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Abstract

Optimization of spatially consistent parameter fields is believed to increase the robustness of parameter estimation and its

transferability to ungauged basins. The current paper extends previous multi-objective and transferability studies by exploring

the value of both multi-basin and spatial pattern calibration of distributed hydrologic models as compared to single-basin and

single-objective model calibrations, with respect to tradeoffs, performance and transferability. The mesoscale Hydrological

Model (mHM) is used across six large central European basins. Model simulations are evaluated against daily streamflow

observations at the basin outlets and remotely sensed evapotranspiration patterns obtained with a two-source energy balance

approach. Several model validation experiments are performed through combinations of single- (discharge) and multi-objective

(discharge and spatial evapotranspiration patterns) calibrations with holdout experiments saving alternating basins for model

evaluation. The study shows that there are very minimal tradeoffs between spatial and temporal performance objectives and that

a joint calibration of multiple basins using multiple objective functions provides the most robust estimations of parameter fields

that perform better when transferred to ungauged basins. The study indicates that particularly the multi-basin calibration

approach is key for robust parametrizations, and that the addition of an objective function tailored for matching spatial

patterns of ET fields alters the spatial parameter fields while significantly improving the spatial pattern performance without

any tradeoffs with discharge performance. In light of model equifinality, the minimal tradeoff between spatial and temporal

performance shows that adding spatial pattern evaluation to the traditional temporal evaluation of hydrological models can

assist in identifying optimal parameter sets.
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Abstract 29 

Optimization of spatially consistent parameter fields is believed to increase the 30 
robustness of parameter estimation and its transferability to ungauged basins. The current 31 
paper extends previous multi-objective and transferability studies by exploring the value of 32 
both multi-basin and spatial pattern calibration of distributed hydrologic models as compared 33 
to single-basin and single-objective model calibrations, with respect to tradeoffs, performance 34 
and transferability. The mesoscale Hydrological Model (mHM) is used across six large 35 
central European basins. Model simulations are evaluated against daily streamflow 36 
observations at the basin outlets and remotely sensed evapotranspiration patterns obtained 37 
with a two-source energy balance approach. Several model validation experiments are 38 
performed through combinations of single- (discharge) and multi-objective (discharge and 39 
spatial evapotranspiration patterns) calibrations with holdout experiments saving alternating 40 
basins for model evaluation. The study shows that there are very minimal tradeoffs between 41 
spatial and temporal performance objectives and that a joint calibration of multiple basins 42 
using multiple objective functions provides the most robust estimations of parameter fields 43 
that perform better when transferred to ungauged basins. The study indicates that particularly 44 
the multi-basin calibration approach is key for robust parametrizations, and that the addition 45 
of an objective function tailored for matching spatial patterns of ET fields alters the spatial 46 
parameter fields while significantly improving the spatial pattern performance without any 47 
tradeoffs with discharge performance. In light of model equifinality, the minimal tradeoff 48 
between spatial and temporal performance shows that adding spatial pattern evaluation to the 49 
traditional temporal evaluation of hydrological models can assist in identifying optimal 50 
parameter sets.  51 

 52 

Plain Language Summary 53 

Hydrological models typically require local observations of river flow to calibrate the models 54 
and test their predictive capability. This limits the possibility for predictions in ungauged 55 
basins. This study used holdout tests to investigate the robustness of hydrological predictions 56 
for ungauged basins. Particularly we investigate how adding more basins and observed 57 
spatial patterns of evapotranspiration in the calibration of these models impact this robustness 58 
and transferability of model parameters to basins not used for calibration. Results show that 59 
transferability and spatial consistency of parameters increase when adding more basins and 60 
spatial pattern observations. 61 

 62 

1 Introduction 63 

High-resolution distributed hydrological models are increasingly being employed to 64 
address and solve a broad range of water-related issues (Bierkens et al., 2015). Output from 65 
such models is used to analyze hydrological responses and climate impact assessments at a 66 
scale far below the spatial scale at which the models are calibrated and validated (Mizukami 67 
et al., 2017; Samaniego et al., 2017). Similarly, models are generalized based on 68 
parameterizations obtained from neighboring basins, which is particularly pertinent for 69 
efficiently managing ungauged basins (Hrachowitz et al., 2013). This poses two fundamental 70 
challenges; how do we improve the reliability of model simulations at a higher spatial 71 
resolution and how do we develop robust parametrizations that can be transferred 72 
meaningfully to neighboring catchments? (Fenicia et al., 2014; Kirchner, 2006; Kumar, 73 
Samaniego, et al., 2013; Samaniego et al., 2010).  74 
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Integration of satellite remote sensing data with distributed hydrological models has 75 
been a common path towards improving the reliability of hydrological model simulations 76 
(Dembélé et al., 2020). This development has followed with the progress and availability of 77 
remotely sensed datasets, which have evolved significantly over the past decades, although 78 
accuracy of satellite-based datasets remains varying (Ko et al., 2019; Stisen et al., 2021). 79 

Several studies have addressed the impacts of adding remotely sensed observations to 80 
streamflow calibration (Odusanya et al., 2022; Rientjes et al., 2013; Sirisena et al., 2020). 81 
Nijzink et al. (2018) presented a large modelling effort illustrating the impact of adding 82 
different remotely sensed products across five different conceptual model and 27 European 83 
catchments. They analyzed 1023 possible model combinations regarding model constraint 84 
and showed an added value of remotely sensed data in the absence of streamflow data. In a 85 
recent model intercomparison paper Mei et al. (2023) analyzed different model calibration 86 
strategies combining streamflow and global gridded soil moisture and evapotranspiration 87 
datasets. They found that adding soil moisture to the streamflow calibration improved 88 
evapotranspiration performances. Mei et al. (2023) also included a review of 16 previous 89 
papers on the subject of constraining models using a combination of streamflow and remotely 90 
sensed data. Both the study by Nijzink et al. and Mei et al., and 14 out of the 16 papers in 91 
Mei et al. review applied spatially averaged time series of the remotely sensed data. By this 92 
approach, the spatial information in the satellite data is ignored and the hydrological model 93 
evaluation remains limited to the temporal component of the models. This traditional focus 94 
on the temporal performance is due to several factors related to either the spatial resolution of 95 
the models and the remote sensing data or lack of spatial performance metrics and 96 
optimization frameworks.  97 

Therefore, an particular avenue addressing the challenges of distributed model 98 
fidelity, is the use of spatial pattern information from remote sensing data to constrain 99 
hydrological model parametrization (Dembélé et al., 2020; Demirel, Mai, et al., 2018; Koch 100 
et al., 2022; Soltani, Bjerre, et al., 2021; Zink et al., 2018).  101 

The fundamental idea behind this approach is to employ a multi-objective calibration 102 
framework that adds to the traditional discharge-based calibration, an independent set of 103 
objective functions that mainly reflects the observed spatial pattern of key hydrological states 104 
or fluxes. This approach differs from multi-objective calibrations based on multiple metrics 105 
calculated from the same observation (e.g. streamflow timeseries) or application of basin 106 
average timeseries of remotely sensed data (Demirel, Mai, et al., 2018). In addition, 107 
independence in the optimization approach can be obtained by adding the new information 108 
source in combination with a pareto-achieving optimizer which circumvents the need to join 109 
multiple objective functions into a single score (Mei et al., 2023).   110 

A previous study by Zink et al. (2018) incorporated land surface temperature patterns 111 
in model calibration and showed that this helped to better constrain the model parameters 112 
connected to evapotranspiration when compared to calibrations based on streamflow only. 113 
Moreover, in their study the model performance regarding evapotranspiration increased at 114 
seven eddy flux measurement sites used for evaluation. Adding new constraints to calibration 115 
decreased streamflow performance yet the authors of that study illustrated how land surface 116 
temperature data could secure better results for ungauged basins. For a single Danish basin, 117 
Demirel, Mai, et al. (2018) developed a spatial pattern-oriented calibration framework and a 118 
new spatial performance metrics, and illustrated a small tradeoff between streamflow and 119 
spatial pattern performance. Dembélé et al. (2020) applied a similar calibration framework to 120 
a model study of the poorly gauged Volta River basin in West Africa. They showed that 121 
while streamflow and terrestrial water storage performance decreased by 7% and 6 %, 122 
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respectively, soil moisture and evapotranspiration performances increased by 105% and 26% 123 
respectively when including the spatial calibration framework with multiple objectives. 124 
Soltani et al. (2021) illustrated how adding spatial pattern optimization to a national scale 125 
groundwater model improved evapotranspiration patterns and altered groundwater recharge 126 
patterns without deteriorating groundwater head and discharge performance significantly. 127 
Other, recent studies such as Xiao et al. (2022) and Ko et al. (2019) have utilized spatial 128 
patterns of land surface temperature for hydrological model evaluation. However, in the 129 
context of our current study, Xiao et al. (2022) and Ko et al. (2019) did not address the 130 
tradeoffs between different optimization strategies and streamflow performance.  131 

As a results of increased availability of remotely sensed datasets combined with 132 
machine learning approaches and computational power, many gridded spatial products are 133 
now available (Belgiu & Drăguţ, 2016; Feigl et al., 2022). These all facilitate the spatial 134 
characterization of hydrologic variables and fluxes and enable spatial model evaluations. 135 
However, to optimize the simulated spatial patterns of a hydrological model, the model 136 
parametrization scheme needs to be fully distributed and spatially flexible. In this context, the 137 
multi-scale parameter regionalization (MPR) method (Samaniego et al., 2010) represented a 138 
significant advancement, which was initially included in the mesoscale Hydrological Model 139 
(mHM) (Kumar, Samaniego, et al., 2013; Samaniego et al., 2010). Afterwards, it has been 140 
incorporated into several other modelling frameworks (Lane et al., 2021; Mizukami et al., 141 
2017; Tangdamrongsub et al., 2017) and it is available as a stand-alone parametrization tool 142 
that can be coupled to hydrological models (Schweppe et al., 2022). Other studies have 143 
developed similar flexible parametrizations schemes based on pedo-transfer functions using 144 
gridded data (Feigl et al., 2020; Ko et al., 2019).  145 

It is well known that streamflow calibration does not guarantee good spatial pattern 146 
performance (Rakovec, Kumar, Mai, et al., 2016; Stisen et al., 2011) and performance on the 147 
initial single objective typically drops when adding additional objectives to the calibration. 148 
But what is the tradeoff between spatial and temporal performance? How does single and 149 
multi-objective optimization impact parameter transferability, and how does this compare to 150 
impacts of multi-basin optimization? Based on the above, we aim at addressing the following 151 
research gaps: 152 

• What are the tradeoffs between temporal and spatial model performance investigated 153 

in a pareto-achieving optimization framework? 154 

• How does multi-basin and spatial pattern-oriented calibration impact model 155 

performance and transferability to ungauged basins? 156 

In this study, we demonstrate the impact of multi-site and multi-objective calibration 157 
compared to single-site and single-objective parameter estimation, i.e., the most common 158 
practice in hydrologic modeling, specifically in the context of parameter transferability to 159 
ungauged basins. The impact on parameters transferability via adding spatial patterns into the 160 
model calibration, is a novel aspect that has not received much attention in the literature so 161 
far. The study is conducted for six mesoscale central European basins. 162 

The distributed modelling study is carried out in the framework of a flexible spatial 163 
model parameterization scheme in combination with observed spatial patterns of actual 164 
evapotranspiration (AET) derived from satellite data. We apply the mHM model code since it 165 
suit the applied calibration framework well due to its flexible model parametrization schemes 166 
based on pedo-transfer functions to distribute soil parameters and the built-in multi-scale 167 
parameter regionalization. 168 
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We design a set of model calibration experiments including both single- and multiple 169 
basins as well as single- and multi-objective calibrations and two jack-knife experiments, i.e., 170 
sequentially keeping one or five of six basins out of the joint calibration approach. Model 171 
simulations are evaluated based on temporal discharge performance and spatial AET 172 
performance using long term average monthly pattern maps, appropriate objective functions 173 
and a global multi-objective pareto-achieving search algorithm is applied to illustrate the 174 
exact tradeoff between the two objectives.  175 

2 Methodology 176 

Catchments, observed data (both Section 2.1), and the hydrologic model (Section 2.2) 177 
are presented in this section. The objective functions to evaluate the model performance of 178 
simulated discharge and AET, respectively, are described in Section 2.3. A sensitivity 179 
analysis performed to determine the most important parameters for model calibration is 180 
described in Section 2.4, while Section 2.5 describes the calibration and validation setup 181 
including a brief description of the multi-objective calibration algorithm applied.  182 

2.1 Catchments and hydro-meteorological data 183 

This study is conducted using six European catchments, i.e., Elbe, Main, Meuse, 184 
Mosel, Neckar, and Vienne with drainage areas varying from 12,775 km2 to 95,042 km2. The 185 
catchments are spread over Central Europe and represent a diversity of soil texture, land use, 186 
and land cover. The mean annual rainfall varies from 637 mm to 874 mm while the mean 187 
annual runoff varies from 184 mm to 398 mm (Table 1). The six catchments are selected 188 
based on two criteria: good model performance obtained in previous studies (Rakovec, 189 
Kumar, Mai, et al., 2016) and spatial patterns of AET that are likely dominated by land-190 
surface heterogeneity, i.e., land cover and soil properties, rather than a strong climate 191 
gradient. The latter will facilitate a meaningful model calibration driven by spatial patterns 192 
since simulated patterns can be adjusted through the surface parametrization within the 193 
hydrological model and are not purely driven by climate (Koch et al., 2022). In basins with a 194 
large climate gradient, simulated spatial patterns are typically easier to simulate even with a 195 
suboptimal spatial parametrization since the patterns are to a lesser degree controlled by the 196 
model parameters and will display correct overall patterns enforced by the climate forcing 197 
data. 198 

Average temperature, precipitation, and PET data are available at daily time steps and 199 
over 0.25-degree grids for the period extending from 1980 to 2018, whereas the length of the 200 
observed daily discharge data varies between catchments. Daily averaged meteorological data 201 
(P and PET) were obtained from the E-OBS and ERA-5 reanalysis datasets (Cornes et al., 202 
2018; Hersbach et al., 2020). PET was estimated based on the Hargreaves–Samani model 203 
using ERA-5 air temperature data (daily minimum, maximum, and mean) as input (George H. 204 
Hargreaves & Zohrab A. Samani, 1985). 205 

In addition to the six outlet discharge gauges used in model calibration, we obtained 206 
daily data from 46 gauging stations from the Global Runoff Data Center (GRDC, 2020) for 207 
internal validation of the six catchment models. Remotely sensed AET estimates for the 208 
period from 2002 to 2014 were obtained using MODIS data and the two-source energy 209 
balance method (Norman et al., 1995) as described in Stisen et al. (2021). Digital elevation 210 
model (DEM) data were retrieved from the Shuttle Radar Topographic Mission (SRTM, Farr 211 
et al., 2007). Soil texture variables, clay content, sand content, and bulk density were derived 212 
from the SoilGrid Database (Rakovec et al., 2019; Rakovec, Kumar, Attinger, et al., 2016). 213 
The soil texture data for six layers with varying depths (5, 15, 30, 50, 100, and 200 cm) and a 214 
tillage depth of 30 cm are introduced as input to the model. All input data were resampled to 215 
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a common spatial resolution of 0.001953125 degree (~200 m) (Rakovec, Kumar, Mai, et al., 216 
2016). MODIS-based land use was reclassified into three classes, namely forest, pervious, 217 
and impervious. Long-term monthly LAI maps used to calculate the spatiotemporally varying 218 
crop coefficient are based on the MODIS MOD16A2.v061 product (Running et al., 2021). 219 
The original eight-day composite LAI maps were aggregated to long-term monthly means at 220 
a matching spatial resolution of ~200 m.  221 

 222 

Table 1 Main characteristics of the six catchments, i.e., drainage area (km2), annual precipitation (P in 223 
mm), annual potential evapotranspiration (PET in mm), and annual discharge (Q in mm) calculated 224 
based on the common period of 1980-2016. 225 

Area  
(km2) 

P  
(mm) 

PET  
(mm) 

Q  
(mm) 

Elbe 95,042 637 755 184 
Main 14,117 736 773 243 
Meuse 20,143 874 741 398 
Mosel 27,127 872 777 365 
Neckar 12,775 858 782 335 
Vienne 19,892 815 864 308 
 226 

2.2 Hydrologic model 227 

The spatially explicit mesoscale Hydrologic Model v.5.11.1 (Kumar, Samaniego, et 228 
al., 2013; Rakovec et al., 2019; Samaniego et al., 2010; Thober et al., 2019) was used to 229 
simulate daily discharge and spatial AET patterns of the six catchments. The backbone of 230 
mHM, i.e. the numerical methods utilized to estimate various states and fluxes are based on 231 
the fusion of two well-known models, i.e., HBV and VIC (Samaniego et al., 2010). mHM 232 
simulates major components of the hydrologic cycle, i.e., evapotranspiration, canopy 233 
interception, snow accumulation and melting, soil moisture dynamics, infiltration, 234 
percolation, groundwater storage, and surface runoff generation. The model simulates these 235 
fluxes on a multi-layer distributed grid using the multi-scale parameter regionalization 236 
approach (Kumar, Samaniego, et al., 2013; Samaniego et al., 2010) to account for sub-grid 237 
variability of landscape attributes and model parameters based on pedo-transfer functions. 238 
MPR is one of the unique features of mHM that facilitates a spatial pattern-oriented 239 
calibration. Moreover, AET and soil moisture from different soil layers are modelled based 240 
on available soil water and the root fraction of vegetation in each soil layer. Two transfer 241 
functions are of particular importance for this work. Firstly, an exponential function Eq. (1) 242 
uses monthly LAI maps to link distributed vegetation dynamics to a spatially distributed crop 243 
coefficient, also termed a dynamic scaling function (Demirel, Mai, et al., 2018). The spatially 244 
distributed crop coefficient is then applied for scaling spatially coarse PET data to account for 245 
a heterogenous land cover.  246 

 247 𝐾௖[𝑚] = 𝐾௖,௠௜௡ + ൫𝐾௖,௠௜௡ + 𝐾௖,௠௔௫൯(1 − 𝑒௔∗௅஺ூ[௠]) (1) 

 248 

Secondly, another transfer function utilizes spatially distributed soil texture maps to 249 
allow for an incorporation of soil physical properties in the spatial parametrization of root 250 
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fraction coefficients (Demirel, Mai, et al., 2018). Hereby, the root fraction coefficient can 251 
vary with both vegetation and soil type and is used in mHM to calculate root water uptake as 252 
part of the AET reductions factor (Samaniego et al., 2021). During calibration, both transfer 253 
functions increase the model flexibility to adjust the spatial AET patterns retrieved from 254 
satellite data (Demirel, Mai, et al., 2018; Koch et al., 2022). Finally, the total runoff 255 
generated at every grid cell is routed to its neighboring downstream cell using the adaptive 256 
timestep spatially varying celerity method for the river runoff routing scheme (Thober et al., 257 
2019).  258 

mHM has previously been parameterized and successfully calibrated against multiple 259 
satellite-based datasets including AET and terrestrial water storage anomalies (GRACE), land 260 
surface temperature, and soil moisture at multiple spatial scales over numerous river basins 261 
(Busari et al., 2021; Ekmekcioğlu et al., 2022; Koch et al., 2022; Kumar, Livneh, et al., 2013; 262 
Rakovec, Kumar, Attinger, et al., 2016; Rakovec, Kumar, Mai, et al., 2016; Zink et al., 2018).  263 

In this study, the following four different spatial resolutions are defined in the mHM 264 
model: 0.001953125 degree for the morphological characteristics (L0 scale), 0.015625 degree 265 
for the hydrologic modeling resolution (L1), 0.0625 degree for runoff routing (L11), and 0.25 266 
degree for the meteorological forcing (L2). Note that around 50 degrees North these 267 
resolutions correspond approximately to 140/430 m, 1.1/3.5 km, 4.5/7 km and 18/28 km 268 
lon/lat for L0, L1, L11 and L2 respectively. Finally, a 13-year period (2002–2014) with a 4-269 
year warming period (1998-2001) was simulated at a daily timestep for calibration and 270 
evaluation of the discharge performance and spatial pattern match between remote sensing 271 
based and simulated AET (from 2002 to 2014). The remote sensing based AET is estimated 272 
with the Two-Source Energy Balance method (TSEB) (Norman et al., 1995), using MODIS 273 
data including land surface temperature, albedo and NDVI. For a full description of the AET 274 
dataset and comparison to other estimates for Europe the reader is referred to (Stisen et al., 275 
2021). 276 

2.3 Evaluation metrics and objective functions 277 

The hydrologic model performance was evaluated using two key objective functions 278 
(OFs). In this study, we interpret multi-objective calibration as the combination of two 279 
completely independent evaluation datasets, i.e., discharge time series and spatial AET maps, 280 
instead of producing a variety of OFs based on a single variable. For the temporal evaluation 281 
of discharge, the Kling-Gupta-Efficiency (KGE) was applied (Gupta et al., 2009). The KGE 282 
is defined as 283 𝐾𝐺𝐸 = 1 − ඥ(𝑟 − 1)ଶ + (𝛼 − 1)ଶ + (𝛽 − 1)ଶ (2)

where 𝒓 is the Pearson correlation coefficient between observed and simulated 284 
streamflow (Q), 𝜶 is the variability which is defined as the ratio of the standard deviation of 285 
observed and simulated Q, and 𝜷 is the bias defined as the ratio between average observed 286 
and simulated Q.  287 

For the spatial pattern evaluation of simulated AET, the bias-insensitive Spatial 288 
Efficiency metric (SPAEF) was used (Demirel, Mai, et al., 2018; Koch et al., 2018). The 289 
SPAEF is a reformulation of KGE and is defined as  290 

 291 𝑆𝑃𝐴𝐸𝐹 = 1 − ඥ(𝑟 − 1)ଶ + ( − 1)ଶ + (𝛾 − 1)ଶ  (3)

where 𝒓 is the Pearson correlation coefficient between observed and simulated spatial 292 
patterns of AET,  is the coefficient of determination fraction of observed and simulated 293 
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AET, and γ quantifies the fraction of the histogram intersection based on the z-scores of 294 
observed and simulated AET fields. Both, KGE and SPAEF vary in a range from -∞ to the 295 
best value of 1.  296 

SPAEF is calculated separately for long-term seasonal averages across all years, 297 
focusing on the water limited growing seasons in three three-month windows i.e. March-298 
April-May (MAM), June-July-August (JJA), and September-October-November (SON). The 299 
fourth quarter (December-January-February) is not used because there are cloud issues in 300 
winter and energy limited conditions dominate spatial patterns of AET. Finally, we summed 301 
the squared residual of these three seasonal parts as  302 
 303 𝑆𝑆𝑅஺ா் = (1 − 𝑆𝑃𝐴𝐸𝐹ெ஺ெ)ଶ+(1 − 𝑆𝑃𝐴𝐸𝐹௃௃஺)ଶ+(1 − 𝑆𝑃𝐴𝐸𝐹ௌைே)ଶ (4)

where 𝑆𝑆𝑅஺ா் represents the sum of squared residuals for the seasonal AET pattern 304 
performance applying SPAEF as OF. For the joint calibrations across several catchments 305 
SPAEF is calculated on the combined dataset as a single value for each season across all 306 
catchments. 307 

For streamflow, KGE was calculated at one, five or six stations (n) at the outlet of the 308 
basins and the sum of squared residuals is used 309 𝑆𝑆𝑅ொ = ෍ (1 − 𝐾𝐺𝐸௜)ଶ௡௜  (5)

where 𝑆𝑆𝑅ொ represents the sum of squared residuals for the Q performance at the 310 
discharge stations using KGE as OF. For the single catchment calibrations, only the 311 
corresponding station KGE is utilized.  312 

2.4 Sensitivity Analysis 313 

Identification of the optimal parameter set through a calibration framework can be 314 
cumbersome if the dimension of the search space is not limited by a sensitivity analysis first. 315 
mHM has 69 parameters (Samaniego et al., 2021) each increasing the dimension of the search 316 
space. Focusing a calibration on only parameters that are sensitive regarding the selected OFs 317 
is computationally more efficient than calibrating all parameters (Demirel, Koch, et al., 318 
2018). To reduce the computational burden by narrowing the search space, a one-at-a-time 319 
(OAT) sensitivity analysis was conducted to identify the most important parameters for 320 
calibration using the PEST Toolbox (Doherty, 2010). Although the parameter interactions are 321 
not accounted for in this local OAT method, it provides an indication of sensitive parameters 322 
especially if combined with the expert opinion which can complement the assessment of 323 
parameter interactions. We used KGE as OF for discharge performance and SPAEF as OF for 324 
spatial pattern performance of the model. Also, geo-parameters and root-transfer function 325 
parameters of mHM were analyzed separately for deeper assessment. Each parameter was 326 
perturbated two times (5% increased and 5% decreased based on the initial point) to calculate 327 
the average sensitivity index of OFs for the change in the parameter value. This index value 328 
is then multiplied by the absolute parameter value to account for the parameter magnitude in 329 
the calculations. Finally, the sensitivities are normalized by the maximum of the group.  330 

2.5 Experimental design of calibration and validation 331 

In total, 26 calibration experiments were designed to investigate the potential benefits 332 
of incorporating AET to augment a multi-objective and multi-basin calibration framework 333 
(Figure 1). Note that 𝑆𝑆𝑅ொ is incorporated in all calibration experiments as objective 334 
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All 26 calibration experiments (cases) were performed with the open-source model-agnostic 349 
Ostrich optimization toolbox written in C++ (Matott, 2017). For all 26 calibration 350 
experiments, the parallel implementation of the Pareto-Archived Dynamically Dimensioned 351 
Search (ParaPADDS) algorithm was used (Asadzadeh & Tolson, 2013). This algorithm is the 352 
multi-objective version of the Dynamically Dimension Search (Tolson & Shoemaker, 2007) 353 
algorithm that identifies a Pareto front of non-dominated optimal solutions, which is most 354 
appropriate for our multi-objective calibrations (Beume & Rudolph, 2006; Razavi & Tolson, 355 
2013). Moreover, ParaPADDS algorithm reached reasonable solutions for both single and 356 
multiple OFs; therefore, we used the same search algorithm in all scenarios for consistency. 357 
The ParaPADDS algorithm was configured with user-defined maximum 750 iterations, with 358 
3 parallel nodes (logical processors), a perturbation value of 0.2, and the exact hypervolume 359 
contribution as the selection criterion. Note that initial tests for one basin with 200, 500 and 360 
1000 iterations indicated stable results already at 500, but a somewhat incomplete Pareto-361 
front. Based on this and in the interest of saving computation time, we decided on 750 362 
iterations. Like all multi-objective calibration methods, the algorithm does not provide a 363 
single best solution for the multiple OF problem. Still, it offers the modeler a set of possible 364 
solutions on the Pareto front (Asadzadeh & Tolson, 2013). 365 

KGE1 and KGE6 calibrations resulted in the single best parameter set that was used to create 366 
our final results in the following figures. KSP1 and KSP6 calibrations provided multiple 367 
possible solutions on the Pareto front with KGE as one axis and SPAEF as the other axis. To 368 
systematically select a best-balanced parameter set, we picked the solution that is closest to 369 
the origin by normalizing both axes (𝑆𝑆𝑅ொ 𝑎𝑛𝑑 𝑆𝑆𝑅஺ா்) using min-max normalization and 370 
choosing the minimum of the sums, similar to the approach by Martinsen et al. (2022). The 371 
normalization is applied to avoid the metric-magnitude effects on the selection. KSP1 and 372 
KSP6 results presented hereafter are generated using this selected single parameter set. 373 
Calibrations were done with the six discharge gauges and three seasonal AET maps (March 374 
to November). We used 46 discharge stations from GRDC for internal validation of the six 375 
catchment models and we show the results of KGE5 and KSP5 cases as maps (See Figure 6).  376 

3 Results 377 

3.1 Sensitivity Analysis 378 

Table 2 shows the 20 most influential parameters out of 69 mHM parameters selected 379 
based on the combined sensitivity of the two metrics. We used these normalized sensitivities 380 
varying from 0 to 100% and applied a threshold of 1% for at least one of the OF’s for 381 
selecting the most sensitive parameters for calibration (20). Based on the KGE, the five most 382 
sensitive parameters controlling discharge are RotFrCofClay, RotFrCofFore, PTFLowConst, 383 
PET_apervi, PTFKsConst which are parameters mainly controlling the AET and thereby the 384 
water balance. KGE is also sensitive to some routing parameters but generally less than the 385 
parameters controlling AET levels. The SPAEF OF is most sensitive to the parameters 386 
RotFrCofClay, RotFrCofFore, PET_apervi and PET_aforest, which is almost identical to the 387 
most sensitive parameters for KGE. Additionally, parameters associated with simulated 388 
patterns, e.g., related to pedo-transfer functions for soil properties are important for SPAEF. 389 
Conversely, SPAEF has zero sensitivity to routing parameters. Overall, the most sensitive 390 
parameters contribute to spatial heterogeneity of root fraction coefficients, crop coefficients, 391 
infiltration factor and field capacities, of the grid cells. 392 
  393 
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Table 2: 20 selected parameters for calibration, their range and sensitivity for both objective functions 394 
KGE and SPAEF. The parameter abbreviations correspond to the name of the parameter in the mHM 395 
setup (In the mHM namelist). 396 
Parameter 
abbreviation 
(in the mHM 
namelist) 

Description Range Normalized 
Sensitivity [%] 

   KGE SPAEF 
ExpSlwIntFlW Exponent slow interflow 0.05 to 0.3 3.6% 0.0% 
InfShapeF Infiltration shape factor 1 to 4 2.6% 1.2% 
IntRecesSlp Interflow recession slope 0 to 10 1.2% 0.0% 

PET_aforest Intercept – forest in dynamic scaling 
function (Kc) for PET 0.3 to 1.3 10.1% 19.1% 

PET_aimpervi Intercept – impervious in dynamic 
scaling function (Kc) for PET 0.3 to 1.3 0.5% 2.7% 

PET_apervi Intercept – pervious in dynamic 
scaling function (Kc) for PET 0.3 to 1.3 15.3% 15.2% 

PET_bb Base coefficient for Kc 0 to 1.5 3.7% 2.2% 
PET_cc Exponent coefficient for Kc -2 to 0 1.6% 0.9% 

PTFHigConst 
Constant in Pedo-transfer function for 
soils with sand content higher than 
66.5% 

0.5358 to 
1.1232 0.3% 1.1% 

PTFKsconst 
Constant in pedo-transfer function for 
hydraulic conductivity of soils with 
sand content higher than 66.5% 

-1.2 to -
0.285 11.7% 0.5% 

PTFKssand 
Coefficient for sand content in pedo-
transfer function for hydraulic 
conductivity 

0.006 to 
0.026 3.5% 0.3% 

PTFLowclay 
Constant in Pedo-transfer function for 
soils with clay content lower than 
66.5% 

0.0001 to 
0.0029 1.5% 1.5% 

PTFLowConst 
Constant in Pedo-transfer function for 
soils with sand content lower than 
66.5% 

0.6462 to 
0.9506 21.1% 13.9%

PTFLowDb 
Coefficient for bulk density in Pedo-
transfer function for soils with sand 
content lower than 66.5% 

-0.3727 to -
0.1871 10.9% 8.7% 

RechargCoef Recharge coefficient 0 to 50 1.9% 0.0% 
RotFrCofClay Root fraction for clay 0.9 to 0.999 100.0% 100.0% 
RotFrCofFore Root fraction for forest areas 0.9 to 0.999 57.2% 75.9%
RotFrCofImp Root fraction for impervious areas 0.9 to 0.999 2.1% 9.3% 

RotFrCofSand Root fraction for sand 0.001 to 
0.09 1.9% 2.3% 

SlwIntReceKs Slow interception 1 to 30 1.4% 0.0% 
 397 

  398 
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symbols in the white zone (upper right) are the corresponding metric values. We plot both as 423 
it is easier to relate and compare actual metric values. Mean SPAEF values refer to the mean 424 
of SPAEF calculated for the three seasons. 425 

Subsequently, a multi-basin calibration was conducted again with both single (KGE6) and 426 
multiple (KSP6) objectives (see Method Section 2.5 for details). The results are shown in 427 
Figure 3 and Table 3. The model performance results mimic the results of the single basin 428 
test, with similar KGE performances; however, with a significant performance increase for 429 
SPAEF, from 0.02 with KGE6 to 0.61 with KSP6, as would be expected when adding the 430 
spatial pattern objective function. Table 3 highlights the limited tradeoff for KGE both for 431 
individual stations and averages.  432 

 433 

Figure 3: Multi-basin calibration results across the six basins for KGE only (triangles) and 434 
for KGE and SPAEF (circles) as objective functions. Note that the grey zone (lower left 435 
panel) is the exact OF values used for calibration whereas the white zone (upper right panel) 436 
is the corresponding metric value.  437 

Figure 4 illustrates the spatial AET maps from TSEB (observed) and the various calibration 438 
tests. For the multi-objective calibrations (KSP1 and KSP6), the best-balanced solution 439 
(closest point to the origin) is chosen for visualization. The maps clearly show the issues 440 
related to KGE1, regarding spatial pattern performance. For three out of six basins, i.e., Elbe, 441 
Mosel and Vienne, the KGE1 calibration has resulted in a strikingly poor spatial AET pattern 442 
(compared to KSP1) where distinct low and high AET areas were inverted as compared to the 443 
TSEB pattern. In contrast, including the SPAEF metric in the optimization (KSP1) prevented 444 
such errors without any substantial loss in KGE performance (average KGE of 0.93 for 445 
KGE1 and 0.90 for KSP1, Table 3).  446 

Interestingly, the KGE6 calibration, i.e., without any spatial pattern constraint, was able to 447 
represent the overall pattern to some extent across the six basins, although with a 448 
significantly underestimated variance and some substantial differences. This emphasizes the 449 
value of joint multi-basin calibration for robustness in spatial parametrization within the MPR 450 
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parametrization scheme. Adding the SPAEF metric to the multi-basin calibration (KSP6), 451 
generated the best spatial similarity to TSEB, although not better than combining spatial AET 452 
from the six individual KSP1 calibrations maps into one map (Figure 4 and Table 3). 453 
Comparing KGE1 and KGE6 calibrations illustrates the reduction in KGE performance from 454 
averages of 0.93 falling to 0.88, when seeking one common parametrization in KGE6. The 455 
higher KGE performance obtained from single basin optimization does however come with a 456 
very poor SPAEF performance of -0.45 for KGE1 compared to 0.02 for KGE6. Although the 457 
SPAEF for KGE6 is also low, this is mainly attributed to the variance component of SPAEF 458 
(Figure 4). 459 

Table 3: Model performances on KGE and SPAEF (across all basins) for different calibrations 460 
experiments. Values for the KSP-calibrations represent the best-balanced solutions from the pareto 461 
fronts. Values in parentheses are STD across stations for Average KGE and across seasons for 462 
SPAEF. 463 

Basin KGE1 KSP1 KGE6 KSP6 
Elbe KGE 0.89 0.84 0.87 0.84 
Main KGE 0.94 0.91 0.84 0.84 
Meuse KGE 0.96 0.93 0.91 0.93 
Mosel KGE 0.96 0.91 0.90 0.90 
Neckar KGE 0.94 0.92 0.90 0.89 
Vienne KGE 0.91 0.90 0.85 0.86 
Average KGE 0.93 (0.02) 0.90 (0.03) 0.88 (0.03) 0.88 (0.04) 
Across Basins SPAEF -0.45 (0.18) 0.61 (0.06) 0.02 (0.40) 0.61 (0.10) 
 464 

 465 
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3.3 Cross-validation Results 500 

To investigate the potential impact of the calibration strategy on the transferability of 501 
parameters to ungauged basins, two Jack-knife tests were applied. The two tests are holding 502 
out five (KGE1-KSP1) or one (KGE5-KSP5) basins simultaneously and evaluating only the 503 
uncalibrated basins using parameters obtained calibrating either one or five other basins. 504 
These tests are performed for both single- and multi-objective calibrations, resulting in four 505 
parameter transfer tests.  506 

Results for the single-basin calibrations and subsequent evaluation of the performance of 507 
parameter transfer to five ungauged basins based on the KGE1 and KSP1 calibrations are 508 
shown in Table 4. For each discharge evaluation, KGE is calculated as the average across all 509 
basins, each represented in five holdout evaluations (a total of 30 ungauged evaluations). The 510 
SPAEF is calculated based on three seasons for six holdouts (a total of 18 pattern 511 
evaluations). Table 4 shows that discharge performances with average KGE of 0.79 and 0.83 512 
across ungauged basins, and similar between KGE1 and KSP1, although the latter performs 513 
better. Compared to the KGE6 and KSP6 calibrations (both with an average KGE of 0.88 in 514 
Table 3, relatively little loss in performance for discharge is noticed, even for ungauged 515 
cases.  516 

For the spatial pattern evaluation, the performance for the KGE1 parameter transfer has low 517 
average SPAEF across all basins, while the standard deviations are large across seasons. For 518 
KSP1, the results of SPAEF are much better with an average of 0.41. This indicates that 519 
single basin calibration with multiple objectives can better make robust predictions for 520 
ungauged basins when both discharge and AET patterns are considered in calibration at 521 
gauged locations.  522 

 523 

  524 
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Table 4: Model performances on KGE and SPAEF (across all basins) for different cross-525 
validation experiments. Values for the KSP-calibrations represent the best-balanced solutions 526 
from the Pareto fronts. For KGE1 and KPS1 KGE values are averages across five holdout 527 
experiments. Values in parentheses are STD across holdout experiments for single stations 528 
and across stations and holdout solutions for average KGE and for SPAEF STD is calculated 529 
across seasons and holdout solutions. 530 

Basin KGE1 holdout KSP1 holdout KGE5 holdout KSP5 holdout 
Elbe KGE 0.72 (0.05) 0.76 (0.06) 0.83 0.84 
Main KGE 0.76 (0.09) 0.77 (0.04) 0.81 0.80 
Meuse KGE 0.84 (0.08) 0.91 (0.03) 0.89 0.94 
Mosel KGE 0.85 (0.03) 0.88 (0.04) 0.88 0.87 
Neckar KGE 0.82 (0.08) 0.87 (0.03) 0.89 0.90 
Vienne KGE 0.74 (0.05) 0.79 (0.11) 0.79 0.83 
Average KGE 0.79 (0.08) 0.83 (0.08) 0.85 (0.04) 0.86 (0.05) 
Across Basins SPAEF -0.10 (0.45) 0.41 (0.19) 0.25 (0.23) 0.49 (0.15) 
 531 

The single basin holdout evaluation based on the KGE5 and KSP5 calibrations (Table 4) 532 
shows that discharge performances (average of 0.85 and 0.86) are better than the five-basin 533 
holdout (KGE1 and KSP1) and very similar to the KGE6 and KSP6 calibrations. Again, the 534 
multi-objective calibrations seem more robust for parameter transfer when evaluated against 535 
discharge only. For the SPAEF performance evaluation KGE5 performs better than KGE1, 536 
indicating better parameter transfer when calibrated against more and diverse basins. 537 
However, spatial pattern performances are still considerably better for the ungauged 538 
assessment based on multiple objectives in KSP5. Also, KSP5 (SPAEF around 0.5) performs 539 
better than KSP1 (SPAEF around 0.4). 540 

In summary, the four ungauged basin tests indicate that discharge can be predicted with 541 
average KGEs around 0.79 to 0.83 across the six selected basins based on parameter transfer 542 
from calibration of neighboring basins, even when only a single basin is used to estimate 543 
parameters for five neighboring basins. . Performances on discharge improve further when 544 
including an additional objective function in the form of AET patterns and when calibrating 545 
across five basins and evaluating on a single holdout basin. Similarly, spatial patterns can be 546 
simulated with average SPAEF values of 0.41 and 0.49, i.e., somewhat lower than KSP6 at 547 
0.61, when only accounting for AET patterns from neighboring basins in the parameter 548 
estimation. On the contrary, spatial patterns are very poorly represented when parameters are 549 
based on single-basin and single-objective calibrations (KGE1).  550 

 551 

In addition to the jack-knifing validation for ungauged basins, a validation test for internal 552 
discharge stations was performed for the KGE5 and KSP5 holdout (ungauged) simulations. 553 
This test was intended to analyze the possible added value of spatial pattern calibration on 554 
internal discharge stations' performance compared to a pure discharge calibration. Since the 555 
spatial pattern calibration will not directly influence the temporal performance of the 556 
simulated discharge, the internal validation focuses on the discharge bias (Eq. (2); β term) 557 
alone and not the KGE.  558 

Since spatial patterns of AET are only included for the period March-November, they are 559 
likely to mainly influence the summer water balance where AET has the most impact. Hence, 560 
annual and summer statistics are estimated separately. Figure 6 illustrates the location of 46 561 
internal discharge stations and the difference in absolute bias (%) between the ungauged 562 
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simulations from the KGE5 and KSP5 holdout experiments. For annual statistics (Figure 6 563 
top panel), results are very similar (same average bias) and most stations have differences 564 
between plus and minus 10%. For the Meuse basin, significant improvements can be detected 565 
in the bias for KSP5, while KGE5 tends to be better for the Elbe basin. For the summer 566 
statistics (Figure 6 bottom panel) the KSP5 has a slightly lower average bias with 567 
considerable improvements for the Meuse and Vienne. At the same time, differences for the 568 
Elbe basin are more polarized with stations that are better for both KGE5 and KSP5. Overall, 569 
the analysis did not show a clear improvement in biases when constraining the models with 570 
spatial patterns in the holdout test. If analyzing KGE and the α and r terms of KGE (Eq. (2)), 571 
the KGE-only calibrations performed best for internal station validation in the holdout test. 572 
This is illustrated by Figure B1 in the supplementary information section, which shows 573 
results for both KGE, and its three components.  574 

The model performances presented in this study should be evaluated in light of the 575 
uncertainties associated to them. One aspect of this uncertainty is the sampling uncertainty 576 
associated with the KGE metric (Clark et al., 2021). The sampling uncertainty represents the 577 
uncertainty related to the time window used for the KGE calculation, since the KGE metric is 578 
sensitive to the variance of the evaluation period. This uncertainty can be significant and is 579 
important especially when evaluating the applicability of a given model for a particular 580 
purpose. Even though it is less important for the comparison of different calibration 581 
experiments based on the same evaluation periods, the uncertainties associated to each of the 582 
evaluation stations used in the study are given in Tables A1 and A2 in Appendix A. The 583 
uncertainties are estimated based on the method described in (Clark et al., 2021) and vary 584 
between stations but are largely correlated between calibration experiments.  585 

 586 
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 587 

Figure 6: Difference in absolute discharge bias between KGE5 holdout and KSP5 holdout 588 
for 46 internal discharge gauges in the six basins for the full year (top) and summer period 589 
(May to September) (bottom). Green colors indicate that constraining a model with 590 
streamflow and AET leads to better streamflow predictions in ungauged basins than 591 
constraining the model with streamflow only. Red colors indicate the opposite. 592 

  593 
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4 Discussion 594 

The single- versus multi-objective calibration experiment presented here illustrated a minimal 595 
tradeoff in discharge performance when adding the spatial pattern-oriented metric to the 596 
traditional KGE objective function (Figure 2). This result is very similar to previous studies 597 
(Demirel, Mai, et al., 2018; Kumar, Samaniego, et al., 2013; Rakovec, Kumar, Mai, et al., 598 
2016; Soltani, Bjerre, et al., 2021; Zink et al., 2018) and can be attributed to two main factors. 599 
Firstly, the metric design, with a long-term average bias-insensitive spatial pattern metric 600 
introduces limited conflict to matching the discharge biases and no conflict with the temporal 601 
dynamics of the discharge simulations. Secondly, single-objective calibrations based on 602 
downstream discharge only, are known to constrain the spatial distribution of internal fluxes 603 
to a minimal extent (Stisen et al., 2011), causing a high degree of equifinality. Consequently, 604 
the addition of a spatial pattern metric can be viewed as a means of selecting the best spatial 605 
pattern match among an extensive set of plausible parameter sets (all producing satisfying 606 
KGEs). These results on objective function selection, are consistent for both the single-basin 607 
and multi-basin tests (with six basins, Figure 3). Not surprisingly, it also becomes evident 608 
that a good discharge performance (KGE) does not guarantee a good spatial pattern 609 
performance.  610 

In light of the low tradeoff for discharge, single-basin versus multi-basin calibrations, results 611 
are best analyzed through comparing the spatial patterns of AET and resulting parameter 612 
fields. Here, it becomes clear that single-basin single-objective calibration can select 613 
parameter sets that are entirely inconsistent between the basins (Figure 5) and displays 614 
internal spatial AET patterns that are reverse of the observed patterns (Figure 4). 615 
Interestingly, the multi-basin KGE calibration (KGE6) shows that simply adding multiple 616 
basins in this case enables the model to obtain a somewhat realistic spatial pattern without 617 
being constrained specifically to AET. However, the spatial metric must be included to 618 
improve this pattern and spatial variability (KSP6). Logically, one joint calibration (KGE6 619 
and KSP6) also ensures a spatially consistent parameter field (Figure 5) and thereby also 620 
spatially consistent AET patterns (Figure 4). This point has previously been highlighted by 621 
Samaniego et al. (2017), who illustrated the shortcomings in producing seamless parameter 622 
fields based on multiple single basin calibrations without parameter regionalization across 623 
Europe. Eventually, the goal of regional to continental scale distributed hydrologic modelling 624 
is to produce scalable spatial patterns of all states and fluxes across the entire model domain.  625 

Moving on to the spatial holdout experiments, first with single basin calibrations (five 626 
holdouts) and later with multi-basin calibrations (single holdouts), the parameter transfer to 627 
“ungauged” basins results in average KGE values between 0.79 and 0.86 even when 628 
transferring parameters from a single basin to five neighboring basins.  629 

For these holdout experiments, the mean KGE for ungauged basins lies around 0.8 (Figure 4) 630 
compared to 0.88 for the multi-basin calibrations (KGE6 and KSP6 in Table 3). This is 631 
probably a result of a considerable similarity between the basins and their relatively large 632 
size, all of them encompassing a range of land use, soil texture, and climate conditions. Also, 633 
the six basins were chosen because they all fulfilled the criteria of a similar climate and 634 
topography, and previous performance in a Pan-European modeling context (Rakovec, 635 
Kumar, Mai, et al., 2016). In this context, the robustness of parameter transferability might be 636 
overestimated compared to basins with less similarity.  637 

Other studies have analyzed parameter transferability and KGE performance drop by spatial 638 
validation in ungauged basins. A recent and very relevant example is the model 639 
intercomparison paper by (Mai et al., 2022). They explicitly performed a spatial validation 640 
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test against basins not included in the calibration for a range of different model codes over the 641 
Great Lakes region in North America. They reported average loss in KGE of around 0.26 for 642 
locally calibrated models using a simple parameter transfer scheme and a loss of 0.10 KGE 643 
for regionally calibrated models. In comparison, our study reports a loss of KGE of 0.14 for 644 
the KGE1 holdout, 0.07 for KSP1 and 0.03 and 0.02 for the KGE6 and KSP6 holdouts 645 
(evaluated through the KGE5 and KSP5 performances).  646 

For the parameter transfer, the experiments including AET during calibration (KSP1 and 647 
KSP5) produce better spatial patterns (SPAEF 0.41 and 0.49) when combining ungauged 648 
basins, as compared to the KGE-only calibrations (SPAEF -0.10 and 0.25), however KGE5 649 
produced better patterns than KGE1. This is in line with the results of Poméon et al. (2018) 650 
who calibrated sparsely gauged basins using remote sensing products. Their study showed 651 
that including AET to model calibration significantly improved the performance of the 652 
evapotranspiration simulation whereas soil moisture and total water storage predictions were 653 
within a good predictive range.  654 

The internal validation against 46 discharge stations was intended to evaluate whether adding 655 
spatial patterns to the calibration would improve the discharge bias performance within each 656 
basin. Somewhat surprisingly and discouraging, such a systematic bias improvement could 657 
not be verified. A previous study by Conradt et al. (2013) on the Elbe basin revealed large 658 
discrepancies between water balance AET (precipitation-discharge) and remote sensing-659 
based AET on the sub-basin level. This could indicate that sub-basin water balances are in 660 
some cases largely controlled by factors other than AET. This could be water divergence, 661 
abstraction, or inter-basin groundwater flow (Le Mesnil et al., 2020; Soltani, Koch, et al., 662 
2021). Wan et al. (2015) showed that the inter-basin transfer of water could cause significant 663 
errors in the water balance-based AET calculations. Alternatively, the accuracy of the 664 
satellite-based AET might not be sufficient to describe differences at the sub-basin level. 665 
Recent analyses, using the AET dataset used in this study, have demonstrated that remote 666 
sensing-based AET can reproduce large-scale AET patterns across major European basins (> 667 
25.000 km2) (Stisen et al., 2021), while studies like Conradt et al. (2013) and Soltani et al. 668 
(2021) indicate substantial deviations for smaller sub-basins (below 200 to 500 km2). 669 
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5 Conclusions 671 

The need for systematically transferring parameters to ungauged basins while 672 
respecting their landscape heterogeneity and water balance motivated us to expand our 673 
previous single-basin experiments (Demirel, Mai, et al., 2018) to a regional scale study. In 674 
this study, we elaborated on the value of multi-basin, multi-objective model calibration for 675 
distributed hydrologic modelers incorporating readily available global remote sensing data in 676 
flexible open-source models with cutting-edge parameter regionalization schemes like the 677 
multi-parameter regionalization in mHM.  678 

We first selected the most relevant parameters for spatial calibration using a 679 
sensitivity analysis. Then remotely sensed AET based on the two-source energy budget 680 
approach is used together with outlet discharge time series to constrain mHM simulations. 681 
Through a series of calibration and cross-validation experiments we identify tradeoffs 682 
between objective functions and examine the robustness of parameter transferability to 683 
ungauged basins.  684 

We can draw the following conclusions from our results: 685 

• Multi-objective calibrations for both individual and multiple basins resulted in 686 
balanced solutions leading to better spatio-temporal performances compared to single-687 
objective calibrations. Adding new constraints on spatial patterns only lead to a very 688 
limited deterioration in discharge performance while they improve the model 689 
predictions for actual evapotranspiration. 690 

• Combining multi-basin and multi-objective calibration has positive impacts on the 691 
simulated fluxes and improves the spatial consistency of parameter fields and their 692 
transferability to ungauged basins.  693 

Multi-basin calibration is found to be the most crucial element of robust 694 
parametrizations if only focusing on discharge. However, adding spatial pattern 695 
objectives further ensures spatial consistency, performance, and transferability. 696 
Improved model parametrizations in distributed hydrologic models via different 697 
transfer functions in combination with appropriate spatial calibration frameworks 698 
could facilitate the applications of global hyper-resolution models for “everywhere” 699 
(Bierkens et al., 2015) and “without an illogical (unseamless) patchwork of states and 700 
fluxes” (Mizukami et al., 2017) in the future. Future work should incorporate more 701 
than six basins and spatial patterns of other variables readily available from reliable 702 
satellite products. 703 

  704 
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Appendix A: Results of the the jackknife and bootstrap based sampling uncertainty 705 
analysis.  706 

 707 

Clark et al (Clark et al., 2021) showed that popular temporal metrics in hydrology, i.e. NSE 708 
and KGE, are often subject to inevitable sampling uncertainty. This is due to the fact that 709 
differences between observed and simulated streamflow values at random time steps in time 710 
series can have significant effects on the overall metric value (Knoben & Spieler, 2022). 711 
Therefore, we assessed the sampling uncertainty in KGE results of KGE1, KGE6, KSP1 and 712 
KSP6 cases presented in Table 3, using the gumboot R package (Clark et al., 2021) which 713 
utilize a jackknife-after-bootstrap method of Efron (1992) to estimate standard errors 714 
(SEJaB). Note that this has been done for all 46+6 (validation+calibration) stations listed in 715 
Table A1. Uncertainty is represented as confidence interval i.e. the 5th to 95th percentile of 716 
the bootstrap samples. Correlation analysis between the SEJaB scores across all 52 stations 717 
gives an R2 of 0.68 for KGE1 vs. KSP1 and 0.76 for KGE6 vs. KSP6. This indicates that the 718 
uncertainties are largely related to the specific stations and the variance and error structure of 719 
the hydrograph. 720 
 721 

Table A1: Sampling uncertainty of KGE metric for KGE1 and KSP1 cases. Rows in bold 722 
indicate the six downstream stations used for calibration. 723 

GRDC 
station 

  KGE1 KSP1 
Basin p05 p50 p95 score seJab p05 p50 p95 score seJab 

6340180 Elbe 0.843 0.883 0.901 0.894 0.012 0.807 0.854 0.876 0.864 0.022 
6340130 Elbe 0.711 0.775 0.860 0.780 0.036 0.628 0.697 0.796 0.701 0.037 
6340170 Elbe 0.766 0.841 0.914 0.844 0.042 0.700 0.775 0.856 0.777 0.023 
6340300 Elbe 0.251 0.389 0.559 0.392 0.135 0.155 0.305 0.487 0.311 0.173 
6340190 Elbe 0.699 0.764 0.853 0.768 0.042 0.596 0.669 0.776 0.673 0.039 
6340600 Elbe 0.654 0.709 0.799 0.714 0.049 0.619 0.694 0.813 0.699 0.057 
6340700 Elbe 0.057 0.357 0.622 0.374 0.219 0.026 0.329 0.557 0.356 0.139 

6340200 Elbe 0.027 0.166 0.329 0.169 0.097 
-

0.122 0.026 0.187 0.032 0.121 
6340320 Elbe 0.485 0.630 0.754 0.629 0.092 0.565 0.705 0.819 0.709 0.085 

6340365 Elbe 0.245 0.402 0.505 0.405 0.083 
-

0.144 0.099 0.233 0.101 0.120 
6340620 Elbe 0.627 0.698 0.819 0.700 0.047 0.604 0.700 0.863 0.704 0.069 
6340120 Elbe 0.694 0.760 0.856 0.766 0.054 0.588 0.659 0.770 0.663 0.053 
6340630 Elbe 0.490 0.531 0.596 0.534 0.030 0.372 0.422 0.497 0.423 0.047 
6140400 Elbe 0.664 0.732 0.834 0.738 0.067 0.558 0.634 0.750 0.638 0.054 
6340621 Elbe 0.618 0.679 0.767 0.679 0.034 0.539 0.641 0.799 0.645 0.053 
6140500 Elbe 0.615 0.653 0.693 0.655 0.021 0.505 0.559 0.616 0.560 0.016 
6140481 Elbe 0.772 0.823 0.857 0.825 0.020 0.703 0.750 0.792 0.752 0.017 
6140600 Elbe 0.343 0.459 0.605 0.458 0.051 0.532 0.638 0.755 0.637 0.058 
6140250 Elbe 0.381 0.504 0.663 0.504 0.084 0.266 0.378 0.527 0.375 0.060 
6140450 Elbe 0.225 0.351 0.456 0.354 0.056 0.237 0.326 0.407 0.325 0.015 
6140300 Elbe 0.595 0.643 0.743 0.646 0.068 0.366 0.436 0.579 0.437 0.087 
6340302 Elbe 0.808 0.846 0.875 0.855 0.024 0.719 0.780 0.837 0.784 0.027 
6335500 Main 0.904 0.929 0.944 0.939 0.010 0.889 0.913 0.930 0.921 0.007 
6335301 Main 0.905 0.932 0.945 0.941 0.016 0.900 0.924 0.938 0.932 0.015 
6335303 Main 0.902 0.926 0.941 0.931 0.010 0.893 0.922 0.937 0.925 0.025 
6335530 Main 0.678 0.743 0.802 0.739 0.035 0.666 0.736 0.779 0.732 0.055 
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6335800 Main 0.719 0.756 0.794 0.762 0.018 0.704 0.746 0.789 0.751 0.019 
6421101 Meuse 0.923 0.946 0.958 0.956 0.008 0.899 0.924 0.936 0.932 0.008 
6221500 Meuse 0.829 0.861 0.896 0.872 0.020 0.785 0.826 0.856 0.835 0.022 
6221680 Meuse 0.835 0.890 0.929 0.895 0.029 0.653 0.715 0.780 0.720 0.040 
6221102 Meuse 0.689 0.748 0.798 0.754 0.034 0.648 0.720 0.772 0.724 0.049 

6121240 Meuse 0.056 0.284 0.488 0.273 0.052 
-

0.120 0.150 0.412 0.134 0.099 
6221550 Meuse 0.804 0.827 0.841 0.838 0.016 0.791 0.846 0.881 0.858 0.029 
6221120 Meuse 0.782 0.862 0.897 0.874 0.046 0.716 0.804 0.845 0.819 0.039 
6221620 Meuse 0.341 0.421 0.488 0.420 0.050 0.340 0.446 0.536 0.445 0.064 
6221200 Meuse 0.744 0.828 0.896 0.832 0.037 0.630 0.719 0.799 0.721 0.042 
6336050 Mosel 0.921 0.951 0.964 0.960 0.008 0.892 0.932 0.949 0.943 0.025 
6336500 Mosel 0.885 0.930 0.954 0.935 0.027 0.872 0.911 0.933 0.920 0.026 
6336800 Mosel 0.690 0.769 0.865 0.774 0.055 0.721 0.807 0.882 0.816 0.037 
6336900 Mosel 0.782 0.838 0.882 0.832 0.036 0.780 0.851 0.909 0.845 0.035 
6336920 Mosel 0.042 0.207 0.370 0.209 0.051 0.252 0.407 0.541 0.403 0.096 
6336910 Mosel 0.743 0.791 0.840 0.793 0.020 0.719 0.794 0.848 0.786 0.048 
6136200 Mosel 0.405 0.548 0.703 0.557 0.062 0.214 0.385 0.570 0.395 0.063 
6335600 Neckar 0.891 0.931 0.948 0.942 0.016 0.872 0.911 0.926 0.921 0.014 
6335601 Neckar 0.863 0.911 0.927 0.919 0.022 0.841 0.887 0.903 0.896 0.017 
6335602 Neckar 0.689 0.752 0.830 0.756 0.034 0.640 0.710 0.796 0.714 0.042 
6335660 Neckar 0.733 0.819 0.860 0.825 0.042 0.745 0.802 0.830 0.807 0.045 
6335291 Neckar 0.699 0.754 0.792 0.756 0.027 0.774 0.810 0.834 0.814 0.020 
6335690 Neckar 0.454 0.512 0.580 0.517 0.042 0.462 0.528 0.606 0.533 0.050 
6123400 Vienne 0.832 0.892 0.916 0.913 0.018 0.814 0.882 0.906 0.899 0.025 
6123450 Vienne 0.072 0.279 0.457 0.286 0.080 0.328 0.528 0.663 0.531 0.100 
6123820 Vienne 0.617 0.803 0.863 0.802 0.151 0.684 0.806 0.845 0.825 0.091 
 724 
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Table A2: Sampling Uncertainty of KGE Metric for KGE6 and KSP6 cases. Stations in bold 726 
are the six downstream stations used for calibration. 727 

 728 

GRDC 
station 

  KGE6 KSP6 
Basin p05 p50 p95 score seJab p05 p50 p95 score seJab 

6340180 Elbe 0.824 0.857 0.877 0.865 0.011 0.782 0.820 0.844 0.828 0.021 
6340130 Elbe 0.688 0.769 0.861 0.770 0.045 0.694 0.758 0.848 0.761 0.043 
6340170 Elbe 0.774 0.834 0.903 0.838 0.021 0.749 0.818 0.891 0.821 0.029 
6340300 Elbe 0.197 0.332 0.473 0.332 0.118 0.021 0.185 0.351 0.188 0.149 
6340190 Elbe 0.676 0.762 0.868 0.763 0.049 0.678 0.748 0.854 0.751 0.049 
6340600 Elbe 0.698 0.754 0.841 0.758 0.043 0.667 0.723 0.813 0.728 0.047 

6340700 Elbe 0.118 0.428 0.682 0.435 0.262 
-

0.065 0.245 0.531 0.255 0.187 

6340200 Elbe 
-

0.020 0.110 0.236 0.113 0.103
-

0.266
-

0.092 0.072
-

0.089 0.123 
6340320 Elbe 0.434 0.578 0.700 0.577 0.076 0.429 0.574 0.700 0.578 0.091 

6340365 Elbe 0.101 0.263 0.356 0.268 0.101 
-

0.361 
-

0.030 0.138 
-

0.031 0.146 
6340620 Elbe 0.658 0.734 0.833 0.735 0.035 0.637 0.715 0.839 0.717 0.063 
6340120 Elbe 0.675 0.759 0.870 0.761 0.059 0.670 0.738 0.849 0.743 0.066 
6340630 Elbe 0.517 0.558 0.621 0.560 0.039 0.413 0.455 0.519 0.457 0.052 
6140400 Elbe 0.642 0.732 0.851 0.733 0.059 0.642 0.716 0.833 0.720 0.071 
6340621 Elbe 0.662 0.731 0.822 0.732 0.030 0.571 0.660 0.813 0.664 0.063 
6140500 Elbe 0.649 0.688 0.729 0.691 0.021 0.540 0.588 0.642 0.590 0.022 
6140481 Elbe 0.822 0.862 0.883 0.864 0.020 0.761 0.805 0.843 0.808 0.014 
6140600 Elbe 0.514 0.610 0.732 0.608 0.048 0.607 0.702 0.785 0.706 0.054 
6140250 Elbe 0.309 0.459 0.640 0.458 0.080 0.357 0.466 0.621 0.466 0.068 

6140450 Elbe 0.054 0.157 0.246 0.154 0.025 
-

0.001 0.097 0.189 0.095 0.024 
6140300 Elbe 0.540 0.616 0.767 0.617 0.078 0.446 0.510 0.630 0.512 0.068 
6340302 Elbe 0.783 0.833 0.866 0.841 0.024 0.769 0.813 0.852 0.823 0.026 
6335500 Main 0.807 0.842 0.877 0.843 0.019 0.824 0.860 0.893 0.862 0.021 
6335301 Main 0.797 0.838 0.882 0.839 0.018 0.820 0.860 0.896 0.861 0.020 
6335303 Main 0.777 0.818 0.858 0.816 0.023 0.806 0.845 0.884 0.843 0.022 
6335530 Main 0.525 0.591 0.657 0.589 0.033 0.561 0.633 0.697 0.629 0.033 
6335800 Main 0.832 0.867 0.903 0.873 0.019 0.781 0.835 0.883 0.838 0.019 
6421101 Meuse 0.871 0.908 0.939 0.911 0.017 0.874 0.914 0.943 0.918 0.021 
6221500 Meuse 0.777 0.817 0.850 0.823 0.021 0.824 0.853 0.875 0.862 0.012 
6221680 Meuse 0.764 0.826 0.884 0.831 0.033 0.891 0.923 0.936 0.933 0.010 
6221102 Meuse 0.748 0.809 0.868 0.815 0.028 0.749 0.805 0.864 0.814 0.028 
6121240 Meuse 0.174 0.386 0.581 0.372 0.049 0.123 0.335 0.534 0.323 0.054 
6221550 Meuse 0.770 0.795 0.812 0.803 0.010 0.786 0.817 0.839 0.829 0.016 
6221120 Meuse 0.737 0.812 0.857 0.824 0.042 0.762 0.808 0.840 0.818 0.029 
6221620 Meuse 0.397 0.473 0.535 0.471 0.045 0.341 0.414 0.474 0.412 0.043 
6221200 Meuse 0.690 0.774 0.852 0.778 0.036 0.784 0.850 0.895 0.855 0.037 
6336050 Mosel 0.845 0.894 0.921 0.897 0.029 0.837 0.891 0.923 0.895 0.027 
6336500 Mosel 0.833 0.893 0.934 0.896 0.026 0.828 0.893 0.931 0.896 0.023 
6336800 Mosel 0.672 0.764 0.870 0.771 0.059 0.674 0.769 0.872 0.777 0.057 
6336900 Mosel 0.820 0.860 0.891 0.859 0.027 0.796 0.845 0.879 0.843 0.036 
6336920 Mosel 0.422 0.527 0.623 0.528 0.032 0.453 0.565 0.662 0.566 0.046 
6336910 Mosel 0.702 0.741 0.778 0.741 0.012 0.627 0.690 0.741 0.684 0.028 
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6136200 Mosel 0.268 0.418 0.585 0.427 0.071 0.156 0.314 0.493 0.322 0.068 
6335600 Neckar 0.863 0.893 0.907 0.902 0.011 0.851 0.885 0.904 0.895 0.012 
6335601 Neckar 0.831 0.868 0.883 0.877 0.016 0.816 0.859 0.880 0.868 0.017 
6335602 Neckar 0.652 0.727 0.817 0.731 0.042 0.616 0.694 0.794 0.699 0.043 
6335660 Neckar 0.767 0.852 0.898 0.848 0.082 0.795 0.834 0.867 0.844 0.013 
6335291 Neckar 0.702 0.735 0.759 0.734 0.016 0.747 0.788 0.812 0.790 0.017 
6335690 Neckar 0.445 0.503 0.581 0.510 0.057 0.433 0.495 0.576 0.501 0.054 
6123400 Vienne 0.750 0.848 0.922 0.852 0.036 0.747 0.850 0.904 0.853 0.049 
6123450 Vienne 0.475 0.623 0.703 0.631 0.092 0.547 0.660 0.708 0.679 0.087 
6123820 Vienne 0.676 0.801 0.844 0.810 0.061 0.616 0.764 0.838 0.766 0.103 
 729 

Appendix B: Validation against 46 internal discharge stations 730 
 731 

 732 
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Figure B1: Ranked scores for 46 internal validation stations for KGE5 and KSP5 spatial 733 
holdouts. Values are the KGE and its three components r, α and β. Data for β correspond to 734 
results mapped in Figure 6 (top).  735 
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