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Abstract

Precipitation plays an important role in various processes over the Southern Ocean (SO), ranging from the hydrological cycle to

cloud and aerosol processes. The main objective of this study is to characterize SO precipitation properties. We use data from

the Southern Ocean Clouds Radiation Aerosol Transport Experimental Study (SOCRATES), and leverage observations from

airborne radar, lidar, and in situ probes. For the cold-topped clouds (cloud-top-temperature < 0°C), the phase of precipitation

with reflectivity > 0 dBZ is predominately ice, while reflectivity < -10 dBZ is predominately liquid. Liquid-phase precipitation

properties are retrieved where radar and lidar are zenith-pointing. The power-law relationships between reflectivity (Z) and rain

rate (R) are developed, and the derived Z-R relationships show vertical dependence and sensitivity to the intermediate drops

(diameters between 10-40 μm). Using derived Z-R relationships, reflectivity-velocity (ZV) retrieval method, and a radar-lidar

retrieval method, we derive rain rate and other precipitation properties. The retrieved rain rate from all three methods shows

good agreement with in-situ aircraft estimates. Rain rate features the prevalence of light precipitation (<0.1 mm hr-1). We

examine the vertical distribution of precipitation properties, and found that rain rate, precipitation number concentration,

precipitation liquid water all decreases as one gets closer to the surface, while precipitation size and width increases. We also

examine how cloud base rain rate (RCB) depends on cloud depth (H) and aerosol concentration (Na) for particles with diameter

greater than 70nm, and we find a linear relationship between RCB and H3.6Na
-1.
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Key Points: 11 

• Liquid-phase precipitation retrievals show good agreement with in situ observations and 12 
feature the prevalence of light rain 13 

• Reflectivity to rain rate relationships are developed, showing vertical dependence and 14 
sensitivity to the intermediate-sized drops 15 

• The below-cloud precipitation phase with radar reflectivity > 0 dBZ is mostly ice, while 16 
radar reflectivity < -10 dBZ is mostly liquid 17 
 18 
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Abstract 20 
Precipitation plays an important role in various processes over the Southern Ocean (SO), ranging 21 
from the hydrological cycle to cloud and aerosol processes. The main objective of this study is to 22 
characterize SO precipitation properties. We use data from the Southern Ocean Clouds Radiation 23 
Aerosol Transport Experimental Study (SOCRATES), and leverage observations from airborne 24 
radar, lidar, and in situ probes. For the cold-topped clouds (cloud-top-temperature < 0°C), the 25 
phase of precipitation with reflectivity > 0 dBZ is predominately ice, while reflectivity < -10 dBZ 26 
is predominately liquid. Liquid-phase precipitation properties are retrieved where radar and lidar 27 
are zenith-pointing. The power-law relationships between reflectivity (Z) and rain rate (R) are 28 
developed, and the derived Z-R relationships show vertical dependence and sensitivity to the 29 
intermediate drops (diameters between 10-40 μm). Using derived Z-R relationships, reflectivity-30 
velocity (ZV) retrieval method, and a radar-lidar retrieval method, we derive rain rate and other 31 
precipitation properties. The retrieved rain rate from all three methods shows good agreement with 32 
in-situ aircraft estimates. Rain rate features the prevalence of light precipitation (<0.1 mm hr-1).  33 
We examine the vertical distribution of precipitation properties, and found that rain rate, 34 
precipitation number concentration, precipitation liquid water all decreases as one gets closer to 35 
the surface, while precipitation size and width increases. We also examine how cloud base rain 36 
rate	(𝑅!") depends on cloud depth (H) and aerosol concentration (𝑁#) for particles with diameter 37 
greater than 70nm, and we find a linear relationship between 𝑅!" 	and 𝐻$.&	𝑁#'(.   38 
 39 

Plain Language Summary 40 
Precipitation plays an important role over the Southern Ocean (SO), such as transferring water 41 
from air to ocean, and affect cloud and aerosols (tiny airborne particles). The goal of this study is 42 
to characterize SO precipitation properties using aircraft data. Aircraft had instruments that can 43 
count the number of droplets, as well as lidar and radar, which are remote sensing devices that use 44 
laser light and microwave waves respectively to detect objects. Using information from lidar, we 45 
can distinguish precipitation phase, and we found that ice precipitation is more frequent when 46 
observed radar reflectivity is larger than certain threshold. We derived relationships between rain 47 
rate and radar variable that can be used for future research. We also calculated precipitation 48 
properties and found our results compares well with direct measurements from the aircraft. Rain 49 
rate we calculated features the prevalence of light precipitation. We also studied how precipitation 50 
properties very vertically, and found that as one gets closer to the surface, there is a decrease in 51 
precipitation number and water, while there is an increase in the size overall. We also found that 52 
rain rate depends on how thick the clouds are and on the number of aerosols. 53 

 54 

1 Introduction 55 

Surrounding Antarctica, the Southern Ocean (SO) is the second smallest of the five ocean 56 
basins, yet it plays an outsized role in the climate system. The SO is estimated to account for about 57 
75% of the oceanic heat uptake and about 30-40% of the carbon uptake (Frölicher et al., 2015; 58 
Khatiwala et al., 2009), and thus act as a strong buffer against climate change. Due to the lack of 59 
anthropogenic aerosols, the SO is also a pristine environment, and it has been argued that SO 60 
observations can be used as a present-day proxy for pre-industrial conditions as regards trying to 61 
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constrain anthropogenic aerosol effects (Hamilton et al., 2014; McCoy et al., 2020), which remain 62 
a large source of uncertainty in the climate projections (Lee et al., 2016; Bellouin et al., 2020).  63 
More generally, SO clouds, especially low clouds, also have attracted much research interest in 64 
recent years because of their importance to the global radiative energy budget (Trenberth and 65 
Fasullo, 2010; Bodas-Salcedo et al., 2016; Cesana et al., 2022) as well as global cloud feedbacks 66 
and global climate sensitivity (Tan et al., 2016; Zelinka et al., 2020; Mülmenstädt et al., 2021). 67 

Precipitation impacts stratocumulus behavior via complex feedbacks that operate on both 68 
macrophysical and microphysical scales (Wood, 2012), and has been found to be a key player in 69 
the transition of stratocumulus regimes, from closed cells to open cells, and the maintenance of 70 
open cells, at least in subtropical stratocumulus (Wang and Feingold, 2009; Yamaguchi and 71 
Feingold, 2015; Smalley et al., 2022). Moreover, recent studies highlight the importance of 72 
precipitation formation as a dominant sink of cloud condensation nuclei and its control on the 73 
cloud droplet number over the SO (McCoy et al., 2020; Kang et al., 2022). Despite the importance 74 
of precipitation in low clouds, many climate models and reanalysis data struggle to represent 75 
accurately precipitation, including over the SO (Zhou et al., 2021).  Mülmenstädt et al., (2021) 76 
point out that precipitation biases persist in CMIP6 models, with warm clouds precipitating too 77 
frequently, thus shortening the cloud lifetime and underestimating their cooling effect. This 78 
problem is especially pernicious for the SO because the error grows in importance, with a reduction 79 
in mixed-phase clouds as the climate warms (Bjordal et al., 2020).   80 

Due to the remoteness of SO and a general lack of surface and in situ observations, satellite 81 
observations have long been an indispensable tool to study SO precipitation. Arguably the best 82 
available source of satellite data on SO precipitation rates is CloudSat (W-band radar), which has 83 
greater sensitivity to light precipitation than passive sensors (Tansey et al., 2022, Eastman et al., 84 
2019). CloudSat has provided an unprecedentedly broad picture of SO precipitation: Ellis et al. 85 
(2009) showed that the precipitation occurrence frequency peaks around 50°-60°S; Mitrescu et al. 86 
(2010) found that the SO has a high occurrence of very light precipitation with rain rates smaller 87 
than 1 mm h-1 having a frequency of 15%; Mace and Avey (2017) using both CloudSat and 88 
Moderate Resolution Imaging Spectroradiometer (MODIS) data found that precipitation processes 89 
in SO warm clouds vary seasonally with a stronger precipitation susceptibility to cloud droplet 90 
number in winter. Although compared to other satellite measurements, CloudSat better detects 91 
light precipitation and is better able to determine the rain rate, CloudSat is nonetheless affected by 92 
ground clutter which severely corrupts the reflectivity measurements within about 750 m of the 93 
surface (Marchand et al.,2008). CloudSat precipitation retrievals are also largely limited to 94 
situations where the measured near-surface (750 to 1000m) reflectivity is larger than -15 dBZ 95 
(Haynes et al., 2009), although the precipitation is often observed falling for SO clouds with 96 
reflectivity factors less than -15 dBZ (e.g., Mace and Protat 2018). As shown by Tansey et al. 97 
(2022), who evaluated CloudSat retrievals using surface precipitation measurements during the 98 
Macquarie Island Cloud Radiation Experiment (MICRE), the CloudSat 2C-Precip-Column 99 
product misses most precipitation with a precipitation rate less than 0.5 mm hr-1. In addition, 100 
CloudSat radar reflectivity measurements provide very limited information regarding the phase of 101 
the precipitation. The current operational CloudSat precipitation products categorize precipitation 102 
into liquid, snow, or mixed phase based largely on temperature profiles extracted from ECMWF 103 
analysis and identifying melting layers, rather than any directly measured quantity.  104 

In the face of biases and uncertainty in satellite retrievals and modeling, precipitation 105 
observations from multiple sources such as islands, ships, and aircraft provide us with an important 106 
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opportunity to obtain a more detailed view of SO precipitation. Such precipitation observations 107 
were made in several recent collaborative field campaigns (McFarquhar et al.,2021), including the 108 
aforementioned Macquarie Island Cloud Radiation Experiment (MICRE) during 2016-2018, the 109 
Clouds Aerosols Precipitation Radiation and atmospheric Composition over the Southern Ocean 110 
(CAPRICORN) campaign in 2016 and 2018, the Measurements of Aerosol, Radiation, and Clouds 111 
over the Southern Ocean (MARCUS) campaign during 2017-2018, and the Southern Ocean Cloud 112 
Radiation and Aerosol Transport Experimental Study (SOCRATES) during Jan-Feb 2018.  For 113 
example, Tansey et al. (2022) created a 1-year “blended” surface precipitation dataset (which 114 
combines W-band radar, tipping buck and disdrometer data) for MICRE and used these data to 115 
study the diurnal, synoptic and seasonal variability of near-surface precipitation.  These authors 116 
found that total accumulation was comprised of about 74% rain, 16% ice or mixed phase 117 
precipitation, and 10% small particle precipitation. In a study based on the CAPRICORN datasets. 118 
Montoya Duque et al. (2022), applied a K-means clustering technique to radiosonde data to 119 
classify the atmosphere into seven thermodynamic clusters, and found that the highest occurrence 120 
of surface precipitation was associated with warm frontal clusters and high-latitude cyclone 121 
clusters(poleward of the polar front near cyclones), with warm rain dominating in the former and 122 
the largest fraction of snow in the latter. Shipborne precipitation observations from CAPRICORN 123 
have also been included along with observations from other research vessels in the Ocean Rain 124 
and Ice-Phase Precipitation Measurement Network (OceanRAIN), the first global and 125 
comprehensive along-track in-situ water cycle surface reference dataset (Klepp et al., 2018). Protat 126 
et al. (2019a,b) used OceanRAIN data to investigate discrepancies among satellite products at high 127 
latitudes and found large latitudinal and convective‐stratiform variability in the drop size 128 
distribution (DSD). Protat et al. (2019a) pointed out that the Southern hemisphere high latitudes 129 
stood out as regions with a systematically higher frequency of occurrence of light precipitation 130 
with rates < 1 mm h−1 and difference in the shape parameter μ in the precipitation drop size 131 
distribution (DSD), with high-latitude and midlatitude μ ranging from -1 to 1, which is lower than 132 
the assumed μ of 2 or 3 in the Global Precipitation Measurement Mission (GPM) rainfall 133 
algorithms (Grecu et al., 2016; Seto et al., 2013). Protat et al. (2019b) found that the Southern 134 
Hemisphere high latitude (−67.5°S to −45°S), along with Northern Hemisphere polar latitude 135 
bands, stood out with a fundamentally different relationship between radar observables and rainfall 136 
properties, such as radar reflectivity to rain rate (Z-R) relationship, mainly because of much lower 137 
rain rates over the SO, suggesting that specific relationships are needed for these regions.  138 

In this study, we use data collected during SOCRATES to study the precipitation properties 139 
of summertime SO stratocumulus, leveraging observations from airborne W-band HIAPER Cloud 140 
Radar (HCR), High Spectral Resolution Lidar (HSRL), and in situ probes. In particular we 141 
examine occurrence of liquid and ice phase precipitation, and for liquid precipitation we derived 142 
precipitation properties such as rain rate, using a hierarchy of retrieval methods from simple Z-R 143 
relationships to more complex radar reflectivity-velocity retrieval (ZV retrieval) and radar-lidar 144 
retrievals. We also apply the precipitation observations and retrievals to study the in-and-below 145 
cloud precipitation properties and rain rate dependence on cloud depth and aerosol concentration.  146 

This paper is organized as follows: Section 2 introduces the datasets, instruments, as well 147 
as the analysis and retrieval methods used in this study. Section 3 provides a campaign overview 148 
and discusses phase partitioning. Section 4 examines Z-R relationships and precipitation retrievals 149 
and compares these remote sensing data to in situ measurements. Section 5 provides a statistical 150 
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summary of the precipitation properties, and Section 6 explores the relationship of stratocumulus 151 
rain rate with cloud depth and aerosol concentration, ending with conclusions in Section 7. 152 

 153 

2 Data and Methods 154 

In this section we introduce the data and methods that we use to characterize in-and-below cloud 155 
precipitation properties. Section 2.1 describes the SOCRATES campaign sampling strategies, 156 
remote sensors (W-band Cloud Radar, HCR, and High Spectral Resolution Lidar, HSRL), and in 157 
situ instruments. Section 2.2 describes how we use in situ data to analyze in-cloud and below-158 
cloud precipitation properties, as well as how we estimate Z-R relationships. In section 2.3, we 159 
describe reflectivity-velocity (ZV) and radar-lidar retrievals.  160 

2.1 Instrumentation and data 161 

In this study, we use data collected during the SOCRATES campaign to study the precipitation 162 
properties of stratocumulus. The SOCRATES campaign happened in January-February 2018 163 
(McFarquhar et al., 2021), when the NSF/NCAR Gulfstream GV aircraft conducted 15 research 164 
flights over the SO.  After taking off from Hobart (Tasmania), the aircraft typically flew south at 165 
high altitude and then descended to just above cloud top for several 10’s of minutes, before heading 166 
back towards Hobart.  On the return, the aircraft would descend into low cloud and sample aerosols, 167 
clouds, and precipitation with a repeating series of activities that included in-, below-, and above-168 
cloud level legs (where the aircraft flew at a nearly fixed altitude), as well as sawtooth legs (where 169 
the aircraft ascended or descended through the cloud layer). Supplementary Figure S1 shows a 170 
schematic of the typical flight, as well as the 15 flight tracks flown during SOCRATES. 171 

To characterize in-and-below cloud precipitation properties, we leverage observations from both 172 
in situ probes and remote sensors. Table 1 gives a summary of the instruments we use in this study, 173 
along with a primary reference for each instrument. We describe how these in situ probe data are 174 
used in Section 2.2.  175 

 176 
Table 1. Instruments 177 
 178 

Instruments Measurements References 

Cloud Droplet Probe 
(CDP) 

Size and concentration of 
hydrometeors with a 
diameter between 2-50 µm 

Lance et al. (2010) 

https://data.eol.ucar.edu/dataset/552.002 

Two-Dimensional 
Stereo probe (2DS) 

Size and concentration of 
hydrometeors with a 
diameter between 10-1280 
µm 

Wu and McFarquhar (2019) 
https://data.eol.ucar.edu/dataset/552.047 

 

Ultra-High-
Sensitivity Aerosol 

Aerosols with dry diameters 
between 60 and 1,000 nm 

DMT(2013); Sanchez et al. (2021) 
https://data.eol.ucar.edu/dataset/552.002 
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Spectrometer 
(UHSAS) 

 

HIAPER Cloud 
Radar (HCR) 

Reflectivity, Doppler 
velocity, Spectral width, 
Signal to noise ratio, etc. 

Vivekanandan et al. (2015) 
https://data.eol.ucar.edu/dataset/552.034 

High Spectral 
Resolution Lidar 
(HSRL) 

Backscatter coefficient, 
Particle Linear 
Depolarization Ratio, 
Extinction coefficient, etc. 

Eloranta (2005) 

https://data.eol.ucar.edu/dataset/552.034 
 

   
 179 
Note: For both CDP and 2DS, data is available at 1Hz temporal resolution. CDP data can be found in 180 
SOCRATES Navigation, State Parameter, and Microphysics Flight-Level Data. This study uses version 1.4 181 
of this dataset. This study uses version 1.1 of the 2DS dataset. The radar and lidar moments data version 182 
3.1  were processed by NCAR/EOL and 2 Hz (0.5 seconds) temporal resolution and 19 meters range vertical 183 
resolution. The operational specifications of HCR and HSRL is available at 184 
https://data.eol.ucar.edu/datafile/nph-get/552.034/readme_HCR_HSRL_SOCRATES_2Hz_v3.1.pdf.   185 

 186 

Remote sensors include a 94-GHz W-band HIAPER Cloud Radar(HCR) (Vivekanandan et al., 187 
2015) and a 532-nm High Spectral Resolution Lidar (HSRL) (Eloranta, 2005). Based on radar and 188 
lidar moments data, we will use retrieval techniques to derive precipitation properties, as detailed 189 
in section 2.3. HCR and HSRL were deployed in previous campaigns, such as CSET (e.g. Schwartz 190 
et al., 2019). The radar and lidar data were processed by NCAR/EOL at 2 Hz (0.5 seconds) 191 
temporal resolution and have 19 m vertical range resolution.  A description of the NCAR/EOL 192 
data processing and corrections are given in readme files that are distributed with the data (with 193 
link in the acknowledgement). This includes a correction of radial velocity for platform motion 194 
following Romatschke et al. (2021), in which corrections are applied to the nadir and zenith 195 
pointing data separately. For nadir pointing data, radial velocity was corrected following Ellis et 196 
al. (2019), where for radial velocity of the surface (assumed to be 0 m/s) is used as a reference to 197 
correct the data with a running 3rd degree polynomial filter. A similar method is applied to the 198 
zenith pointing data, which are the focus of this paper. But for the zenith pointing data, instead of 199 
assuming zero velocity of surface, it is assumed that the cloud top velocities from zenith pointing 200 
times are similar to those of the neighboring nadir pointing times.  Specifically, cloud top velocities 201 
are first calculated for both the nadir pointing data and zenith pointing data, then the difference of 202 
the two is used to correct the bias in the zenith pointing velocity data. Figure S2 shows an example 203 
of the zenith pointing velocity fields before and after the correction, and Figure S3 shows the 204 
averaged nadir pointing and zenith pointing velocity profiles from RF13, demonstrating that 205 
correction resulted in consistent velocity profile between nadir pointing data and zenith pointing 206 
times.  207 
 208 
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2.2 In situ Measurements 209 

2.2.1 Droplet size distribution  210 

This study uses in situ measurements mainly from two particle-sizing-instruments: a Cloud 211 
Droplet Probe (CDP) and a Two-Dimensional Stereo probe (2DS) as listed in Table 1. We focus 212 
on in situ measurement from these legs (as marked in Figure S1): below-cloud level legs, in-cloud 213 
level legs, and sawtooth legs (which are further divided into top-half of the cloud, bottom-half of 214 
the cloud, and the below-cloud portion as described below).  These in situ measurements will be 215 
used to derive reflectivity to rain rate relationships (Z-R) relationships (section 4.1), to validate the 216 
precipitation retrievals (section 4.3), and to study in-and-below cloud precipitation properties 217 
(section 5).  218 

We combine measurements from CDP and 2DS to create combined droplet size distribution (DSD) 219 
by using CDP measurements for bins with a diameter < 25μm and 2DS for bins > 50 μm.  For 220 
drops in the intermediate size range (25–50 µm) we take the larger values of the two probes. After 221 
combining the DSD from two probes, we further averaged DSD for different regions and flight 222 
segments.  Specifically, we examine the top half of the cloud layer from sawtooth legs; the bottom 223 
half of the cloud layer from sawtooth legs; the below-cloud portion of the sawtooth legs; the below-224 
cloud level legs in 20s intervals; and in-cloud level legs in 10s intervals. For the purpose of 225 
averaging the in-situ data into these categories, the define the aircraft as in-cloud when then liquid 226 
water content greater than 0.03 g m−3 (Wood et al., 2011; Kang et al., 2021).  Because of the limited 227 
sampling volumes of the probes, even with averaging, there can be gaps (and large variability) in 228 
the DSD distribution for large particles (where the concentrations are sufficient low that the probes 229 
become increasingly unlikely to observe these particles).  As needed, we fill gaps in the DSD by 230 
fitting an exponential curve following Comstock et al. (2004) and extrapolate DSD for larger 231 
particles (out to a diameter of 2000 μm). 232 
 233 

2.2.2 Precipitation properties 234 

Precipitation properties are derived using the DSD. For different segments, we calculated rain rate 235 
(liquid water flux) as: 236 
 237 

𝑅 = 3600	 ∗ 	
𝜋
6 𝜌). 𝑛(𝐷)	𝐷$	𝑣*(𝐷)𝑑𝐷

+

,!"#

 

 
(1) 

where 𝜌) is the density of liquid water (1000 kg m-3 ), D is the diameter in of m, 3600 is a scaling 238 
factor to convert the unit from kg m-2 s-1  to mm hr-1, and 𝑣*(𝐷) is the terminal fall velocity (unit 239 
of m s-1) of droplets in the range from D to D+dD, and 𝑛(𝐷) is the drop size distribution (with 240 
units of m-3 mm-1 ) . We use the terminal fall velocity model of Beard (1976) for 𝑣*(𝐷) term. Dmin 241 
is the lower limit for the integration, and except where stated otherwise is set to 40 𝜇m. In Section 242 
4.1, we test the importance of smaller droplets with diameter smaller than 40 μm on the liquid 243 
water flux(LWFtotal). 244 
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Similarly, precipitation number (𝑁-./01-) is calculated as: 245 

 246 

𝑁-./01- 	= 	. 𝑛(𝐷)𝑑𝐷
+

,!"#

 

 
(2) 

Precipitation liquid water content (𝐿𝑊𝐶-./01-) is calculated as: 247 

 248 

𝐿𝑊𝐶-./01- =	
𝜋
6 𝜌). 𝑛(𝐷)	𝐷$𝑑𝐷

+

,!"#

 

 
(3) 

Precipitation liquid water content weighted mean diameter (𝐷-./01-), which can be thought of as 249 
diameter at which half of 𝐿𝑊𝐶-./01- is below and half is above, is calculated as: 250 

 251 

𝐷-./01- 	= 		
∫ 𝑛(𝐷)	𝐷2𝑑𝐷+
,!"#

∫ 𝑛(𝐷)	𝐷$𝑑𝐷+
,!"#

	 

 

(4) 

Precipitation liquid water content weighted width (𝜎-./01-) is calculated as: 252 

 253 

𝜎-./01- 	= 	9
∫ 𝑛(𝐷)	𝐷$(𝐷 − 𝐷-./01-)3𝑑𝐷
+
,!"#

∫ 𝑛(𝐷)	𝐷$𝑑𝐷+
,!"#

	 

 

(5) 

 254 
2.2.3 Z-R relationships 255 
 256 
To estimate the Z-R relationships from in situ measurements, we calculated radar reflectivity Z 257 
and rain rate R, respectively from the in situ droplet size distributions (DSD). Rain rate is 258 
calculated as equation 1. Reflectivity is proportional to the sixth moment of the DSD: 259 

𝑍 = . 𝑛(𝐷)	𝐷&	𝛾*(𝐷)𝑑𝐷
+

4
 

 

(6) 

where 𝑛(𝐷)	𝑑𝐷	gives number concentrations from diameter D to D+dD, 𝛾*(𝐷) is the Mie-to-260 
Rayleigh backscatter ratio (shown in Figure S4, which is the ratio of the backscatter efficiency of 261 
Mie scattering for W-band (94-GHz), calculated using the miepython package based on Wiscombe 262 
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(1979), and backscatter efficiency of Rayleigh scattering (Bohren & Huffman, 1983). With 263 
calculated reflectivity and rain rate from the in situ DSD, the Z-R relationship assumes a traditional 264 
power-law of the form:  265 

𝑍 = 𝑎𝑅5 (7) 

Where a and b are coefficients, and Z is the independent variable. Equation 7 can also be 266 
rearranged as 𝑅 = (𝑍/𝑎)(/5, which can be used to derive R based on Z observations. Coefficients 267 
a and b can be estimated using the least-squares regression in log space following Comstock et al. 268 
(2004): 269 

𝑙𝑜𝑔𝑅 = 	
1
𝑏	(−	𝑙𝑜𝑔	𝑎	 + 	𝑙𝑜𝑔	𝑍) (8) 

We estimated the uncertainty in estimated exponents b and intercepts a that are based on in situ 270 
data using bootstrapping. Note that in section 4.1, we also estimated Z-R relationship based on 271 
radar observed reflectivity factor and rain rate from radar-lidar retrieval (more details in section 272 
2.3.3), where we use moving blocks bootstrapping method following Wilks (1997) to estimate 273 
uncertainty in a and b coefficients, with a block length that close to the enfolding length.  274 

2.3 Precipitation Retrievals based on remote sensors 275 

Precipitation retrievals described in this section use the zenith-pointing data collected when the 276 
aircraft was flying level-legs below the cloud. To illustrate, Figure 1a shows the flight track altitude 277 
and measured radar reflectivity for research flight 13 (RF13).  In panel (a), the potions of the flight 278 
track which feature below-cloud-level legs are colored green. Figure 1b-f shows the radar and lidar 279 
data in more detail, for the below-cloud level leg starting from 03:40 UTC, which is marked by 280 
the grey shading in Figure 1a. In general, retrievals undertaken for below-cloud level legs have the 281 
advantage that the zenith pointing lidar data allows one to determine the position of cloud base, as 282 
well as providing measurements of the backscatter (Figure 1c) and depolarization ratio (Figure 1d) 283 
of the precipitation that has fallen from the cloud and can be used to determine the precipitation 284 
phase. We describe the retrieval process in the three subsections that follow: (1) determine the 285 
cloud boundaries; (2) determine the phase of precipitation; (3) determine the liquid precipitation 286 
microphysical properties (such as the rain rate).  287 

2.3.1 Determine the cloud boundaries 288 

To determine the cloud base, we use the lidar backscatter coefficient 𝛽 (e.g. Figure 1c) and define 289 
the cloud base as the altitude where 𝛽 first exceeds a threshold of 0.0001 m-1 sr-1. The black dots 290 
in Figure 1c show the cloud base identified using this threshold.  Cloud top for our analysis is 291 
based on the radar reflectivity data, which has already been masked for significant detections 292 
(above the instrument noise floor).  The cloud top is taken simply as the maximum height with a 293 
valid reflectivity echo below 3km, as marked by grey dots in Figure 1b-f.  294 

2.3.2 Determine the phase of precipitation below cloud base 295 

With the cloud boundaries identified, the next step is to determine the phase of the precipitation 296 
falling from the clouds. Following Mace and Protat (2018), we determine the precipitation phase 297 
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using the lidar particle linear depolarization ratio (PLDR) (e.g., Figure 1d). The basic concept is 298 
that the lidar emits linearly polarized light, and scattering by spherical particles (e.g. liquid drops) 299 
does not change the polarization state of the light and thus generates little PLDR, while scattering 300 
from non-spherical particles (e.g. ice particles) creates significant depolarization and thus 301 
generates measurable increase in PLDR. In this study, for each lidar column, we examined the 302 
median of the PLDR over the vertical interval between cloud base to the first useable lidar range 303 
gate.  For clouds with a cloud top temperature greater than 0, that is for warm clouds whose 304 
precipitation must be liquid, we find the below-cloud base PLDR values to be less than 0.03 about 305 
90% of the time, and to be above 0.05 less than 1% of the time(see Figure S5 for overall statistics 306 
and Figure S6 for an example case).  Thus, for cooler cold-topped clouds (which might precipitate 307 
ice), we define the precipitation to be liquid phase when the median PLDR < 0.03; ice precipitation 308 
when PLDR > 0.05; and ambiguous phase with PLDR values in between.   309 

2.3.3 Liquid Precipitation retrieval  310 

After determining the cloud base and precipitation phase, we can use a hierarchy of retrieval 311 
methods with increasing complexity to derive the precipitation microphysical properties, starting 312 
from (1) a simple Z-R relationship approach where only one variable, the radar reflectivity, Z, is 313 
available to derive the rain rate, to (2) a ZV retrieval following Mace et al. (2002) and Marchand 314 
et al. (2007), where radar reflectivity, Z, and mean Doppler velocity, V, are known to (3) a radar-315 
lidar retrieval following O’Connor et al. (2005) based on three observables: radar reflectivity Z, 316 
radar Doppler spectral width 𝜎7, and lidar backscatter 𝛽.   We briefly describe the radar-lidar and 317 
then the ZV and in this section, and present retrieval results and evaluate the retrievals using in 318 
situ observations in Section 4.   319 

The radar-lidar retrieval technique uses three input variables radar reflectivity, Z (Figure 1b), 320 
doppler spectral width, 𝜎7	(Figure 1e), and lidar backscatter, 𝛽  (Figure 1c), to solve for three 321 
parameters in an assumed modified gamma distribution (equation 9) for the precipitation drop size 322 
distribution.  The three parameter are the shape factor 𝜇, the median equivolumetric diameter D0, 323 
and the normalized droplet concentration Nw： 324 

𝑛(𝐷) = 𝑁)𝑓(𝜇)(
𝐷
𝐷4
)9𝑒[

'($.&<=9),
,$

] (9) 

where D is diameter, and 𝑓(𝜇) is a function of 𝜇  325 

𝑓(𝜇) = 	
6

3.672
(3.67 + 𝜇)2

Γ(𝜇 + 4)  (10) 

where Γ is the gamma function. Integration of the droplet size distribution in (9) will yield the 326 
precipitation droplet number concentration, Nprecip, as in equation 2.  327 

Following O’Connor et al. (2005), one can show that for a fixed value of the shape factor,	𝜇, the 328 
ratio of the radar reflectivity to lidar backscatter is proportional to the fourth power of the mean 329 
drop size, and the combination of radar reflectivity and lidar backscatter can therefore be used to 330 
calculate D0 and Nw.  In the retrieval algorithm, this is done assuming an initial value of 𝜇 = 0.  331 
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The Doppler spectral width is then forward calculated and 𝜇 is increased or decreased in order to 332 
match the observed Doppler spectral width (after applying corrections for beam width and 333 
turbulent motions). The forward calculations require a model for the hydrometeor terminal fall 334 
velocity, for which we use the model of Beard (1976).  Once the three distribution parameters are 335 
known, it is straightforward to calculate the rain rate, rain liquid water content, and mean rain drop 336 
size, etc. using the fall velocity and equation (9). This retrieval technique has been widely used in 337 
retrieving drizzle properties (e.g. Ghate & Cadeddu, 2019; Yang et al., 2018), including the CSET 338 
campaign with airborne radar and lidar (Schwartz et al., 2019; Sarkar et al., 2021). Our 339 
implementation largely follows O’Connor et al. (2005), except for estimation of the contribution 340 
from air turbulence to the observed spectral width. Instead of using the horizontal wind speed to 341 
estimate the length scale (we note O’Connor et al. (2005) originally developed the retrieval for 342 
vertically pointing ground-based radar and lidar), we use the aircraft speed.  343 

In addition to the radar-lidar retrieval technique, we also use a reflectivity-velocity (ZV) retrieval 344 
technique (Frisch et al.,1995; Mace et al., 2002; Marchand et al.,2007). The first step in this 345 
retrieval is to estimate the precipitation fall velocity from radar measured Doppler velocity, which 346 
includes the effect of vertical air motions (i.e., updrafts/drowndraft).  We do this follow Orr and 347 
Kropfli (1998) and partition the measured Doppler velocities into a set of height and reflectivity 348 
bins (for each below-cloud zenith-pointing segment) and average the partitioned Doppler velocity 349 
as an estimate for the fall velocity (as a function of height and radar reflectivity). The underlying 350 
idea is that at a given altitude and reflectivity, there is a characteristic size distribution (with a 351 
characteristic fall velocity) and by averaging the Doppler velocities over a narrow range of 352 
reflectivity values, one averages out the effect of the updrafts and downdrafts leaving only the 353 
mean fall velocity. In this study we use reflectivity bins are that 2 dBZ wide, and use 200 m vertical 354 
bins with 100 m overlap.  The results are not particularly sensitive to these choices, as long as there 355 
is a healthy number of samples are available in each bin.   Following Frisch et al. (1995), it is 356 
straight-forward to obtain analytical expressions for distribution parameters D0  and Nw given the 357 
derived fall velocity, measured reflectivity, and an assumed shape factor 𝜇. Except were stated 358 
otherwise, we assume shape factor to be 0.  One can show that the modified gamma distribution 359 
(equation 9) reduces to the exponential distribution when the shape factor is zero.  In the radar-360 
lidar retrieval we find retrieved shape factor is often quite small and we will examine and discuss 361 
the sensitivity of the ZV retrieval to assumed shape factor values in Section 4.2.   362 
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 363 

Figure 1. Example radar and lidar data collected during the SOCRATES. Panel a shows the flight 364 
tracks and reflectivity fields from research flight 13 (RF13), with different segments color-coded 365 
as in Figure S1. The grey shading marks a portion of one below-cloud level leg, and a zoom-in 366 
view of the radar and lidar fields for this segment are shown in panels b-f: (b) radar reflectivity; 367 
(c) lidar backscatter coefficient; (d) lidar particle linear depolarization ratio; (e) radar spectral 368 
width; (f) radar doppler velocity. The grey lines show the estimated cloud top, the black lines show 369 
the estimated cloud base, and the green line shows the location of the aircraft. 370 
 371 
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3 Campaign overview  372 

To get a general sense of the hydrometers (clouds and precipitation) sampled by the airborne W-373 
band radar during the SOCRATES, Figure 2a shows the joint histogram of radar reflectivity with 374 
height observed during below-cloud, zenith-pointing periods (i.e. as illustrated in Figure S1).   375 
Here the histogram is normalized by the number of radar columns, such that the value in each bin 376 
indicates how often hydrometers (cloud and precipitation) have a reflectivity (with +/- 1 dBZ of 377 
the given value) in the given altitude/height range; and the sum at each height (row) will gives the 378 
hydrometer fraction (Figure 2b).  379 

Note that there is no data to the left of the red line in panel a. This is because of limited radar 380 
sensitivity, and as distance increases, the minimum detectable reflectivity value increases. Likewse, 381 
there are no data from 0 to 200 meters altitude because the aircraft lowest legs were typically flown 382 
at around 100-150 m altitude, and the radar blanking interrupt (the region corresponding to the 383 
time when the radar outgoing pulse is being, or has just been, transmitted and the radar system has 384 
not yet begun measuring the return power) typically extends about 203 m above this (Schwartz et 385 
al., 2019). 386 

The maximum frequency of hydrometers observed by the radar occurred between 700 and 1200 387 
meters, with a hydrometer fraction over 50%. (Note this is not projected area or the fraction of 388 
radar columns with a significant echo at any altitude, that value is near 90%). Reflectivity factors 389 
larger than -10 dBZ are relatively rare and there is no distinct mode associated with precipitation 390 
(that is, no peak with a reflectivity larger than about -20 dBZ).  Reflectivity factors larger than -10 391 
dBZ are common of the Southern Ocean (see for example Mace and Protat 2018), but such factors 392 
are associated with fronts or convection (including the shallow convection sometimes associated 393 
with vigorous open cells) and not typical of the shallow (cloud tops < 2 km) and largely overcast 394 
stratocumulus sampled during SOCRATES.  Rather there is a single mode or continuum of 395 
reflectivity that span reflectivity factors from about -40 dBZ (where there are few if any 396 
precipitation sized particles) to values around -10 dBZ (where precipitation is still light with rain 397 
rate <1 mm hr-1 but can have a substantial impact on cloud condensation nuclei and cloud lifetime, 398 
Kang et al.,2022) and a peak below -20 dBZ.   Most of this cloud is supercooled.  Overall, we find 399 
that about 80% of the stratocumulus sampled during SOCRATES had a cloud top temperature < 400 
0°C and cloud depth < 600m (figure not shown), and about 62% of the stratocumulus were 401 
precipitating, defined as 3 consecutive radar bins (about 60 meters) below cloud base with a 402 
reflectivity greater than -40dBZ. The occurrence of precipitation drops to 34% if a reflectivity 403 
threshold of -20 dBZ is applied (in spite of the detections being below cloud base), indicative of 404 
very light nature of the precipitation.   405 
 406 
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 407 
Figure 2. (a) Joint histogram of hydrometer (cloud & precipitation) radar reflectivity with height 408 
observed by the airborne W-band radar during below-cloud, zenith-pointing periods (i.e., when 409 
aircraft is flying below the cloud, as illustrated in Figure S1). Histogram is normalized by total 410 
number of radar “columns” such that the histogram values is the fractional occurrence (see text). 411 
(b) hydrometer fraction [%] at each height of all radar “columns”. The red line on panel a shows 412 
the minimum detectable reflectivity values by HCR as a function of height.  413 

What is the phase of the precipitation sampled during the SOCRATES? As described in Section 414 
2.3.2, we determine the precipitation phase using the lidar particle linear depolarization ratio 415 
PLDR (Figure 1d), and interpret the precipitation as liquid phase when PLDR < 0.03; ice phase 416 
when PLDR > 0.05; and ambiguous for PLDR values in between. Figure 3a shows that around 417 
60% of the precipitation from the zenith-pointing segments are liquid phase and about 20% of the 418 
precipitation are ice phase, with the remaining 20% being ambiguous phase. How does 419 
precipitation phase relate to the cloud top temperature? Figure 3b shows the relative occurrence of 420 
precipitation in difference phases as a function of cloud top temperature (CTT). For the warm-421 
topped clouds (CTT > 0°C), we expect that all the precipitation should be liquid phase.  422 
Temperature is not used in the phase retrieval, and consistent with the discussion in Section 2, the 423 
low occurrence of ambiguous or ice phase precipitation with CTT > 0°C is indicative of the low 424 
retrieval error.  For the cold-topped clouds (CTT <0°C), liquid precipitations still dominate for 425 
clouds with CTT between 0 and -10°C, with the ice fraction increasing as temperature decreases.  426 
But it is not until about a CTT of -15°C that ice phase appears to dominate. It could be that the 427 
apparent peak in ice phase occurrence near -15°C is a result of dendric growth (or secondary ice 428 
product associated with dendrites), as dendric growth is known to occur near this temperature (e.g., 429 
von Terzi et al., 2022) but there is too little data here to be confident this uptick in ice phase is 430 
statistically significant. 431 

An interesting question related to phase is whether or not precipitation phase is related to radar 432 
reflectivity. Zhang et al. (2017) have shown that lidar depolarization ratios is correlated with radar 433 
reflectivity, and for the SO in particular, Mace and Protat (2018) show that W-band radar 434 
reflectivity greater than -10 dBZ is associated with ice-phase hydrometeors (based on 435 
CAPRICORN observations).  Figure 3c shows the occurrence of the different precipitation phase 436 
for cold-topped clouds  as a function of reflectivity. Overall, it shows that reflectivity factors less 437 
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than about -10 dBZ are predominately liquid, while reflectivity factors greater than 0 dBZ is 438 
predominately ice. We will discuss this result in more detail in the conclusions. 439 
 440 

  441 
Figure 3. (a) Probability and cumulative density functions for lidar particle linear depolarization 442 
ratio (PLDR) for below-cloud precipitation (b) The fraction of liquid, ice, and ambiguous 443 
precipitation as a function of cloud top temperature. (c) The fraction of liquid, ice, and 444 
ambiguous precipitation as a function of radar reflectivity. To distinguish different precipitation 445 
type, liquid precipitation is marked as blue, ice precipitation is marked as red, and ambiguous 446 
precipitation is marked as green.  447 
 448 

4 Precipitation Retrievals  449 

In this section, we will explore a hierarchy of retrieval methods based on complexity, from (1) the 450 
simplest Z-R relationship approach where only one variable reflectivity Z is known, to (2) a ZV 451 
retrieval using two variables (reflectivity Z and Doppler velocity V), to (3) a radar-lidar retrievals 452 
based on three variables (reflectivity radar reflectivity Z, doppler spectral width 𝜎7 , and lidar 453 
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backscatter 𝛽). In section 4.1, we will develop Z-R relationships based on in situ data. In section 454 
4.2, we will demonstrate the results from ZV and radar-lidar liquid precipitation retrievals using a 455 
case example, and in section 4.3, we evaluate these retrievals using in-situ aircraft observations 456 
from all the segments where retrievals were performed. 457 

4.1 Reflectivity to rain rate (Z-R) relationships  458 

One objective of this study is to estimate Z-R relationships of the form Z = 	a𝑅5. Z-R relationships 459 
are useful and convenient, requiring only one independent variable (reflectivity Z) to estimate rain 460 
rate R. Such relationships have a long history in atmospheric science, and as concerns 461 
stratocumulus in particular, relationships have been derived in past studies for stratocumulus over 462 
the Eastern Pacific (Comstock et al., 2004), over the north-east Atlantic and in U.K. coastal waters 463 
(Wood, 2005), and for nocturnal stratocumulus clouds off the California Coast (VanZanten et al., 464 
2005). More recently, Protat et al. (2019b) estimated Z-R relationships at the surface over the 465 
global ocean, including the Southern Ocean, based on surface disdrometer measurements. In this 466 
section, we will derive Z-R relationships using SOCRATES aircraft observations following the 467 
method presented in Section 2.2.3 and compare our results with previous studies.  468 

Figure 4 shows the Z-R relationships derived using in situ data taken at different locations relative 469 
to the cloud layer and surface (see Figure S1 for a schematic). Table 2 lists the corresponding a 470 
and b coefficients. In Figure 4a, we only consider droplets with a diameter larger than 40 μm 471 
following Comstock et al. (2004), while in Figure 4b, we include all droplets including those 472 
droplets with a diameter smaller than 40 μm. We will focus on Figure 4a first. Figure 4a shows 473 
that estimated Z-R relationships do have a vertical dependence.  The intercept controlled by 474 
coefficient a increases as one moves from the cloud layer to the surface, while the slope controlled 475 
by exponent b remains largely unchanged. The vertical dependence of Z-R was also noticed in 476 
previous studies (e.g. Comstock et al., 2004; vanZanten et al., 2005). The exponent b estimated in 477 
Figure 4a ranges from 1.3 to 1.45, with a (one sigma) uncertainty that ranges from 0.5 to about 0.1, 478 
based on a bootstrap resampling technique (uncertainties are listed in Table 2).  Note the 479 
uncertainties in the a and b coefficients are not independent, but rather are positively correlated 480 
such that a larger estimate for the a-value is associated with a larger estimate for the b-values.  481 
Table 2 also lists some Z-R relationships estimated from other studies mentioned above. Overall, 482 
we find the exponent b to be similar to that from Comstock et al. (2004), vanZanten et al. (2005), 483 
and many other earlier studies summarized in Rosenfeld and Ulbrich (2003) over other regions 484 
and other cloud types. Later in this section we will compare the rain rate derived from Z-R 485 
relationships with rain rate derived from two other retrieval methods.  486 

The above analysis is based on the idea that only droplets larger than 40 μm are considered 487 
precipitation. But droplets smaller than 40 μm can and do contribute to the flux of liquid water 488 
(Nicholls, 1984). What happens if small droplets with a diameter smaller than 40 μm are included 489 
when calculating Z and R from in situ DSDs? The results are shown in Figure 4b. Comparing 490 
Figure 4a and 4b, one can see that the estimated Z-R relationships is very sensitive to whether one 491 
excludes smaller drops, especially for the data collected in the cloud. Differences in the estimated 492 
Z-R are less dramatic when using in situ data outside of the cloud (i.e. below-cloud portion of the 493 
sawtooth leg and below-cloud level legs).  494 
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To explore the importance of the smaller droplets, Figure 5a shows an example of DSDs measured 495 
near the top of a cloud, near the bottom cloud and below cloud during one sawtooth leg, as well as 496 
a nearby below-cloud level leg (depicted in the bottom panel).  The associated liquid water flux 497 
distribution 𝐷$𝑁(𝐷)𝑉(𝐷) is shown Figure 5b, and the reflectivity distribution 𝐷&𝑁(𝐷) in Figure 498 
5c. Note as in the microphysical retrievals, here we use the terminal fall velocity model of Beard 499 
(1976) for V(D). Below-cloud, small droplets evaporate much more quickly than larger droplets, 500 
and most of the contributions to the liquid water flux comes from larger droplets, such that the 501 
effect of small droplets on liquid water flux and reflectivity can be largely neglected. We hasten 502 
to add, however, this is true not true for the total number concentration (Figure 5a); where small 503 
droplets remain more numerous (than droplets above 40 μm), and includes many particles with 504 
sizes smaller than 5 μm, which one might consider haze-particles or hydrated-aerosols rather than 505 
cloud droplets.  Within the cloud layer, small droplets make a large contribution to the liquid water 506 
flux and contribute slightly to the reflectivity. Droplets in the diameter range of 10-40 μm 507 
contribute 78% of the liquid water flux in the top half of the cloud, and still comprise about half 508 
of the water flux in the bottom half of the cloud. Contributions to the reflectivity from droplets in 509 
the range of 10-40 μm are smaller than those of larger droplets, but both make a non-trivial 510 
contribution.   511 

In short, as Figure 5 and the differences in estimated Z-R in Figure 4a and Figure 4b highlight, the 512 
sedimentation of small droplets is (or can be) a significant component of the total liquid water flux 513 
in cloud and applying the Z-R relationship derived from only larger particles or from below-cloud 514 
measurements effectively ignores the contribution from small particles (and below-cloud Z-R 515 
equations should be applied with caution to in-cloud reflectivity measurements and should be 516 
expected to underestimate the total liquid water flux).   517 
 518 
 519 
 520 

  521 
Figure 4. Z-R relationship derived using in situ data and retrievals. Diameter >40um cutoff for 522 
the in situ measurements is imposed in panel a, while panel b does not apply any cutoff, and 523 
considers all droplet sizes for in situ data. 524 
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 525 
   526 
 527 

 528 
Figure 5. Example case to show the contributions of droplets in different size ranges with in situ 529 
measurements taken from different segments: (a) average droplet size distribution; (b) product of 530 
diameter cubed, droplet size distribution and terminal fall velocity;(c) product of diameter to the 531 
power of six and droplet size distribution; (d) reflectivity field and flight track for this example, 532 
the color-coded lines marked the locations of different segments showing in panel a-c. The vertical 533 
dashed line in panels a-c is the reference line for 10 μm and 40 μm. The percentage on panel a, b, 534 
and c show the contributions from different size range to droplet number concentration, to rain 535 
rate, and to reflectivity, respectively. 536 
 537 
 538 
 539 
 540 
 541 
 542 
 543 
 544 
 545 
 546 
 547 
 548 
 549 
 550 
 551 
 552 
 553 
 554 
 555 
 556 
 557 
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Table 2. Z-R relationship of the form	Z = 	a𝑅5 	558 

Equation Location Remarks Reference 

𝑍 =	 (5.1 ± 3.5)	𝑅	('.)'	±	+.') 

[𝑍 = 	 (16.9 ± 26.1)	𝑅	(-.+.	±	+.-/)]	

the top half of the 
cloud layer from 
the sawtooth leg 

Estimated using 
SOCRATES aircraft in 
situ measurements with 
and without the 40μm 
cutoff, [without given in 
brackets] 

 
 

 

This study 

𝑍 =	 (9.9 ± 2.8)	𝑅	('.)0	±	+.+/) 

[𝑍 = 	 (13.1 ± 6.8)	𝑅	('.1.	±	+.'')] 

in-cloud level legs 

𝑍 =	 (23.7 ± 11.6)	𝑅	('.2/	±	+.+.) 

[𝑍 = 	 (68.7 ± 68.5)	𝑅	(-.+	±	+.'0)] 

bottom half of the 
cloud layer from 
the sawtooth leg 

𝑍 =	 (59.4 ± 21.4)	𝑅	('.2	±	+.+2) 

[𝑍 = 	 (172.4 ± 106.7)	𝑅	('.0-±+.+0)] 
the below-cloud 
portion of the 
sawtooth leg 

𝑍 =	 (63.8 ± 47.1)	𝑅	('.)±+.+/) 

[𝑍 = 	 (152.2 ± 277.9)	𝑅	('.20±+.+3)] 
below-cloud level 
legs.  

𝑍 =	 (31.6 ± 1.4)	𝑅		('.2'±+.++1) Cloud base Estimated using 
SOCRATES W-band radar 
measured reflectivity and 
radar-lidar retrieved rain 
rate just-below cloud base 

Z = 	25𝑅'.) Cloud base Estimated for 
stratocumulus over Eastern 
Pacific 

Comstock et al. 
(2004) 

Z = 	12.92	𝑅'.21 Cloud base Estimated using aircraft in 
situ DSD measurements 
for nocturnal 
stratocumulus clouds over 
California Coast 

vanZanten et al. 
(2005) 

 

Z = 	12.5	𝑅'.'. All in-cloud levels Estimated using aircraft in 
situ DSD measurements 
for stratocumulus over the 
north-east Atlantic and in 
U.K. coastal waters 

Wood (2005) 

Note: here uncertainty is estimated using either by bootstrapping (rows 1-5) or moving block 559 
bootstrapping (row 6) with the one-sigma uncertainty given after the plus-minus sign. For the Z-R 560 
relationship that is estimated using in situ measurements, the Z-R relationship estimated using only larger 561 
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droplets, with a diameter greater than 40μm, is listed first, followed by the Z-R relationship estimated 562 
using all droplets included those droplets with a diameter smaller than 40μm. For the equations above, 563 
the reflectivity Z is in the unit of mm6mm-3, and the rain rate is in the unit of mm hr-1. For the equations in 564 
the past studies with the form of 	𝑅 = 	𝑐𝑍" or have different units, we rearranged the equation and 565 
converted the units to keep the consistency and make it easier to compare. Unless noted, the default band 566 
for reflectivity is W-band.  567 

4.2 ZV retrieval and radar-lidar retrieval 568 

In this subsection, we examine both the ZV retrieval and radar-lidar retrievals using the zenith-569 
pointing remote sensing data collected when the aircraft was flying level-legs below the cloud. We 570 
will begin with one case study, compare results from different retrieval methods, and then examine 571 
the sensitivity of ZV retrieval results to the assumed shape factor 𝜇.  The overall retrieval 572 
performance will be evaluated in Section 4.3. 573 

Applying the ZV retrieval (described in Section 2.3.3) to the example presented in Figure 1, the 574 
parameters D0 and Nprecip can be derived from measured reflectivity Z, assumed shape factor 𝜇, and 575 
derived terminal fall velocity. Figure 6a shows the reflectivity-weighted terminal fall velocity, vt , 576 
derived following Orr and Kropfli (1998).  Here we see generally larger vt toward the bottom of 577 
the cloud, and in precipitation shafts (regions of relatively high reflectivity extending below cloud 578 
base). Figure 6b and 6c shows derived median equivolumetric diameter D0, and precipitation 579 
concentration Nprecip, assuming 𝜇 =0. Not surprisingly, Figure 6b shows that D0 is larger where vt 580 
is larger, and is about 100-200 𝜇m below cloud base. Figure 6c shows Nprecip below cloud base is 581 
in the order of 103~105 m-3. 582 

Applying the radar-lidar retrieval technique to the example presented in Figure 1, with three input 583 
variables (radar reflectivity Z, doppler spectral with 𝜎7, and backscatter coefficient 𝛽), we can also 584 
solve for shape factor 𝜇 , median equivolumetric diameter D0, and precipitation number 585 
concentration Nprecip, as shown in Figure 7. The shape factor 𝜇 describes the shape of the DSD 586 
(equation 9) and larger 𝜇 implies narrower distributions. As in O’Connor et al. (2005), we find 587 
large areas with broad DSDs (small 𝜇). Narrow DSDs implied by large 𝜇 are typically found 588 
underneath the thicker portion of the clouds (and as we will see later have larger rain rates). The 589 
median equivolumetric diameter D0 is mostly between 50-250 𝜇m, with larger sizes occurring 590 
where 𝜇 is larger.  Again, this is similar to what O’Connor et al. (2005) observed and appears to 591 
be quite typical for drizzling stratocumulus. Comparing the two retrieval methods, both D0 and 592 
Nprecip from ZV retrieval (Figure 6) tend to be more spatially homogeneous below cloud base than 593 
that from radar-lidar retrieval (Figure 7), and the D0 from ZV retrieval tends to be smaller than that 594 
from radar-lidar retrieval in the precipitation shafts (where the assumption of a small value for the 595 
shape factor appears problematic, more on this below). 596 

Once the parameters that determine the DSDs are derived, it is straightforward to calculate other 597 
precipitatition properties such as rain rate. Figure 8b and c show the ZV retrieved the rain rate 598 
(assuming 𝜇 =0) and radar-lidar retrieval retrieved the rain rate. Overall, the two retrieval methods 599 
give similar results (mean of rain rate from ZV retrieval is 0.0096 mm hr-1, and mean of rain rate 600 
from radar-lidar retrieval is 0.0093 mm hr-1). With derived Z-R relationships from section 4.1, one 601 
can also derive rain rate by apply them to the radar reflectivity fields, as shown in Figure 8a, with 602 
derived rain rate by applying Z-R relationships shown in Figure 4a from sawtooth-top to the top 603 
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half of the cloud, from sawtooth-bottom to the bottom half of the cloud; as well as sawtooth-below 604 
to area below the cloud base. Overall, the retrieved rain rate has a magnitude that is around 0.001-605 
0.1 mm hr-1. The discontinuity in the rain rate fields in Figure 8a is because three different Z-R 606 
relationships are applied to different regions. The difference in Z-R relationships (i.e. with or 607 
without D>40 μm cutoff) also results in differences in derived rain rate (Figure S7), especially for 608 
the in-cloud portion.  Overall, regardless of the retrieval approaches, it can also be seen that higher 609 
rain rates tend to occur below the geometrically thicker portion of the clouds, and we will explore 610 
the scaling between rain rate and cloud depth further in Section 6.  611 

In Figures 6 and Figure 8b, we assume 𝜇 =0 in the ZV retrieval, while retrieved 𝜇 from radar-lidar 612 
retrieval clearly shows spatial variations (Figure 7a). How will ZV retrieved D0, Nprecip, and rain 613 
rate vary with assumed 𝜇? Figure S8 shows that the derived D0 increases with increasing 𝜇 values 614 
such that mean D0 just below cloud base is 102 𝜇𝑚	when 𝜇 = 	0, and is 156	𝜇𝑚	when 𝜇	 = 10.	 In 615 
contrast, as shown in Figure S9, the derived Nprecip decreases significantly with increasing  𝜇 values, 616 
with mean Nprecip at cloud base is about 1.2×105 m-3	when 𝜇	 = 	0, and is 1.2×103 m-3	when 𝜇	 =617 
10. However the derived rain rate (Figure S10) shows relatively little dependence on assumed 𝜇, 618 
with rain rate at cloud base decrease slightly from about 0.009 mm hr-1 (𝜇 = 	0) to about 0.007 619 
mm hr-1 (𝜇 = 	10). The small sensitivity in rain rate ultimately arises because the liquid water flux 620 
is to first order given by the velocity (which is input to the retrieval) times the liquid water content 621 
(which is strongly constrained by the reflectivity that is likewise input to the retrieval).   622 
   623 

  624 
Figure 6. A time-height plot of ZV method retrieved drizzle properties assuming shape factor  625 
for the example segment is shown in Figure 1. (a) reflectivity-weighted the terminal fall velocity 626 
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vt; (b) median equivolumetric diameter D0, and (c) precipitation number concentration Nprecip. 627 
The grey lines show the estimated cloud top, the black lines show the estimated cloud base. 628 
 629 
  630 

 631 
Figure 7. A time-height plot of radar-lidar retrieved drizzle properties for the example segment is 632 
shown in Figure 1. Radar-lidar retrieval method derived parameters for modified gamma 633 
distribution (a) shape factor μ; (b) median equivolumetric diameter D0, and (c) precipitation 634 
number concentration Nprecip. The grey lines show the estimated cloud top, the black lines show 635 
the estimated cloud base. 636 
 637 
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 638 
Figure 8. Retrieved rain rate for example case using (a) Z-R relationships (D > 40μm), (b) ZV 639 
retrieval technique, and (c) radar-lidar retrieval technique, and (d) their comparisons with in situ 640 
estimates. In panels a-c, the dashed grey line shows the location of the aircraft, while the dotted 641 
line is a reference line to show 200 meters above the aircraft's location. In panel d the retrieved 642 
rain rates were extrapolated to the aircraft level to compare with the in situ data. The pink line 643 
shows the rain rate retrieved with Z-R relationships, the green line shows the rain rate retrieved 644 
with the ZV retrieval technique, and blue line shows the rain rate retrieved with the radar-lidar 645 
retrieval technique. The black squares represent the rain rate estimated with in situ 646 
measurements, where rain rates are derived from averaged droplet size distribution (merged CDP 647 
and 2DS) over 20 seconds. Over that same time window, the median value of the retrieved rain 648 
rate time series was taken, denoted as pink dots (Z-R relationship), green dots (ZV retrieval) and 649 
blue dots (radar-lidar retrieval).   650 
 651 
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4.3 Retrieval validation  652 

How good are the rain rate retrievals? One would think a simple comparison between the retrieved 653 
rain rate with in situ measurements from the aircraft could answer this question. But there are a 654 
few challenges that need to be overcome.  655 

The first challenge is that retrieved rain rates that are closest to the aircraft level marked as a dashed 656 
line around 200 m in Figure 8) are still at least 150 meters away, making it difficult to make a 657 
direct comparison.  This is because there is a blanking interrupt, a brief period where one needs to 658 
wait for the outgoing pulse to exit the radar (or lidar) system and for the effect of strong scattering 659 
from nearby objects (clutter) to dissipate. To overcome this difficulty, we extrapolate the retrieved 660 
rain rate downwards to the aircraft level by fitting an exponential function to each radar column. 661 
The assumption is that the rain rate varies with distance below the cloud base exponentially due to 662 
evaporation (Wood, 2005; Comstock et al., 2004). Figure S11 in the supporting information shows 663 
an example of rain rate derived from the exponential fit, and demonstrates that the exponentially 664 
fitted rain rate shows reasonable agreement with the retrieved rain rate where such is retrieved. 665 
Figure 8d compares the extrapolated rain rate from the Z-R relationship (red line), extrapolated 666 
rain rate from ZV retrieval (green line), extrapolated rain rate from radar-lidar retrieval (blue line). 667 
To further increase our confidence, we only compare the extrapolated rain rate from those periods 668 
where the original retrieved rain rate extends to within 200m of the aircraft (i.e. when the rain 669 
extends down to dotted reference line). Another challenge is the limited sampling volume of the 670 
in situ probes. To overcome this difficulty, we average the in situ DSD over a 20s period, marked 671 
as black squares in Figure 8d, and similarly, we also average the corresponding retrievals over the 672 
same 20s time window, marked by the red, green and blue dots. It can be seen that the retrieved 673 
rain rate shows reasonable agreement with in situ data for this case.  674 

We repeated this analysis for the liquid-precipitation retrievals for all the SOCRATES flights and 675 
summarize the results in Figure 9. Overall, the Z-R, ZV, and radar-lidar retrievals compare well 676 
with the in situ, with Pearson correlation coefficient of 0.83. 0.88 and 0.68, respectively. Despite 677 
the simplicity of the approach, even the rain rate derived from Z-R relationship shows good 678 
performance compared to the in situ values, with a fractional difference (difference in 20s medians 679 
/ average of 20s medians) of only -8.0%. If we estimate the uncertainty in the retrieved rain rate 680 
via error propagation, and we estimated the uncertainty in reflectivity as 1.5 dB for reflectivity 681 
(following O’Connor et al., 2005) and 10% for lidar backscatter (e.g., Schwartz et al., 2019), we 682 
estimate the uncertainty in the radar-lidar retrieved rain rate would be 18%. Similarly, with the 683 
uncertainty of 1.5 dB for reflectivity, and 10% uncertainty for terminal fall velocity (see Tansey 684 
et al., 2022), we estimate the uncertainty in the ZV retrieved rain rate to be 44%. As for the Z-R 685 
relationship (using the below-cloud sawtooth leg relationship), the estimated the uncertainty in 686 
rain rate is 38.4%. Relative to the expected uncertainties due simply from uncertainties in the 687 
inputs, all three retrievals compare well with the in situ data.  688 

 689 

 690 
   691 
 692 
 693 
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  694 
 695 
 696 

 697 
Figure 9. Comparison of in situ estimates with (a) Z-R retrieval, (b) ZV retrieval, and (c) radar-698 
lidar retrieval for the entire campaign. The retrieved rain rates plotted here that were extrapolated 699 
to the aircraft level (see Figure 8, S11) to compare with the in situ data.  Fractional difference is 700 
calculated as the difference between the retrieved and in situ median value divided by the 701 
average of the medians.  702 
 703 

5 Vertical distribution of precipitation properties 704 

In this section, we will apply the precipitation observations and retrievals to study the vertical 705 
distribution of precipitation properties.  706 

Figure 10 shows a violin plot of in situ measured precipitation properties at different altitudes and 707 
retrieved precipitation properties below the lidar-inferred cloud base. For each dataset, the white 708 
dot represents the median value, while the black bar represents the interquartile range. Perhaps 709 
surprisingly rain rate decreases going downward from the top half of the cloud (i.e. the largest rain 710 
rates are in the upper portion of the cloud). Medians of rain rate at the cloud top half, cloud bottom 711 
half and below the cloud are of 0.021 mm hr-1, 0.008 mm hr-1, and 0.001 mm hr-1. Similar to rain 712 
rate, there is also a decrease in precipitation number concentration (Nprecip) and precipitation liquid 713 
water content (LWCprecip) moving downward from the top half of the cloud. In contrast, Dprecip and 714 
σprecip increase moving downward, that is bigger particles in the bottom half, and (just) below cloud. 715 
Overall, the retrieved precipitation properties (below the cloud base) compare well with the in situ 716 
estimates from the sawtooth below-cloud segments. 717 

How do precipitation properties vary below cloud base? Figure 11 provides a more detailed view 718 
on the vertical distribution of precipitation properties below cloud base. Here, the column shows 719 
rain rate, Nprecip, LWCprecip, Dprecip, and σprecip, respectively. The first two rows are histograms for 720 
radar-lidar and ZV retrievals, respectively. The last row is a box plot that summarizes both 721 
retrievals by binning the data vertically every 100 meters. Here, we only consider data in those 722 
radar columns where rain extend at least 400m below cloud base. Overall, both the mean rain rate 723 
and LWCprecip decrease exponentially with distance (as the change in the position of the distribution 724 
peak is roughly linear with distance on a log-scale). Both retrievals have similar values and rates 725 
of decrease (panel k and panel m). The e-folding distance over which the rain rate decrease to 1/e 726 
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(37%) of its initial value is about 260m for radar-lidar retrieval and 340 m for ZV retrieval. Nprecip 727 
also decreases with distance, but we find the radar-lidar retrieval decreases more rapidly within 728 
the 200m below the cloud base, and the ZV retrieval shows higher Nprecip than radar-lidar retrieval 729 
at different levels.  This is consistent with (a result of) assuming a shape factor of zero in the ZV 730 
retrievals.  The mean Dprecip and σprecip both increase with distance. Compared to radar-lidar 731 
retrieved Dprecip, ZV retrieved Dprecip is smaller overall (again consistent with the assumed shape 732 
factor), and has much less spread (variation) at any given altitude. Figure 10d shows that radar-733 
lidar retrieved Dprecip  compare better with the in situ estimated Dprecip from the below-cloud portion 734 
of the sawtooth legs than the ZV retrieved Dprecip. 735 

  736 
Figure 10. Violin plot for in situ measured precipitation properties at different altitudes and 737 
retrieved precipitation properties below cloud base: (a) rain rate (or precipitation liquid water 738 
flux), (b) precipitation number concentration Nprecip, (c) precipitation liquid water content 739 
LWCprecip, (d) precipitation liquid water content weighted mean diameter Dprecip, (e) precipitation 740 
liquid water content weighted width σprecip. A violin plot can be regarded as a hybrid of a boxplot 741 
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and a kernel density plot. For each dataset, the white dot represents the median value, while the 742 
black bar represents the interquartile range, and the outer shape is the kernel density estimation 743 
to show the distribution of the data. In situ measured precipitation properties are from these legs 744 
(as marked in Figure S1): the top half of the cloud layer from sawtooth legs (sawtooth top); the 745 
bottom half of the cloud layer from sawtooth legs (sawtooth bottom); the below-cloud portion of 746 
the sawtooth legs (sawtooth below-cloud); and in-cloud level legs.  747 
 748 
 749 
  750 

 751 
Figure 11. Vertical distributions of below-cloud-base precipitation properties from retrievals 752 
(each column is rain rate, Nprecip, LWCprecip. Dprecip, σprecip respectively). The first and second row 753 
is the histogram of retrieved precipitation properties below-cloud-base (data are normalized at each 754 
level), and y axis is the distance away from the cloud-base. First row is the results from radar-lidar 755 
retrievals, the second row is the results from ZV retrievals. The last row is the box plot that 756 
summarized the data in the first two rows by binned the data vertically every 100 meters, where 757 
blue boxes are from radar-lidar retrievals, and orange boxes are from ZV retrievals.  758 
 759 
 760 
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6 Rain rate dependence on cloud depth and aerosol concentration 761 

In this section, we examine the degree to which precipitation can be diagnosed from cloud depth 762 
and cloud droplet or aerosol number concentration in the form (e.g. Comstock et al., 2004; Terai 763 
et al.,2012; Mann et al., 2014) 764 

	𝑅!" 	= 	𝑘	𝐻@ 	𝑁A (11) 

where N is usually the cloud droplet (Nd) or aerosol number concentrations (Na), and H is cloud 765 
depth or liquid water path, and 𝑅!" 	is rain rate at cloud base. To our knowledge, such a relationship 766 
has not been examined over the SO, except by Mace and Avey (2007) who used satellite retrievals. 767 
To examine this relationship over the SO, we use radar-lidar retrieved rain rate for	𝑅!" 	, use the 768 
difference between cloud top and cloud base for H, and use accumulation mode aerosol 769 
concentrations with diameters larger than 70 nm from UHSAS for Na.  770 

First, we broadly examine the rain rate dependence on either cloud depth or aerosol concentration, 771 
individually. Figure 12a shows a joint histogram of rain rate at cloud base and cloud depth.  The 772 
histogram shows that rain rate (at cloud base) scales with cloud depth, such that thicker clouds are 773 
associated with higher rain rates.  This is consistent with previous studies (e.g. vanZanten et al., 774 
2005; Pawlowska and Brenguier, 2003; Geoffroy et al., 2008). And to demonstrate the rain rate 775 
dependence on aerosol concentration, Figure 12b shows the probability density function of rain 776 
rate partitioned for conditions with low aerosol concentrations (lower than the first quartile, 777 
marked as blue) and high aerosol concentrations (higher than the third quartile, marked as red). 778 
Figure 12b shows that overall higher aerosol concentrations are associated with lower rain rates, 779 
consistent with aerosol suppression of precipitation. 780 

How does rain rate relate to both cloud depth and aerosol concentration? To derive the coefficients 781 
in equation (11), we divided cloud depth (H) up to 600m into 6 bins, and divided aerosol 782 
concentrations (Na) into 4 bins, and calculated the median rain rate for each H and Na pair. Then 783 
we performed linear least square regression on the natural logarithms of data from these 24 bins 784 
(Figure 12c). The derived relationship is 𝑅!" 	= 1.73 × 10'(4	𝐻$.&	𝑁#'(, with H in m, Na in cm−3, 785 
and RCB in mm hr−1. Using bootstrap resampling technique, we estimate that the exponent 𝛼 (one 786 
sigma uncertainty) for H range from 3.4 to 3.9, while the exponent 𝛽 for Na range from -1.3 to -787 
0.8. The relationship we derive here is broadly similar to previous studies for stratocumulus in 788 
other regions. Exponent 𝛼 for cloud depth typically is about 3 (vanZanten et al., 2005; Pawlowska 789 
and Brenguier, 2003; Lu et al., 2009), and the exponent 𝛽 for number concentration (cloud droplet 790 
concentration or cloud condensation nuclei) typically ranges between -1.75 to -0.66 (vanZanten et 791 
al 2005; Mann et al., 2014; Lu et al., 2009; Comstock et al., 2004). The exponent 𝛽 of -1 for aerosol 792 
concentration we derived here is smaller than exponent 𝛽  of -0.32 in Mace and Avey (2017, 793 
hereafter M17), estimated using satellite-estimated cloud droplet number concentration, liquid 794 
water path, and rain rate for the SO.   We will discuss this difference further at the of the next 795 
section. 796 
 797 
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 798 
Figure 12. (a) Histogram of rain rate plotted as a function of cloud depth. (b) The probability 799 
density function of rain rate for conditions with low aerosol concentrations (lower than the first 800 
quartile, marked as blue) and high aerosol concentrations (higher than the third quartile, marked 801 
as red). (c) The rain rate at the cloud base is plotted as a function of the cloud depth, H, and aerosol 802 
concentration, Na. Here H and Na are the middle points for each cloud depth and aerosol 803 
concentration bin, while the rain rate at the cloud base is taken as the median value of rain rates in 804 
each cloud depth and aerosol concentration bin. The solid line shows the parametrization described 805 
in the main text. 806 
 807 
 808 

7 Conclusions   809 

In this study, we examine in-and-below-cloud precipitation properties for stratocumulus over the 810 
Southern Ocean (SO), leveraging data collected from airborne W-band Cloud Radar (HCR), High 811 
Spectral Resolution Lidar (HSRL), and various in situ probes during the Southern Ocean Clouds 812 
Radiation Aerosol Transport Experimental Study (SOCRATES) in January-February 2018.  813 

Overall, we find that about 60% of the stratocumulus were precipitating, and about 80% of the 814 
stratocumulus to be cold-topped (with a cloud top temperature < 0oC) based on periods where the 815 
aircraft were flying below cloud and the radar and lidar pointing toward zenith. We determine the 816 
precipitation phase using the lidar particle linear depolarization ratio PLDR and find that about 60% 817 
of the precipitation is liquid phase, and about 20% of the precipitation is ice phase, with the 818 
remaining 20% being ambiguous.  While we can not rule out the possibility that any individual 819 
ambiguous cases is pure liquid, most of such cases are likely to have ice or mixed phase 820 
precipitation present.   Further, for cold-topped cloud, we find that when the reflectivity factor is 821 
less than about -10 dBZ, the precipitation is predominately liquid, while reflectivity factors greater 822 
than 0 dBZ, precipitation is predominately ice.  This results is similar to what was found by Mace 823 
and Protat (2018) based on CAPRICORN data the during March-April 2016, as well as a recent 824 
study by Tansey et al. (2023) based on surface data collected at Macquarie Island (54.5 oS) between 825 
March and November 2016.  The SOCRATES data, collected in the Southern Hemisphere Summer, 826 
in January and February 2018, suggest this relationship is likely characteristic of SO low clouds 827 
through the year, and suggests that the measured reflectivity factor might be used as a proxy to 828 
determine the precipitation phase for cold-topped Southern Ocean stratocumulus with CloudSat 829 
(or other “radar only”) retrievals where no other information is available to constrain the 830 
precipitation phase. 831 
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For liquid-phase precipitation, we performed retrievals for precipitation rain rate and other 832 
microphysical parameters based on cloud radar and lidar, with the goal to testing a hierarchy of 833 
retrieval methods, from the simplest Z-R relationship approach where only radar reflectivity (Z) is 834 
used to estimate the rain rate, to a reflectivity-velocity (ZV) retrieval where there are two 835 
observables (inputs to the retrieval), to a radar-lidar retrieval with three observables. Our 836 
evaluation show that rain rate from the Z-R, ZV, and radar-lidar retrievals all compare well with 837 
the in situ, with Pearson correlation coefficient of 0.83. 0.88 and. 0.68, and fractional difference 838 
(difference between the retrieved and in situ median value divided by the average of the medians) 839 
of only -8.0%, -4.6%, and 6.3%, respectively. In addition to rain rate, ZV and radar-lidar retrievals 840 
can retrieve other precipitation properties, such as, precipitation number concentration, 841 
precipitation liquid water content, number concentration, size and width. The overall statistics and 842 
distribution of these retrieved precipitation properties below the cloud base, also compare well 843 
with in situ estimates from the sawtooth below-cloud segments.  This good performance gives us 844 
some confidence in using these retrieval techniques for SO stratocumulus, including in our recently 845 
published manuscript that examines coalescence scavenging in SO stratocumulus [Kang et al., 846 
2022]. 847 

Despite the good retrieval performance overall, there are important caveats. When developing the 848 
power-law relationships between reflectivity (Z) and rain rate (R) following	𝑍 = 𝑎𝑅5 we found 849 
the b exponent varied little with altitude and had a value around 1.3 to 1.4.  This is similar to values 850 
obtained in previous studies for stratocumulus in other regions (Comstock et al., 2004; vanZanten 851 
et al., 2005).   The a coefficient, on the other hand, increases as one moves from the cloud layer to 852 
the surface.  In general, one can derived a power-law relationship between Z and R based on the 853 
assumption of a modified gamma distribution (e.g., Rosenfeld and Ulbrich 2003) and doing so 854 
shows that one should expected the a coefficient to depend on the total droplet number 855 
concentration.   Given the vertical variations in the precipitation droplet number concentration (see 856 
Figures 10 and 11), the vertical variation in the a coefficient is not surprising.   But such also hints 857 
that the a coefficient may well vary with the accumulation mode aerosol concentration or other 858 
factors than control the cloud droplet number concentration.   So Z-R relationships should be used 859 
with some caution in studies intending to establish relationships between rain rates and aerosols. 860 
We also find that the derived the derived Z-R relationships are sensitive to whether ones exclude 861 
drops with diameters around 10-40 μm when in cloud, because these drops make a non-trivial 862 
contribution to drizzle flux, as perhaps first noted by Nicholls (1984). Our analysis suggests that 863 
below-cloud Z-R equations should be applied with caution to in-cloud reflectivity measurements, 864 
and should be expected to underestimate the total liquid water flux in cloud.   865 

Comparing the ZV retrieval with radar-lidar retrieval shows that both retrievals capture the mean 866 
vertical structure of precipitation microphysics below cloud.   Based on in situ data and retrievals, 867 
we found that rain rate, precipitation number concentration (Nprecip), precipitation liquid water 868 
(LWCprecip) all decreases as one get closer to the surface, while precipitation liquid water content 869 
weighted mean diameter (Dprecip) and width(σprecip) increases. The e-folding distance over which 870 
the rain rate decrease to 1/e (37%) of its initial value is about 260m for radar-lidar retrieval and 871 
340 m for ZV retrieval.  However,  we find that both D0 and Nprecip from the ZV retrieval have less 872 
spatial variability than that from the radar-lidar retrieval, and assuming a shape factor of 𝜇	 = 	0, 873 
results in the ZV retrieved mean D0 being a bit too small and Nprecip being too large as compared 874 
to the radar-lidar retrieval.  This is because the shape factor is not constant and in particular, 875 
because the shape factor in the stronger precipitation shafts below the thicker portion of the clouds 876 
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should be larger than zero (because the precipitation DSD is narrower with a more well defined 877 
peaked rather than a broad exponential-like distribution).  878 

This study also explored rain rate dependence on cloud depth and aerosol concentration. Rain rate 879 
at cloud base (𝑅!") increases with cloud depth (H) and decreases with aerosol concentration (𝑁#). 880 
Using a least-squares regression, we found 𝑅!" 	varies as  𝐻$.&	𝑁#'(, which is broadly consistent 881 
with estimates for stratocumulus in previous studies over other regions (vanZanten et al., 2005; 882 
Pawlowska & Brenguier, 2003; Lu et al., 2009; Mann et al., 2014; Lu et al., 2009; Comstock et al., 883 
2004). However as noted in section 6, our results differ with the satellite-based estimates for the 884 
SO by Mace and Avey (2007), hereafter M17, who suggest an exponent of -0.32 for the aerosol 885 
concentration based on satellite retrievals.  M17 also noted that their estimates differ from previous 886 
studies in other regions. There are a variety of potential reasons for the different results in our 887 
study and in M17. The first obvious reason is different data sources. Our study used in situ 888 
measured Na and retrieved rain rate with airborne radar and lidar measurements, while M17 used 889 
Nd, liquid water path and rain rate derived from MODIS and Cloudsat based on an optimal 890 
estimation algorithm. Another reason might be different cloud populations; where in our study 891 
about 80% of the clouds are cold-topped, M17 restricted their analysis to warm-topped clouds. 892 
Data collected during the Macquarie Island Cloud and Radiation Experiment (MICRE), suggest 893 
that warm topped SO clouds are geometrically thinner and closer to the surface than cold-topped 894 
clouds [Tansey et al., 2023, submitted].  As-is, we end this study here, leaving a regime-dependent 895 
analysis of precipitation susceptibility for a future study.  As more data is collected, including in 896 
future campaigns such as the upcoming Clouds And Precipitation Experiment at Kennaook 897 
(CAPE-K) that will begin in March 2024, the aerosol sensitivity of low altitude SO clouds is 898 
certain to be focus of future multi- or cross-experiments studies. 899 
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Key Points: 11 

• Liquid-phase precipitation retrievals show good agreement with in situ observations and 12 
feature the prevalence of light rain 13 

• Reflectivity to rain rate relationships are developed, showing vertical dependence and 14 
sensitivity to the intermediate-sized drops 15 

• The below-cloud precipitation phase with radar reflectivity > 0 dBZ is mostly ice, while 16 
radar reflectivity < -10 dBZ is mostly liquid 17 
 18 
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Abstract 20 
Precipitation plays an important role in various processes over the Southern Ocean (SO), ranging 21 
from the hydrological cycle to cloud and aerosol processes. The main objective of this study is to 22 
characterize SO precipitation properties. We use data from the Southern Ocean Clouds Radiation 23 
Aerosol Transport Experimental Study (SOCRATES), and leverage observations from airborne 24 
radar, lidar, and in situ probes. For the cold-topped clouds (cloud-top-temperature < 0°C), the 25 
phase of precipitation with reflectivity > 0 dBZ is predominately ice, while reflectivity < -10 dBZ 26 
is predominately liquid. Liquid-phase precipitation properties are retrieved where radar and lidar 27 
are zenith-pointing. The power-law relationships between reflectivity (Z) and rain rate (R) are 28 
developed, and the derived Z-R relationships show vertical dependence and sensitivity to the 29 
intermediate drops (diameters between 10-40 μm). Using derived Z-R relationships, reflectivity-30 
velocity (ZV) retrieval method, and a radar-lidar retrieval method, we derive rain rate and other 31 
precipitation properties. The retrieved rain rate from all three methods shows good agreement with 32 
in-situ aircraft estimates. Rain rate features the prevalence of light precipitation (<0.1 mm hr-1).  33 
We examine the vertical distribution of precipitation properties, and found that rain rate, 34 
precipitation number concentration, precipitation liquid water all decreases as one gets closer to 35 
the surface, while precipitation size and width increases. We also examine how cloud base rain 36 
rate	(𝑅!") depends on cloud depth (H) and aerosol concentration (𝑁#) for particles with diameter 37 
greater than 70nm, and we find a linear relationship between 𝑅!" 	and 𝐻$.&	𝑁#'(.   38 
 39 

Plain Language Summary 40 
Precipitation plays an important role over the Southern Ocean (SO), such as transferring water 41 
from air to ocean, and affect cloud and aerosols (tiny airborne particles). The goal of this study is 42 
to characterize SO precipitation properties using aircraft data. Aircraft had instruments that can 43 
count the number of droplets, as well as lidar and radar, which are remote sensing devices that use 44 
laser light and microwave waves respectively to detect objects. Using information from lidar, we 45 
can distinguish precipitation phase, and we found that ice precipitation is more frequent when 46 
observed radar reflectivity is larger than certain threshold. We derived relationships between rain 47 
rate and radar variable that can be used for future research. We also calculated precipitation 48 
properties and found our results compares well with direct measurements from the aircraft. Rain 49 
rate we calculated features the prevalence of light precipitation. We also studied how precipitation 50 
properties very vertically, and found that as one gets closer to the surface, there is a decrease in 51 
precipitation number and water, while there is an increase in the size overall. We also found that 52 
rain rate depends on how thick the clouds are and on the number of aerosols. 53 

 54 

1 Introduction 55 

Surrounding Antarctica, the Southern Ocean (SO) is the second smallest of the five ocean 56 
basins, yet it plays an outsized role in the climate system. The SO is estimated to account for about 57 
75% of the oceanic heat uptake and about 30-40% of the carbon uptake (Frölicher et al., 2015; 58 
Khatiwala et al., 2009), and thus act as a strong buffer against climate change. Due to the lack of 59 
anthropogenic aerosols, the SO is also a pristine environment, and it has been argued that SO 60 
observations can be used as a present-day proxy for pre-industrial conditions as regards trying to 61 
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constrain anthropogenic aerosol effects (Hamilton et al., 2014; McCoy et al., 2020), which remain 62 
a large source of uncertainty in the climate projections (Lee et al., 2016; Bellouin et al., 2020).  63 
More generally, SO clouds, especially low clouds, also have attracted much research interest in 64 
recent years because of their importance to the global radiative energy budget (Trenberth and 65 
Fasullo, 2010; Bodas-Salcedo et al., 2016; Cesana et al., 2022) as well as global cloud feedbacks 66 
and global climate sensitivity (Tan et al., 2016; Zelinka et al., 2020; Mülmenstädt et al., 2021). 67 

Precipitation impacts stratocumulus behavior via complex feedbacks that operate on both 68 
macrophysical and microphysical scales (Wood, 2012), and has been found to be a key player in 69 
the transition of stratocumulus regimes, from closed cells to open cells, and the maintenance of 70 
open cells, at least in subtropical stratocumulus (Wang and Feingold, 2009; Yamaguchi and 71 
Feingold, 2015; Smalley et al., 2022). Moreover, recent studies highlight the importance of 72 
precipitation formation as a dominant sink of cloud condensation nuclei and its control on the 73 
cloud droplet number over the SO (McCoy et al., 2020; Kang et al., 2022). Despite the importance 74 
of precipitation in low clouds, many climate models and reanalysis data struggle to represent 75 
accurately precipitation, including over the SO (Zhou et al., 2021).  Mülmenstädt et al., (2021) 76 
point out that precipitation biases persist in CMIP6 models, with warm clouds precipitating too 77 
frequently, thus shortening the cloud lifetime and underestimating their cooling effect. This 78 
problem is especially pernicious for the SO because the error grows in importance, with a reduction 79 
in mixed-phase clouds as the climate warms (Bjordal et al., 2020).   80 

Due to the remoteness of SO and a general lack of surface and in situ observations, satellite 81 
observations have long been an indispensable tool to study SO precipitation. Arguably the best 82 
available source of satellite data on SO precipitation rates is CloudSat (W-band radar), which has 83 
greater sensitivity to light precipitation than passive sensors (Tansey et al., 2022, Eastman et al., 84 
2019). CloudSat has provided an unprecedentedly broad picture of SO precipitation: Ellis et al. 85 
(2009) showed that the precipitation occurrence frequency peaks around 50°-60°S; Mitrescu et al. 86 
(2010) found that the SO has a high occurrence of very light precipitation with rain rates smaller 87 
than 1 mm h-1 having a frequency of 15%; Mace and Avey (2017) using both CloudSat and 88 
Moderate Resolution Imaging Spectroradiometer (MODIS) data found that precipitation processes 89 
in SO warm clouds vary seasonally with a stronger precipitation susceptibility to cloud droplet 90 
number in winter. Although compared to other satellite measurements, CloudSat better detects 91 
light precipitation and is better able to determine the rain rate, CloudSat is nonetheless affected by 92 
ground clutter which severely corrupts the reflectivity measurements within about 750 m of the 93 
surface (Marchand et al.,2008). CloudSat precipitation retrievals are also largely limited to 94 
situations where the measured near-surface (750 to 1000m) reflectivity is larger than -15 dBZ 95 
(Haynes et al., 2009), although the precipitation is often observed falling for SO clouds with 96 
reflectivity factors less than -15 dBZ (e.g., Mace and Protat 2018). As shown by Tansey et al. 97 
(2022), who evaluated CloudSat retrievals using surface precipitation measurements during the 98 
Macquarie Island Cloud Radiation Experiment (MICRE), the CloudSat 2C-Precip-Column 99 
product misses most precipitation with a precipitation rate less than 0.5 mm hr-1. In addition, 100 
CloudSat radar reflectivity measurements provide very limited information regarding the phase of 101 
the precipitation. The current operational CloudSat precipitation products categorize precipitation 102 
into liquid, snow, or mixed phase based largely on temperature profiles extracted from ECMWF 103 
analysis and identifying melting layers, rather than any directly measured quantity.  104 

In the face of biases and uncertainty in satellite retrievals and modeling, precipitation 105 
observations from multiple sources such as islands, ships, and aircraft provide us with an important 106 
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opportunity to obtain a more detailed view of SO precipitation. Such precipitation observations 107 
were made in several recent collaborative field campaigns (McFarquhar et al.,2021), including the 108 
aforementioned Macquarie Island Cloud Radiation Experiment (MICRE) during 2016-2018, the 109 
Clouds Aerosols Precipitation Radiation and atmospheric Composition over the Southern Ocean 110 
(CAPRICORN) campaign in 2016 and 2018, the Measurements of Aerosol, Radiation, and Clouds 111 
over the Southern Ocean (MARCUS) campaign during 2017-2018, and the Southern Ocean Cloud 112 
Radiation and Aerosol Transport Experimental Study (SOCRATES) during Jan-Feb 2018.  For 113 
example, Tansey et al. (2022) created a 1-year “blended” surface precipitation dataset (which 114 
combines W-band radar, tipping buck and disdrometer data) for MICRE and used these data to 115 
study the diurnal, synoptic and seasonal variability of near-surface precipitation.  These authors 116 
found that total accumulation was comprised of about 74% rain, 16% ice or mixed phase 117 
precipitation, and 10% small particle precipitation. In a study based on the CAPRICORN datasets. 118 
Montoya Duque et al. (2022), applied a K-means clustering technique to radiosonde data to 119 
classify the atmosphere into seven thermodynamic clusters, and found that the highest occurrence 120 
of surface precipitation was associated with warm frontal clusters and high-latitude cyclone 121 
clusters(poleward of the polar front near cyclones), with warm rain dominating in the former and 122 
the largest fraction of snow in the latter. Shipborne precipitation observations from CAPRICORN 123 
have also been included along with observations from other research vessels in the Ocean Rain 124 
and Ice-Phase Precipitation Measurement Network (OceanRAIN), the first global and 125 
comprehensive along-track in-situ water cycle surface reference dataset (Klepp et al., 2018). Protat 126 
et al. (2019a,b) used OceanRAIN data to investigate discrepancies among satellite products at high 127 
latitudes and found large latitudinal and convective‐stratiform variability in the drop size 128 
distribution (DSD). Protat et al. (2019a) pointed out that the Southern hemisphere high latitudes 129 
stood out as regions with a systematically higher frequency of occurrence of light precipitation 130 
with rates < 1 mm h−1 and difference in the shape parameter μ in the precipitation drop size 131 
distribution (DSD), with high-latitude and midlatitude μ ranging from -1 to 1, which is lower than 132 
the assumed μ of 2 or 3 in the Global Precipitation Measurement Mission (GPM) rainfall 133 
algorithms (Grecu et al., 2016; Seto et al., 2013). Protat et al. (2019b) found that the Southern 134 
Hemisphere high latitude (−67.5°S to −45°S), along with Northern Hemisphere polar latitude 135 
bands, stood out with a fundamentally different relationship between radar observables and rainfall 136 
properties, such as radar reflectivity to rain rate (Z-R) relationship, mainly because of much lower 137 
rain rates over the SO, suggesting that specific relationships are needed for these regions.  138 

In this study, we use data collected during SOCRATES to study the precipitation properties 139 
of summertime SO stratocumulus, leveraging observations from airborne W-band HIAPER Cloud 140 
Radar (HCR), High Spectral Resolution Lidar (HSRL), and in situ probes. In particular we 141 
examine occurrence of liquid and ice phase precipitation, and for liquid precipitation we derived 142 
precipitation properties such as rain rate, using a hierarchy of retrieval methods from simple Z-R 143 
relationships to more complex radar reflectivity-velocity retrieval (ZV retrieval) and radar-lidar 144 
retrievals. We also apply the precipitation observations and retrievals to study the in-and-below 145 
cloud precipitation properties and rain rate dependence on cloud depth and aerosol concentration.  146 

This paper is organized as follows: Section 2 introduces the datasets, instruments, as well 147 
as the analysis and retrieval methods used in this study. Section 3 provides a campaign overview 148 
and discusses phase partitioning. Section 4 examines Z-R relationships and precipitation retrievals 149 
and compares these remote sensing data to in situ measurements. Section 5 provides a statistical 150 
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summary of the precipitation properties, and Section 6 explores the relationship of stratocumulus 151 
rain rate with cloud depth and aerosol concentration, ending with conclusions in Section 7. 152 

 153 

2 Data and Methods 154 

In this section we introduce the data and methods that we use to characterize in-and-below cloud 155 
precipitation properties. Section 2.1 describes the SOCRATES campaign sampling strategies, 156 
remote sensors (W-band Cloud Radar, HCR, and High Spectral Resolution Lidar, HSRL), and in 157 
situ instruments. Section 2.2 describes how we use in situ data to analyze in-cloud and below-158 
cloud precipitation properties, as well as how we estimate Z-R relationships. In section 2.3, we 159 
describe reflectivity-velocity (ZV) and radar-lidar retrievals.  160 

2.1 Instrumentation and data 161 

In this study, we use data collected during the SOCRATES campaign to study the precipitation 162 
properties of stratocumulus. The SOCRATES campaign happened in January-February 2018 163 
(McFarquhar et al., 2021), when the NSF/NCAR Gulfstream GV aircraft conducted 15 research 164 
flights over the SO.  After taking off from Hobart (Tasmania), the aircraft typically flew south at 165 
high altitude and then descended to just above cloud top for several 10’s of minutes, before heading 166 
back towards Hobart.  On the return, the aircraft would descend into low cloud and sample aerosols, 167 
clouds, and precipitation with a repeating series of activities that included in-, below-, and above-168 
cloud level legs (where the aircraft flew at a nearly fixed altitude), as well as sawtooth legs (where 169 
the aircraft ascended or descended through the cloud layer). Supplementary Figure S1 shows a 170 
schematic of the typical flight, as well as the 15 flight tracks flown during SOCRATES. 171 

To characterize in-and-below cloud precipitation properties, we leverage observations from both 172 
in situ probes and remote sensors. Table 1 gives a summary of the instruments we use in this study, 173 
along with a primary reference for each instrument. We describe how these in situ probe data are 174 
used in Section 2.2.  175 

 176 
Table 1. Instruments 177 
 178 

Instruments Measurements References 

Cloud Droplet Probe 
(CDP) 

Size and concentration of 
hydrometeors with a 
diameter between 2-50 µm 

Lance et al. (2010) 

https://data.eol.ucar.edu/dataset/552.002 

Two-Dimensional 
Stereo probe (2DS) 

Size and concentration of 
hydrometeors with a 
diameter between 10-1280 
µm 

Wu and McFarquhar (2019) 
https://data.eol.ucar.edu/dataset/552.047 

 

Ultra-High-
Sensitivity Aerosol 

Aerosols with dry diameters 
between 60 and 1,000 nm 

DMT(2013); Sanchez et al. (2021) 
https://data.eol.ucar.edu/dataset/552.002 
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Spectrometer 
(UHSAS) 

 

HIAPER Cloud 
Radar (HCR) 

Reflectivity, Doppler 
velocity, Spectral width, 
Signal to noise ratio, etc. 

Vivekanandan et al. (2015) 
https://data.eol.ucar.edu/dataset/552.034 

High Spectral 
Resolution Lidar 
(HSRL) 

Backscatter coefficient, 
Particle Linear 
Depolarization Ratio, 
Extinction coefficient, etc. 

Eloranta (2005) 

https://data.eol.ucar.edu/dataset/552.034 
 

   
 179 
Note: For both CDP and 2DS, data is available at 1Hz temporal resolution. CDP data can be found in 180 
SOCRATES Navigation, State Parameter, and Microphysics Flight-Level Data. This study uses version 1.4 181 
of this dataset. This study uses version 1.1 of the 2DS dataset. The radar and lidar moments data version 182 
3.1  were processed by NCAR/EOL and 2 Hz (0.5 seconds) temporal resolution and 19 meters range vertical 183 
resolution. The operational specifications of HCR and HSRL is available at 184 
https://data.eol.ucar.edu/datafile/nph-get/552.034/readme_HCR_HSRL_SOCRATES_2Hz_v3.1.pdf.   185 

 186 

Remote sensors include a 94-GHz W-band HIAPER Cloud Radar(HCR) (Vivekanandan et al., 187 
2015) and a 532-nm High Spectral Resolution Lidar (HSRL) (Eloranta, 2005). Based on radar and 188 
lidar moments data, we will use retrieval techniques to derive precipitation properties, as detailed 189 
in section 2.3. HCR and HSRL were deployed in previous campaigns, such as CSET (e.g. Schwartz 190 
et al., 2019). The radar and lidar data were processed by NCAR/EOL at 2 Hz (0.5 seconds) 191 
temporal resolution and have 19 m vertical range resolution.  A description of the NCAR/EOL 192 
data processing and corrections are given in readme files that are distributed with the data (with 193 
link in the acknowledgement). This includes a correction of radial velocity for platform motion 194 
following Romatschke et al. (2021), in which corrections are applied to the nadir and zenith 195 
pointing data separately. For nadir pointing data, radial velocity was corrected following Ellis et 196 
al. (2019), where for radial velocity of the surface (assumed to be 0 m/s) is used as a reference to 197 
correct the data with a running 3rd degree polynomial filter. A similar method is applied to the 198 
zenith pointing data, which are the focus of this paper. But for the zenith pointing data, instead of 199 
assuming zero velocity of surface, it is assumed that the cloud top velocities from zenith pointing 200 
times are similar to those of the neighboring nadir pointing times.  Specifically, cloud top velocities 201 
are first calculated for both the nadir pointing data and zenith pointing data, then the difference of 202 
the two is used to correct the bias in the zenith pointing velocity data. Figure S2 shows an example 203 
of the zenith pointing velocity fields before and after the correction, and Figure S3 shows the 204 
averaged nadir pointing and zenith pointing velocity profiles from RF13, demonstrating that 205 
correction resulted in consistent velocity profile between nadir pointing data and zenith pointing 206 
times.  207 
 208 
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2.2 In situ Measurements 209 

2.2.1 Droplet size distribution  210 

This study uses in situ measurements mainly from two particle-sizing-instruments: a Cloud 211 
Droplet Probe (CDP) and a Two-Dimensional Stereo probe (2DS) as listed in Table 1. We focus 212 
on in situ measurement from these legs (as marked in Figure S1): below-cloud level legs, in-cloud 213 
level legs, and sawtooth legs (which are further divided into top-half of the cloud, bottom-half of 214 
the cloud, and the below-cloud portion as described below).  These in situ measurements will be 215 
used to derive reflectivity to rain rate relationships (Z-R) relationships (section 4.1), to validate the 216 
precipitation retrievals (section 4.3), and to study in-and-below cloud precipitation properties 217 
(section 5).  218 

We combine measurements from CDP and 2DS to create combined droplet size distribution (DSD) 219 
by using CDP measurements for bins with a diameter < 25μm and 2DS for bins > 50 μm.  For 220 
drops in the intermediate size range (25–50 µm) we take the larger values of the two probes. After 221 
combining the DSD from two probes, we further averaged DSD for different regions and flight 222 
segments.  Specifically, we examine the top half of the cloud layer from sawtooth legs; the bottom 223 
half of the cloud layer from sawtooth legs; the below-cloud portion of the sawtooth legs; the below-224 
cloud level legs in 20s intervals; and in-cloud level legs in 10s intervals. For the purpose of 225 
averaging the in-situ data into these categories, the define the aircraft as in-cloud when then liquid 226 
water content greater than 0.03 g m−3 (Wood et al., 2011; Kang et al., 2021).  Because of the limited 227 
sampling volumes of the probes, even with averaging, there can be gaps (and large variability) in 228 
the DSD distribution for large particles (where the concentrations are sufficient low that the probes 229 
become increasingly unlikely to observe these particles).  As needed, we fill gaps in the DSD by 230 
fitting an exponential curve following Comstock et al. (2004) and extrapolate DSD for larger 231 
particles (out to a diameter of 2000 μm). 232 
 233 

2.2.2 Precipitation properties 234 

Precipitation properties are derived using the DSD. For different segments, we calculated rain rate 235 
(liquid water flux) as: 236 
 237 

𝑅 = 3600	 ∗ 	
𝜋
6 𝜌). 𝑛(𝐷)	𝐷$	𝑣*(𝐷)𝑑𝐷

+

,!"#

 

 
(1) 

where 𝜌) is the density of liquid water (1000 kg m-3 ), D is the diameter in of m, 3600 is a scaling 238 
factor to convert the unit from kg m-2 s-1  to mm hr-1, and 𝑣*(𝐷) is the terminal fall velocity (unit 239 
of m s-1) of droplets in the range from D to D+dD, and 𝑛(𝐷) is the drop size distribution (with 240 
units of m-3 mm-1 ) . We use the terminal fall velocity model of Beard (1976) for 𝑣*(𝐷) term. Dmin 241 
is the lower limit for the integration, and except where stated otherwise is set to 40 𝜇m. In Section 242 
4.1, we test the importance of smaller droplets with diameter smaller than 40 μm on the liquid 243 
water flux(LWFtotal). 244 
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Similarly, precipitation number (𝑁-./01-) is calculated as: 245 

 246 

𝑁-./01- 	= 	. 𝑛(𝐷)𝑑𝐷
+

,!"#

 

 
(2) 

Precipitation liquid water content (𝐿𝑊𝐶-./01-) is calculated as: 247 

 248 

𝐿𝑊𝐶-./01- =	
𝜋
6 𝜌). 𝑛(𝐷)	𝐷$𝑑𝐷

+

,!"#

 

 
(3) 

Precipitation liquid water content weighted mean diameter (𝐷-./01-), which can be thought of as 249 
diameter at which half of 𝐿𝑊𝐶-./01- is below and half is above, is calculated as: 250 

 251 

𝐷-./01- 	= 		
∫ 𝑛(𝐷)	𝐷2𝑑𝐷+
,!"#

∫ 𝑛(𝐷)	𝐷$𝑑𝐷+
,!"#

	 

 

(4) 

Precipitation liquid water content weighted width (𝜎-./01-) is calculated as: 252 

 253 

𝜎-./01- 	= 	9
∫ 𝑛(𝐷)	𝐷$(𝐷 − 𝐷-./01-)3𝑑𝐷
+
,!"#

∫ 𝑛(𝐷)	𝐷$𝑑𝐷+
,!"#

	 

 

(5) 

 254 
2.2.3 Z-R relationships 255 
 256 
To estimate the Z-R relationships from in situ measurements, we calculated radar reflectivity Z 257 
and rain rate R, respectively from the in situ droplet size distributions (DSD). Rain rate is 258 
calculated as equation 1. Reflectivity is proportional to the sixth moment of the DSD: 259 

𝑍 = . 𝑛(𝐷)	𝐷&	𝛾*(𝐷)𝑑𝐷
+

4
 

 

(6) 

where 𝑛(𝐷)	𝑑𝐷	gives number concentrations from diameter D to D+dD, 𝛾*(𝐷) is the Mie-to-260 
Rayleigh backscatter ratio (shown in Figure S4, which is the ratio of the backscatter efficiency of 261 
Mie scattering for W-band (94-GHz), calculated using the miepython package based on Wiscombe 262 
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(1979), and backscatter efficiency of Rayleigh scattering (Bohren & Huffman, 1983). With 263 
calculated reflectivity and rain rate from the in situ DSD, the Z-R relationship assumes a traditional 264 
power-law of the form:  265 

𝑍 = 𝑎𝑅5 (7) 

Where a and b are coefficients, and Z is the independent variable. Equation 7 can also be 266 
rearranged as 𝑅 = (𝑍/𝑎)(/5, which can be used to derive R based on Z observations. Coefficients 267 
a and b can be estimated using the least-squares regression in log space following Comstock et al. 268 
(2004): 269 

𝑙𝑜𝑔𝑅 = 	
1
𝑏	(−	𝑙𝑜𝑔	𝑎	 + 	𝑙𝑜𝑔	𝑍) (8) 

We estimated the uncertainty in estimated exponents b and intercepts a that are based on in situ 270 
data using bootstrapping. Note that in section 4.1, we also estimated Z-R relationship based on 271 
radar observed reflectivity factor and rain rate from radar-lidar retrieval (more details in section 272 
2.3.3), where we use moving blocks bootstrapping method following Wilks (1997) to estimate 273 
uncertainty in a and b coefficients, with a block length that close to the enfolding length.  274 

2.3 Precipitation Retrievals based on remote sensors 275 

Precipitation retrievals described in this section use the zenith-pointing data collected when the 276 
aircraft was flying level-legs below the cloud. To illustrate, Figure 1a shows the flight track altitude 277 
and measured radar reflectivity for research flight 13 (RF13).  In panel (a), the potions of the flight 278 
track which feature below-cloud-level legs are colored green. Figure 1b-f shows the radar and lidar 279 
data in more detail, for the below-cloud level leg starting from 03:40 UTC, which is marked by 280 
the grey shading in Figure 1a. In general, retrievals undertaken for below-cloud level legs have the 281 
advantage that the zenith pointing lidar data allows one to determine the position of cloud base, as 282 
well as providing measurements of the backscatter (Figure 1c) and depolarization ratio (Figure 1d) 283 
of the precipitation that has fallen from the cloud and can be used to determine the precipitation 284 
phase. We describe the retrieval process in the three subsections that follow: (1) determine the 285 
cloud boundaries; (2) determine the phase of precipitation; (3) determine the liquid precipitation 286 
microphysical properties (such as the rain rate).  287 

2.3.1 Determine the cloud boundaries 288 

To determine the cloud base, we use the lidar backscatter coefficient 𝛽 (e.g. Figure 1c) and define 289 
the cloud base as the altitude where 𝛽 first exceeds a threshold of 0.0001 m-1 sr-1. The black dots 290 
in Figure 1c show the cloud base identified using this threshold.  Cloud top for our analysis is 291 
based on the radar reflectivity data, which has already been masked for significant detections 292 
(above the instrument noise floor).  The cloud top is taken simply as the maximum height with a 293 
valid reflectivity echo below 3km, as marked by grey dots in Figure 1b-f.  294 

2.3.2 Determine the phase of precipitation below cloud base 295 

With the cloud boundaries identified, the next step is to determine the phase of the precipitation 296 
falling from the clouds. Following Mace and Protat (2018), we determine the precipitation phase 297 
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using the lidar particle linear depolarization ratio (PLDR) (e.g., Figure 1d). The basic concept is 298 
that the lidar emits linearly polarized light, and scattering by spherical particles (e.g. liquid drops) 299 
does not change the polarization state of the light and thus generates little PLDR, while scattering 300 
from non-spherical particles (e.g. ice particles) creates significant depolarization and thus 301 
generates measurable increase in PLDR. In this study, for each lidar column, we examined the 302 
median of the PLDR over the vertical interval between cloud base to the first useable lidar range 303 
gate.  For clouds with a cloud top temperature greater than 0, that is for warm clouds whose 304 
precipitation must be liquid, we find the below-cloud base PLDR values to be less than 0.03 about 305 
90% of the time, and to be above 0.05 less than 1% of the time(see Figure S5 for overall statistics 306 
and Figure S6 for an example case).  Thus, for cooler cold-topped clouds (which might precipitate 307 
ice), we define the precipitation to be liquid phase when the median PLDR < 0.03; ice precipitation 308 
when PLDR > 0.05; and ambiguous phase with PLDR values in between.   309 

2.3.3 Liquid Precipitation retrieval  310 

After determining the cloud base and precipitation phase, we can use a hierarchy of retrieval 311 
methods with increasing complexity to derive the precipitation microphysical properties, starting 312 
from (1) a simple Z-R relationship approach where only one variable, the radar reflectivity, Z, is 313 
available to derive the rain rate, to (2) a ZV retrieval following Mace et al. (2002) and Marchand 314 
et al. (2007), where radar reflectivity, Z, and mean Doppler velocity, V, are known to (3) a radar-315 
lidar retrieval following O’Connor et al. (2005) based on three observables: radar reflectivity Z, 316 
radar Doppler spectral width 𝜎7, and lidar backscatter 𝛽.   We briefly describe the radar-lidar and 317 
then the ZV and in this section, and present retrieval results and evaluate the retrievals using in 318 
situ observations in Section 4.   319 

The radar-lidar retrieval technique uses three input variables radar reflectivity, Z (Figure 1b), 320 
doppler spectral width, 𝜎7	(Figure 1e), and lidar backscatter, 𝛽  (Figure 1c), to solve for three 321 
parameters in an assumed modified gamma distribution (equation 9) for the precipitation drop size 322 
distribution.  The three parameter are the shape factor 𝜇, the median equivolumetric diameter D0, 323 
and the normalized droplet concentration Nw： 324 

𝑛(𝐷) = 𝑁)𝑓(𝜇)(
𝐷
𝐷4
)9𝑒[

'($.&<=9),
,$

] (9) 

where D is diameter, and 𝑓(𝜇) is a function of 𝜇  325 

𝑓(𝜇) = 	
6

3.672
(3.67 + 𝜇)2

Γ(𝜇 + 4)  (10) 

where Γ is the gamma function. Integration of the droplet size distribution in (9) will yield the 326 
precipitation droplet number concentration, Nprecip, as in equation 2.  327 

Following O’Connor et al. (2005), one can show that for a fixed value of the shape factor,	𝜇, the 328 
ratio of the radar reflectivity to lidar backscatter is proportional to the fourth power of the mean 329 
drop size, and the combination of radar reflectivity and lidar backscatter can therefore be used to 330 
calculate D0 and Nw.  In the retrieval algorithm, this is done assuming an initial value of 𝜇 = 0.  331 
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The Doppler spectral width is then forward calculated and 𝜇 is increased or decreased in order to 332 
match the observed Doppler spectral width (after applying corrections for beam width and 333 
turbulent motions). The forward calculations require a model for the hydrometeor terminal fall 334 
velocity, for which we use the model of Beard (1976).  Once the three distribution parameters are 335 
known, it is straightforward to calculate the rain rate, rain liquid water content, and mean rain drop 336 
size, etc. using the fall velocity and equation (9). This retrieval technique has been widely used in 337 
retrieving drizzle properties (e.g. Ghate & Cadeddu, 2019; Yang et al., 2018), including the CSET 338 
campaign with airborne radar and lidar (Schwartz et al., 2019; Sarkar et al., 2021). Our 339 
implementation largely follows O’Connor et al. (2005), except for estimation of the contribution 340 
from air turbulence to the observed spectral width. Instead of using the horizontal wind speed to 341 
estimate the length scale (we note O’Connor et al. (2005) originally developed the retrieval for 342 
vertically pointing ground-based radar and lidar), we use the aircraft speed.  343 

In addition to the radar-lidar retrieval technique, we also use a reflectivity-velocity (ZV) retrieval 344 
technique (Frisch et al.,1995; Mace et al., 2002; Marchand et al.,2007). The first step in this 345 
retrieval is to estimate the precipitation fall velocity from radar measured Doppler velocity, which 346 
includes the effect of vertical air motions (i.e., updrafts/drowndraft).  We do this follow Orr and 347 
Kropfli (1998) and partition the measured Doppler velocities into a set of height and reflectivity 348 
bins (for each below-cloud zenith-pointing segment) and average the partitioned Doppler velocity 349 
as an estimate for the fall velocity (as a function of height and radar reflectivity). The underlying 350 
idea is that at a given altitude and reflectivity, there is a characteristic size distribution (with a 351 
characteristic fall velocity) and by averaging the Doppler velocities over a narrow range of 352 
reflectivity values, one averages out the effect of the updrafts and downdrafts leaving only the 353 
mean fall velocity. In this study we use reflectivity bins are that 2 dBZ wide, and use 200 m vertical 354 
bins with 100 m overlap.  The results are not particularly sensitive to these choices, as long as there 355 
is a healthy number of samples are available in each bin.   Following Frisch et al. (1995), it is 356 
straight-forward to obtain analytical expressions for distribution parameters D0  and Nw given the 357 
derived fall velocity, measured reflectivity, and an assumed shape factor 𝜇. Except were stated 358 
otherwise, we assume shape factor to be 0.  One can show that the modified gamma distribution 359 
(equation 9) reduces to the exponential distribution when the shape factor is zero.  In the radar-360 
lidar retrieval we find retrieved shape factor is often quite small and we will examine and discuss 361 
the sensitivity of the ZV retrieval to assumed shape factor values in Section 4.2.   362 
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 363 

Figure 1. Example radar and lidar data collected during the SOCRATES. Panel a shows the flight 364 
tracks and reflectivity fields from research flight 13 (RF13), with different segments color-coded 365 
as in Figure S1. The grey shading marks a portion of one below-cloud level leg, and a zoom-in 366 
view of the radar and lidar fields for this segment are shown in panels b-f: (b) radar reflectivity; 367 
(c) lidar backscatter coefficient; (d) lidar particle linear depolarization ratio; (e) radar spectral 368 
width; (f) radar doppler velocity. The grey lines show the estimated cloud top, the black lines show 369 
the estimated cloud base, and the green line shows the location of the aircraft. 370 
 371 
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3 Campaign overview  372 

To get a general sense of the hydrometers (clouds and precipitation) sampled by the airborne W-373 
band radar during the SOCRATES, Figure 2a shows the joint histogram of radar reflectivity with 374 
height observed during below-cloud, zenith-pointing periods (i.e. as illustrated in Figure S1).   375 
Here the histogram is normalized by the number of radar columns, such that the value in each bin 376 
indicates how often hydrometers (cloud and precipitation) have a reflectivity (with +/- 1 dBZ of 377 
the given value) in the given altitude/height range; and the sum at each height (row) will gives the 378 
hydrometer fraction (Figure 2b).  379 

Note that there is no data to the left of the red line in panel a. This is because of limited radar 380 
sensitivity, and as distance increases, the minimum detectable reflectivity value increases. Likewse, 381 
there are no data from 0 to 200 meters altitude because the aircraft lowest legs were typically flown 382 
at around 100-150 m altitude, and the radar blanking interrupt (the region corresponding to the 383 
time when the radar outgoing pulse is being, or has just been, transmitted and the radar system has 384 
not yet begun measuring the return power) typically extends about 203 m above this (Schwartz et 385 
al., 2019). 386 

The maximum frequency of hydrometers observed by the radar occurred between 700 and 1200 387 
meters, with a hydrometer fraction over 50%. (Note this is not projected area or the fraction of 388 
radar columns with a significant echo at any altitude, that value is near 90%). Reflectivity factors 389 
larger than -10 dBZ are relatively rare and there is no distinct mode associated with precipitation 390 
(that is, no peak with a reflectivity larger than about -20 dBZ).  Reflectivity factors larger than -10 391 
dBZ are common of the Southern Ocean (see for example Mace and Protat 2018), but such factors 392 
are associated with fronts or convection (including the shallow convection sometimes associated 393 
with vigorous open cells) and not typical of the shallow (cloud tops < 2 km) and largely overcast 394 
stratocumulus sampled during SOCRATES.  Rather there is a single mode or continuum of 395 
reflectivity that span reflectivity factors from about -40 dBZ (where there are few if any 396 
precipitation sized particles) to values around -10 dBZ (where precipitation is still light with rain 397 
rate <1 mm hr-1 but can have a substantial impact on cloud condensation nuclei and cloud lifetime, 398 
Kang et al.,2022) and a peak below -20 dBZ.   Most of this cloud is supercooled.  Overall, we find 399 
that about 80% of the stratocumulus sampled during SOCRATES had a cloud top temperature < 400 
0°C and cloud depth < 600m (figure not shown), and about 62% of the stratocumulus were 401 
precipitating, defined as 3 consecutive radar bins (about 60 meters) below cloud base with a 402 
reflectivity greater than -40dBZ. The occurrence of precipitation drops to 34% if a reflectivity 403 
threshold of -20 dBZ is applied (in spite of the detections being below cloud base), indicative of 404 
very light nature of the precipitation.   405 
 406 
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 407 
Figure 2. (a) Joint histogram of hydrometer (cloud & precipitation) radar reflectivity with height 408 
observed by the airborne W-band radar during below-cloud, zenith-pointing periods (i.e., when 409 
aircraft is flying below the cloud, as illustrated in Figure S1). Histogram is normalized by total 410 
number of radar “columns” such that the histogram values is the fractional occurrence (see text). 411 
(b) hydrometer fraction [%] at each height of all radar “columns”. The red line on panel a shows 412 
the minimum detectable reflectivity values by HCR as a function of height.  413 

What is the phase of the precipitation sampled during the SOCRATES? As described in Section 414 
2.3.2, we determine the precipitation phase using the lidar particle linear depolarization ratio 415 
PLDR (Figure 1d), and interpret the precipitation as liquid phase when PLDR < 0.03; ice phase 416 
when PLDR > 0.05; and ambiguous for PLDR values in between. Figure 3a shows that around 417 
60% of the precipitation from the zenith-pointing segments are liquid phase and about 20% of the 418 
precipitation are ice phase, with the remaining 20% being ambiguous phase. How does 419 
precipitation phase relate to the cloud top temperature? Figure 3b shows the relative occurrence of 420 
precipitation in difference phases as a function of cloud top temperature (CTT). For the warm-421 
topped clouds (CTT > 0°C), we expect that all the precipitation should be liquid phase.  422 
Temperature is not used in the phase retrieval, and consistent with the discussion in Section 2, the 423 
low occurrence of ambiguous or ice phase precipitation with CTT > 0°C is indicative of the low 424 
retrieval error.  For the cold-topped clouds (CTT <0°C), liquid precipitations still dominate for 425 
clouds with CTT between 0 and -10°C, with the ice fraction increasing as temperature decreases.  426 
But it is not until about a CTT of -15°C that ice phase appears to dominate. It could be that the 427 
apparent peak in ice phase occurrence near -15°C is a result of dendric growth (or secondary ice 428 
product associated with dendrites), as dendric growth is known to occur near this temperature (e.g., 429 
von Terzi et al., 2022) but there is too little data here to be confident this uptick in ice phase is 430 
statistically significant. 431 

An interesting question related to phase is whether or not precipitation phase is related to radar 432 
reflectivity. Zhang et al. (2017) have shown that lidar depolarization ratios is correlated with radar 433 
reflectivity, and for the SO in particular, Mace and Protat (2018) show that W-band radar 434 
reflectivity greater than -10 dBZ is associated with ice-phase hydrometeors (based on 435 
CAPRICORN observations).  Figure 3c shows the occurrence of the different precipitation phase 436 
for cold-topped clouds  as a function of reflectivity. Overall, it shows that reflectivity factors less 437 
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than about -10 dBZ are predominately liquid, while reflectivity factors greater than 0 dBZ is 438 
predominately ice. We will discuss this result in more detail in the conclusions. 439 
 440 

  441 
Figure 3. (a) Probability and cumulative density functions for lidar particle linear depolarization 442 
ratio (PLDR) for below-cloud precipitation (b) The fraction of liquid, ice, and ambiguous 443 
precipitation as a function of cloud top temperature. (c) The fraction of liquid, ice, and 444 
ambiguous precipitation as a function of radar reflectivity. To distinguish different precipitation 445 
type, liquid precipitation is marked as blue, ice precipitation is marked as red, and ambiguous 446 
precipitation is marked as green.  447 
 448 

4 Precipitation Retrievals  449 

In this section, we will explore a hierarchy of retrieval methods based on complexity, from (1) the 450 
simplest Z-R relationship approach where only one variable reflectivity Z is known, to (2) a ZV 451 
retrieval using two variables (reflectivity Z and Doppler velocity V), to (3) a radar-lidar retrievals 452 
based on three variables (reflectivity radar reflectivity Z, doppler spectral width 𝜎7 , and lidar 453 
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backscatter 𝛽). In section 4.1, we will develop Z-R relationships based on in situ data. In section 454 
4.2, we will demonstrate the results from ZV and radar-lidar liquid precipitation retrievals using a 455 
case example, and in section 4.3, we evaluate these retrievals using in-situ aircraft observations 456 
from all the segments where retrievals were performed. 457 

4.1 Reflectivity to rain rate (Z-R) relationships  458 

One objective of this study is to estimate Z-R relationships of the form Z = 	a𝑅5. Z-R relationships 459 
are useful and convenient, requiring only one independent variable (reflectivity Z) to estimate rain 460 
rate R. Such relationships have a long history in atmospheric science, and as concerns 461 
stratocumulus in particular, relationships have been derived in past studies for stratocumulus over 462 
the Eastern Pacific (Comstock et al., 2004), over the north-east Atlantic and in U.K. coastal waters 463 
(Wood, 2005), and for nocturnal stratocumulus clouds off the California Coast (VanZanten et al., 464 
2005). More recently, Protat et al. (2019b) estimated Z-R relationships at the surface over the 465 
global ocean, including the Southern Ocean, based on surface disdrometer measurements. In this 466 
section, we will derive Z-R relationships using SOCRATES aircraft observations following the 467 
method presented in Section 2.2.3 and compare our results with previous studies.  468 

Figure 4 shows the Z-R relationships derived using in situ data taken at different locations relative 469 
to the cloud layer and surface (see Figure S1 for a schematic). Table 2 lists the corresponding a 470 
and b coefficients. In Figure 4a, we only consider droplets with a diameter larger than 40 μm 471 
following Comstock et al. (2004), while in Figure 4b, we include all droplets including those 472 
droplets with a diameter smaller than 40 μm. We will focus on Figure 4a first. Figure 4a shows 473 
that estimated Z-R relationships do have a vertical dependence.  The intercept controlled by 474 
coefficient a increases as one moves from the cloud layer to the surface, while the slope controlled 475 
by exponent b remains largely unchanged. The vertical dependence of Z-R was also noticed in 476 
previous studies (e.g. Comstock et al., 2004; vanZanten et al., 2005). The exponent b estimated in 477 
Figure 4a ranges from 1.3 to 1.45, with a (one sigma) uncertainty that ranges from 0.5 to about 0.1, 478 
based on a bootstrap resampling technique (uncertainties are listed in Table 2).  Note the 479 
uncertainties in the a and b coefficients are not independent, but rather are positively correlated 480 
such that a larger estimate for the a-value is associated with a larger estimate for the b-values.  481 
Table 2 also lists some Z-R relationships estimated from other studies mentioned above. Overall, 482 
we find the exponent b to be similar to that from Comstock et al. (2004), vanZanten et al. (2005), 483 
and many other earlier studies summarized in Rosenfeld and Ulbrich (2003) over other regions 484 
and other cloud types. Later in this section we will compare the rain rate derived from Z-R 485 
relationships with rain rate derived from two other retrieval methods.  486 

The above analysis is based on the idea that only droplets larger than 40 μm are considered 487 
precipitation. But droplets smaller than 40 μm can and do contribute to the flux of liquid water 488 
(Nicholls, 1984). What happens if small droplets with a diameter smaller than 40 μm are included 489 
when calculating Z and R from in situ DSDs? The results are shown in Figure 4b. Comparing 490 
Figure 4a and 4b, one can see that the estimated Z-R relationships is very sensitive to whether one 491 
excludes smaller drops, especially for the data collected in the cloud. Differences in the estimated 492 
Z-R are less dramatic when using in situ data outside of the cloud (i.e. below-cloud portion of the 493 
sawtooth leg and below-cloud level legs).  494 
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To explore the importance of the smaller droplets, Figure 5a shows an example of DSDs measured 495 
near the top of a cloud, near the bottom cloud and below cloud during one sawtooth leg, as well as 496 
a nearby below-cloud level leg (depicted in the bottom panel).  The associated liquid water flux 497 
distribution 𝐷$𝑁(𝐷)𝑉(𝐷) is shown Figure 5b, and the reflectivity distribution 𝐷&𝑁(𝐷) in Figure 498 
5c. Note as in the microphysical retrievals, here we use the terminal fall velocity model of Beard 499 
(1976) for V(D). Below-cloud, small droplets evaporate much more quickly than larger droplets, 500 
and most of the contributions to the liquid water flux comes from larger droplets, such that the 501 
effect of small droplets on liquid water flux and reflectivity can be largely neglected. We hasten 502 
to add, however, this is true not true for the total number concentration (Figure 5a); where small 503 
droplets remain more numerous (than droplets above 40 μm), and includes many particles with 504 
sizes smaller than 5 μm, which one might consider haze-particles or hydrated-aerosols rather than 505 
cloud droplets.  Within the cloud layer, small droplets make a large contribution to the liquid water 506 
flux and contribute slightly to the reflectivity. Droplets in the diameter range of 10-40 μm 507 
contribute 78% of the liquid water flux in the top half of the cloud, and still comprise about half 508 
of the water flux in the bottom half of the cloud. Contributions to the reflectivity from droplets in 509 
the range of 10-40 μm are smaller than those of larger droplets, but both make a non-trivial 510 
contribution.   511 

In short, as Figure 5 and the differences in estimated Z-R in Figure 4a and Figure 4b highlight, the 512 
sedimentation of small droplets is (or can be) a significant component of the total liquid water flux 513 
in cloud and applying the Z-R relationship derived from only larger particles or from below-cloud 514 
measurements effectively ignores the contribution from small particles (and below-cloud Z-R 515 
equations should be applied with caution to in-cloud reflectivity measurements and should be 516 
expected to underestimate the total liquid water flux).   517 
 518 
 519 
 520 

  521 
Figure 4. Z-R relationship derived using in situ data and retrievals. Diameter >40um cutoff for 522 
the in situ measurements is imposed in panel a, while panel b does not apply any cutoff, and 523 
considers all droplet sizes for in situ data. 524 
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 525 
   526 
 527 

 528 
Figure 5. Example case to show the contributions of droplets in different size ranges with in situ 529 
measurements taken from different segments: (a) average droplet size distribution; (b) product of 530 
diameter cubed, droplet size distribution and terminal fall velocity;(c) product of diameter to the 531 
power of six and droplet size distribution; (d) reflectivity field and flight track for this example, 532 
the color-coded lines marked the locations of different segments showing in panel a-c. The vertical 533 
dashed line in panels a-c is the reference line for 10 μm and 40 μm. The percentage on panel a, b, 534 
and c show the contributions from different size range to droplet number concentration, to rain 535 
rate, and to reflectivity, respectively. 536 
 537 
 538 
 539 
 540 
 541 
 542 
 543 
 544 
 545 
 546 
 547 
 548 
 549 
 550 
 551 
 552 
 553 
 554 
 555 
 556 
 557 
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Table 2. Z-R relationship of the form	Z = 	a𝑅5 	558 

Equation Location Remarks Reference 

𝑍 =	 (5.1 ± 3.5)	𝑅	('.)'	±	+.') 

[𝑍 = 	 (16.9 ± 26.1)	𝑅	(-.+.	±	+.-/)]	

the top half of the 
cloud layer from 
the sawtooth leg 

Estimated using 
SOCRATES aircraft in 
situ measurements with 
and without the 40μm 
cutoff, [without given in 
brackets] 

 
 

 

This study 

𝑍 =	 (9.9 ± 2.8)	𝑅	('.)0	±	+.+/) 

[𝑍 = 	 (13.1 ± 6.8)	𝑅	('.1.	±	+.'')] 

in-cloud level legs 

𝑍 =	 (23.7 ± 11.6)	𝑅	('.2/	±	+.+.) 

[𝑍 = 	 (68.7 ± 68.5)	𝑅	(-.+	±	+.'0)] 

bottom half of the 
cloud layer from 
the sawtooth leg 

𝑍 =	 (59.4 ± 21.4)	𝑅	('.2	±	+.+2) 

[𝑍 = 	 (172.4 ± 106.7)	𝑅	('.0-±+.+0)] 
the below-cloud 
portion of the 
sawtooth leg 

𝑍 =	 (63.8 ± 47.1)	𝑅	('.)±+.+/) 

[𝑍 = 	 (152.2 ± 277.9)	𝑅	('.20±+.+3)] 
below-cloud level 
legs.  

𝑍 =	 (31.6 ± 1.4)	𝑅		('.2'±+.++1) Cloud base Estimated using 
SOCRATES W-band radar 
measured reflectivity and 
radar-lidar retrieved rain 
rate just-below cloud base 

Z = 	25𝑅'.) Cloud base Estimated for 
stratocumulus over Eastern 
Pacific 

Comstock et al. 
(2004) 

Z = 	12.92	𝑅'.21 Cloud base Estimated using aircraft in 
situ DSD measurements 
for nocturnal 
stratocumulus clouds over 
California Coast 

vanZanten et al. 
(2005) 

 

Z = 	12.5	𝑅'.'. All in-cloud levels Estimated using aircraft in 
situ DSD measurements 
for stratocumulus over the 
north-east Atlantic and in 
U.K. coastal waters 

Wood (2005) 

Note: here uncertainty is estimated using either by bootstrapping (rows 1-5) or moving block 559 
bootstrapping (row 6) with the one-sigma uncertainty given after the plus-minus sign. For the Z-R 560 
relationship that is estimated using in situ measurements, the Z-R relationship estimated using only larger 561 
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droplets, with a diameter greater than 40μm, is listed first, followed by the Z-R relationship estimated 562 
using all droplets included those droplets with a diameter smaller than 40μm. For the equations above, 563 
the reflectivity Z is in the unit of mm6mm-3, and the rain rate is in the unit of mm hr-1. For the equations in 564 
the past studies with the form of 	𝑅 = 	𝑐𝑍" or have different units, we rearranged the equation and 565 
converted the units to keep the consistency and make it easier to compare. Unless noted, the default band 566 
for reflectivity is W-band.  567 

4.2 ZV retrieval and radar-lidar retrieval 568 

In this subsection, we examine both the ZV retrieval and radar-lidar retrievals using the zenith-569 
pointing remote sensing data collected when the aircraft was flying level-legs below the cloud. We 570 
will begin with one case study, compare results from different retrieval methods, and then examine 571 
the sensitivity of ZV retrieval results to the assumed shape factor 𝜇.  The overall retrieval 572 
performance will be evaluated in Section 4.3. 573 

Applying the ZV retrieval (described in Section 2.3.3) to the example presented in Figure 1, the 574 
parameters D0 and Nprecip can be derived from measured reflectivity Z, assumed shape factor 𝜇, and 575 
derived terminal fall velocity. Figure 6a shows the reflectivity-weighted terminal fall velocity, vt , 576 
derived following Orr and Kropfli (1998).  Here we see generally larger vt toward the bottom of 577 
the cloud, and in precipitation shafts (regions of relatively high reflectivity extending below cloud 578 
base). Figure 6b and 6c shows derived median equivolumetric diameter D0, and precipitation 579 
concentration Nprecip, assuming 𝜇 =0. Not surprisingly, Figure 6b shows that D0 is larger where vt 580 
is larger, and is about 100-200 𝜇m below cloud base. Figure 6c shows Nprecip below cloud base is 581 
in the order of 103~105 m-3. 582 

Applying the radar-lidar retrieval technique to the example presented in Figure 1, with three input 583 
variables (radar reflectivity Z, doppler spectral with 𝜎7, and backscatter coefficient 𝛽), we can also 584 
solve for shape factor 𝜇 , median equivolumetric diameter D0, and precipitation number 585 
concentration Nprecip, as shown in Figure 7. The shape factor 𝜇 describes the shape of the DSD 586 
(equation 9) and larger 𝜇 implies narrower distributions. As in O’Connor et al. (2005), we find 587 
large areas with broad DSDs (small 𝜇). Narrow DSDs implied by large 𝜇 are typically found 588 
underneath the thicker portion of the clouds (and as we will see later have larger rain rates). The 589 
median equivolumetric diameter D0 is mostly between 50-250 𝜇m, with larger sizes occurring 590 
where 𝜇 is larger.  Again, this is similar to what O’Connor et al. (2005) observed and appears to 591 
be quite typical for drizzling stratocumulus. Comparing the two retrieval methods, both D0 and 592 
Nprecip from ZV retrieval (Figure 6) tend to be more spatially homogeneous below cloud base than 593 
that from radar-lidar retrieval (Figure 7), and the D0 from ZV retrieval tends to be smaller than that 594 
from radar-lidar retrieval in the precipitation shafts (where the assumption of a small value for the 595 
shape factor appears problematic, more on this below). 596 

Once the parameters that determine the DSDs are derived, it is straightforward to calculate other 597 
precipitatition properties such as rain rate. Figure 8b and c show the ZV retrieved the rain rate 598 
(assuming 𝜇 =0) and radar-lidar retrieval retrieved the rain rate. Overall, the two retrieval methods 599 
give similar results (mean of rain rate from ZV retrieval is 0.0096 mm hr-1, and mean of rain rate 600 
from radar-lidar retrieval is 0.0093 mm hr-1). With derived Z-R relationships from section 4.1, one 601 
can also derive rain rate by apply them to the radar reflectivity fields, as shown in Figure 8a, with 602 
derived rain rate by applying Z-R relationships shown in Figure 4a from sawtooth-top to the top 603 
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half of the cloud, from sawtooth-bottom to the bottom half of the cloud; as well as sawtooth-below 604 
to area below the cloud base. Overall, the retrieved rain rate has a magnitude that is around 0.001-605 
0.1 mm hr-1. The discontinuity in the rain rate fields in Figure 8a is because three different Z-R 606 
relationships are applied to different regions. The difference in Z-R relationships (i.e. with or 607 
without D>40 μm cutoff) also results in differences in derived rain rate (Figure S7), especially for 608 
the in-cloud portion.  Overall, regardless of the retrieval approaches, it can also be seen that higher 609 
rain rates tend to occur below the geometrically thicker portion of the clouds, and we will explore 610 
the scaling between rain rate and cloud depth further in Section 6.  611 

In Figures 6 and Figure 8b, we assume 𝜇 =0 in the ZV retrieval, while retrieved 𝜇 from radar-lidar 612 
retrieval clearly shows spatial variations (Figure 7a). How will ZV retrieved D0, Nprecip, and rain 613 
rate vary with assumed 𝜇? Figure S8 shows that the derived D0 increases with increasing 𝜇 values 614 
such that mean D0 just below cloud base is 102 𝜇𝑚	when 𝜇 = 	0, and is 156	𝜇𝑚	when 𝜇	 = 10.	 In 615 
contrast, as shown in Figure S9, the derived Nprecip decreases significantly with increasing  𝜇 values, 616 
with mean Nprecip at cloud base is about 1.2×105 m-3	when 𝜇	 = 	0, and is 1.2×103 m-3	when 𝜇	 =617 
10. However the derived rain rate (Figure S10) shows relatively little dependence on assumed 𝜇, 618 
with rain rate at cloud base decrease slightly from about 0.009 mm hr-1 (𝜇 = 	0) to about 0.007 619 
mm hr-1 (𝜇 = 	10). The small sensitivity in rain rate ultimately arises because the liquid water flux 620 
is to first order given by the velocity (which is input to the retrieval) times the liquid water content 621 
(which is strongly constrained by the reflectivity that is likewise input to the retrieval).   622 
   623 

  624 
Figure 6. A time-height plot of ZV method retrieved drizzle properties assuming shape factor  625 
for the example segment is shown in Figure 1. (a) reflectivity-weighted the terminal fall velocity 626 
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vt; (b) median equivolumetric diameter D0, and (c) precipitation number concentration Nprecip. 627 
The grey lines show the estimated cloud top, the black lines show the estimated cloud base. 628 
 629 
  630 

 631 
Figure 7. A time-height plot of radar-lidar retrieved drizzle properties for the example segment is 632 
shown in Figure 1. Radar-lidar retrieval method derived parameters for modified gamma 633 
distribution (a) shape factor μ; (b) median equivolumetric diameter D0, and (c) precipitation 634 
number concentration Nprecip. The grey lines show the estimated cloud top, the black lines show 635 
the estimated cloud base. 636 
 637 
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 638 
Figure 8. Retrieved rain rate for example case using (a) Z-R relationships (D > 40μm), (b) ZV 639 
retrieval technique, and (c) radar-lidar retrieval technique, and (d) their comparisons with in situ 640 
estimates. In panels a-c, the dashed grey line shows the location of the aircraft, while the dotted 641 
line is a reference line to show 200 meters above the aircraft's location. In panel d the retrieved 642 
rain rates were extrapolated to the aircraft level to compare with the in situ data. The pink line 643 
shows the rain rate retrieved with Z-R relationships, the green line shows the rain rate retrieved 644 
with the ZV retrieval technique, and blue line shows the rain rate retrieved with the radar-lidar 645 
retrieval technique. The black squares represent the rain rate estimated with in situ 646 
measurements, where rain rates are derived from averaged droplet size distribution (merged CDP 647 
and 2DS) over 20 seconds. Over that same time window, the median value of the retrieved rain 648 
rate time series was taken, denoted as pink dots (Z-R relationship), green dots (ZV retrieval) and 649 
blue dots (radar-lidar retrieval).   650 
 651 
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4.3 Retrieval validation  652 

How good are the rain rate retrievals? One would think a simple comparison between the retrieved 653 
rain rate with in situ measurements from the aircraft could answer this question. But there are a 654 
few challenges that need to be overcome.  655 

The first challenge is that retrieved rain rates that are closest to the aircraft level marked as a dashed 656 
line around 200 m in Figure 8) are still at least 150 meters away, making it difficult to make a 657 
direct comparison.  This is because there is a blanking interrupt, a brief period where one needs to 658 
wait for the outgoing pulse to exit the radar (or lidar) system and for the effect of strong scattering 659 
from nearby objects (clutter) to dissipate. To overcome this difficulty, we extrapolate the retrieved 660 
rain rate downwards to the aircraft level by fitting an exponential function to each radar column. 661 
The assumption is that the rain rate varies with distance below the cloud base exponentially due to 662 
evaporation (Wood, 2005; Comstock et al., 2004). Figure S11 in the supporting information shows 663 
an example of rain rate derived from the exponential fit, and demonstrates that the exponentially 664 
fitted rain rate shows reasonable agreement with the retrieved rain rate where such is retrieved. 665 
Figure 8d compares the extrapolated rain rate from the Z-R relationship (red line), extrapolated 666 
rain rate from ZV retrieval (green line), extrapolated rain rate from radar-lidar retrieval (blue line). 667 
To further increase our confidence, we only compare the extrapolated rain rate from those periods 668 
where the original retrieved rain rate extends to within 200m of the aircraft (i.e. when the rain 669 
extends down to dotted reference line). Another challenge is the limited sampling volume of the 670 
in situ probes. To overcome this difficulty, we average the in situ DSD over a 20s period, marked 671 
as black squares in Figure 8d, and similarly, we also average the corresponding retrievals over the 672 
same 20s time window, marked by the red, green and blue dots. It can be seen that the retrieved 673 
rain rate shows reasonable agreement with in situ data for this case.  674 

We repeated this analysis for the liquid-precipitation retrievals for all the SOCRATES flights and 675 
summarize the results in Figure 9. Overall, the Z-R, ZV, and radar-lidar retrievals compare well 676 
with the in situ, with Pearson correlation coefficient of 0.83. 0.88 and 0.68, respectively. Despite 677 
the simplicity of the approach, even the rain rate derived from Z-R relationship shows good 678 
performance compared to the in situ values, with a fractional difference (difference in 20s medians 679 
/ average of 20s medians) of only -8.0%. If we estimate the uncertainty in the retrieved rain rate 680 
via error propagation, and we estimated the uncertainty in reflectivity as 1.5 dB for reflectivity 681 
(following O’Connor et al., 2005) and 10% for lidar backscatter (e.g., Schwartz et al., 2019), we 682 
estimate the uncertainty in the radar-lidar retrieved rain rate would be 18%. Similarly, with the 683 
uncertainty of 1.5 dB for reflectivity, and 10% uncertainty for terminal fall velocity (see Tansey 684 
et al., 2022), we estimate the uncertainty in the ZV retrieved rain rate to be 44%. As for the Z-R 685 
relationship (using the below-cloud sawtooth leg relationship), the estimated the uncertainty in 686 
rain rate is 38.4%. Relative to the expected uncertainties due simply from uncertainties in the 687 
inputs, all three retrievals compare well with the in situ data.  688 

 689 

 690 
   691 
 692 
 693 
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  694 
 695 
 696 

 697 
Figure 9. Comparison of in situ estimates with (a) Z-R retrieval, (b) ZV retrieval, and (c) radar-698 
lidar retrieval for the entire campaign. The retrieved rain rates plotted here that were extrapolated 699 
to the aircraft level (see Figure 8, S11) to compare with the in situ data.  Fractional difference is 700 
calculated as the difference between the retrieved and in situ median value divided by the 701 
average of the medians.  702 
 703 

5 Vertical distribution of precipitation properties 704 

In this section, we will apply the precipitation observations and retrievals to study the vertical 705 
distribution of precipitation properties.  706 

Figure 10 shows a violin plot of in situ measured precipitation properties at different altitudes and 707 
retrieved precipitation properties below the lidar-inferred cloud base. For each dataset, the white 708 
dot represents the median value, while the black bar represents the interquartile range. Perhaps 709 
surprisingly rain rate decreases going downward from the top half of the cloud (i.e. the largest rain 710 
rates are in the upper portion of the cloud). Medians of rain rate at the cloud top half, cloud bottom 711 
half and below the cloud are of 0.021 mm hr-1, 0.008 mm hr-1, and 0.001 mm hr-1. Similar to rain 712 
rate, there is also a decrease in precipitation number concentration (Nprecip) and precipitation liquid 713 
water content (LWCprecip) moving downward from the top half of the cloud. In contrast, Dprecip and 714 
σprecip increase moving downward, that is bigger particles in the bottom half, and (just) below cloud. 715 
Overall, the retrieved precipitation properties (below the cloud base) compare well with the in situ 716 
estimates from the sawtooth below-cloud segments. 717 

How do precipitation properties vary below cloud base? Figure 11 provides a more detailed view 718 
on the vertical distribution of precipitation properties below cloud base. Here, the column shows 719 
rain rate, Nprecip, LWCprecip, Dprecip, and σprecip, respectively. The first two rows are histograms for 720 
radar-lidar and ZV retrievals, respectively. The last row is a box plot that summarizes both 721 
retrievals by binning the data vertically every 100 meters. Here, we only consider data in those 722 
radar columns where rain extend at least 400m below cloud base. Overall, both the mean rain rate 723 
and LWCprecip decrease exponentially with distance (as the change in the position of the distribution 724 
peak is roughly linear with distance on a log-scale). Both retrievals have similar values and rates 725 
of decrease (panel k and panel m). The e-folding distance over which the rain rate decrease to 1/e 726 
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(37%) of its initial value is about 260m for radar-lidar retrieval and 340 m for ZV retrieval. Nprecip 727 
also decreases with distance, but we find the radar-lidar retrieval decreases more rapidly within 728 
the 200m below the cloud base, and the ZV retrieval shows higher Nprecip than radar-lidar retrieval 729 
at different levels.  This is consistent with (a result of) assuming a shape factor of zero in the ZV 730 
retrievals.  The mean Dprecip and σprecip both increase with distance. Compared to radar-lidar 731 
retrieved Dprecip, ZV retrieved Dprecip is smaller overall (again consistent with the assumed shape 732 
factor), and has much less spread (variation) at any given altitude. Figure 10d shows that radar-733 
lidar retrieved Dprecip  compare better with the in situ estimated Dprecip from the below-cloud portion 734 
of the sawtooth legs than the ZV retrieved Dprecip. 735 

  736 
Figure 10. Violin plot for in situ measured precipitation properties at different altitudes and 737 
retrieved precipitation properties below cloud base: (a) rain rate (or precipitation liquid water 738 
flux), (b) precipitation number concentration Nprecip, (c) precipitation liquid water content 739 
LWCprecip, (d) precipitation liquid water content weighted mean diameter Dprecip, (e) precipitation 740 
liquid water content weighted width σprecip. A violin plot can be regarded as a hybrid of a boxplot 741 



Manuscript in preparation for Journal of Geophysical Research: Atmospheres 

 

and a kernel density plot. For each dataset, the white dot represents the median value, while the 742 
black bar represents the interquartile range, and the outer shape is the kernel density estimation 743 
to show the distribution of the data. In situ measured precipitation properties are from these legs 744 
(as marked in Figure S1): the top half of the cloud layer from sawtooth legs (sawtooth top); the 745 
bottom half of the cloud layer from sawtooth legs (sawtooth bottom); the below-cloud portion of 746 
the sawtooth legs (sawtooth below-cloud); and in-cloud level legs.  747 
 748 
 749 
  750 

 751 
Figure 11. Vertical distributions of below-cloud-base precipitation properties from retrievals 752 
(each column is rain rate, Nprecip, LWCprecip. Dprecip, σprecip respectively). The first and second row 753 
is the histogram of retrieved precipitation properties below-cloud-base (data are normalized at each 754 
level), and y axis is the distance away from the cloud-base. First row is the results from radar-lidar 755 
retrievals, the second row is the results from ZV retrievals. The last row is the box plot that 756 
summarized the data in the first two rows by binned the data vertically every 100 meters, where 757 
blue boxes are from radar-lidar retrievals, and orange boxes are from ZV retrievals.  758 
 759 
 760 
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6 Rain rate dependence on cloud depth and aerosol concentration 761 

In this section, we examine the degree to which precipitation can be diagnosed from cloud depth 762 
and cloud droplet or aerosol number concentration in the form (e.g. Comstock et al., 2004; Terai 763 
et al.,2012; Mann et al., 2014) 764 

	𝑅!" 	= 	𝑘	𝐻@ 	𝑁A (11) 

where N is usually the cloud droplet (Nd) or aerosol number concentrations (Na), and H is cloud 765 
depth or liquid water path, and 𝑅!" 	is rain rate at cloud base. To our knowledge, such a relationship 766 
has not been examined over the SO, except by Mace and Avey (2007) who used satellite retrievals. 767 
To examine this relationship over the SO, we use radar-lidar retrieved rain rate for	𝑅!" 	, use the 768 
difference between cloud top and cloud base for H, and use accumulation mode aerosol 769 
concentrations with diameters larger than 70 nm from UHSAS for Na.  770 

First, we broadly examine the rain rate dependence on either cloud depth or aerosol concentration, 771 
individually. Figure 12a shows a joint histogram of rain rate at cloud base and cloud depth.  The 772 
histogram shows that rain rate (at cloud base) scales with cloud depth, such that thicker clouds are 773 
associated with higher rain rates.  This is consistent with previous studies (e.g. vanZanten et al., 774 
2005; Pawlowska and Brenguier, 2003; Geoffroy et al., 2008). And to demonstrate the rain rate 775 
dependence on aerosol concentration, Figure 12b shows the probability density function of rain 776 
rate partitioned for conditions with low aerosol concentrations (lower than the first quartile, 777 
marked as blue) and high aerosol concentrations (higher than the third quartile, marked as red). 778 
Figure 12b shows that overall higher aerosol concentrations are associated with lower rain rates, 779 
consistent with aerosol suppression of precipitation. 780 

How does rain rate relate to both cloud depth and aerosol concentration? To derive the coefficients 781 
in equation (11), we divided cloud depth (H) up to 600m into 6 bins, and divided aerosol 782 
concentrations (Na) into 4 bins, and calculated the median rain rate for each H and Na pair. Then 783 
we performed linear least square regression on the natural logarithms of data from these 24 bins 784 
(Figure 12c). The derived relationship is 𝑅!" 	= 1.73 × 10'(4	𝐻$.&	𝑁#'(, with H in m, Na in cm−3, 785 
and RCB in mm hr−1. Using bootstrap resampling technique, we estimate that the exponent 𝛼 (one 786 
sigma uncertainty) for H range from 3.4 to 3.9, while the exponent 𝛽 for Na range from -1.3 to -787 
0.8. The relationship we derive here is broadly similar to previous studies for stratocumulus in 788 
other regions. Exponent 𝛼 for cloud depth typically is about 3 (vanZanten et al., 2005; Pawlowska 789 
and Brenguier, 2003; Lu et al., 2009), and the exponent 𝛽 for number concentration (cloud droplet 790 
concentration or cloud condensation nuclei) typically ranges between -1.75 to -0.66 (vanZanten et 791 
al 2005; Mann et al., 2014; Lu et al., 2009; Comstock et al., 2004). The exponent 𝛽 of -1 for aerosol 792 
concentration we derived here is smaller than exponent 𝛽  of -0.32 in Mace and Avey (2017, 793 
hereafter M17), estimated using satellite-estimated cloud droplet number concentration, liquid 794 
water path, and rain rate for the SO.   We will discuss this difference further at the of the next 795 
section. 796 
 797 
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 798 
Figure 12. (a) Histogram of rain rate plotted as a function of cloud depth. (b) The probability 799 
density function of rain rate for conditions with low aerosol concentrations (lower than the first 800 
quartile, marked as blue) and high aerosol concentrations (higher than the third quartile, marked 801 
as red). (c) The rain rate at the cloud base is plotted as a function of the cloud depth, H, and aerosol 802 
concentration, Na. Here H and Na are the middle points for each cloud depth and aerosol 803 
concentration bin, while the rain rate at the cloud base is taken as the median value of rain rates in 804 
each cloud depth and aerosol concentration bin. The solid line shows the parametrization described 805 
in the main text. 806 
 807 
 808 

7 Conclusions   809 

In this study, we examine in-and-below-cloud precipitation properties for stratocumulus over the 810 
Southern Ocean (SO), leveraging data collected from airborne W-band Cloud Radar (HCR), High 811 
Spectral Resolution Lidar (HSRL), and various in situ probes during the Southern Ocean Clouds 812 
Radiation Aerosol Transport Experimental Study (SOCRATES) in January-February 2018.  813 

Overall, we find that about 60% of the stratocumulus were precipitating, and about 80% of the 814 
stratocumulus to be cold-topped (with a cloud top temperature < 0oC) based on periods where the 815 
aircraft were flying below cloud and the radar and lidar pointing toward zenith. We determine the 816 
precipitation phase using the lidar particle linear depolarization ratio PLDR and find that about 60% 817 
of the precipitation is liquid phase, and about 20% of the precipitation is ice phase, with the 818 
remaining 20% being ambiguous.  While we can not rule out the possibility that any individual 819 
ambiguous cases is pure liquid, most of such cases are likely to have ice or mixed phase 820 
precipitation present.   Further, for cold-topped cloud, we find that when the reflectivity factor is 821 
less than about -10 dBZ, the precipitation is predominately liquid, while reflectivity factors greater 822 
than 0 dBZ, precipitation is predominately ice.  This results is similar to what was found by Mace 823 
and Protat (2018) based on CAPRICORN data the during March-April 2016, as well as a recent 824 
study by Tansey et al. (2023) based on surface data collected at Macquarie Island (54.5 oS) between 825 
March and November 2016.  The SOCRATES data, collected in the Southern Hemisphere Summer, 826 
in January and February 2018, suggest this relationship is likely characteristic of SO low clouds 827 
through the year, and suggests that the measured reflectivity factor might be used as a proxy to 828 
determine the precipitation phase for cold-topped Southern Ocean stratocumulus with CloudSat 829 
(or other “radar only”) retrievals where no other information is available to constrain the 830 
precipitation phase. 831 
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For liquid-phase precipitation, we performed retrievals for precipitation rain rate and other 832 
microphysical parameters based on cloud radar and lidar, with the goal to testing a hierarchy of 833 
retrieval methods, from the simplest Z-R relationship approach where only radar reflectivity (Z) is 834 
used to estimate the rain rate, to a reflectivity-velocity (ZV) retrieval where there are two 835 
observables (inputs to the retrieval), to a radar-lidar retrieval with three observables. Our 836 
evaluation show that rain rate from the Z-R, ZV, and radar-lidar retrievals all compare well with 837 
the in situ, with Pearson correlation coefficient of 0.83. 0.88 and. 0.68, and fractional difference 838 
(difference between the retrieved and in situ median value divided by the average of the medians) 839 
of only -8.0%, -4.6%, and 6.3%, respectively. In addition to rain rate, ZV and radar-lidar retrievals 840 
can retrieve other precipitation properties, such as, precipitation number concentration, 841 
precipitation liquid water content, number concentration, size and width. The overall statistics and 842 
distribution of these retrieved precipitation properties below the cloud base, also compare well 843 
with in situ estimates from the sawtooth below-cloud segments.  This good performance gives us 844 
some confidence in using these retrieval techniques for SO stratocumulus, including in our recently 845 
published manuscript that examines coalescence scavenging in SO stratocumulus [Kang et al., 846 
2022]. 847 

Despite the good retrieval performance overall, there are important caveats. When developing the 848 
power-law relationships between reflectivity (Z) and rain rate (R) following	𝑍 = 𝑎𝑅5 we found 849 
the b exponent varied little with altitude and had a value around 1.3 to 1.4.  This is similar to values 850 
obtained in previous studies for stratocumulus in other regions (Comstock et al., 2004; vanZanten 851 
et al., 2005).   The a coefficient, on the other hand, increases as one moves from the cloud layer to 852 
the surface.  In general, one can derived a power-law relationship between Z and R based on the 853 
assumption of a modified gamma distribution (e.g., Rosenfeld and Ulbrich 2003) and doing so 854 
shows that one should expected the a coefficient to depend on the total droplet number 855 
concentration.   Given the vertical variations in the precipitation droplet number concentration (see 856 
Figures 10 and 11), the vertical variation in the a coefficient is not surprising.   But such also hints 857 
that the a coefficient may well vary with the accumulation mode aerosol concentration or other 858 
factors than control the cloud droplet number concentration.   So Z-R relationships should be used 859 
with some caution in studies intending to establish relationships between rain rates and aerosols. 860 
We also find that the derived the derived Z-R relationships are sensitive to whether ones exclude 861 
drops with diameters around 10-40 μm when in cloud, because these drops make a non-trivial 862 
contribution to drizzle flux, as perhaps first noted by Nicholls (1984). Our analysis suggests that 863 
below-cloud Z-R equations should be applied with caution to in-cloud reflectivity measurements, 864 
and should be expected to underestimate the total liquid water flux in cloud.   865 

Comparing the ZV retrieval with radar-lidar retrieval shows that both retrievals capture the mean 866 
vertical structure of precipitation microphysics below cloud.   Based on in situ data and retrievals, 867 
we found that rain rate, precipitation number concentration (Nprecip), precipitation liquid water 868 
(LWCprecip) all decreases as one get closer to the surface, while precipitation liquid water content 869 
weighted mean diameter (Dprecip) and width(σprecip) increases. The e-folding distance over which 870 
the rain rate decrease to 1/e (37%) of its initial value is about 260m for radar-lidar retrieval and 871 
340 m for ZV retrieval.  However,  we find that both D0 and Nprecip from the ZV retrieval have less 872 
spatial variability than that from the radar-lidar retrieval, and assuming a shape factor of 𝜇	 = 	0, 873 
results in the ZV retrieved mean D0 being a bit too small and Nprecip being too large as compared 874 
to the radar-lidar retrieval.  This is because the shape factor is not constant and in particular, 875 
because the shape factor in the stronger precipitation shafts below the thicker portion of the clouds 876 
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should be larger than zero (because the precipitation DSD is narrower with a more well defined 877 
peaked rather than a broad exponential-like distribution).  878 

This study also explored rain rate dependence on cloud depth and aerosol concentration. Rain rate 879 
at cloud base (𝑅!") increases with cloud depth (H) and decreases with aerosol concentration (𝑁#). 880 
Using a least-squares regression, we found 𝑅!" 	varies as  𝐻$.&	𝑁#'(, which is broadly consistent 881 
with estimates for stratocumulus in previous studies over other regions (vanZanten et al., 2005; 882 
Pawlowska & Brenguier, 2003; Lu et al., 2009; Mann et al., 2014; Lu et al., 2009; Comstock et al., 883 
2004). However as noted in section 6, our results differ with the satellite-based estimates for the 884 
SO by Mace and Avey (2007), hereafter M17, who suggest an exponent of -0.32 for the aerosol 885 
concentration based on satellite retrievals.  M17 also noted that their estimates differ from previous 886 
studies in other regions. There are a variety of potential reasons for the different results in our 887 
study and in M17. The first obvious reason is different data sources. Our study used in situ 888 
measured Na and retrieved rain rate with airborne radar and lidar measurements, while M17 used 889 
Nd, liquid water path and rain rate derived from MODIS and Cloudsat based on an optimal 890 
estimation algorithm. Another reason might be different cloud populations; where in our study 891 
about 80% of the clouds are cold-topped, M17 restricted their analysis to warm-topped clouds. 892 
Data collected during the Macquarie Island Cloud and Radiation Experiment (MICRE), suggest 893 
that warm topped SO clouds are geometrically thinner and closer to the surface than cold-topped 894 
clouds [Tansey et al., 2023, submitted].  As-is, we end this study here, leaving a regime-dependent 895 
analysis of precipitation susceptibility for a future study.  As more data is collected, including in 896 
future campaigns such as the upcoming Clouds And Precipitation Experiment at Kennaook 897 
(CAPE-K) that will begin in March 2024, the aerosol sensitivity of low altitude SO clouds is 898 
certain to be focus of future multi- or cross-experiments studies. 899 
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Introduction 

Figure S1 is a schematic showing the typical flight module during the SOCRATES 
campaign. Figure S2 shows an example of the zenith pointing Doppler velocity fields from 
RF13 before and after the correction of the zenith pointing data. Figure S3 shows the 
comparison between mean velocity profiles for nadir pointing and zenith pointing data 
from RF13 before and after the correcting the zenith pointing data. Figure S4 shows the 
Mie-to-Rayleigh backscatter ratio. Figure S5 shows probability and cumulative density 
functions of below-cloud lidar particle linear depolarization ratio (PLDR) for all warm-
topped clouds. Figure S6 shows an example case from research flight 10 (RF10) on 2018 
Feb. 8th during 02:42-02:52 UTC. Figure S7 shows Z-R relationships derived rain rate.  Figure 
S8-10 shows ZV retrieved the median equivolumetric diameter D0, precipitation number 
Nprecip, and rain rate, respectively, assuming different shape factor 𝜇. Figure S11 shows an 
example case with radar-lidar retrieved rain rate and rain rate derived from the exponential 
fitting the retrieved rain rates and extrapolate to the aircraft level.  
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Figure S1. A schematic showing the typical flight module during the SOCRATES campaign 
(with flight tracks map embedded). The black lines show the flight tracks, with different 
segments highlighted: below-cloud level legs in green; above-cloud level legs in red; 
sawtooth legs in blue; in-cloud level legs in purple. The graphics below the schematic 
summarize the main instruments and how the remote sensing and in situ data from 
different segments were used in this study.   
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Figure S2. An example of the zenith pointing Doppler velocity fields from RF13 (a) 
before and (b) after the correction of the zenith pointing data, as well as the zoom in 
view for zenith-pointing period starting from 03:40 UTC time (c) before and (d) after the 
correction. 

 

Figure S3. Mean velocity profiles for nadir pointing and zenith pointing data from RF13 
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(a) before the correcting and (b) after the correcting the zenith pointing data. Here each 
profile represents the average mean velocity profile averaged over either nadir pointing 
times (denoted as red) or zenith pointing times (denoted as green). The vertical dashed 
line represents the 0 m s-1 for reference. 

Figure S4. The Mie-to-Rayleigh backscatter ratio (a) 𝜸𝒇(𝑫), and (b) 10 𝒍𝒐𝒈𝟏𝟎 (𝜸𝒇(𝑫)) . 
𝜸𝒇(𝑫)  is the ratio of the backscatter efficiency of Mie scattering for W-band (94-GHz), 
calculated using miepython package that based on Wiscombe(1979), and backscatter 
efficiency of Rayleigh scattering (Bohren & Huffman, 1983).  
 
 
 
 

 

Figure S5. Probability and cumulative density functions of below-cloud lidar particle linear 
depolarization ratio (PLDR) for all warm-topped clouds (when cloud top temperature > 
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0°C). To distinguish different precipitation type, liquid precipitation is marked as blue, ice 
precipitation is marked as red, and ambiguous precipitation is marked as green. 
 

Figure S6. An example case from research flight 10 (RF10) on 2018 Feb. 8th during 02:42-
02:52 UTC with (a) lidar particle linear depolarization ratio (PLDR), (b) time series of median 
PLDR (black) or mean PLDR (grey) values below-cloud base, and the probability density 
function (PDF) of PLDR values below-cloud base, (c) the cloud top temperature extracted 
from ERA5 reanalysis data, and (d) temperature profile measured by aircraft from a 
adjacent sawtooth leg (2018 Feb. 8th during 02:52-02:58 UTC). The grey dotted line in panel 
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c and d represents 0°C for reference. Blue and red line on panel b shows the threshold or 
PLDR equals 0.03 or 0.05.  

 

 

 

Figure S7. Z-R relationships derived rain rate. Panel a use the Z-R relationships that has D 
>40 μm cutoff, while Z-R relationships used in panel b does not apply any cutoff, and 
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considers all droplet sizes. Panel c shows difference calculated as RRpanel b - RRpanel a. Panel 
d shows the fractional difference calculated as (RRpanel b - RRpanel a) / RRpanel a  

 

 

Figure S8. ZV retrieved median equivolumetric diameter D0 assuming different shape 
factor 𝝁 
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Figure S9. ZV retrieved precipitation number concentration Nprecip assuming different 
shape factor 𝝁 
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Figure S10. ZV retrieved rain rate assuming different shape factor 𝝁 
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Figure S11. An example case with (a) radar-lidar retrieved rain rate, (b) rain rate derived 
from the exponential fitting the retrieved rain rates and extrapolate to the aircraft level 
(marked as the dashed line), and (c) median rain rate profiles of from radar-lidar retrieval 
(blue) or exponentially fit (orange). In the panel c, the median profiles are calculated over 
the area where radar-lidar retrieved rain rate are available.  


