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Abstract

Recent advances in the field of extreme event attribution make it possible to estimate how anthropogenic
global warming affects the odds of climate disasters, such as river floods. Extreme event attribution typically
uses precipitation as a proxy for flooding. However, hydrological processes and antecedent conditions make
the relation between extreme precipitation and floods highly non-linear. In addition, hydrological science
informs us that changes in flood occurrence can be strongly driven by changes in land-cover and by other
human interventions in the hydrological system, such as irrigation, and construction of dams and levees.
These drivers can either amplify, dampen or outweigh the effect of climate change on local flood occurrence,
and neglecting them can lead to incorrect attribution statements. Explicitly including flooding will lead to
more robust event attribution, and will account for the role of other drivers beyond climate change. Existing
attempts are sparse and incomplete. Key challenges are the lack of flood observations and a dedicated flood
attribution framework. We argue that the existing probabilistic framework for extreme event attribution
can be extended to explicitly include floods for near-natural cases, where flood occurrence was unlikely to
be strongly influenced by land-cover change and human hydrological interventions. However, for the many
cases where this assumption is not valid, a multi-driver framework for conditional event attribution needs to
be established. Explicit flood attribution will require collaboration between climatologists and hydrologists,
and promises to better address the needs of flood risk management.
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1. Introduction

A warming climate affects precipitation extremes, through both thermodynamic and dynamic processes
(Eden et al., 2016). At two thirds of global weather stations, annual precipitation maxima have increased
since 1950 (Sun et al., 2021; Westra et al., 2013), and record-breaking daily extremes have significantly
increased, especially since the 1980s (Lehmann et al., 2015). These increases are broadly consistent with the
thermodynamic effect prescribed by the Clausius-Clapeyron relationship (Fischer & Knutti, 2016). Besides
extreme precipitation, peak river discharge is also changing around the globe (Do et al., 2017; Slater et al.,
2021), raising questions on the role of anthropogenic climate change in the occurrence of floods (Blöschl et
al., 2017; Kundzewicz et al., 2014).

To address questions about the effect of climate change on specific extreme weather events, a research line
has emerged in the last two decades, called extreme event attribution. This field evolved from detection and
attribution of the so-called “fingerprints” of anthropogenic global warming (Stone & Allen, 2005; Stott et al.,
2004). Several methods have been proposed (Uhe et al., 2016). The key concepts underlying these methods
are: 1) to detect trends in the observed historical occurrence of events as the one in question, or more
extreme; and 2) if a trend emerges, to assess the potential influence of climate change on the probability
of the event, by comparing results from climate models of the factual climate (i.e., with anthropogenic
greenhouse forcing) and of the counterfactual climate (i.e., with pre-industrial levels of greenhouse forcing)
(NASEM, 2016). This is sometimes referred to as ‘probabilistic’ extreme event attribution, as it allows to
make probabilistic attribution statements. A main motivation behind this research is to address the pressing
societal and policy questions about the cause of the disaster. Reflecting the urgency of the questions, these
studies are frequently and prominently featured in the media (Osaka et al., 2020). For example, the popular
website Carbon Brief maintains an inventory of attribution studies, in an interactive global map (Fig. 1).
Out of 504 attribution studies, including both peer-reviewed and ‘rapid’ studies, 126 concern the attribution
of “rain and flooding” events. Most of these studies found that the likelihood of the event was significantly
altered by climate change (red markers).
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Fig. 1. Global mapping by the website Carbon Brief (2022), including 126 “rain and flooding” attribu-
tion studies, published until May 2022. Coloured markers indicate where a significant influence of human
alteration of climate is found (red), not found (blue), and where evidence is inconclusive (grey).

1.1 Problem statement and objectives

The interest for attributing an extreme event commonly originates in the severity of the societal impacts
(Stone et al., 2021), rather than in its remarkable meteorological features. For instance, there is frequent
discussion of a potential role of extreme event attribution in the Loss and Damage Mechanism of the United
Nations Framework Convention on Climate Change (Olsson et al., 2022; Parker et al., 2015). Extreme event
attribution is typically based on analysis of meteorological variables. During an initial step, called ‘event
definition’ (Philip et al., 2020), researchers define the intensity and domain of the meteorological event that
contributed to the disaster (van der Wiel et al., 2017). For example, for the pluvial floods of July 28th 2014
in the Netherlands, the event was defined as equal or surpassing 132 mm of daily precipitation over the whole
country (Eden et al., 2018). However, in the case of river floods, which we consider here, it is not the extreme
precipitation that directly causes the socioeconomic impacts. Impacts scale rather with the magnitude of
the flood hazard, commonly defined as the “temporary covering by water of land not normally covered by
water” (Barredo, 2007). While extreme precipitation does not necessarily lead to flooding, flooding can be
generated by moderate precipitation, when other factors are at play (Berghuijs et al., 2019; van der Wiel
et al., 2020). Thus, the intensity of precipitation is only a proxy for the magnitude of flood impacts. The
validity of this proxy depends on the local context and specific event, but is generally not examined. To bring
event attribution closer to the impacts of flooding, two solutions have been attempted: 1) using hydrological
models to convert precipitation into discharge (e.g., Schaller et al., 2016; see Section 1.2); 2) directly relating
the magnitude of the economic impacts to that of the precipitation event, thus bypassing the complications
of solution 1 (Frame et al., 2020). Both approaches are infrequent.

Non-climatological changes can also affect river flood hazard, i.e. by regional and local hydrological changes
(Boulange et al., 2021; Munoz et al., 2018; Sebastian et al., 2019; Syvitski & Brakenridge, 2013). The effects
of these changes can in some cases oppose those of climate change. For example, dam construction can lower
flood occurrence on a given location, even when climate change may have increased it; landscape change from
forest to urban can increase flood occurrence at the site and downstream, even when climate change may
have lowered it. Furthermore, hydrological change can alter sediment fluxes, in turn leading to geomorphic
responses, such as in-channel sedimentation and channel enlargement, that affect the flow capacity of river
channels and thus its tendency to flood (Hoffmann et al., 2010). If extreme event attribution included
representations of these processes and changes, it would better isolate the influence of climate change on
flood occurrence, yielding a more accurate climate attribution. Accordingly, it would also inform on the
influence of other key drivers of floods. This addresses the mechanisms behind changes in flood hazards,
one of the most pressing questions in hydrology and flood risk management (Blöschl et al., 2019). In the
wake of a flood disaster, when the urgency of the problem is clearest to citizens and decision-makers, a
multi-driver attribution of the event could offer a strong scientific basis for flood risk management. In fact,
while stakeholders see general merit in attribution studies (James et al., 2019; Sippel et al., 2015), they
seem doubtful about their present usefulness for the practice of climate adaptation and disaster management
(Osaka & Bellamy, 2020).

The science of extreme event attribution has quickly advanced, and methods are becoming standardised
(Philip et al., 2020; van Oldenborgh et al., 2021). But an explicit attribution of floods to their multiple
drivers is still unattempted. In this Perspective: we summarise recent efforts by the scientific community;
we examine the challenges to flood event attribution, differentiating between near-natural cases and cases
where substantial hydrological change has occurred; and propose separate solutions for either case.
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1.2 State-of-the-art: Hydrological modelling in event attribution

A handful of probabilistic extreme event attribution studies include hydrology in their analysis. Pall et al.
(2011) propose runoff as a better proxy for flooding than precipitation, and use a simple precipitation-
runoff model, fed with daily precipitation input from global climate model simulations, to produce daily
runoff series. They do not compare their results to results that would have been obtained from precipitation
alone. They calculate, however, the changes in precipitation that would follow thermodynamically from the
warming of air masses, concluding that the fraction of attributable risk is similar across the two approaches.
Kay et al. (2011) use the same meteorological input as Pall and colleagues, and expand on that study in two
respects. They realise 1-year-long continuous simulations of precipitation-runoff with the semi-distributed
model CLASSIC. They thus capture the effects of antecedent conditions in the basin and of spatio-temporal
variations in precipitation. Further, they include snow-related processes resulting from temperature change,
showing that these have a notable effect on runoff peaks. Schaller et al. (2016) also perform continuous
simulations, for four years, and include snow processes, with the same CLASSIC model, this time coupled
with the hydrodynamic model JFlow+. They highlight the importance of multi-year antecedent conditions.
Moreover, they employ an empirical relationship to infer flooded property from peaks in discharge, assuming
absence of flood defences. Kay et al. (2018) apply a similar approach to the larger domain of Great Britain,
and also highlight the importance of including flood modelling and snow processes. Philip et al. (2019) aim to
systematically assess the difference between attribution either based on precipitation only and with inclusion
of modelling of river discharge. For the first time, they use multiple hydrological models: PCR-GLOBWB,
SWAT, LISFLOOD and RFM. They find that results of discharge attribution differ from those based on
precipitation. Sebastian et al. (2019) use hydrological model Vflo® to simulate discharge in the city of
Houston resulting from extreme precipitation associated with Hurricane Harvey. Notably, they separate the
effects of urban development and climate change in changing peak discharge, finding that urban development
had a larger effect. No event attribution study, to our knowledge, has explicitly modelled flood hazard.

2. Challenges to flood event attribution

We argue that two main challenges limit our capacity to accurately attribute river flood events (Fig. 2): 1)
Extreme flooding relates to the triggering precipitation event in highly non-linearly ways, because of the
mediating hydrological and hydrodynamic processes. 2) Changes to the hydrological systems have occurred
during the period of climate change, adding their influence on the occurrence of floods. These changes include
natural and human changes in land cover, other human hydrological interventions, and the geomorphic
responses of the river channel. In this section we examine these two challenges.
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Fig. 2. Conceptual framework of the challenges posed by different cases of flood event attribution, including
possible solutions.

2.1 Non-linear relation between extreme precipitation and floods

Shifts in precipitation extremes are not clearly reflected in global flood observations (Berghuijs & Slater,
2023; Blöschl et al., 2017; Do et al., 2017; Kundzewicz et al., 2014; Slater et al., 2021; Zhang et al., 2022).
To examine where trends of extreme precipitation and of extreme discharge converge and diverge in sign, we
calculated significant trends in annual multi-day extreme precipitation based on the ERA5 climate reanalysis
dataset (Harrigan et al., 2020), and in extreme discharge based on the dataset GloFAS, which is modelled
based on ERA5 meteorological forcing (Hersbach et al., 2020), for the period 1979-2020 (Fig. 3). Although
over most locations the sign of trends in discharge extremes matches that of precipitation extremes (orange
and green colours), for many locations an increase in precipitation extremes is matched by a decrease in
discharge extremes (blue). Locations where decrease in precipitation extremes is matched by an increase in
discharge extremes (purple) are very rare.
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Fig. 3. Convergence and divergence in the sign of significant trends in extremes of precipitation and of
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discharge, for period 1979-2020. This is calculated for annual maximum cumulative values of precipitation
and of discharge during consecutive periods of 1-day (panel A), 2-day (B) and 20-day (C). Colours show
where precipitation and discharge extremes both increase (green), both decrease (orange), where precipita-
tion increases while discharge decreases (blue), and where precipitation decreases while discharge increases
(purple). Precipitation data are from ERA5 (Hersbach et al., 2020), and discharge data are from GloFAS
(Harrigan et al., 2020). Trend significance is assessed with the Mann-Kendall test.

2.1.1 Mechanisms of river flood generation

The discrepancies in trends are due to non-linear relations between precipitation and flooding, generated by
multi-step mediating processes. In a first step, part of precipitation is converted into runoff. In a second
step, runoff accumulates into river discharge. In a final step, a portion of discharge can be converted into
flood water during an extreme event when river bankfull conditions are exceeded. The first two steps are
mediated by processes related to hydrology, like evapotranspiration and infiltration. These are determined
by the characteristics of the land surface: slope, soil, vegetation, land-cover, and river network. The second
and third steps are mediated by hydrodynamic processes, determined by the hydraulic characteristics of the
river channel and of the floodplain.

The spatial and temporal pattern in which these processes play out is essential in determining their outcome.
A key determinant is the state of the relevant components of the water cycle at the time of the precipitation
event: the antecedent conditions. Key antecedents are: the amount of snow priorly accumulated in the
mountainous part of the basin and the timing of its thawing (Berghuijs et al., 2016; Huntingford et al., 2014;
Musselman et al., 2018); the level of moisture of the upper parts of the soil (Neri et al., 2019; Tramblay et
al., 2019; Wasko & Nathan, 2019); for large-scale basins and events, the level of groundwater. In geographies
where these phenomena are seasonal, flood occurrence will typically have strong seasonality (Rottler et al.,
2021). For example, the same precipitation event can more likely result in flooding during springtime than
summer (Schaller et al., 2014), due to the higher infiltration capacity of summer soils, which contain lower
moisture due to higher temperatures and evapotranspiration. More recently, attention is raised to drought
as an aggravating antecedent factor for floods (Rashid & Wahl, 2022), whereby soil permeability is reduced
by protracted dry conditions (Alaoui et al., 2018). An example of this phenomenon unfolded in spring 2023,
over vast parts of Northern Italy (NASA_Earth_Observatory, 2023).

2.2 Hydrological change has occurred

Hydrological changes reduce flood hazard, or increase it; some changes still will reduce it at one location
while increasing it at another. The key problem for flood attribution is that often these changes have taken
place during the period of climate change. As such, hydrological changes can amplify or counterbalance the
effect of climate change on flood occurrence, and failing to take them into account vitiates the attribution.

Effects of land-cover change on river discharge and flood are difficult to predict (Kirchner et al., 2020).
Changes in land-cover can be natural or anthropogenic; in the latter case they are called land-use change.
Observations show that deforestation in 56 developing countries increased flood occurrence during the last
decades (Bradshaw et al., 2007). Similarly, Anderson et al. (2022) show that urbanisation and re-forestation
have respectively increased and decreased extreme streamflow, in the context of 729 U.S.A. catchments.
Similar indications emerge from many modelling studies (e.g., Du et al., 2012).

Other types of human intervention on hydrology have taken place over a large part of the world’s rivers (Grill
et al., 2019), altering hydrological and hydraulic properties relevant to flooding. Key interventions are: dam
construction and management, river bed encroaching, levees and dikes, channelling and water expansion
areas, civil structures like roads, bridges and drainage networks, irrigation and groundwater abstraction, and
other flood management measures. While most of these interventions are explicitly meant to have a local
hydrological effect, e.g., building a levee to reduce local flood hazard, some have unintended hydrological
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effects, e.g.: irrigation lowers the water table in the soil; river training may increase flood hazard further
downstream (Munoz et al., 2018; Vorogushyn & Merz, 2013).

3. Possible solutions for flood event attribution

The challenge of non-linear relations between extreme precipitation and flooding applies to all flood cases,
and thus also to cases of near-natural hydrology, where hydrological changes during the time interval of
interest can be neglected (Fig. 2). We argue that for these simpler cases an approach that can be explored
is the expansion of the existing framework of probabilistic extreme event attribution.

On the other hand, cases where relevant hydrological changes have occurred, i.e., land-cover changes and
human hydrological interventions, present the additional challenge that the effect of these flood drivers
overlaps with the effect of climate change. For these more complex cases, we argue that it is necessary to
establish a multi-driver framework for conditional event attribution.

3.1 Possible solution for near-natural cases

The methods of probabilistic event attribution can be expanded to include representation of the relevant
hydrological and hydrodynamic processes, by explicitly using flood data and flood modelling. This allows
overcoming the problem posed by the non-linearity between precipitation and floods, in two main respects.
First, explicit flood attribution overcomes the errors associated with the initial step of event definition. When
using precipitation as a proxy for floods, the precipitation event needs to be defined in terms of intensity
and extent in space and time, such that it most closely captures the generation of the flood. This involves
arbitrary choices (van Oldenborgh et al., 2021). For example, after consultation with local experts and
consideration of impacts, it can be defensible to define the triggering event as the cumulative precipitation
over either 2 or 5 days, and over an area of either 500 or 2000 km2. However, the results of the attribution
may strongly diverge in either case (Angélil et al., 2018), requiring sensitivity tests (Luu et al., 2021). If,
instead, the definition is an observed metric of flood hazard, this problem is largely negated. Second, explicit
flood attribution addresses the issue of antecedent conditions. Multi-year hydrological simulations, followed
by flood simulations, can adequately reproduce the state of, e.g., soil moisture and snow pack.

In the following, we explore possible solutions for: the definition of an appropriate flood metric; the availability
of suitable flood data; and the flood modelling.

3.1.1 Flood metric

Adding explicit consideration of floods to attribution means that all analysis is based on a metric of flood
hazard, instead of precipitation. As established in event attribution science, the event definition should be
closely informed by the socio-economic impacts of the event. For any type of exposed element, the impact is
primarily determined by the depth of the flood waters. Other relevant quantities are the flow velocity, flood
duration, and any pollution or sediment carried by the water (Vogel et al., 2018). The total impact of the
event is determined by the sum of the impacts at each point over the flooded area. Therefore, a flood metric
that reasonably relates to the total impact is the total flood area. However, since exposure widely varies over
the territory, to better approach impacts, a finer analysis should take into account the location of population
and of valuable and critical assets.

3.1.2 Flood data

Probabilistic extreme event attribution requires the following categories of data: 1) observed magnitude of the
event, for the event definition; 2) time-series of observations, for trend detection; 3) model-based time-series,

8
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representing both factual and counterfactual climates, for the actual attribution (Philip et al., 2020).

For the magnitude of the flood event, it is ideal if collaboration with the local relevant institutions is
established; the change is then higher that data from remote sensing, gauges or field surveys can be accessed.
Sometimes, local measurements are compromised by the flood (Kreienkamp et al., 2021). In the absence of
local data, recent products at continental or global scale are potentially suitable replacements:

• Global Drought and Flood Catalogue (He et al., 2020). Includes data on severity, inundation area,
inundation fraction and flood duration for events during 1950–2016. It is obtained by merging
in situ and remote sensing datasets with land surface and hydrodynamic modelling. Available at
https://registry.opendata.aws/global-drought-flood-catalogue/.

• Global Flood Database (Tellman et al., 2021). Includes satellite maps of 913 floods from 2000 to
2018, documented by the Dartmouth Flood Observatory, at 250 m resolution. https://global-flood-
database.cloudtostreet.ai/.

• WorldFloods database (Mateo-Garcia et al., 2021). 422 flood maps, satellite-based and valida-
ted, for 119 events between 2015 and 2019, assembled from disaster response organisations.
https://www.nature.com/articles/s41598-021-86650-z#data-availability.

• European Flood Database (Hall et al., 2015). Includes discharge time-series from >7000 European stati-
ons, and coordinates and dates of >170,000 floods during 1960-2010. https://www.eea.europa.eu/data-
and-maps/data/external/european-floods-database.

• HANZE dataset (Paprotny & Mengel, 2023). Includes dates, locations, area inundated, number
of persons killed and affected, and losses for more than 1500 European floods during 1870-2020.
https://www.nature.com/articles/s41597-023-02282-0.

• Flood Phenomena dataset of European floods (EEA, 2018). Includes flood area, impacts and other
flood characteristics for more than 11,000 floods during 1980-2015. https://www.eea.europa.eu/data-
and-maps/data/european-past-floods.

For future events, ongoing developments in remote sensing are promising. New flood observation data are
becoming available, e.g., in the Fractional Water data from NASA’s Soil Moisture Active Passive satellite
(Du et al., 2021). New algorithms may soon reconstruct near-real time observations of flood area, integrating
imaging from satellite and aerial sensors with elevation maps (Muñoz et al., 2021).

Time-series of local observations should have sufficient length for trend detection, ideally covering the whole
period of climate change, i.e., the last 150 years, or as a minimum the last 4-5 decades, to capture most
of climate change. The key issue is that complete, uniform time-series of floods are very rare. For a few
locations, the data listed in the previous section may contain a short time-series of historical floods. Failing
that, the next best option is to resort to a flood proxy better than precipitation: river discharge. If that is
also not available, the best approach is to use modelling reconstructions that are based on observations or
on climate reanalysis. The key datasets are:

• Global Runoff Data Centre (GRDC). Comprises observations for 9900 stations globally of dai-
ly or monthly discharge. Length varies, up to 200 years, and reaching until near-present. htt-
ps://www.bafg.de/GRDC/EN/01_GRDC/grdc_node.html.

• Global Flood Monitoring System (GFMS; Wu et al., 2019). Contains 3-hourly quasi-global (50°S -
50°N) modelled precipitation, runoff, discharge and flood depth, from 2001 to the present with real-
time update; the simulation resolution is 1/8°, and results are downscaled to 1 km. It takes precipitation
input from several products to run the VIC hydrological model coupled with the DRTR flood model.
http://flood.umd.edu/.

• Global Flood Awareness System (GloFAS; Harrigan et al., 2020). Contains daily discharge at 0.1°
resolution, from 1979 to the present with real-time update. It takes runoff from hydrological mo-
del HTESSEL (part of ERA5 climate reanalysis) to run the hydrodynamic model LISFLOOD. htt-
ps://www.globalfloods.eu/.

• Global Reach-scale A priori Discharge Estimates (Lin et al., 2019) and Global Reach-Level
Flood Reanalysis (Yang et al., 2021). Contains model-based daily discharge for ~2.94 million
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river reaches, for 1980-2019. It takes meteorological input from MSWEP v2.1 and other da-
tasets, to run the hydrological model VIC at 0.25° and the river-routing model RAPID. htt-
ps://www.reachhydro.org/home/records/grades.

3.1.3 Flood modelling

Flood modelling should be used to produce time-series of flood events, based both on observed and on
modelled boundary conditions. In probabilistic attribution, the former are needed in the step of trend de-
tection, and the latter are needed in the model-based attribution step that compares floods in factual and
counterfactual climates.

To produce an observation-based flood time-series, the modelling chain needs to include both a hydrological
and a hydrodynamic modelling step. The hydrological model uses meteorological observations on precipita-
tion and temperature, typically at daily time-step; solve key processes like evapotranspiration, infiltration,
exchanges between storage in snow, soil and groundwater; and produce time-series of discharge or runoff at a
suitable resolution. In turn, the discharge or runoff series are used in the hydrodynamic model, which solves
processes related to the surface flow of water more accurately than the hydrological model, and yields peak
discharge and flood metrics.

To produce the entirely model-based flood time-series representing factual and counterfactual climate, the
modelling chain is the same, but will take precipitation and temperature from climate models. These could
come from the simulations coordinated by the Coupled Model Intercomparison Project Phase 6 (CMIP6).
CMIP6 includes simulations called ‘piControl’, i.e., ‘pre-industrial control’, reflecting the counterfactual cli-
mate of AD 1850 (Eyring et al., 2016), unaffected by anthropogenic greenhouse gas emissions, using constant
forcing along the whole duration, of at least 100 years. The factual climate is addressed by the ‘historical’
simulations of CMIP6. These simulations are transient, meaning that increasing levels of greenhouse gas are
applied to reflect the history of anthropogenic emissions during 1850-2014. To extend the series until the
present, results of the ‘scenarioMIP’ experiments of CMIP6 can be used. CMIP6 results are available at
https://esgf-node.llnl.gov/projects/cmip6/. Such results have been used to globally simulate high-resolution
floods for the pre-industrial (counterfactual) climate (Scussolini et al., 2020), and both pre-industrial and
modern (factual) climates (project ISIMIP2b; Lange et al., 2020).

Additionally, to force flood models at higher resolution, results from regional climate models can be used.
A group of dynamical downscaling experiments using different regional climate models is coordinated by
CORDEX (Diez-Sierra et al., 2022; https://cordex.org/data-access/). These experiments cover 14 continental
domains, at resolution between 12 and 50 km. Simulations start at 1950, and thus do not include the pre-
industrial, fully counterfactual climate. Also, they are presently based on CMIP5 global climate models, but
results based on CMIP6 will become available in the near future.

However, it is necessary to consider whether the meteorological input from global or regional climate models
has adequate resolution and skill, especially with respect to convective precipitation events. These fine-scale
events are not adequately represented by parameterisation schemes in those models (Coppola et al., 2020).
This can be overcome by the recent emergence of convection-permitting climate models, with resolution finer
than 4 km (Luu et al., 2022; Manola et al., 2018). Such input into the flood modelling can improve skills in
reproducing flood properties. However, this comes at massive computing costs; hence cannot be performed
over a large area or for a large ensemble and their application is rare (Pichelli et al., 2021).

Hydrological simulations for attribution should be carried out continuously for multiple years, as first evi-
denced by Schaller et al. (2016). This is the only way to capture antecedent conditions, as it allows the
hydrological model to adjust to long term effects on, e.g., storage of snow, lakes and groundwater (Ajami et
al., 2014). Thus, results will also include floods generated by moderate precipitation, for example, when it
coincides with snow-melt, or when it occurs after prolonged cold/wet conditions that have saturated the soil
in the basin. Ideally, simulations should be run continuously over the whole interval covered by the multi-
decadal climate time-series available. If that is computationally too expensive, and if long-term changes in
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water storage are negligible, a reasonable choice is to apply a threshold to extract extreme events from the
precipitation time-series, and to simulate hydrology and floods during multi-year intervals culminating with
these events.

The step of model evaluation should include, besides precipitation and temperature, comparison of modelled
floods and discharge with the respective observations, both for the event and for historical time-series. For
this, the datasets mentioned above can be used.

3.2 Possible solution for complex cases

When relevant hydrological change has occurred, changes in flood occurrence have more than one driver.
This is not contemplated in the probabilistic attribution framework, where the question is a variant of “has
anthropogenic climate change increased the frequency of events like this one?” (NASEM, 2016).

3.2.1 A multi-driver framework for conditional event attribution

A multi-driver framework should be formulated to address driver-specific questions that condition the at-
tribution on the states of the other drivers. By systematically including and excluding, in the hydrological
and hydrodynamic modelling steps, the effect of land-cover change and of human hydrological interventi-
ons, explicit flood attribution can disentangle the relevance of each driver, including climate change. Such
framework takes inspiration from and goes beyond emerging literature on storyline attribution for flood
management (de Bruijn et al., 2016; Sillmann et al., 2021).

The core steps should be: event definition; definition of hydrological drivers; evaluation of the modelling
chain; conditional model-based attribution. Whereas in probabilistic attribution the step of trend detection
is essential to determine if attribution even makes sense, in a multi-driver framework this is not pertinent,
as any driver-specific trends are confounded by the effects of the other drivers. The event definition and
the evaluation of the modelling chain present the same challenges as in the near-natural cases discussed
above. We here discuss available data about hydrological changes, to inform the definition of the relevant
hydrological drivers, and how to represent hydrological changes in models, to enable the conditional model-
based attribution.
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Fig. 4. Conceptual representation of changes through time in drivers of river floods. Global warming, and
associated changes in temperature and precipitation, often overlaps with changes in the hydrology, such
as land-cover change, construction of levees and large-scale irrigation. Global temperature data are from
the National Centers for Environmental Information of NOAA. Flood occurrence data is hypothetical. The
bottom box illustrates the questions pertinent to a multi-driver framework for conditional attribution.

To judge which hydrological changes should be included, it is necessary to know the hydrological history of
the basin (Fig. 4). Different relevant hydrological changes have likely occurred at different times, and can be
very old, as in the case of the Netherlands, where water management has a famously long history (Hoeksema,
2007). Restricting the analysis to the period coinciding with most of climate change, i.e., the last century,
makes the problem more tractable, and seems more relevant from the perspective of flood risk management.
In the following, we review information on land-cover change and on other human interventions.

12



P
os

te
d

on
29

A
ug

20
23

|T
he

co
py

ri
gh

t
ho

ld
er

is
th

e
au

th
or

/f
un

de
r.

A
ll

ri
gh

ts
re

se
rv

ed
.

N
o

re
us

e
w

it
ho

ut
pe

rm
is

si
on

.
|h

tt
ps

:/
/d

oi
.o

rg
/1

0.
22

54
1/

es
so

ar
.1

69
33

22
77

.7
83

00
45

1/
v1

|T
hi

s
a

pr
ep

ri
nt

an
d

ha
s

no
t

be
en

pe
er

re
vi

ew
ed

.
D

at
a

m
ay

be
pr

el
im

in
ar

y.

3.2.2 Land-cover change

For flood attribution, land-cover (land-use) maps need to be available for the present and also for past
periods. Ideally, to ascertain whether changes overlap with climate change, maps should cover ca. the
last century. Other relevant aspects are accuracy, resolution and the number of land-cover classes that are
differentiated. Fine resolution is especially useful for detailed hydrodynamic modelling in urban contexts,
whereas for hydrological modelling of large basins, resolution can be coarser. The priority should be to access
any local data curated by regional institutions, which will typically be finer, more accurate, and may extend
further back in time. Should this not be available, potentially useful global and continental datasets are:

• Global Land Survey. Global maps curated by the US Geological Survey, for years 1975, 1990, 2000,
2005, 2010, at 30 m of resolution. Available at https://www.usgs.gov/landsat-missions/global-land-
survey-gls.

• Global Land Cover and Land Use Change (Potapov et al., 2022). Global maps from satellite imagery,
for period 2000-2020, at 30 m of resolution. https://glad.umd.edu/dataset/GLCLUC2020.

• Climate Change Initiative Land Cover V2. Global maps curated by the European Space Agency, from
each year between 1992 and 2015, at 300 m of resolution. https://www.esa-landcover-cci.org/.

• Land-Use Harmonization (Hurtt et al., 2020). Global modelled maps for period 850-2100, at 0.25° of
resolution. https://luh.umd.edu/.

• Corine Land Cover. Maps over Europe for years 1990, 2000, 2006, 2012, and 2018, at 100 m of resolution.
https://land.copernicus.eu/pan-european/corine-land-cover.

• LUCAS LUC V1.1 (Hoffmann, 2022). Annual maps for Europe from 1950 to 2100, at 0.1° of resolution,
based on multiple datasets and methods.

If different datasets have comparable merits, including multiple datasets in the modelling could enable quan-
tifying the uncertainty relative to the land-cover. When land-cover changes affect large areas of the river
basin, they should be included in the hydrological modelling step. When land-cover changes affect the urban
areas adjacent to the flood, it may be appropriate to include them in the hydrodynamic modelling step. Most
distributed hydrological models have internal representation of land use for processes as evapotranspiration,
canopy interception, infiltration, irrigation (e.g., Horton et al., 2022); however, the associated parametriza-
tions are not evident and are model-dependent. Another aspect that should be considered is whether the
land-cover changes had implications for soil properties. Deforestation, for example, is known to cause loss of
soil, especially on steep terrain. If this is the case, soil changes should be included in the modelling, either
using direct available information, or recurring to assumptions.

3.2.3 Other human interventions on hydrology

Flood attribution requires information on human hydrological interventions: their key features relevant to
the modelling, and the timing of their realisation. Similarly, progressive changes to the channel geometry and
channel bed elevation as a result of fluvial aggradation or incision need to be assessed. As with land-cover,
often the best information should be accessed in collaboration with local authorities. However, there are a
few global datasets that can function as alternatives:

• Global Dam Watch. This can be used to assess the presence of dams and reservoirs in the basin
upstream of the study area, and the date of construction thereof. http://globaldamwatch.org.

• Global Water Watch (Donchyts et al., 2022). This contains time series of surface area for 71,000
reservoirs. https://www.globalwaterwatch.earth/.

• Historical Irrigation Database (Siebert et al., 2015). This contains information on which
global areas are equipped for irrigation, in time-series covering 1900-2005, at 5’of resolution.
https://aquaknow.jrc.ec.europa.eu/en/content/historical-irrigation-dataset-hid.

• OpenDELvE (Nienhuis et al., 2022). This contains maps, locations and metadata of known levees over
global river deltas. https://www.opendelve.eu/.

These datasets might still miss data for data-poor regions. It could be therefore valuable to try to assess the
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presence and extent of interventions indirectly, using more general datasets that have recently emerged. For
example, HydroATLAS (Linke et al., 2019) contains information on hydrological, climatological, environ-
mental and anthropogenic characteristics of river basins and segments, at 15” of resolution; the database of
free-flowing rivers (Grill et al., 2019) contains information about human pressure on river segments, notably
on: degree of fragmentation and of regulation by dams; on urban areas, enabling assumptions on the presence
of levees and river confinement structures.

The hydrological and hydrodynamic modelling will then need to adopt methods to represent these interven-
tions in the simulations, often by ‘burning’ them into the elevation map (Wing et al., 2019), and drawing
from the large experience documented in the literature (e.g., Remo et al., 2018; Zhao et al., 2016).

4. Whither flood attribution?

We have proposed our view that explicit inclusion of flooding in extreme event attribution is necessary,
but complicated by challenges at several levels. In all cases, hydrological/hydrodynamic modelling has
to be included, as no existing dataset includes flood events under the factual and counterfactual climate
conditions needed for the attribution. An area of advancement will therefore be to tackle these challenges
in an expanded probabilistic attribution framework (Section 3.1). This can benefit from the huge progress
recently made towards generating historical and near-real-time flood information. Such a framework should
include propagation of uncertainties over the additional steps of hydrological and flood modelling, and we
expect that uncertainties will grow considerably compared to attribution of precipitation. For most basins
and river segments, hydrology is altered (Grill et al., 2019). Here, other drivers of flood occurrence need
consideration, and future research should establish and test novel frameworks for attribution. We have
illustrated the broad ideas of a multi-driver framework for conditional attribution (Section 3.2). As this
framework enables isolating the hydrologic from the climatic drivers, it could also be adapted to include
and isolate other climatic drivers, to link the occurrence of the event to specific climate mechanisms. For
example, thermodynamic versus dynamic drivers (Diffenbaugh et al., 2017), teleconnections with climatic
oscillations, or sea surface temperatures. In the future, efforts could also be made towards a framework to
also enable attribution of compound fluvial and coastal floods (Zscheischler & Lehner, 2022).

An interesting advantage offered by an attribution framework that includes representation of past hydro-
logical change, is that with relatively small additional effort, it could also include simulations with possible
future changes in land-cover and possible river/flood management measures, in addition to possible climatic
scenarios. This would directly connect flood attribution with adaptation and with the policies of flood
management (Lahsen & Ribot, 2022; Osaka & Bellamy, 2020).

Besides flood managers, flood attribution could benefit from collaborations with fluvial geomorphologists
and paleoflood hydrologists. While dealing with the last decades or century makes the attribution more
tractable, historical records or sedimentary evidence for extreme events can expand the limited window
of modern observations, and inform on rare high-magnitude events that occurred in the past (Wilhelm et
al., 2018). Usually, the offset between the past setting (land-use and river morphology) and the present
requires assessment, which may be a challenge for heavily engineered Anthropocene rivers. Despite the
uncertainty associated with discharge estimates from paleoflood studies, their inclusion could benefit flood
risk attribution as they provide the precedent and the synoptic conditions for such extremes to have occurred
in the past (St. George & Mudelsee, 2019). Besides, paleo flood information could enable attribution of
older historical floods (Blöschl et al., 2020).
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Q., Giorgi, F., Goergen, K., Güttler, I., Halenka, T., Heinzeller, D., Hodnebrog, Ø., Jacob, D., Kartsios, S.,
Katragkou, E., Kendon, E., Khodayar, S., Kunstmann, H., Knist, S., Lav́ın-Gullón, A., Lind, P., Lorenz, T.,
Maraun, D., Marelle, L., van Meijgaard, E., Milovac, J., Myhre, G., Panitz, H. J., Piazza, M., Raffa, M.,
Raub, T., Rockel, B., Schär, C., Sieck, K., Soares, P. M. M., Somot, S., Srnec, L., Stocchi, P., Tölle, M. H.,
Truhetz, H., Vautard, R., de Vries, H., & Warrach-Sagi, K. (2020). A first-of-its-kind multi-model convection
permitting ensemble for investigating convective phenomena over Europe and the Mediterranean. Climate
Dynamics , 55 (1), 3-34. https://doi.org/10.1007/s00382-018-4521-8

de Bruijn, K. M., Lips, N., Gersonius, B., & Middelkoop, H. (2016). The storyline approach: a new way to ana-
lyse and improve flood event management. Natural Hazards , 81 (1), 99-121. https://doi.org/10.1007/s11069-
015-2074-2

Diez-Sierra, J., Iturbide, M., Gutiérrez, J. M., Fernández, J., Milovac, J., Cofiño, A. S., Cimadevilla, E.,
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E., Wilson, D., Zaimi, K., & Blöschl, G. (2015). A European Flood Database: facilitating comprehensive
flood research beyond administrative boundaries.Proc. IAHS , 370 , 89-95. https://doi.org/10.5194/piahs-
370-89-2015

Harrigan, S., Zsoter, E., Alfieri, L., Prudhomme, C., Salamon, P., Wetterhall, F., Barnard, C., Cloke, H.,
& Pappenberger, F. (2020). GloFAS-ERA5 operational global river discharge reanalysis 1979-present.Earth
Syst. Sci. Data Discuss. , 2020 , 1-23. https://doi.org/10.5194/essd-2019-232

He, X., Pan, M., Wei, Z., Wood, E. F., & Sheffield, J. (2020). A Global Drought and Flood Ca-
talogue from 1950 to 2016. Bulletin of the American Meteorological Society , 101 (5), E508-E535.
https://doi.org/10.1175/bams-d-18-0269.1

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C.,
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Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume,
S., & Thépaut, J.-N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological
Society , 146 (730), 1999-2049. https://doi.org/https://doi.org/10.1002/qj.3803

Hoeksema, R. J. (2007). Three stages in the history of land reclamation in the Netherlands. Irrigation and
Drainage , 56 (S1), S113-S126. https://doi.org/https://doi.org/10.1002/ird.340

Hoffmann, P., Reinhart, V., and Rechid, D. (2022). LUCAS LUC historical land use and land cover change
dataset for Europe (Version 1.1) Version Version 1.1). https://doi.org/doi:10.26050/WDCC/LUC_hist_-
EU_v1.1

Hoffmann, T., Thorndycraft, V. R., Brown, A. G., Coulthard, T. J., Damnati, B., Kale, V. S., Middel-
koop, H., Notebaert, B., & Walling, D. E. (2010). Human impact on fluvial regimes and sediment flux
during the Holocene: Review and future research agenda. Global and Planetary Change , 72 (3), 87-98.
https://doi.org/https://doi.org/10.1016/j.gloplacha.2010.04.008

Horton, P., Schaefli, B., & Kauzlaric, M. (2022). Why do we have so many different hydrolo-
gical models? A review based on the case of Switzerland. WIREs Water , 9 (1), e1574. htt-
ps://doi.org/https://doi.org/10.1002/wat2.1574

Huntingford, C., Marsh, T., Scaife, A. A., Kendon, E. J., Hannaford, J., Kay, A. L., Lockwood, M., Prud-
homme, C., Reynard, N. S., Parry, S., Lowe, J. A., Screen, J. A., Ward, H. C., Roberts, M., Stott, P. A.,
Bell, V. A., Bailey, M., Jenkins, A., Legg, T., Otto, F. E. L., Massey, N., Schaller, N., Slingo, J., & Allen, M.
R. (2014). Potential influences on the United Kingdom’s floods of winter 2013/14.Nature Climate Change ,
4 (9), 769-777. https://doi.org/10.1038/nclimate2314

Hurtt, G. C., Chini, L., Sahajpal, R., Frolking, S., Bodirsky, B. L., Calvin, K., Doelman, J. C., Fisk, J.,
Fujimori, S., Klein Goldewijk, K., Hasegawa, T., Havlik, P., Heinimann, A., Humpenöder, F., Jungclaus,
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Caillaud, C., Cardoso, R. M., Chan, S., Christensen, O. B., Dobler, A., de Vries, H., Goergen, K., Kendon,
E. J., Keuler, K., Lenderink, G., Lorenz, T., Mishra, A. N., Panitz, H.-J., Schär, C., Soares, P. M. M.,
Truhetz, H., & Vergara-Temprado, J. (2021). The first multi-model ensemble of regional climate simulations
at kilometer-scale resolution part 2: historical and future simulations of precipitation. Climate Dynamics ,56
(11), 3581-3602. https://doi.org/10.1007/s00382-021-05657-4

Potapov, P., Hansen, M. C., Pickens, A., Hernandez-Serna, A., Tyukavina, A., Turubanova, S., Zalles, V., Li,
X., Khan, A., Stolle, F., Harris, N., Song, X.-P., Baggett, A., Kommareddy, I., & Kommareddy, A. (2022).
The Global 2000-2020 Land Cover and Land Use Change Dataset Derived From the Landsat Archive: First
Results [Original Research].Frontiers in Remote Sensing , 3 . https://doi.org/10.3389/frsen.2022.856903

Rashid, M. M., & Wahl, T. (2022). Hydrologic risk from consecutive dry and wet extremes at the global
scale. Environmental Research Communications , 4 (7), 071001. https://doi.org/10.1088/2515-7620/ac77de

Remo, J. W. F., Ickes, B. S., Ryherd, J. K., Guida, R. J., & Therrell, M. D. (2018). Assessing the impacts of
dams and levees on the hydrologic record of the Middle and Lower Mississippi River, USA.Geomorphology ,
313 , 88-100. https://doi.org/https://doi.org/10.1016/j.geomorph.2018.01.004

Rottler, E., Bronstert, A., Bürger, G., & Rakovec, O. (2021). Projected changes in Rhine River flood seaso-
nality under global warming.Hydrol. Earth Syst. Sci. , 25 (5), 2353-2371. https://doi.org/10.5194/hess-25-
2353-2021

Schaller, N., Kay, A. L., Lamb, R., Massey, N. R., van Oldenborgh, G. J., Otto, F. E. L., Sparrow, S. N.,
Vautard, R., Yiou, P., Ashpole, I., Bowery, A., Crooks, S. M., Haustein, K., Huntingford, C., Ingram, W.
J., Jones, R. G., Legg, T., Miller, J., Skeggs, J., Wallom, D., Weisheimer, A., Wilson, S., Stott, P. A., &
Allen, M. R. (2016). Human influence on climate in the 2014 southern England winter floods and their
impacts.Nature Climate Change , 6 (6), 627-634. https://doi.org/10.1038/nclimate2927

Schaller, N., Otto, F., Van Oldenborgh, G. J., Massey, N., Sparrow, S., & Allen, M. (2014). THE HEAVY
PRECIPITATION EVENT OF MAY-JUNE 2013 IN THE UPPER DANUBE AND ELBE BASINS. Bulletin
of the American Meteorological Society , 95 , S69-S72.

Scussolini, P., Eilander, D., Sutanudjaja, E. H., Ikeuchi, H., Hoch, J. M., Ward, P. J., Bakker, P., Otto-
Bliesner, B. L., Guo, C., Stepanek, C., Zhang, Q., Braconnot, P., Guarino, M.-V., Muis, S., Yamaz-
aki, D., Veldkamp, T. I. E., & Aerts, J. C. J. H. (2020). Global River Discharge and Floods in the
Warmer Climate of the Last Interglacial.Geophysical Research Letters , 47 (18), luue2020GL089375. htt-
ps://doi.org/10.1029/2020gl089375

21



P
os

te
d

on
29

A
ug

20
23

|T
he

co
py

ri
gh

t
ho

ld
er

is
th

e
au

th
or

/f
un

de
r.

A
ll

ri
gh

ts
re

se
rv

ed
.

N
o

re
us

e
w

it
ho

ut
pe

rm
is

si
on

.
|h

tt
ps

:/
/d

oi
.o

rg
/1

0.
22

54
1/

es
so

ar
.1

69
33

22
77

.7
83

00
45

1/
v1

|T
hi

s
a

pr
ep

ri
nt

an
d

ha
s

no
t

be
en

pe
er

re
vi

ew
ed

.
D

at
a

m
ay

be
pr

el
im

in
ar

y.

Sebastian, A., Gori, A., Blessing, R. B., van der Wiel, K., & Bass, B. (2019). Disentangling the impacts of
human and environmental change on catchment response during Hurricane Harvey. Environmental Research
Letters , 14 (12), 124023. https://doi.org/10.1088/1748-9326/ab5234
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