), which produced a gas finger with a close713

resemblance to the original experimental image for 10-A (see Fig. 4 and 9).714

In spite of the flexibility of choice of Sg values, conceptually strong models are ex-715

pected to favour a particular Sg value. For Model 3, which ranks best in most scenar-716

ios of the table specified by Fig. 6, the sub-version with nb = 50 does favour a single717

Sg value (see Figs. 12d, 12e, and 12i). However, this optimal Sg value is not always re-718

alistic. For example, the converged Sg value for Model 3 with nb = 50 is 0.12 for ex-719

periment 250-A (see Fig. 12i). Van De Ven et al. (2020) reported typical Sg values be-720
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tween 0.20 to 0.4 for the inner core and 0.03 to 0.20 for the outer shell of each gas fin-721

ger, from the high injection rate (100 ml/min, 250 ml/min and 498 ml/min) experimen-722

tal triplicate of Van De Ven and Mumford (2019). Thus, the value of Sg = 0.12 for the723

entire gas cluster is lower than that observed and reported in Van De Ven et al. (2020).724

As earlier discussed in Section 4.2, Model 3 does not adequately predict the shape and725

structure of the gas clusters consisting of multiple fingers. Thus, the favoured Sg value726

is merely the model’s best attempt to fit the corresponding data.727

For the close runner-up Model 4 with c = 5, we do not observe any convergence728

to an optimal Sg value (see Figs. 12f, 12g, and 12h). Recall that this model version’s729

performance is highly sensitive to the input of the entry threshold (Te).730

Therefore, the models apparently use the Sg values to compensate either for their731

own conceptual weakness or for “poor” Te field inputs. Thus, from Fig. 12, we can con-732

clude that none of the models can predict the real physical Sg values and thus are not733

recommended for Sg calibration. As a possible way out, one could develop data assim-734

ilation or geostatistical inversion schemes for Te fields as already mentioned in Section735

4.3. Then, more plausible Sg values could be obtained as only the conceptual weakness736

of models would remain as the major error source. Alternatively, model versions with737

variable gas-saturated blocks (, e.g., Ioannidis et al., 1996; K. G. Mumford et al., 2010;738

Koch & Nowak, 2015; Molnar et al., 2019) are an optional extension of macroscopic IP739

models, which may be investigated for better calibration of Sg values.740

4.5 Summary of Findings741

We summarise that Models 1 and 2 are unsuitable for use in transitional and con-742

tinuous gas flow regimes, even with high levels of blurring in images (Section 4.1). Mod-743

els 3 and 4 perform better than Models 1 and 2 but do not accurately represent the gas744

finger patterns observed in the experiments (Section 4.1 and 4.2). Model 3 is a good fit745

for experiments in the transitional gas flow regime (single slightly thick gas finger) but746

cannot appropriately predict the gas-finger patterns seen in the experiments of the con-747

tinuous gas flow regime (multiple fingers) (Section 4.2). Model 4 is a potential candidate748

for use in the transitional and continuous gas flow regimes, provided its rules are mod-749

ified to reproduce the gas-flow behaviour at high injection rates (Section 4.2). The mod-750

ification of Model 4’s underlying rules is beyond the scope of the present study. With751
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blurring, i.e. at large scales where individual structures of the gas fingers are irrelevant,752

Models 3 and 4 may be used for continuous gas flow regimes (Section 4.1 and 4.2). Their753

use would thus depend on the application. We also identify that the structure of the Te754

field is a critical input for a good performance of these models (Section 4.3). The inter-755

nal randomness of the invasion decision can partially compensate for the high uncertainty756

in the structure of the Te fields (Section 4.1 and 4.2). Also, strategies like running mul-757

tiple realizations of the Te field can help tackle this uncertainty of the Te fields. Further,758

we do not recommend these models for calibrating parameters like gas saturation (Sec-759

tion 4.4), at least as long as there is a dominant uncertainty in Te fields.760

5 Conclusions and Outlook761

We compared the performance of four macroscopic IP models against the data from762

nine experiments. The experiments featured gas injections in homogeneous water-saturated763

sand. For comparison, we used time-matching and (Diffused) Jaccard coefficient(s). For764

the first time, these models are tested for transitional and continuous gas-flow regimes.765

We identified the strengths and weaknesses of these modelling strategies for simulating766

gas flow in water-saturated sand. Also, we calibrated a few parameters of these mod-767

els.768

We conclude that Models 1 and 2 should not be used for the transitional and con-769

tinuous regimes of gas flow discussed in this study. In particular, for experiments at higher770

injection rates, these models are completely weak. In previous studies, IP models have771

been used extensively only in the capillary flow domain. Our results show that IP mod-772

els at a macroscopic scale with variation as Model 3 can be used in the transitional gas773

flow regime but is unfit for use in the continuous gas flow regime. In their present state,774

Models 3 and 4 can be used with blurring for large-scale applications in the continuous775

gas flow regime, where the details of the gas-cluster structure are insignificant. Thus, the776

exact use would depend on the specific application. Models 3 and 4 are better because777

they can partially consider the viscous effects found at high gas injection rates.778

The blurring of images can be used as an efficient tool for reducing the detailed level779

of information in the images, depending on the application and the scale of interest. It780

is pointless to ask for a pixel-to-pixel match at and above the scale of the experiments781

used in this study, given the strong dependence of gas flow on pore-scale aspects of the782
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porous medium (here: sand pack). This exercise can thus help use models like 3 or 4 for783

such applications.784

The underlying structure of the Te fields is a critical input for these models. More-785

over, the best models (3 or 4) are also the most sensitive to this input. Further research786

could be conducted to identify the underlying structure of the Te fields, e.g., using geo-787

statistical inversion methods.788

Currently, Model 3 and Model 4 show some promise in performance, but further789

research towards refining their rules for gas-invasion, water-re-invasion, finger branch-790

ing, and so on, needs to be done. A possible extension could be a mix of Model 3’s rule791

of invading more blocks per step combined with a stochastic invasion rule similar to that792

of Model 4. The rule for this extension would also need to be adapted to closely mimic793

the gas flow behaviour in the continuous flow regime, e.g., with finger invasion rules en-794

abling the growth of multiple parallel thick fingers.795

Appendix A Gas Saturation Values796

The table containing the best-performing gas-saturation values per model version797

per experiment and for each metric used in this study:798
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Abstract15

Numerous variations of Invasion-Percolation (IP) models can simulate multiphase flow16

in porous media across various scales (pore-scale IP to macroscopic IP); here, we are in-17

terested in gas flow in water-saturated porous media. This flow occurs either as contin-18

uous or discontinuous flow, depending on the flow rate and the porous medium’s nature.19

Literature suggests that IP models are well suited for the discontinuous gas flow regime;20

other flow regimes have not been explored. Our research compares four existing macro-21

scopic IP models and ranks their performance in these “other” flow regimes. We test the22

models on a range of gas-injection in water-saturated sand experiments from transitional23

and continuous gas flow regimes. Using the light transmission technique, the experimen-24

tal data is obtained as a time series of images in a 2-dimensional setup. To represent pore-25

scale heterogeneities, we ran each model version on several random realizations of the26

initial entry pressure field. We use a diffused version of the so-called Jaccard coefficient27

to rank the models against the experimental data. We average the Jaccard coefficient28

over all realizations per model version to evaluate each model and calibrate specific model29

parameters. Depending on the application domain, we observe that some macroscopic30

IP model versions are suitable in these previously unexplored flow regimes. Also, we iden-31

tify that the initial entry pressure fields strongly affect the performance of these mod-32

els. Our comparison method is not limited to gas-water systems in porous media but gen-33

eralizes to any modelling situation accompanied by spatially and temporally highly re-34

solved data.35

1 Introduction36

Gas flow in water-saturated porous media is a specific case of multiphase flow. The37

gas phase flowing through a water-saturated porous medium can be miscible or immis-38

cible with the water phase. We explore the immiscible flow of gas in this study.39

Patterns created by the immiscible flow of gas in water-saturated porous media re-40

sult from an interplay between capillary forces, viscous forces, and gravitational forces41

(Ewing & Berkowitz, 1998; Morrow, 1979; Løvoll et al., 2005; Van De Ven & Mumford,42

2019). Lenormand et al. (1988) investigated the interplay between capillary forces and43

viscous forces, for the immiscible flow of fluids in a porous medium, with varying vis-44

cosity ratios. They identified three immiscible flow regimes: stable displacement (when45

a more viscous fluid displaces a less viscous fluid), viscous fingering (when a less viscous46

–2–



manuscript submitted to Water Resources Research

fluid displaces a more viscous fluid), and capillary fingering (in the absence of viscous47

forces). Their experiments and simulations involved multiphase flow in a horizontal setup,48

and the fluids used in their study did not have a considerable density contrast.49

In the specific case of gas flow in water-saturated porous media, there is a substan-50

tial contrast in density between gas and water; thus, the influence of gravitational forces51

cannot be ignored. It has been observed that the interface between the fluids can be ei-52

ther stabilized or destabilized in the presence of gravitational forces (Glass et al., 2000;53

Ewing & Berkowitz, 1998; Van De Ven & Mumford, 2019; Frette et al., 1992; Glass &54

Yarrington, 1996; Wilkinson, 1984). For example, when a low-density fluid displaces a55

high-density fluid from above or when a high-density fluid displaces a low-density fluid56

from below in a vertical setup, buoyant forces stabilize the interface. In the other sce-57

narios, destabilization of the interface occurs, generating fingers (Gravity fingering, Glass58

and Nicholl (1996)).59

When gas is injected from below into water-saturated sand, depending on the in-60

terplay between gravitational, capillary, and viscous forces, gas-water interfaces exhibit61

gravity fingering combined with one or more of Lenormand et al. (1988)’s flow regimes.62

In the same porous medium, this combination depends primarily on gas injection rates.63

At low gas injection rates, the viscous effects are less relevant. Therefore, the flow is con-64

trolled by a combination of capillary forces (capillary fingering regime) and gravitational65

forces. Upon increasing the injection rates, the control shifts to a combination of viscous66

forces (viscous fingering regime) and gravitational forces. These gas flow regimes are clas-67

sified as continuous, transitional, and discontinuous, depending on the grain size68

of the porous media and the rate of gas flow (Geistlinger et al., 2006). In continuous69

flow regime, the gas phase flows as a continuous phase, and in the case of discontin-70

uous flow regime, gas flows as discrete gas bubbles, or clusters (Geistlinger et al., 2006;71

Glass et al., 2000; K. G. Mumford et al., 2009; Ben-Noah et al., 2022). The Transitional72

flow of gas has characteristics from both the continuous and discontinuous regime. As73

a result of the balance of forces, the gas-flow regime tends to be discontinuous at low gas-74

flow rates and in coarser porous media moving towards the continuous regime as the flow75

rate increases or for finer porous media (Geistlinger et al., 2006).76

Gas flow in water-saturated porous media has been investigated using gas-injection77

experiments in water-saturated artificial (glass beads) as well as natural (sand) porous78
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media (, e.g., Ji et al., 1993; M. C. Brooks et al., 1999; Selker et al., 2006; Stöhr & Khalili,79

2006; Geistlinger et al., 2006; K. G. Mumford et al., 2009, to name a few). Besides lab-80

oratory experiments, numerical models are often used for understanding multiphase flow81

in porous media. These models can be essential tools to encode and test hypotheses about82

the multiphase flow mechanisms at work and to make useful predictions for many real-83

world engineering applications. Both continuum and (stochastic) discrete growth mod-84

els can be used. Continuum models are fully physics-based (relying on partial differen-85

tial equations) with disadvantages like being slow and computationally expensive. Dis-86

crete growth models simplified abstractions of the real systems, are fast and computa-87

tionally inexpensive but have comparatively stronger underlying assumptions.88

Gas flow in saturated porous media is susceptible to perturbations at the pore scale.89

Continuum models require an extremely fine mesh for the numerical discretization to ap-90

propriately capture such local perturbations (Samani & Geistlinger, 2019; Oldenburg et91

al., 2016). This further slows down the continuum-model simulations and increases their92

computational cost (Glass et al., 2001; Oldenburg et al., 2016). Both laboratory exper-93

iments and numerical model formulations of a real-world system are not free from un-94

certainties. While laboratory experiments can have uncertainty associated with exper-95

imental control, measurements or data processing techniques, numerical models can suf-96

fer from conceptual and parameter uncertainty, affecting their prediction quality. Stochas-97

tical analysis of these real-world systems helps address these uncertainties appropriately.98

However, due to their computational cost and complexity, continuum models are not fit99

candidates for such stochastic analysis. In contrast, discrete growth models are ideal can-100

didates for such analysis. Out of many discrete growth models in the multiphase liter-101

ature (e.g., Diffusion limited aggregation (DLA) (Paterson, 1984; Witten & Sander, 1983),102

Invasion Percolation (IP) (Wilkinson & Willemsen, 1983), anti-DLA (Meakin & Deutch,103

1986)), we are specifically interested IP models.104

Invasion Percolation (IP) models are (stochastic) discrete growth models often used105

for simulating displacement of immiscible fluids through porous media in the capillary106

fingering regime (Lenormand et al., 1988). The term Invasion Percolation was first coined107

by Wilkinson and Willemsen (1983) for a pore-scale model, which incorporated phase108

accessibility rules to standard Percolation models of Broadbent and Hammersley (1957)109

to assure connectivity within a phase.110
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Many IP model versions with variations in the underlying rules have been devel-111

oped to match the behaviour of specific fluids in specific porous media under specific con-112

ditions (, e.g., Ewing & Berkowitz, 1998, 2001; Birovljev et al., 1991; Kueper & McWhorter,113

1992; Frette et al., 1992; Ioannidis et al., 1996; Glass et al., 2001; K. G. Mumford et al.,114

2015; Trevisan et al., 2017, to name a few). However, all of them have the following typ-115

ical conceptual and numerical implementation:116

1. At first, a pore network of blocks/nodes is generated with a given connectivity by117

assigning each pore an invasion/entry threshold selected from some distribution.118

This network can be 2D (2-dimensional) or 3D (3-dimensional).119

2. Initially, all the blocks are occupied by the defending fluid. Then the invading fluid120

is injected at some point in the network. For example, in our study, water is the121

defending fluid, and gas is the invading fluid.122

3. Pores with connection to the invaded pore are evaluated for their entry thresh-123

olds, and, based on some criterion (mostly minimum entry threshold), one of the124

connected blocks is then invaded.125

IP models also need to incorporate buoyancy effects to simulate gas invasion in water-126

saturated porous media. Several studies have therefore used IP models with gravitational/127

buoyant force effects to model gas-water flow systems or fluid systems with significant128

density-difference in porous media (, e.g., Frette et al., 1992; Birovljev et al., 1991; Meakin129

et al., 1992; Ioannidis et al., 1996; Held & Illangasekare, 1995; Glass & Yarrington, 1996;130

Tsimpanogiannis & Yortsos, 2004; Cavanagh & Haszeldine, 2014; Trevisan et al., 2017,131

to name a few). Further, to accurately simulate gas flow from the discontinuous regime132

(slow gas flow rate), a rule allowing re-invasion of water into gas-filled blocks is added133

to the IP models (Wagner et al., 1997). This re-invasion can cause fragmentation or mo-134

bilization of the gas clusters.135

The pore-scale IP models described above must be upscaled to use them for large136

engineering applications: like subsurface contaminant remediation, oil extraction, geo-137

logic gas storage etc.; i.e., any scale larger than the pore-scale. Studies like Kueper and138

McWhorter (1992); Ewing and Gupta (1993); Ioannidis et al. (1996) abstracted processes139

from the pore-scale IP model to then use them at the larger scales of their problems. The140

Near-Pore Macro-Modified Invasion Percolation (NP-MMIP) model of Glass et al. (2001)141

is one such macroscopic IP model used to simulate carbon dioxide injection in a water-142
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saturated macro-heterogeneous porous media. In the work of Glass and Yarrington (2003),143

an upscaled rule for pore-scale re-invasion of water was added to NP-MMIP to simulate144

gas flow in the discontinuous regime. In these macroscopic IP models, the model blocks145

represent a network of pores instead of single pores.146

Traditional IP models, at any scale, do not incorporate viscous effects and have not147

been tested before in gas flow regimes other than discontinuous flow (slow-injection of148

gas): the transitional and continuous gas flow regimes. Experimental data from gas in-149

jection in homogeneous water-saturated sand shows that, with increasing gas injection150

rate, viscous forces dominate the injection zone, making the gas flow radial around the151

injection point (Selker et al., 2006; Van De Ven & Mumford, 2019). However, once the152

gas propagates further away from the injection point, gravitational effects overcome the153

viscous effects (Van De Ven et al., 2020). Hence, the upward movement of gas is observed154

as multiple fingers (referred to as gravity fingering in Glass and Nicholl (1996)). Thus,155

at higher gas injection rates, ignoring viscous effects near the gas injection point as in156

traditional IP models is not a valid assumption.157

The addition of several rules to IP models makes them potential candidates for tran-158

sitional or continuous flow regimes. For example, Glass et al. (2001) used an invasion of159

more than one block per step for their NP-MMIP model, adding more gas volume per160

invasion step. This rule is supported by evidence from their gas-injection experiments161

(Glass et al., 2000) that more gas is pushed into the system for a higher injection rate,162

and more than one finger is produced. Further, Ewing and Berkowitz (1998) developed163

a generalized growth model for dense non-aqueous phase liquid (DNAPL) migration at164

the macroscopic scale by including invasion rules to capture viscous effects. The rule for165

stochastic selection in the Stochastic Selection and Invasion (SSI) model of Ewing and166

Berkowitz (1998) was adapted to use in simulating gas migration in water-saturated ho-167

mogeneous sand (K. G. Mumford et al., 2015).168

In general, numerical models must be compared to experimental data sets to test,169

calibrate and validate their underlying hypotheses, leading to their refined formulations.170

Although traditional macroscopic IP models are designed for use in regimes of low gas171

flow rate, our goal is to test their performance in the transitional and continuous flow172

regimes, from which direction for further model refinement can be derived. Thus, we use173

four models in this study:174
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1. NP-MMIP model of Glass et al. (2001) without viscous modifications.175

2. Macro-IP model involving the rule for re-invasion of water (Glass & Yarrington,176

2003; K. G. Mumford et al., 2015).177

3. A combination of Macro-IP model with the rule of more than one invasion block178

per step (including the original viscous modification as in Glass et al. (2001)).179

4. A combination of Macro-IP model and modified stochastic selection rule of SSI180

model of Ewing and Berkowitz (1998) adapted from K. G. Mumford et al. (2015).181

These IP models at a macroscopic scale have been compared to experiments individu-182

ally and each at a certain flow regime, but no study has performed an inter-comparison183

of these model hypotheses using experimental data (across all three regimes of gas flow:184

continuous, transitional and discontinuous).185

Thus, in this work, we test four different macroscopic IP model versions with data186

from nine gas-injection experiments in homogeneous water-saturated sand. These ex-187

periments belong to the transitional and continuous gas flow regimes (Van De Ven & Mum-188

ford, 2019), controlled by varying the injection rate. Thus, we assess the model perfor-189

mance under gas-flow conditions other than the discontinuous or slow-gas flow regime.190

In our previous work (Banerjee et al., 2021), we developed and tested a quantitative method191

of comparison between IP-type models and laboratory gas-injection data from the dis-192

continuous flow regime. In Banerjee et al. (2021), we demonstrated our method using193

a single macroscopic IP model based on K. G. Mumford et al. (2015). Now, we use this194

method to test and rank the four macroscopic IP model versions for gas flow from con-195

tinuous and transitional regimes. Our key research questions are:196

1. Can any of these models be used for simulating gas flow in the continuous or tran-197

sitional flow regimes?198

2. If yes, which ones are more suitable?199

3. What can we learn from the comparison of more or less successful model strate-200

gies and their remaining weaknesses to derive recommendations for future mod-201

elling efforts?202

We organize our model comparison study as follows. At first, we introduce the ex-203

periments and describe the formulation of the four macroscopic IP model versions used204

in this study in Section 2. Then, in Section 3, we detail the method or tool of compar-205

–7–



manuscript submitted to Water Resources Research

ison we use for evaluating and ranking the models against the experimental data. Also,206

we discuss the overall implementation of the method for the inter-comparison of mod-207

els in Section 3. We report the results from this implementation and provide insights about208

the model performance and its parameters in Section 4. Finally, we summarize our con-209

clusions and recommendations for future work in Section 5.210

2 Experiments and Models211

In this section, we describe the experimental data sets (Section 2.1) and the four212

macroscopic IP model versions (Sections 2.2-2.3) used for our model comparison study.213

All four model versions are at the same scale and share some similarities. Fig. 1 shows214

the conceptual building of the 4 model versions used in this study. To facilitate the un-215

derstanding of the models, first, we describe the model version (we call it Model 1) based216

on the NP-MMIP of Glass et al. (2001) (Section 2.2). Model 1 does not include the mod-217

ifications for viscous effects from the NP-MMIP model of Glass et al. (2001). Then, in218

Section 2.3, we introduce Model 2, which has additional rules of re-invasion of water219

at the macroscopic scale, same as in Glass and Yarrington (2003); K. G. Mumford et al.220

(2015) (see Fig. 1). Model 3 (Section 2.4) is a combination of Model 2 and a rule for221

producing thicker fingers from the viscous modification of NP-MMIP model of Glass et222

al. (2001) (see Fig. 1). Finally, Model 4 in Section 2.5, which is built by combining Model 2223

and a modified rule for stochastic invasion from Ewing and Berkowitz (1998) (see Fig.224

1). Model 4 is based on K. G. Mumford et al. (2015). All the model versions used here225

generate binary images (gas-presence/gas-absence) as output.226

2.1 Experiments227

For this study, we use nine gas-injection experiments from Van De Ven and Mum-228

ford (2019), which were conducted in triplicate at 10ml/min (10-A, 10-B, 10-C), 100ml/min229

(100-A, 100-B, 100-C) and 250ml/min (250-A, 250-B, 250-C). The gas flow patterns of230

the different regimes are distinguished using the ratio of Bond number, Bo (ratio of grav-231

itational force to capillary force) to Capillary number, Ca (ratio of viscous force to cap-232

illary force) (Van De Ven & Mumford, 2019). The triplicate experiments at 10ml/min233

(10-A, 10-B, 10-C) belong to the transitional flow regime, with Bo/Ca = −1.61×102234

(Van De Ven & Mumford, 2019). The triplicate at 100ml/min (100-A, 100-B, 100-C) with235

Bo/Ca = −1.61×101 and at 250ml/min (250-A, 250-B, 250-C) with Bo/Ca = −6.45×236
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Figure 1. Flowchart illustrating the building process of the competing model versions of this

study.

100 belong to the continuous flow regime, with increasing influence of viscous forces (Van237

De Ven & Mumford, 2019). The experimental setup and data processing details are found238

in Van De Ven and Mumford (2019). We present a summary of the data relevant to un-239

derstanding our study.240

Gas (air) is injected in water-saturated homogeneous sand (grain size 0.713±0.023241

mm), filled into a quasi-2D acrylic cell of dimensions 250mm ×250mm ×10 mm. A con-242

tinuous wet-packing procedure was used to ensure that the resulting sand distribution243

was homogeneous and free of trapped gas. Air was then injected into the saturated sand244

packs at the defined rates of 10, 100 and 250 ml/min using a syringe pump. To ensure245

that no grain rearrangement occurred during injection, a confining lid was placed at the246

top of the system. The gas movement and resulting gas presence within the sand pack247

were measured using the light transmission method (Niemet & Selker, 2001; Tidwell &248

Glass, 1994). In this method, the back of the cell is lit, and intensity images are collected249

at a specific frame rate for the total duration of the experiment. Individual pixel inten-250

sity values of these raw images are averaged over a block size of 1×1 mm, and the in-251

tensity values of the block are used to calculate the optical density (OD) (Kechavarzi et252
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al., 2000) values. For any block, OD > 0.02 is considered as the presence of gas. We thus253

obtain a time series of binary (gas/no gas) images.254

Please note that, for the experimental replicates at a particular injection rate, the255

sand is washed and repacked with the same procedure to obtain a homogeneous pack-256

ing after each experiment. Nevertheless, with a new arrangement of all grains, each ex-257

perimental outcome is unique. The final time images for the nine experiments used in258

this study are shown in Fig. 2. Note, for experimental triplicate at an injection rate of259

10ml/min (first row of Fig. 2), the gas finger of 10-B moves towards the side of the do-260

main, instead of being centrally aligned like in 10-A and 10-C. Also, for experiment 100-261

A (second row of Fig. 2), the multiple gas fingers are quite spread out, but those in 100-262

C merge to produce thicker fingers along the way (second row of Fig. 2). These differ-263

ences in the images support the uniqueness of each experimental outcome owing to the264

re-packing of the sand.265

2.2 Model 1266

Our Model 1 is based on the NP-MMIP model of Glass et al. (2001), briefly intro-267

duced in Section 1. We adopt a 2D grid description of the porous medium in accordance268

with the experimental data. In this model, the gas is placed at the injection block (po-269

sition of the gas injection needle in the experiment), and the invasion thresholds (Te) [cm270

of H2O] of the neighbouring blocks are calculated:271

Te = Pe + Pw, (1)272

where Pe is the local entry pressure of the block [cm of H2O], and Pw is the pressure of273

the water phase [cm of H2O]. Pe is the specific value of capillary pressure (Pc) required274

by gas to percolate a water-occupied block. Pw incorporates the buoyant effects and is275

calculated assuming hydrostatic conditions:276

Pw = ρwgz. (2)277

Here, ρw is the density of water [kg/m3], g is the acceleration due to gravity [m/s2],278

and z is the height [m] from the top of the acrylic glass cell. At each model step, the neigh-279

bouring block with the minimum invasion threshold (Te) is invaded by gas.280
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Figure 2. Final time binary experimental images for experiments 10-A, 10-B, 10-C, 100-A,

100-B, 100-C, 250-A, 250-B, 250-C. These gas presence/absence images are not free from pixel

noise. Zones of the images where too many noisy pixels aggregate have been cleaned prior to use

in this study.
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The Pe field of a porous medium depends on the pore-scale arrangement of the solid281

and its interaction with the fluids. A precise measurement of the Pe field at the scale of282

our experiments (block size of 1mm x 1mm) is practically impossible. Therefore, it is283

typical to use random Pe fields, i.e. a randomly generated value per block. Since Pe is284

a point on the capillary pressure (Pc)–saturation (S) curve, we randomly sample the Pe285

values that we assign individually to all model blocks, using the Brooks-Corey Pc−S286

relationship (R. Brooks & Corey, 1964) for our material of interest (homogeneous sand287

of 0.7mm average grain size):288

Se =

(
Pc

Pd

)−λ

. (3)289

Here, Se is the effective wetting phase saturation (R. Brooks & Corey, 1964), Pc290

is capillary pressure [cm of H2O], Pd is the macroscopic displacement pressure [cm of291

H2O], and λ is the pore-size distribution index. The value of λ varies typically between292

1-4 and can be up to 7 for very uniform sands. We sample the Pe values from the inverse293

of the cumulative distribution function of Pc (using Equation 3):294

Pe = PdU− 1
λ . (4)295

Here, U is a random number from the standard uniform distribution on the inter-296

val [0, 1]. This sampling method is called the Inverse Transform sampling method, which297

has been used in the works of Glass et al. (2001); K. G. Mumford et al. (2015); Baner-298

jee et al. (2021). The Pe values thus assigned to the blocks are not spatially correlated,299

but this extension could easily be achieved via geostatistical simulation.300

2.3 Model 2301

Our Model 2 has the same setup and follows the same rules for invasion of gas as302

specified for Model 1 (Section 2.2). This means it follows Equations 1 — 4 and also obeys303

the rule of invading the neighbouring block with the minimum Te. Furthermore, it has304

a rule for re-invasion of water into gas-occupied blocks to simulate the fragmentation and305

mobilization events observed for discontinuous gas flow (Glass & Yarrington, 2003; K. G. Mum-306

ford et al., 2015; Banerjee et al., 2021). This rule is an upscaled version of the re-invasion307

rule of the pore-scale model of Wagner et al. (1997).308
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In Wagner et al. (1997), the re-invasion of water into the gas-filled pores is real-309

ized by a withdrawal pressure threshold. At the scale of our model, the threshold for re-310

invasion, also known as the terminal threshold (Tt) [cm of H2O], is calculated as the sum-311

mation of the terminal pressure (Pt) [cm of H2O] and the hydrostatic pressure (Pw).312

Tt = Pt + Pw. (5)313

Pt is calculated using the Pe− to −Pt ratio (α) obtained from the characteristic314

drainage and imbibition curves for the porous medium of interest, which takes capillary-315

pressure hysteresis into account (Gerhard & Kueper, 2003; K. G. Mumford et al., 2009).316

Pt = αPe (6)317

Water re-invades a gas-occupied block if:318

Tt,g > Te,w, (7)319

where g and w stand for gas- and water-occupied blocks, respectively (K. G. Mumford320

et al., 2015). In the model, this rule is implemented by comparing the maximum of the321

Tt,g values of the gas cluster with the invasion threshold value of the most gas invasion322

favourable neighbouring water-occupied grid block (minimum Te value). When water re-323

invades a gas-occupied block, the model assumes that it completely expels gas from that324

block. If the re-invasion of water occurs in blocks on the periphery of the gas cluster, mo-325

bilization occurs. If the re-invasion causes a disconnection in the gas cluster, fragmen-326

tation occurs. A gas cluster is allowed to grow (based on the rules of Model 1) only when327

connected to the gas cluster containing the injection point. Thus, only re-arrangement328

of blocks is possible for gas clusters disconnected from the injection point.329

2.4 Model 3330

Our Model 3 includes an invasion rule of Glass et al. (2001) into our Model 2 im-331

plementation. In this regard, our model formulation follows the rules specified by the332

Equations 1 − 7. The difference is that multiple neighbouring blocks (nb) are invaded333

instead of one block per step. This means that not only the easiest-to-invade block is in-334
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vaded, but the nb easiest ones among all candidate blocks. This weakens the influence335

of Te and hence resembles a reduced dominance of capillary effects in favour of viscos-336

ity effects. The number of blocks to invade is chosen by observing the gas fingers from337

the experimental data.338

Please note that, in our implementation, the number of blocks invaded is chosen339

dynamically until the number of blocks specified at the beginning of the simulation is340

available for invasion. For example, in a model run specified to invade nb = 10 blocks341

per step, initially, when the number of available neighbours is < 10, all the available ones342

are invaded. Ten neighbouring blocks are invaded only when the gas cluster around the343

injection point is big enough to have ≥ 10 neighbouring blocks. After the invasion of344

multiple blocks, fragmentation and mobilization is carried out in a similar manner as de-345

scribed in Model 2. This means that the simulation of the fragmentation and mobiliza-346

tion event in Model 3 does not involve gas invasion of multiple water-occupied neighbour-347

ing blocks.348

2.5 Model 4349

Model 4 is implemented following the formulations specified by Equations 1 − 7.350

Model 2 selects the neighbouring block with a minimum invasion threshold (Te) for in-351

vasion. In contrast, in Model 4, the neighbouring block is chosen using a modified rule352

for stochastic selection from the Stochastic Selection and Invasion (SSI) model of Ewing353

and Berkowitz (1998). This rule allows gas to invade not strictly only the block with the354

minimum invasion threshold (Te) but also less easy-to-invade blocks based on a partially355

randomized choice. The difference between Model 3 and Model 4 is that Model 3 dimin-356

ishes the influence of Te deterministically for many blocks per step, while Model 4 achieves357

the same stochastically for a single block per step.358

In the modified rule for stochastic selection:359

1. The list of Te values of the neighbouring blocks (n) of the gas cluster are arranged360

in an ascending order Te,asc and the cumulative sum Te,cum is evaluated:361

Te,cum[i] =

j=i∑
j=1

Te,asc[j]; i = 1, 2, 3, . . . , n. (8)
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2. Then the first block (value of i) where the rule specified by Equation 9 is found362

true is invaded by the gas:363

Te,cum[i] > Rc

j=n∑
j=1

Te[j]. (9)

Here, R is a uniformly distributed random number between [0, 1] and c is the cell364

selection weighting factor (Ewing & Berkowitz, 1998). Please note that although365

R and U from Equation 4 are from the same distribution, their seed numbers and366

generator types are different. Hence we use different symbols here.367

In the stochastic selection rule, c controls the strength of randomness, and its value368

lies in the range of (0,∞). When c → ∞, the value of Rc → 0 for almost all values369

of R. In this case, the first block on the list of Te,asc (block with the lowest Te value)370

will be invaded deterministically by gas. The resulting lightning-bolt-like gas finger is371

the same as the gas finger generated by Model 2. In fact, for c → ∞, Model 4 becomes372

identical to Model 2. However, the lower the c value, the higher the RHS of Equation373

9, which ensures that the higher Te[j] are picked more often; this generates gas fingers374

that are not moving strictly upward, but have a wider spatial distribution. Please note375

that the re-invasion of water events that result in fragmentation or mobilization of gas376

clusters are carried out exactly as in Model 2, i.e. without any stochastic modification.377

Table 1 shows the model parameter values used in this study.378

The conceptual difference in the model versions is illustrated using a schematic in379

Fig. 3. Fig. 3b displays a gas invasion event in Model 1, which gives rise to a lightning-380

bolt-like gas finger. The fragmentation of the gas cluster owing to water re-invasion, as381

per Model 2, is shown in Fig. 3c. Fig. 3d shows the gas invasion of three blocks (three382

most favoured blocks according to Te values) in the injection cluster following a fragmen-383

tation event, according to Model 3. Fig. 3e displays the invasion of a randomly chosen384

neighbouring block (not the most favourable block according to the Te values) follow-385

ing a fragmentation event according to Model 4.386

We will show outputs generated by the Models 1−4 with best fit to experimental im-387

ages from 10-A, 100-A and 250-A in Section 4.388
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Table 1. Model parameters used in this study.

Parameters [Units] Symbols Values

Common for models 1-4

Density of water [kg/m3] ρw 1000

Acceleration due to gravity

[m/s2]

g 9.82

Average Pt − Pe ratio [-] α 0.6 (K. G. Mumford et al., 2009)

Displacement pressure [cm of

H2O]

Pd 8.66 (Schroth et al., 1996)

Pore-Size distribution index [-] λ 5.57 (Schroth et al., 1996)

Model domain size [mm2] X − Z 250× 250

Block discretization [mm2] x− z 1× 1

Model 3 specific

Number of blocks to invade nb
{1, 2, ...10, 15, 20} for experiments

at 10ml/min

{1, 2, ...20, 25, 30, 35, 40, 50} for

experiments at 100ml/min and

250ml/min

Model 4 specific

Cell selection weighting factor c {5, 10, 15, 200, 500}

3 Method of Comparison389

We begin with a summarized description of our comparison method (Section 3.1),390

the details of which are in Banerjee et al. (2021). Then, we list the blur-radii chosen for391

the Diffused Jaccard coefficient in this study in Section 3.2. After that, we enumerate392

the steps of our model comparison study using the (Diffused) Jaccard Coefficient in Sec-393

tion 3.3.394
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Figure 3. Illustration of the conceptual difference between the four model versions: a is an

initial state of gas occupation in the domain, and the numbers denote the increasing order of

preference of gas invasion for the neighbouring blocks in the next step based only on Te values; b

displays gas filling in the next step according to Model 1; c displays fragmentation of gas cluster

in the next step according to Model 2; d displays a fragmentation event followed by an invasion

event involving three invasion blocks (nb = 3) according to Model 3; e displays a fragmentation

event followed by an invasion event according to Model 4. Light grey cells are the blocks chosen

by the respective model version, and the blue block is the injection site.

3.1 Experiment-Model Comparison by (Diffused) Jaccard Coefficient395

In Banerjee et al. (2021), we developed a method to compare IP-type models to396

image-based data. We used the method to compare a macroscopic IP model (Model 2397

of this study) with a gas-injection experimental data set from the discontinuous regime.398

Comparing IP-type models to laboratory or field data is challenging because they399

do not involve a time description. We overcome this challenge by implementing a volume-400

based time matching, where the volume of gas at each time step of the experiment (Vexp)401

is evaluated:402

Vexp(t) =

t=tend∑
t=texp

Qexp × t; t = texp, 2 · texp, 3 · texp, ...tend, (10)403

and volume of gas per model loop counter (Vmodel) is evaluated as:404
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Vmodel(nc) =

nc=ntop∑
nc=1

nblocks × ϕ× Sg × Vblock;nc = 1, 2, 3, ...ntop. (11)405

Here, Qexp is the gas-injection rate of the experiment [volume/time], texp is the time406

step in between the capture of two successive images in the experiment, tend is the time407

when the experiment ends, nblocks is the number of blocks invaded per loop counter nc408

of the model, ntop is the model loop counter when the gas reaches the top of the domain,409

Vblock is the volume of each discretized block of the model, ϕ is the porosity, and Sg is410

the gas saturation value assigned to the entire gas cluster based on the values observed411

in the experiments (Banerjee et al., 2021). We search the nearest neighbour in the Vexp412

vector for all the time-wise elements in the Vmodel vector. Then, we assign the exper-413

imental time to the corresponding nearest-neighbour model loop counter.414

After the volume-based time matching of the model output and the experimental415

data, we use the (Diffused) Jaccard coefficient to assess the fit quality between the model416

and the experimental data (images). As per the set theory, for two sets A and B, the Jac-417

card coefficient (J) is defined as:418

J(A,B) =
|A ∩B|
|A ∪B|

. (12)419

The Jaccard coefficient ranges between zero (implies: no similarity) and one (im-420

plies: complete similarity). For binary images (pixel values of gas present = 1 and gas421

absent = 0), it is calculated by counting the number of overlapping pixels (value 1) be-422

tween two images and dividing it by the combined total number of gas presence (value423

1) pixels in both the images, without double counting the already overlapped pixels (see424

Banerjee et al. (2021) for details).425

A pixel-by-pixel comparison as in Equation 12 could reject a perfect model due to426

minor offsets between experiment and model, which might be within the tolerance of some427

real-world applications (Banerjee et al., 2021). To avoid a strict pixel-by-pixel compar-428

ison of the images, we use a Diffused Jaccard coefficient (Jd) instead of the Jaccard co-429

efficient. To compute the Diffused Jaccard coefficient, we blur the time-matched images430

from the experiment and the model using Gaussian blurring by convoluting the images431

with a Gaussian kernel of specified width (standard deviation σ):432
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G(x, z) =
1

2πσ2
e−

x2+z2

2σ2 , (13)433

The σ value in Equation 13 is altered to increase or decrease the blurring radius.434

We specify the unit of blur-radius as the kernel size relative to the original domain size435

of the image. The blurring leads to non-binary pixel values in the images. Therefore, we436

evaluate the Diffused Jaccard coefficient (Jd) for the sets A = {ak : a ∈ R, k = 1, 2, ...np}437

and B = {bk : b ∈ R, k = 1, 2, ...np} using the non-binary formulation of the Jaccard co-438

efficient (also referred to as Ruzicka similarity coefficient (Deza & Deza, 2016)):439

Jd(A,B) =

∑np

k min (ak, bk)∑np

k ,max (ak, bk)
(14)440

where ak and bk are the grey-scale values of the originally black-white (binary) images441

from experiments and models. For simplicity, we restrict our analysis to the final (last442

in time) experimental images and the corresponding model images.443

3.2 Blur-radii for Diffused Jaccard Coefficient444

Further, we choose three different blur-radii for the Diffused Jaccard coefficient as445

a performance metric for ranking the models in this study.446

1. Low blur: We choose this blur-radius such that images from the experiments (see,447

Fig. 2) lose the sharpness of the pixels but do not lose their identity, i.e. the dif-448

ferent blurred experimental-images look different. This corresponds to any appli-449

cation where we forgive errors in individual pixel values but insist on a close match450

in shape (Low blur row of images in Fig. 4). The chosen value of σ for this blur-451

ring is 1.2% of the domain size, i.e. image width. The Diffused Jaccard coefficient452

calculated using this blur radius is denoted as Diffused Jaccard coefficient (low)453

(J low
d ) in this study.454

2. Medium blur: We choose this blur-radius such that images from the experimen-455

tal triplicate at any injection rate (each row of Fig. 2) look similar, but that the456

images across different injection rates look different. This corresponds to appli-457

cations where it is sufficient to identify diversion by flow-inhibiting structures and458

the overall direction of the growing finger (Medium blur row of images in Fig. 4).459

The chosen value of σ for this blurring is 4% of the domain size. Please note that460

–19–



manuscript submitted to Water Resources Research

it is not entirely attainable, e.g., when a finger, like in experiment 10-B, favours461

a particular direction of flow, no amount of blurring can make it look like fingers462

from 10-A or 10-C where the flow is clearly in the centre of the cell. The Diffused463

Jaccard coefficient calculated using this blur radius is denoted as Diffused Jaccard464

coefficient (med) (Jmed
d ) in this study.465

3. High blur: We choose this blur-radius such that images from all the experiments466

(Fig. 2) lose the individual details in finger structure and start looking similar.467

This corresponds to any application where one is interested only in the macroscopic468

direction of the gas finger and in no further details (High blur row of images in469

Fig. 4). The chosen value of σ for this blurring is 8% of the domain size. Please470

note again that the images from all experiments cannot look the same with any471

meaningful blur radius. The higher flow rates have multiple fingers and more gas472

in the system and can thus handle more blurring than the lower injection rate ex-473

periments that generate a single finger. The Diffused Jaccard coefficient calculated474

using this blur radius is denoted as Diffused Jaccard coefficient (high) (Jhigh
d ) in475

this study.476

In Fig. 4, we show the resulting images of the experiments 10-A, 100-A, and 250-A, with477

and without the blurring.478

3.3 Steps of Model Comparison Study479

We present an overview of the model-comparison setup in Fig. 5.480

We have four competing model versions as described in Sections 2.2-2.5. In step481

2○, we run the models over several (500) invasion threshold (Te) realizations for all model482

versions (including the sub-versions discussed below) to appropriately account for the483

uncertainty involved with the entry threshold (Te) fields.484

Prior to this, step 1○ requires some parameter specifications. We run Model 3 (Sec-485

tion 2.4) for varying numbers of blocks to invade (nb) at each step, creating many sub-486

versions of this model to test the best-fitting value. At injection rates of 100ml/min and487

250ml/min, we expect a higher number of blocks to perform well because there is a high488

volume of gas injected into the system. We set the range of nb by visual inspection. For489

the experiments at injection rate of 10ml/min, nb takes the values {2, 3, 4, ...10, 15, 20}.490

We assign values of {2, 3, 4, ...20, 25, 30, 35, 40, 50} to nb for the experiments at injection491
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Figure 4. Final experimental image for experiments 10-A, 100-A and 250-A. Row 2-4 contains

the blurred version of the images of Row 1 for the three different blur-radii.
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Figure 5. Flow chart listing the steps of the model-comparison setup.

rates of 100ml/min and 250ml/min. Please note that larger nb values (> 50 blocks per492

step) would lead to inflated circular shapes instead of multiple gas fingers, and hence nb = 50493

was set as the upper limit.494

Further, we run Model 4 (Section 2.5) for some representative c values: {5, 10, 15, 200, 500}495

creating five sub-versions of this model to test the best-fitting value. We suppose that,496

while the transitional flow regime (10ml/min) would prefer higher c values (200 or 500),497

the continuous flow regime (100ml/min and 250ml/min) would prefer low c values, be-498

cause low c values allow the gas to spread more laterally instead of strictly moving up-499

wards. Please also note here that we ran the simulations for c < 5 values as well. But500

this did not lead to systematic improvements or more insightful results, so we excluded501

them from further analysis due to their very long runtime. Further, this study does not502

aim to formally optimize the c value for specific model variants with an extensive search503

over the feasible parameter space.504

In step 3○, we run the time matching procedure for all the model versions and sub-505

versions mentioned above. Additionally, to calibrate gas saturation values assigned per506

block of the model domain within the time matching, we conduct the time-matching by507

varying the Sg values in Equation 11 in the range of 0.02−0.44 (in accordance with ex-508

perimentally observed gas saturation values of Van De Ven et al. (2020)). In step 4○,509

we compute the J , J low
d , Jmed

d , and Jhigh
d values to assess the quality of fit between the510

experimental images and the corresponding time matched model images. Per Te field re-511
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alization, we want the model to choose its most suitable saturation value based on the512

maximum metric value. Also, these metrics are used for comparing the performance of513

the competing model versions.514

4 Results and Discussion515

We assess the performance of all four models (Section 2.2 - 2.5) and comment on516

their ranking (Section 4.1) for the different experiments (from Section 2.1) using the Jac-517

card coefficient and Diffused Jaccard coefficients enumerated in Section 3.2. In our dis-518

cussion, we use the term “metric” to address the Jaccard coefficient and the three lev-519

els of Diffused Jaccard coefficient (low, med, high) altogether. We further support our520

deductions from the metric-based ranking by visual evidence in Section 4.2. In Section521

4.3, we discuss the importance of the random entry threshold fields as model input. Also,522

we discuss the results from calibration of the gas-saturation parameter in the models in523

Section 4.4. Finally, we summarize our findings from this model selection study in Sec-524

tion 4.5525

4.1 Overall Ranking of Models526

We begin the discussion by commenting on the overall ranking of the competing527

models based on the maximum metric value out of the 500 Te field runs. The table spec-528

ified by Fig. 6 shows that for all metric values and across most experiments, Model 1529

and Model 2 rank poorly compared to Model 3 and Model 4. This is entirely expected530

for the experiments of the continuous flow domain (with injection rates 100 ml/min and531

250 ml/min) because Model 1 and Model 2 do not include rules incorporating the gas-532

fingering behaviour (viscous effects, multiple fingers etc.) at these injection rates.533

In the transitional flow domain (10 ml/min experiments), gas flow behaviour al-534

ready shows characteristics of the continuous flow regime (Van De Ven & Mumford, 2019),535

where capillary forces do not entirely dominate over the viscous forces (Section 1). Re-536

call from Sections 2.2 and 2.3 that Models 1 and 2 do not account for viscous effects and537

are completely formulated to be operated in the slow gas flow regime (discontinuous flow).538

Therefore, we note that the contrast in performance between Models (1,2) and (3,4) is539

higher for higher injection-rate experiments (the difference in metric values is higher for540

100ml/min and 250ml/min in the table specified by Fig. 6). On that account, for the541
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Figure 6. Table containing the maximum metric value for each model version out of the

500 Te field runs and for the best gas-saturation (Sg) value (see Section 4.4). For Model 3 and

Model 4, the metric corresponds to the respective best parameter value (see Table 2).

entire transitional and continuous flow regime, we do not recommend the use of Model 1542

and Model 2. Overall, in our study, Model 3 emerges as the best-performing model for543

most experiments and metrics, always (and often closely) followed by Model 4.544

The blurring of the images does not change the overall ranking of the models across545

all investigated scales of interest. The difference in the model outputs occurs (e.g. fin-546

ger width, finger direction etc.) even on larger scales. We discuss the effect of blurring547

further when we discuss the models’ relative performance across all 500 Te field realiza-548

tions (see Section 4.1.2).549

4.1.1 What about the Parameter Values of Models 3 and 4?550

Models 3 and 4 have additional parameter values nb and c, respectively, that have551

been tested on a range of values (see Section 3.3). In Table 2, we report the parameter552

values corresponding to the best-performing metric values of Fig. 6, i.e. again for the553

best-performing Te field per model.554
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Table 2. Table containing the values of the best respective parameter value for Models 3 and

4 for the best-performing gas-saturation (Sg) value (see Section 4.4), i.e., number of blocks (nb)

for Model 3 and c values for Model 4. The evaluation is based on Jaccard coefficient (J), Diffused

Jaccard coefficient (low) (J low
d ), Diffused Jaccard coefficient (med) (Jmed

d ), and Diffused Jaccard

coefficient (high) (Jhigh
d ).

Injection rate 10ml/min 100ml/min 250ml/min

Models 3 4 3 4 3 4

Parameters nb c nb c nb c

T
ri
p
li
c
a
te

E
x
p
e
ri
m
e
n
ts

A 8 10 50 5 50 5

J

B 3 15 40 5 50 5

C 5 5 30 5 50 5

A 8 10 40 5 50 5

J
lo
w

d

B 3 15 35 5 50 5

C 5 5 30 5 50 5

A 6 15 40 5 50 5

J
m

e
d

d

B 3 5 35 5 50 5

C 3 200 30 5 40 5

A 5 15 40 5 50 5 J
h
ig
h

d

B 4 5 35 5 50 5

C 3 10 30 5 40 5

As anticipated in Section 3.3, at injection rates of 100 ml/min and 250 ml/min, Model 3555

performs best with a higher number of blocks of invasion (see columns of 100 ml/min556

and 250 ml/min in Table 2). For Model 4, the best performing c values for injection rates557

of 100 ml/min and 250 ml/min are indeed the smallest on the list: c = 5 (see columns558

of 100 ml/min and 250 ml/min in Table 2), as already predicted in Section 3.3.559

We observe that, for the injection rate of 10 ml/min, the best c values of Model 4560

also correspond to the ones contributing to more inner randomness, i.e. the ones that561

assist in the radial spreading of the gas. This is unexpected at first sight: At an injec-562

tion rate of 10ml/min, viscous effects exist but are not predominant, i.e. we observe less563

radial spreading in the experiments (top row of Fig. 2). We have observed similar be-564
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haviour in one of our earlier works (Banerjee, Walter, et al., 2023), where the experimen-565

tal data belonged to the discontinuous gas flow regime.566

Two opposing arguments are relevant to understand these surprisingly low c val-567

ues at 10 ml/min. On the one hand, the higher c values (200 or 500) for a given inva-568

sion threshold are almost deterministic in their choice of the gas path. When these c val-569

ues meet the entry threshold (Te) field closest to the actual experiment conditions, the570

model can accurately produce the gas path with the highest similarity to the observed571

experimental gas finger. But for any threshold field with poor resemblance to the actual572

experimental conditions, models with these high c values produce poor-fitting gas fin-573

gers. On the other hand, models with lower c values are more flexible in their choice of574

a gas path for a given invasion threshold field (Te). Combining the two arguments, these575

best-performing low c values indicate that, in the absence of a good fit of the structure576

of the Te field to the experimental porous medium, the more flexible models fare well.577

4.1.2 Relative Performance of the Models across 500 Runs.578

Until now, we have discussed the model performance based on the overall maxi-579

mum metric value out of the 500 runs. To analyse the relative performance of the model580

versions and sub-versions (with varying parameters, see Section 3.3) across 500 runs per581

metric value, we inspect the percentage of ranks obtained by each of them. We present582

a few plots to aid our discussion in Figs. 7 and 8. Please note that these rankings are583

relative among the models (and model sub-versions) per individual experiment, and it584

thus does not indicate whether any of these models best fit the experiments used in this585

study.586

We observe from the rank-plots of experiments 10-A, 10-B, and 250-A using the587

Jaccard coefficient (Fig. 7, top row, and Fig. 8 top), that the Models 1 and 2 rank mediocre588

to poor amongst all the model (sub-) versions. Further, we notice that the best model589

according to the overall maximum metric value (Model 3, see table specified by Fig. 6)590

does not consistently rank well for all the 500 Te fields (This becomes visible by the pres-591

ence of red colour in the bars of Model 3 sub-versions in Fig. 7 and 8). This indicates592

that the Te field is an essential input for these models, which will be further discussed593

in Section 4.3.594
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Figure 8. Bar plot of the percentage of relative ranks obtained by each model version out of

the 500 runs for the best performing gas-saturation value for the corresponding run. The experi-

ment number 250-A and the corresponding metric used for ranking are mentioned in the title of

the subplots. Labels 1 and 2 correspond to Models 1 and 2 of this study. The label 3nb2, 3nb3....

stands for Model 3 with nb = 2, 3, ... invaded blocks and the label 4c5, 4c10,... stands for Model 4

with c = 5, 10, ... respectively.
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Also, we notice that Model 4 with larger c values representing more systematic be-595

haviour (relying primarily on the Te field) ranks the best for 10-A (e.g., see bars 4c200596

or 4c500 of the top row, left plot in Fig. 7), and those with c values representing some-597

what directionless randomness to partially overrule the Te field, rank better for 10-B (e.g.,598

see bars 4c5 or 4c10 of the top row, right plot in Fig. 7). In the experimental results of599

10-B, the gas finger moves towards the right boundary of the domain, indicating the sig-600

nificant influence of the Te field in this experiment compared to 10-A where the gas moves601

through the centre of the domain (see Fig. 2). The probability of a random Te field lead-602

ing to a good match with that of experiment 10-B is extremely low. To overcome this603

large uncertainty in the Te field in our models, the more flexible models (with more ran-604

domness at lower c values) perform better. In an overall conclusion, the Te field mat-605

ters for all models investigated here.606

For higher injection rates, Model 4 with different c values ranks the best for some607

realizations and worst for others (e.g., the red-blue bars from the top plot in Fig. 8). This608

confirms our earlier impression that these models have gas finger patterns resembling the609

experimental images only when accompanied by “good” Te fields. With Te fields far away610

from that of the experiment, these models perform the worst. Hence, the “very good” Model 4611

is highly sensitive to the Te field input.612

Blurring the images (i.e. comparisons at larger scales) makes the ranking less strict.613

Even weak models like 1 and 2 rank well for a higher percentage of times (see bottom614

row plots in Fig. 7) than they do for the non-blurred image comparison, i.e. using the615

plain Jaccard coefficient. However, for a high injection rate, blurring cannot help these616

models improve their ranking (bottom plot for Fig. 8) because the models are missing617

surrogate processes for viscosity, which is essential in this flow regime. The extensions618

proposed in Models 3 and 4 in this regard perform well.619

4.2 Detailed Discussion of the Model Selection Results620

We further support the rankings observed in Section 4.1 with more visual evidence621

and provide insights into the performance of the individual model (with its best Te field).622

Comparing the images (both blurred and non-blurred) of experiment 100-A and623

250-A of Fig. 4 to outputs from Model 1 and Model 2 (Fig. 9), one can see that they624

are incapable of producing branched gas-finger patterns resembling those from exper-625
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iments at higher injection rates. Even with a high blurring radius, Model 1 and Model 2626

produce patterns very different from the experiments at 100ml/min or 250ml/min, sim-627

ply because they are incapable of having high volumes of gas in the domain. We would628

refer the reader to the supplementary information of this manuscript for more visual ev-629

idence.630

Model 3, which emerges as the best model for almost all the metrics and experi-631

ments in Section 4.1, has more gas in the system (with many gas-occupied blocks in the632

domain) (Row 3 and columns 2 and 3 of Fig. 9). This is why it matches the higher in-633

jection rate experimental images better than Models 1 and 2.634

The experimental images for triplicate at any particular injection rate differ in struc-635

ture. Even with very high blurring, experimental images from 250-A (Fig. 4) and from636

250-C (Fig. S2) have different patterns. This difference is not observed in the respec-637

tive best-fitting outputs from Model 3 (see Fig. 10 and Fig. S13). The gas finger pat-638

terns produced by Model 3 are hardly distinct from one another (see Fig. 10).639

Model 4, due to the inherent randomness in the invasion decision, can have many640

gas-occupied blocks within the domain (Row 4 and columns 2 and 3 of Fig. 9), facili-641

tating a lateral spread of gas. However, unlike Model 3, it produces distinctive patterns.642

For example, in Fig. 10, the best-fitting Model 4 outputs to the various blurred versions643

of the experimental image of 250-A are not all alike. Note that although the patterns644

are distinct, they are not always completely similar to the experimental image.645

Therefore, we again recommend that Model 1 and Model 2 should not be used for646

transitional or continuous gas flow regimes. Model 3 can be used for the transitional gas647

flow regime (with single, slightly thick fingers). At higher flow rates with many-branched648

fingers (continuous flow regime), Model 3 can be used at large scales (with blurring), but649

with caution: Model 3 is not capable of differentiating between different gas cluster shapes650

and structures. Thus, using Model 3 in the continuous regime will likely misrepresent651

gas volumes, pathways, and gas-water contact with associated effects on storage and mass652

transfer estimates. The close runner-up model (Model 4) is a suitable candidate for use653

in transitional and continuous flow regimes (identifying the different shapes of gas clus-654

ters), but the underlying rules need to be modified to closely match the gas flow processes655

involved at high injection rates, which is beyond the scope of the present work.656
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Figure 9. Model images for the different model versions with the best fit to non-blurred ex-

perimental images (with highest Jaccard value) from experiment no. 10-A, 100-A and 250-A.

Row 1, Row 2, Row 3 and Row 4 correspond to Model 1, Model 2, Model 3 and Model 4, respec-

tively.
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Figure 10. Best-fit model images for Models 3 and 4 relative to non-blurred and blurred

versions of experimental image 250-A.

4.3 Importance of the Entry Threshold Fields657

From the discussions in the sections above, it is clear that the underlying structure658

of the Te field is an important input for these models. Recall that each of the best-performing659

metrics in Fig. 6 corresponds to a best-fitting Te field. Are there any similarities in the660

structures of these otherwise random best-fitting Te fields for the different models? We661

try to identify one path of least resistance through the Te fields by running Model 1 on662

them. This means that Model 1 runs on the best Te field for each model version eval-663

uated using the maximum Jaccard coefficient. We choose Model 1 because, in it, all pa-664

rameters except the Te field are assumed fixed. The overlay of the so-obtained gas fin-665

gers on the experimental image shows that they partially cover the actual paths of the666

gas finger (Fig. 11). This answers the question pertaining to the similarities in the un-667

derlying structure of the best-fitting Te fields.668

Further, this observation (from Fig. 11) provides strategies to handle the impor-669

tance of the Te fields in spite of its uncertainty for these models. The strategy of Trevisan670

et al. (2017) was to run their IP model over multiple realisations of their Te field to ac-671

count for the uncertainty of the geological heterogeneity in their experimental setup. This672

seems a viable approach in this regard. Additionally, our comparison metric can be used673

to identify the “good performing” Te fields for each model type. One could operate a (geo-674
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statistical) Bayesian inference to estimate (or conditionally simulate) the Te fields, e.g.,675

using Markov chain- Monte Carlo (MCMC) methods for random fields (Xu et al., 2020),676

a parameter Ensemble Kalman filter (EnKf) (e.g., Kalman Ensemble generator by Nowak677

(2009)) or transformed versions (Schöniger et al., 2012).678

4.4 Best-fitting Gas Saturation Values679

Recall that the results presented in the table specified by Fig. 6 used the best-fitting680

gas saturation values (Sg) resulting from the time matching procedure per model and681

realization (of Te field). Now, we investigate these best-fitting Sg values out of our pro-682

posed range for each model per metric (Section 3.3). Remember that our experimental683

data and model outputs are binary (gas-presence/gas-absence) images. The gas satu-684

ration values are an overall value provided to the entire gas cluster, i.e. all gas blocks685

in the binary image are replaced by the same gas saturation value. Varying the gas-saturation686

value varies the Vmod in Equation 11, thus altering the corresponding time-matched im-687

age from the model outputs. Thus, the value of the metric changes when we change the688

gas-saturation value. In Table A1 of Appendix A, we present the best-performing gas-689

saturation values corresponding to the best metric values for the three experimental trip-690

licate (table specified by Fig. 6). While some of the gas-saturation values reported in691

Table A1 are comparable to those found in the experimental data, some are infeasible.692

For example, a value of Sg = 0.02 (appears multiple times in Table A1) for the entire693

gas cluster is clearly too low.694

We further investigate the distribution of the gas saturation (Sg) values per model695

(sub-) version for all 500 Te field realizations. For that, we present a sample of nine scat-696

ter plots for Sg (matched per Te field realization), versus the metric (Jaccard coefficient697

and Diffused Jaccard coefficient (high)) for selected models (Model 1, Model 3 and Model 4)698

and experiments 10-A, 100-A, and 250-A in Fig. 12. We pick the sub-versions of Mod-699

els 3 and 4 with the best-performing parameter values: nb and c, for the corresponding700

cases (see Table 2).701

There is no clear optimal value of Sg, i.e. the values do not show a cluster of points702

at an exceptionally high metric value for any particular Sg value (see Figs. 12a, 12b, 12c,703

12f, 12g and 12h). It instead seems to be an individual choice of these models per Te704

field. For example, in the case of non-blurred images (evaluation using J), more strict705
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Figure 12. A sample of nine plots showing the gas saturation distribution per model (sub-)

version for all 500 realizations over the respective metric values for experiments 10-A, 100-A and

250-A. The title of the subplots 3nb8 and 3nb50 stands for Model 3 with nb = 8 and nb = 50,

respectively. The title of the subplots 4c5 stands for Model 4 with c value 5.

models (Models 1 and 2) stick to specific Sg values (see Fig. 12a). For blurred images706

of the same strict models, the spectrum of well-performing Sg values increases, but it707

still does not tend to one optimal value (see Fig. 12b). The blurring of the images spa-708

tially diffuses the pixels, and the actual structure of the gas finger becomes less relevant,709

which makes up for the conceptual weakness of Models 1 and 2, allowing them to cope710

with more varied Sg values. In other words, conceptually strong models are more flex-711

ible in their choice of Sg values. This is further supported by the observed spread of Sg712

values for Model 3 with nb = 8 (Fig. 12c), which produced a gas finger with a close713

resemblance to the original experimental image for 10-A (see Fig. 4 and 9).714

In spite of the flexibility of choice of Sg values, conceptually strong models are ex-715

pected to favour a particular Sg value. For Model 3, which ranks best in most scenar-716

ios of the table specified by Fig. 6, the sub-version with nb = 50 does favour a single717

Sg value (see Figs. 12d, 12e, and 12i). However, this optimal Sg value is not always re-718

alistic. For example, the converged Sg value for Model 3 with nb = 50 is 0.12 for ex-719

periment 250-A (see Fig. 12i). Van De Ven et al. (2020) reported typical Sg values be-720
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tween 0.20 to 0.4 for the inner core and 0.03 to 0.20 for the outer shell of each gas fin-721

ger, from the high injection rate (100 ml/min, 250 ml/min and 498 ml/min) experimen-722

tal triplicate of Van De Ven and Mumford (2019). Thus, the value of Sg = 0.12 for the723

entire gas cluster is lower than that observed and reported in Van De Ven et al. (2020).724

As earlier discussed in Section 4.2, Model 3 does not adequately predict the shape and725

structure of the gas clusters consisting of multiple fingers. Thus, the favoured Sg value726

is merely the model’s best attempt to fit the corresponding data.727

For the close runner-up Model 4 with c = 5, we do not observe any convergence728

to an optimal Sg value (see Figs. 12f, 12g, and 12h). Recall that this model version’s729

performance is highly sensitive to the input of the entry threshold (Te).730

Therefore, the models apparently use the Sg values to compensate either for their731

own conceptual weakness or for “poor” Te field inputs. Thus, from Fig. 12, we can con-732

clude that none of the models can predict the real physical Sg values and thus are not733

recommended for Sg calibration. As a possible way out, one could develop data assim-734

ilation or geostatistical inversion schemes for Te fields as already mentioned in Section735

4.3. Then, more plausible Sg values could be obtained as only the conceptual weakness736

of models would remain as the major error source. Alternatively, model versions with737

variable gas-saturated blocks (, e.g., Ioannidis et al., 1996; K. G. Mumford et al., 2010;738

Koch & Nowak, 2015; Molnar et al., 2019) are an optional extension of macroscopic IP739

models, which may be investigated for better calibration of Sg values.740

4.5 Summary of Findings741

We summarise that Models 1 and 2 are unsuitable for use in transitional and con-742

tinuous gas flow regimes, even with high levels of blurring in images (Section 4.1). Mod-743

els 3 and 4 perform better than Models 1 and 2 but do not accurately represent the gas744

finger patterns observed in the experiments (Section 4.1 and 4.2). Model 3 is a good fit745

for experiments in the transitional gas flow regime (single slightly thick gas finger) but746

cannot appropriately predict the gas-finger patterns seen in the experiments of the con-747

tinuous gas flow regime (multiple fingers) (Section 4.2). Model 4 is a potential candidate748

for use in the transitional and continuous gas flow regimes, provided its rules are mod-749

ified to reproduce the gas-flow behaviour at high injection rates (Section 4.2). The mod-750

ification of Model 4’s underlying rules is beyond the scope of the present study. With751
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blurring, i.e. at large scales where individual structures of the gas fingers are irrelevant,752

Models 3 and 4 may be used for continuous gas flow regimes (Section 4.1 and 4.2). Their753

use would thus depend on the application. We also identify that the structure of the Te754

field is a critical input for a good performance of these models (Section 4.3). The inter-755

nal randomness of the invasion decision can partially compensate for the high uncertainty756

in the structure of the Te fields (Section 4.1 and 4.2). Also, strategies like running mul-757

tiple realizations of the Te field can help tackle this uncertainty of the Te fields. Further,758

we do not recommend these models for calibrating parameters like gas saturation (Sec-759

tion 4.4), at least as long as there is a dominant uncertainty in Te fields.760

5 Conclusions and Outlook761

We compared the performance of four macroscopic IP models against the data from762

nine experiments. The experiments featured gas injections in homogeneous water-saturated763

sand. For comparison, we used time-matching and (Diffused) Jaccard coefficient(s). For764

the first time, these models are tested for transitional and continuous gas-flow regimes.765

We identified the strengths and weaknesses of these modelling strategies for simulating766

gas flow in water-saturated sand. Also, we calibrated a few parameters of these mod-767

els.768

We conclude that Models 1 and 2 should not be used for the transitional and con-769

tinuous regimes of gas flow discussed in this study. In particular, for experiments at higher770

injection rates, these models are completely weak. In previous studies, IP models have771

been used extensively only in the capillary flow domain. Our results show that IP mod-772

els at a macroscopic scale with variation as Model 3 can be used in the transitional gas773

flow regime but is unfit for use in the continuous gas flow regime. In their present state,774

Models 3 and 4 can be used with blurring for large-scale applications in the continuous775

gas flow regime, where the details of the gas-cluster structure are insignificant. Thus, the776

exact use would depend on the specific application. Models 3 and 4 are better because777

they can partially consider the viscous effects found at high gas injection rates.778

The blurring of images can be used as an efficient tool for reducing the detailed level779

of information in the images, depending on the application and the scale of interest. It780

is pointless to ask for a pixel-to-pixel match at and above the scale of the experiments781

used in this study, given the strong dependence of gas flow on pore-scale aspects of the782
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porous medium (here: sand pack). This exercise can thus help use models like 3 or 4 for783

such applications.784

The underlying structure of the Te fields is a critical input for these models. More-785

over, the best models (3 or 4) are also the most sensitive to this input. Further research786

could be conducted to identify the underlying structure of the Te fields, e.g., using geo-787

statistical inversion methods.788

Currently, Model 3 and Model 4 show some promise in performance, but further789

research towards refining their rules for gas-invasion, water-re-invasion, finger branch-790

ing, and so on, needs to be done. A possible extension could be a mix of Model 3’s rule791

of invading more blocks per step combined with a stochastic invasion rule similar to that792

of Model 4. The rule for this extension would also need to be adapted to closely mimic793

the gas flow behaviour in the continuous flow regime, e.g., with finger invasion rules en-794

abling the growth of multiple parallel thick fingers.795

Appendix A Gas Saturation Values796

The table containing the best-performing gas-saturation values per model version797

per experiment and for each metric used in this study:798
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1. Figures S1 to S13

Introduction

We present more visual evidence from our analyses supporting our results and conclusions.

Figure S1 contains the experimental images and their blurred versions for experiments 10-

B, 100-B and 250-B. Figure S2 contains the experimental images and their blurred versions

for experiments 10-C, 100-C and 250-C. This is followed by corresponding best-fitting

model realizations obtained using the maximum Jaccard coefficient for these experiments

(Figures S3 and S4).

Corresponding author: Ishani Banerjee, Institute for Modelling Hydraulic and Environmental

Systems (IWS)/LS3, University of Stuttgart, Germany. (ishani.banerjee@iws.uni-stuttgart.de)
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The best-fitting model realizations to the experimental triplicate at 10 ml/min, 100

ml/min, and 250 ml/min, obtained using the maximum Diffused Jaccard coefficient (low)

metric, are shown in Figures S5 - S7.

Figures S8 - S10 contain the best-fitting model realizations to the experimental tripli-

cate at 10 ml/min, 100 ml/min, and 250 ml/min, obtained using the maximum Diffused

Jaccard coefficient (med) metric.

The best-fitting model realizations to the experimental triplicate at 10 ml/min, 100

ml/min, and 250 ml/min, obtained using the maximum Diffused Jaccard coefficient (high)

metric, are shown in Figures S11 - S13.
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Figure S1. Final experimental image of the experiments 10-B, 100-B and 250-B. Row 2-4

contains the blurred version of the images of Row 1 for the three different blur-radii.
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Figure S2. Final experimental image of the experiments 10-C, 100-C and 250-C. Row 2-4

contains the blurred version of the images of Row 1 for the three different blur-radii.
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Figure S3. Model images for the different model versions with the best fit to non-blurred

experimental images (with highest Jaccard value) from experiment no. 10-B, 100-B and 250-

B. Row 1, Row 2, Row 3 and Row 4 correspond to Model 1, Model 2, Model 3 and Model 4,

respectively.
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Figure S4. Model images for the different model versions with the best fit to non-blurred

experimental images (with highest Jaccard value) from experiment no. 10-C, 100-C and 250-

C. Row 1, Row 2, Row 3 and Row 4 correspond to Model 1, Model 2, Model 3 and Model 4,

respectively.
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Figure S5. Model images for the different model versions with the best fit to blurred experi-

mental images (with highest Diffused Jaccard (low) value) from experiment no. 10-A, 100-A and

250-A. Row 1, Row 2, Row 3 and Row 4 correspond to Model 1, Model 2, Model 3 and Model 4,

respectively.
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Figure S6. Model images for the different model versions with the best fit to blurred experi-

mental images (with highest Diffused Jaccard (low) value) from experiment no. 10-B, 100-B and

250-B. Row 1, Row 2, Row 3 and Row 4 correspond to Model 1, Model 2, Model 3 and Model 4,

respectively.
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Figure S7. Model images for the different model versions with the best fit to blurred experi-

mental images (with highest Diffused Jaccard (low) value) from experiment no. 10-C, 100-C and

250-C. Row 1, Row 2, Row 3 and Row 4 correspond to Model 1, Model 2, Model 3 and Model 4,

respectively.
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Figure S8. Model images for the different model versions with the best fit to blurred exper-

imental images (with highest Diffused Jaccard (med) value) from experiment no. 10-A, 100-A

and 250-A. Row 1, Row 2, Row 3 and Row 4 correspond to Model 1, Model 2, Model 3 and

Model 4, respectively.
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Figure S9. Model images for the different model versions with the best fit to blurred exper-

imental images (with highest Diffused Jaccard (med) value) from experiment no. 10-B, 100-B

and 250-B. Row 1, Row 2, Row 3 and Row 4 correspond to Model 1, Model 2, Model 3 and

Model 4, respectively.
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Figure S10. Model images for the different model versions with the best fit to blurred

experimental images (with highest Diffused Jaccard (med) value) from experiment no. 10-C,

100-C and 250-C. Row 1, Row 2, Row 3 and Row 4 correspond to Model 1, Model 2, Model 3

and Model 4, respectively.
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Figure S11. Model images for the different model versions with the best fit to blurred

experimental images (with highest Diffused Jaccard (high) value) from experiment no. 10-A,

100-A and 250-A. Row 1, Row 2, Row 3 and Row 4 correspond to Model 1, Model 2, Model 3

and Model 4, respectively.
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Figure S12. Model images for the different model versions with the best fit to blurred

experimental images (with highest Diffused Jaccard (high) value) from experiment no. 10-B,

100-B and 250-B. Row 1, Row 2, Row 3 and Row 4 correspond to Model 1, Model 2, Model 3

and Model 4, respectively.
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Figure S13. Model images for the different model versions with the best fit to blurred

experimental images (with highest Diffused Jaccard (high) value) from experiment no. 10-C,

100-C and 250-C. Row 1, Row 2, Row 3 and Row 4 correspond to Model 1, Model 2, Model 3

and Model 4, respectively.
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