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Abstract

SPAtial EFficiency (SPAEF) metric is one of the most thoroughly metrics in hydrologic community. In this study, our aim is

to improve SPAEF by replacing the histogram match component with other statistical indices, i.e. kurtosis and earth mover’s

distance, or by adding a fourth or fifth component such as kurtosis and skewness. The existing spatial metrics i.e. SPAtial

Efficiency (SPAEF), Structural Similarity (SSIM) and Spatial Pattern Efficiency Metric (SPEM) were compared with newly

proposed metrics to assess their converging performance. The mesoscale Hydrologic Model (mHM) of the Moselle River is used

to simulate streamflow (Q) and actual evapotranspiration (AET). The two-source energy balance (TSEB) AET during the

growing season is used as monthly reference maps to calculate the spatial performance of the model. The Moderate Resolution

Imaging Spectroradiometer (MODIS) based Leaf area index (LAI) is utilized by the mHM via pedo-transfer functions and

multi-scale parameter regionalization approach to scale the potential ET. In addition to the real monthly AET maps, we also

tested these metrics using a synthetic true AET map simulated with a known parameter set for a randomly selected day.

The results demonstrate that the newly developed four-component metric i.e. SPAtial Hybrid 4 (SPAH4) slightly outperform

conventional three-component metric i.e. SPAEF (3% better). However, SPAH4 significantly outperforms the other existing

metrics i.e. 40% better than SSIM and 50% better than SPEM. We believe that other fields such as remote sensing, change

detection, function space optimization and image processing can also benefit from SPAH4.
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1 Introduction 38 

Distributed hydrologic models have a crucial role in creating digital twin of the water cycle in 39 

nature by revealing physical mechanisms and process interactions. After identifying the best 40 

parameter set through calibration, these models are used to conduct robust numerical 41 

experiments assessing climate change impacts (Beven, 2023) or land use land cover change 42 

impacts on model output fluxes such as runoff (Busari et al., 2021), groundwater recharge, soil 43 

moisture and actual evapotranspiration (AET). A skillful model enables decision-makers to 44 

plan for and respond to water-related extremes such as hydrological droughts and floods. 45 

Accuracy of the model results depends on the success of identifying best combination of the 46 

parameters since calibration process helps us reduce discrepancies in model physics. Demirel 47 

et al. (Demirel et al., 2018) showed that using only streamflow hydrograph performance as 48 

objective function diminishes the AET patterns simulated by the model. However, 49 

incorporating satellite based remotely sensed AET into the multi-objective calibration 50 

framework that has already streamflow, surprisingly improves both water balance and AET 51 

performance of the model. Other studies benefitted from land surface temperature (Zink et al., 52 

2018), soil moisture (López et al., 2017; Wakigari & Leconte, 2023), AET (Avcuoğlu & 53 

Demirel, 2022; Gaur et al., 2022; Odusanya et al., 2022; Sirisena et al., 2020) and groundwater 54 

(Danapour et al., 2021; Stisen et al., 2018) in hydrologic model calibration. 55 

In other words, hydrologic model calibration is essential for ensuring the validity and reliability 56 

of model predictions i.e. of most important for water management and decision-making 57 

processes. However, the robustness of hydrologic model calibration heavily relies on how the 58 

model is guided in the solution space via the performance metrics (de Boer-Euser et al., 2017; 59 

Knoben et al., 2019; Martinez-Villalobos et al., 2022; Onyutha, 2022; Schneider et al., 2022). 60 

If the metric is too loose (tolerant) or prone to the sampling uncertainty (Clark et al., 2021), the 61 

calibration process can stop quickly in the local minima while the modeler searches for the best 62 

global solution. The key point of the modelling chain is the selection of appropriate metric. 63 

Our study focuses on development of a novel metric with least tolerance (highest 64 

discrimination skill) based on benchmarking existing metrics in evaluating the similarity of 65 

two raster maps. We are particularly interested in multi-component bias-insensitive spatial 66 

metrics for pattern comparison. Thus, bias sensitive temporal metrics used for water balance 67 

are not within the scope of this study. 68 

The use of multi-component spatial metrics in hydrologic model calibration is an important 69 

advancement in the field of water resource management and resource allocation. The multi-70 

component metrics provides a more nuanced evaluation of model performance compared to 71 

traditional single-component metrics e.g. mean absolute error and coefficient of determination. 72 

The adoption of these metrics allows for a more comprehensive understanding of the 73 

hydrologic system and its spatial variability, which is critical for informed decision-making. 74 

These metrics differ from single-component metrics in that they consider multiple components 75 

of the hydrological system, rather than just one component. By providing a more 76 

comprehensive evaluation of the hydrologic system, multi-component metrics help to identify 77 

areas where models can be improved. For spatial metrics, the added level of complexity 78 

provided by multi-component metrics offers a more robust evaluation of model performance, 79 

providing a better understanding of the spatial variability of the hydrologic system. 80 

In recent years, remote sensing data from satellites, such as Moderate Resolution Imaging 81 

Spectroradiometer (MODIS) products, have become commonly used in hydrologic model 82 

calibration since this product provides estimates of AET from vegetation, which is a key 83 

component and major water loss in the hydrologic cycle (Becker et al., 2019; Rientjes et al., 84 

2013). On one hand, it serves to better represent the cell-to-cell hydrological dynamics and 85 
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diversity in the basin also allows for a more detailed understanding of the water budget at the 86 

land surface and helps to better quantify the water requirements of vegetation. On the other 87 

hand, the MODIS Leaf Area Index (LAI), product provides information about the leaf area 88 

index, which is a measure of the amount of vegetation cover in an area. This information is 89 

essential for understanding how vegetation influences the water cycle by affecting factors such 90 

as precipitation, evapotranspiration, and runoff. In this study, we use LAI to dynamically scale 91 

the PET input to the model to improve AET performance and present a comprehensive 92 

benchmarking of multi-component spatial metrics using MODIS-LAI and TSEB AET 93 

products, to assess their potential for calibration (Immerzeel & Droogers, 2008).  94 

There are various performance metrics in hydrology. The Nash-Sutcliffe Efficiency (NSE) and 95 

Kling-Gupta Efficiency (KGE) are the most widely recognized performance metrics used in 96 

evaluating and calibrating rainfall-runoff models. These two metrics have been instrumental in 97 

advancing our understanding of hydrological processes and improving the performance of 98 

hydrologic models (Gupta et al., 2009; Nash & Sutcliffe, 1970). They have paved the way for 99 

the development of more advanced and sophisticated performance evaluation techniques. 100 

Despite the sampling uncertainty inherited in these metrics (Clark et al., 2021), NSE and KGE 101 

continue to be widely accepted in the hydrology community due to their simplicity and 102 

effectiveness in evaluating model performance. Many of the newer metrics that have been 103 

introduced in recent years have been inspired by and built upon the foundation established by 104 

NSE and KGE. The conventional model calibration relies on using flow-oriented temporal 105 

metrics, such as the NSE and KGE. However, these metrics have a limitation as they lack 106 

spatial considerations and are prone to the sampling uncertainty. This has driven the need for 107 

development of intolerant spatial performance metrics which can better evaluate and improve 108 

the spatial accuracy of a hydrologic model. Spatial-pattern-oriented SPAtial Efficiency 109 

(SPAEF) metric developed by Demirel et al. (Demirel et al., 2018) builds upon the strength of 110 

KGE and incorporates new idea of distribution comparison via histogram overlap index. It is 111 

designed as a multi-component metric specifically suited for comparing spatial patterns of two 112 

raster maps, with its three main data properties being co-location, variation, and distribution. 113 

Although SPAEF was primarily developed for hydrologic community, it has been used in many 114 

different disciplines such as atmospheric circulation modeling (Ahmed et al., 2019), flood risk 115 

analysis (Hossain & Meng, 2020), function space optimization, fisheries (Thoya et al., 2021) 116 

and neuroscience (Yoo et al., 2020). In these studies, SPAEF has been tested and proven to be 117 

robust and easy to interpret due to its three distinct and complementary components of 118 

correlation, variance and histogram matching. Following the multi-component structure idea, 119 

we present new metrics in this study to improve SPAEF by adding fourth of fifth new 120 

components or replacing histogram match with other components. Using this approach, we 121 

aimed for reducing uncertainty in the new metric and make it sharp (discriminant) when 122 

evaluating patterns on two raster maps whether they are similar or not.  123 

In recent literature, there has been attempts to revise SPAEF component i.e. Spatial Pattern 124 

Efficiency Metric (SPEM) (Dembélé et al., 2020). Similar to SPAEF, it has been proposed as 125 

a bias-insensitive and multi-component spatial pattern-oriented metric using satellite remote 126 

sensing data. Structural Similarity index (SSIM) is another pattern-oriented metric, it stands 127 

out with its spatial structure (Nilsson & Akenine-Möller, 2020; Wang et al., 2004). It was 128 

proposed by Wang et al. (Wang et al., 2004) for image quality assessment and has been used 129 

in different studies such as medical imaging, ecological restoration, and change detection in 130 

the hydrological cycles and remote sensing images (Arun et al., 2021; Dougherty et al., 2020; 131 

Wiederholt et al., 2019). Knoben et al. (Knoben et al., 2019) compared NSE and KGE metrics 132 

and argued that instead of relying directly on the KGE value, the components should be 133 

analyzed in depth, even the weighting of the components. A study analyzing sampling 134 
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uncertainty in popular performance metrics in hydrologic modeling highlighted that the KGE 135 

can be heavily influenced by just a few data points (Clark et al., 2021). A study on the 136 

hydrological model skill score compared metrics with different forms of correlation and 137 

measures of variability, claiming the term covariance is more appropriate for evaluation 138 

(Onyutha, 2022). Another recent study, based on the largest residuals, focused on reducing the 139 

largest errors, and argued that metrics should be less sensitive to errors and more sensitive to 140 

bias (Schneider et al., 2022). The publication (Martinez-Villalobos et al., 2022) compared 141 

metrics for evaluating precipitation probability distributions by comparing climate model 142 

simulation data with real platform satellite data, therefore they showed the importance of 143 

probability distribution functions. A study from the Netherlands (de Boer-Euser et al., 2017) 144 

stated that strong components can be included in different metrics rather than considering a 145 

single general metric for model comparison. 146 

The existing spatial metrics aimed for the best convergence using terms such as correlation, 147 

variation, histogram intersection, and root mean square error. However, kurtosis has hitherto 148 

been an underrated term for spatial performance, and a four-component spatial-pattern-oriented 149 

metric also does not exist for the hydrologic model calibration. We used the kurtosis ratio by 150 

including it as a new component for the first time in this study in order to achieve the best 151 

spatial convergence and fit. With the addition of a new component, the weighting by which the 152 

components affect the value has also changed. By revealing the effect of kurtosis on spatial 153 

performance, we developed a new four-component metric that does not require user input.  154 

We aim to investigate the best potential to use multi-component spatial metrics in hydrological 155 

model calibration, by proposing a new multi-component spatial metric that especially includes 156 

the kurtosis component and benchmarking it to existing multi-component spatial metrics. The 157 

primary purpose of this study is to evaluate the performance of the hydrological model using 158 

multicomponent spatial metrics and to determine the potential impact on model accuracy and 159 

precision. In addition, this study aims to identify the most effective combination of spatial 160 

metrics for hydrological model calibration and to develop a framework for future work in this 161 

area. A large number of metrics in the literature creates confusion and difficulty for users to 162 

choose from, so we compared metrics in this study to look for the most successful one to put a 163 

stop to metric redundancy. Addressing these goals, this study aims to contribute to ongoing 164 

research efforts to improve the accuracy and reliability of hydrological models. 165 

The accuracy of the analysis has been increased by comparing model predictions with real 166 

platforms. It is aimed to improve the convergence between observed and simulated maps by 167 

using two-source energy balance (TSEB) model’s AET data. The MODIS-LAI data were used 168 

both to correct the PET and to represent the vegetation dynamics of the Moselle basin. We 169 

utilize a spatially distributed mesoscale Hydrologic Model (mHM) with it features pedo-170 

transfer functions for LAI data and a Multiscale Parameter Regionalization (MPR) approach 171 

to scale the potential ET (Kumar et al., 2013; Samaniego et al., 2010). We tested our framework 172 

in three different cases to provide comprehensive outlook to the calibrations i.e. 100 iterations 173 

were applied in the first case and 1000 iterations in the second case, so the effect of the number 174 

of iterations was also assessed. In the third case, reproducibility was achieved by analyzing the 175 

randomly selected synthetic map. OSTRICH software (L. Shawn Matott, 2004; L.S. Matott, 176 

2017) was used as the calibration tool and Parallel Dynamically Dimensioned Search 177 

Algorithm (PDDS) was used as the calibration algorithm (Asadzadeh & Tolson, 2013). The 178 

combined SPAEF value of the growing season was used as the main objective function for ET, 179 

and the KGE was presented for discharge (Q) in addition. We developed multiple metrics with 180 

different components and different component numbers, trying to increase the effectiveness 181 

(sharpness) of each component on convergence performance. We made an elaborated 182 
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comparison between the existing performance metrics in the literature and the newly developed 183 

metrics based on SPAEF. As a result of the rigorous assessment of metrics, we identified not 184 

only the superior but also new metric. The strongest aspect of this new metric is the added 185 

kurtosis component.  186 

2 Study area and data 187 

2.1  Study area 188 

The study area is the Moselle River basin, the largest part of the Rhine River basin, of which it 189 

is one of the main tributaries, characterized by diverse landforms  (Figure 1). The origin of the 190 

river from the Vosges Mountains before the interterritorial transfer from France to enter 191 

Germany and Luxembourg. Furthermore, at the triangle where Germany, France and 192 

Luxembourg meet, the Moselle River becomes the borderline between Germany and 193 

Luxembourg for 36 km. Also, it has a surface area of approximately 27262 km2 and a length 194 

of 545 km. Whereas, land use in the basin includes forestry, agriculture and cattle breeding in 195 

the mountains and hillslopes, winegrowing on vineyards of sunny valley slopes. Moreover, the 196 

altitude varies from 59 to 1326 m, with an average altitude of around 340 m (Demirel et al., 197 

2013). In addition to having 26 sub-basins with surface areas varying from 102 to 3353 km2, 198 

the river flow is organized by different dams, dikes, powerplants and locks such as the Trier 199 

Dam, Koblenz Dam and Detzem Lock. The outlet discharge at Cochem station, located 200 

between Trier and Koblenz, varies from 14 m3/s in dry summers to a maximum of 4000 m3/s 201 

during winter floods, with a mean discharge of around 315 m3/s (Demirel et al., 2015). 202 

 203 

Figure 1. DEM, land cover and AET characteristics of Mosel River basin. 204 

An average pattern of satellite-based actual evapotranspiration for July (average of all years 205 

from 2002 to 2014) is presented to illustrate the interaction between DEM and land cover 206 

characteristics that generate the land surface flux patterns. 207 

2.2 Satellite data 208 

MODIS has a vital role in obtaining the satellite-based data used in this study, is an essential 209 

sensor aboard the Terra (EOS AM) and Aqua (EOS PM) satellites for the earth and climate 210 

measurements at a spatial resolution of approximately 1 km × 1 km. It provides terrestrial, 211 

atmospheric and thalassic data and a view of the entire Earth's surface for large and diverse 212 

user communities around the world. In this study, TSEB based AET is used as reference spatial 213 
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patterns (Allen et al., 1998; Norman et al., 1995). TSEB is an energy balance model using the 214 

energy flux principle by separating into two-layer, vegetation and soil.  215 

The water limited growing season was chosen as the analysis period because it avoids climate 216 

gradient on the AET patterns emphasizing vegetation dynamics instead of wet soil conditions 217 

i.e. AET that is equal to the PET. All remote-sensing-based AET data were converted to long 218 

term monthly mean data during the growing season across all years for the model calibration 219 

period (2002–2014). In what follows, three-monthly mean periods were obtained with a total 220 

of three-term between March and November, i.e. March-April-May (MAM), June-July-August 221 

(JJA), and September-October-November (SON), representing AET under cloud-free 222 

conditions. We will attribute these AET maps as reference observations, although they are 223 

estimates from an energy balance model based on satellite observations and not pure 224 

observations. 225 

Table 1. Overview of morphological and meteorological data used as input for mHM (Rakovec 226 

et al., 2016).  227 

Variable Description 

Spatial 

resolution 

(degrees) 

Source 

Q (daily) Streamflow Point GRDC 

P (daily) Precipitation 0.0625 E-OBS 

PET (daily) 
Potential evapotranspiration based on Hargreaves 

and Samani (Hargreaves & Samani, 1985) 
0.0625 E-OBS 

Tavg Average air temperature 0.0625 E-OBS 

LAI 
Fully distributed 12-monthly values based on 8-

day time-varying leaf area index (LAI) dataset 
0.001953125 MODIS 

Land cover Forest, agriculture and urban 0.001953125 MODIS 

DEM-related 

data 
Slope, aspect, flow accumulation and direction 0.001953125 SRTM 

Geology class Two main geological formations 0.001953125 

ESD 

UFZ – 

Leipzig 

(Rakovec et 

al., 2016) 

Soil class Fully distributed soil texture data 0.001953125 HWSD 

GRDC – Global Runoff Data Centre, E-OBS – The gridded observational dataset from Copernicus, MODIS – Moderate 228 

Resolution Imaging Spectroradiometer, SRTM – Shuttle Radar Topography Mission, ESD – European Soil Database, HWSD – 229 

Harmonized World Soil Database  230 
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3 Hydrological model 231 

This research utilizes the mesoscale Hydrologic Model (mHM) v.5.11.2 (Samaniego et al., 232 

2021) which is a grid-based spatially distributed model it features pedo-transfer functions and 233 

MPR (Kumar et al., 2013; Samaniego et al., 2010; Thober et al., 2019). Another feature of 234 

mHM is the use of leaf area index (LAI) data not only for calculating interception loss but also 235 

for dynamically scaling PET (Demirel et al., 2018). With these unique features, it is more 236 

flexible than other existing hydrologic models in line with the purpose of this study. The model 237 

features 69 adjustable global parameters that can be optimized during the calibration process 238 

(Demirel et al., 2018). The model works on the basis of water balance rather than energy 239 

balance and provides various physically meaningful spatial outputs, fluxes and states as 240 

simulating major elements of the hydrologic processes, i.e. soil moisture dynamics, 241 

interception, infiltration, evapotranspiration, snow accumulation and melting, groundwater 242 

storage, seepage, surface runoff and others. 243 

The basic data for the running mHM can be classified into meteorological data, morphological 244 

data, land cover data and gauge streamflow data. Table 1 shows a summary of the data used in 245 

mHM setup provided by Rakovec et al. (Rakovec et al., 2016). As seen in the table, mHM can 246 

handle different spatial resolutions of meteorological data and morphological data since it has 247 

internal upscaling and downscaling subroutines. At this point, the Multi-Scale Parameter 248 

Regionalization technique comes into play and enables user to map calibrated parameters to 249 

the simulated grids with pedo-transfer functions. This approach prevents uniform parameter 250 

fields and protects sub-grid heterogeneity of the fluxes. In other models, every parameter gets 251 

the same value in the entire sub-basin or in each hydrologic response units resulting in uniform 252 

flux results for the same domain.  253 

The meteorological model inputs are precipitation, average air temperature and potential 254 

evapotranspiration (PET). In our study, PET was direct input to the mHM and estimated outside 255 

with Hargreaves-Samani (Hargreaves & Samani, 1985) method using additional temperature 256 

data. All meteorological data are obtained from E-OBS at daily resolution, originally at 10-20 257 

km. The morphological variables are digital elevation model (DEM), soil maps with textural 258 

features, geological maps including specific yield, permeability and aquifer thickness. In 259 

addition to characterizing the morphology of the basin, DEM masks the grid cells with the 260 

basin boundaries to eliminate no-data parts. All morphological data are prepared at 261 

0.001953125 degrees (~200 m × 200 m) scale. The model hydrology is evaluated at 0.015625 262 

degrees (~2x2 km) spatial resolution and daily time step. Lastly, monthly leaf area index (LAI) 263 

maps are used to represent the vegetation dynamics for both interception calculation and PET 264 

correction for the entire period (2002–2014). Four years of model warm-up period (1998–2001) 265 

is used. Observed daily streamflow (Q) data at Cochem (station #6336050), provided by the 266 

Global Runoff Data Centre (GRDC), Koblenz (Germany), is used to calibrate water balance in 267 

the basin.  268 

4 Methods 269 

In this study, we tested nine different spatial metrics i.e. two of them are existing metrics, and 270 

seven of them are newly developed based on SPAEF (Table 2). To evaluate the effect of 271 

number of iterations, calibrations were pursued with either 100 or 1000 maximum iterations. 272 

Besides, synthetically created AET maps using mHM and a pre-defined parameter set are 273 

utilized to mimic a “hide and seek” case. This is crucial to test the guidance performance of the 274 

metrics in the multi-dimensional solution space to find the hided (perfect) solution within 1000 275 

iterations since search algorithms, i.e. ParaPADDS algorithm herein, require a metric to 276 

evaluate model results at every iteration. 277 
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4.1 Objective Functions 278 

Multi-component structure of our metrics was inspired by the Kling–Gupta efficiency (Gupta 279 

et al., 2009). KGE is one of the most used metrics in the hydrologic modelling to evaluate 280 

streamflow performance. As shown in Eq.(1), it has three components, i.e., correlation, 281 

variability and bias. 282 

 
KGE = 1 − √(𝛼𝑄 − 1)

2
 + (𝛽𝑄 − 1)

2
 +  (𝛾𝑄 − 1)

2

 

𝛼𝑄 = 𝜌(𝑜, 𝑠), 𝛽𝑄 =
𝜎𝑆

𝜎𝑂
 𝑎𝑛𝑑 𝛾𝑄 =

𝜇𝑠

𝜇𝑂
 

(1) 

where 𝛼𝑄 is the Pearson correlation coefficient between the observed (o) and the simulated (s) 283 

discharge time series, 𝛽𝑄 is the relative variability based on the ratio of standard deviation in 284 

simulated and observed values and 𝛾𝑄 is the bias fraction which is normalized by the standard 285 

deviation of the observed data. 286 

Table 2 shows the summary of SPAEF based metrics. For brevity, we used Eq. (2) as formula template 287 

i.e. a generic formulation type that encompasses in the number and content of components. The excessed 288 

style in Eq (2) includes all metrics form with various components. 289 

 METRIC = 1 − √(𝛼 − 1)2 + (𝛽 − 1)2 + (𝛾 − 1)2 + (𝜅 − 1)2 + (𝛿 − 1)2 (2) 

 290 
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 291 

292 

Table 2. SPAEF based metrics used as objective functions. 

Metric 
Components Index 

𝜶 𝜷 𝜸 𝜿 𝜹  

SPAtial Efficiency 

(SPAEF) 
𝜌(𝑜, 𝑠) 

𝜎𝑜

𝜇𝑜 
/

𝜎𝑠

𝜇𝑠 
 

∑ 𝑚𝑖𝑛(𝐾𝑗,𝐿𝑗)𝑛
𝑗=1

∑ 𝐾𝑗
𝑛
𝑗=1

, n=100 fixed none none Eq. (3) 

SPAtial EFficiency Prime 

(SPAEF') 
same as SPAEF same as SPAEF 

same as SPAEF except for dynamic n i.e. 

number of bins 𝑛 = 𝑓𝑙𝑜𝑜𝑟{√𝑙𝑒𝑛𝑔𝑡ℎ(𝑜)} 
none none Eq. (4) 

SPAtial Count Density 

Efficiency (SPACD) 
same as SPAEF same as SPAEF 

∑ 𝑚𝑖𝑛(𝐾𝑗,𝐿𝑗)𝑛
𝑗=1

∑ 𝐾𝑗
𝑛
𝑗=1

 (𝑣𝑛 = 𝑐𝑛 𝑤𝑛⁄ ) none none Eq. (5) 

SPAtial Hybrid 4 Efficiency 

(SPAH4) 
same as SPAEF same as SPAEF same as SPAEF' 

𝐾𝑢𝑟𝑡(𝑠)

𝐾𝑢𝑟𝑡(𝑜)
 none Eq. (6) 

SPAtial Kurtosis Efficiency 

(SPAK) 
same as SPAEF same as SPAEF none same as SPAH4 none Eq. (7) 

SPAtial Hybrid 5 Efficiency 

(SPAH5) 
same as SPAEF same as SPAEF same as SPAEF' same as SPAH4 

𝑆𝑘𝑒𝑤(𝑠)

𝑆𝑘𝑒𝑤(𝑜)
 Eq. (8) 

SPAtial Histogram 

Equalization Efficiency 

(SPAHE) 

same as SPAEF same as SPAEF 
∑ 𝑚𝑖𝑛(𝐾𝑗 , 𝐿𝑗)𝑛

𝑗=1

∑ 𝐾𝑗
𝑛
𝑗=1

 none none Eq. (9) 

SPAtial Movers’ Distance 

Efficiency (SPAMD) 
same as SPAEF same as SPAEF 

∑ ∑ 𝑓𝑖,𝑗𝑑𝑖,𝑗
𝐿
𝑖=1

𝐾
𝑖=1

∑ ∑ 𝑓𝑖,𝑗
𝐿
𝑖=1

𝐾
𝑖=1

 none none Eq. (10) 

Spatial Pattern Efficiency 

Metric (SPEM) 
1 −

6 ∑ 𝑑2𝑛
1

𝑛(𝑛2 − 1)
 same as SPAEF 1 − 𝐸𝑅𝑀𝑆(𝑍𝑋𝑠

, 𝑍𝑋𝑜
) none none Eq. (11) 
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SPAEF is the seed of our newly proposed metrics as our aim is to sharpen SPAEF. In other 293 

words, we intend to improve its discriminating power while judging whether two maps are 294 

similar or not. SPAEF uses a multi-component structure of the KGE metric. In Eq. (3), 𝛼 is the 295 

Pearson correlation coefficient between the observed (o) and simulated (s) pattern, 𝛽 is the 296 

fraction of the coefficient of variation representing spatial variability and 𝛾 is the histogram 297 

intersection, which based on z-scores, for the given histogram K of the observed pattern and 298 

the histogram L of the simulated pattern, each containing n bins (Swain & Ballard, 1991). The 299 

SPAEF can have a value between −∞ and 1, where a value closer to 1 indicates highest spatial 300 

similarity between the observations and model simulations (Koch et al., 2018).  301 

As a result of various adjustments and improvements made in the SPAEF components, new 302 

metrics were proposed and tested i.e. SPAEF', SPACD, SPAH4, SPAK, SPAH5, SPAMD, and 303 

SPAHE. We included two popular metrics, SPEM and SSIM into benchmark. 304 

First improvement in SPAEF is changing user defined the number of bins to an 305 

automated n based on the number of elements (grids) in the raster map (see Eq (3)). We 306 

introduced a simple approach i.e. the square root of the length of the observed data as 𝑛 =307 

𝑓𝑙𝑜𝑜𝑟{√𝑙𝑒𝑛𝑔𝑡ℎ(𝑜)} although there are different methods for the same purpose (Freedman & 308 

Diaconis, 1981; Scott, 1979; Sturges, 1926). This slightly new version of the SPAEF is 309 

presented as SPAEF-Prime (SPAEF') as shown in Eq (4). Unlike the standard version, the 310 

SPAEF' does not require any user-defined inputs now.  311 

Eq (5) shows Spatial Count Density Efficiency (SPACD) which has a different type of 312 

normalization based on count density approach in the calculation of the histogram intersection 313 

component. While the first two components remain constant as in SPAEF' the calculation of n 314 

in the gamma component has changed. This approach uses count or frequency scaled by the 315 

width of the bin 𝑣𝑛 = 𝑐𝑛 / 𝑤𝑛, 𝑣𝑛 is the bin value, 𝑐𝑛 is the number of elements in the bin and 316 

𝑤𝑛 is the width of the bin, respectively. 317 

Eq (6) shows SPAtial Hybrid 4 Efficiency (SPAH4) which is a four-component metric obtained 318 

by adding kurtosis i.e. a fundamental statistical property of distributions to the SPAEF' metric. 319 

Kurtosis can be defined as a measure of how prone a distribution is to outliers (Pearson, 1905). 320 

SPAH4 offers a more accurate perspective by questioning not only the match of the histograms 321 

but also the extreme values and spread in the data. The 4th component is symbolized by the 322 

expression 𝐾𝑢𝑟𝑡 and 𝜅 is the ratio of the kurtosis coefficients of the simulated (s) and observed 323 

(o) data. Eq. (7) shows SPAtial Kurtosis Efficiency (SPAK) which is a three-component metric 324 

replacing the histogram intersection component in the SPAEF metric with the kurtosis 325 

coefficient component. Thus, it dominates the metric on its affinity for discrete values without 326 

questioning histogram intersection. 𝛼 and 𝛽 were introduced and explained in previous metrics, 327 

also 𝜅 is declared in Eq. (7) as ratio of kurtosis coefficient. This metric can be characterized as 328 

a mixture of SPAH4 and SPAEF metrics. Eq. (8) shows SPAtial Hybrid 5 Efficiency (SPAH5) 329 

which is a five-component metric adding skewness to the SPAH4 metric. Skewness can be 330 

defined as a measure of the asymmetry of the data around the sample mean.  331 

Eq. (9) shows SPAtial Histogram Equalization Efficiency (SPAHE) that is very similar to 332 

SPAEF with additional step before histogram match calculation “histogram equalization” 333 

approach. This approach is a computer image processing technique used to improve contrast 334 

in raster data. Its quantitative logic is based on the grayscale transformation (𝑇) to minimize 335 

|𝑐1(𝑇(𝑘)) − 𝑐0(𝑘)|, 𝑐0 is the cumulative histogram of the input data, and 𝑐1 is the cumulative 336 

sum of target histogram for all intensities 𝑘. Histogram equalization is a specific case of the 337 

histogram remapping methods. It is an image processing technique used to advance contrast in 338 
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images which spatial patterns for this study. It achieves this by efficaciously sprawling out the 339 

most frequent intensity values, i.e. expanding the intensity range of the image (Efford, 2000).  340 

Eq. (10) shows SPAtial Efficiency Movers’ Distance (SPAMD) is another SPAEF-oriented 341 

multi-variate metric which measures the quantitative closeness of two pattern set by 342 

considering the Earth Movers’ Distance of their histograms (Rubner et al., 1998). The aim of 343 

EMD approach is minimization of overall transfer cost in the conversion one histograms to 344 

another. In Eq (10), 𝑓𝑖,𝑗 is flow cost of transfer ith term of histogram K of observed map to jth 345 

histogram L simulated map at distance 𝑑𝑖,𝑗. EMD is the ratio of work done through the total 346 

optimal flow and the total flow. The value of EMD is zero indicates the perfect consistency 347 

between two histograms. 348 

Eq. (11) shows Spatial Pattern Efficiency Metric (SPEM), a metric inspired by KGE and 349 

SPAEF, is one of the existing metrics included in our analysis (Dembélé et al., 2020). It forces 350 

the z‐scores of simulated variables and observed variables to be equal (i.e., minimizing their 351 

ERMS) corresponds to matching their grid cell locations (i.e., spatial patterns). SPEM 352 

considers a modeled variable (Xmod) and an observed variable (Xobs) of n elements, it is 353 

defined as Eq. (11); where rs is the Spearman rank‐order correlation coefficient with 𝑑 the 354 

difference between the ranks of Xmod and Xobs. γ is the variability ratio that assesses the 355 

similarity in the dispersion of the probability distributions of Xmod and Xobs, with μ and σ 356 

representing the mean and the standard deviation, respectively, and α the spatial location 357 

matching term calculated as the root‐mean‐square error (ERMS) of the standardized values (z‐358 

scores, ZX) of Xmod and Xobs (Dembélé et al., 2020). The formula for d can be written as 359 

𝑑 =  𝑑𝑖𝑓𝑓(𝑟𝑎𝑛𝑘(𝑋𝑠), 𝑟𝑎𝑛𝑘(𝑋𝑜)). SPEM ranges from −∞ to 1, which is its optimal value. 360 

Lastly, Eq. (12) shows Structural Similarity index (SSIM) (Wang et al., 2004). An image 361 

quality metric SSIM to evaluate degradation grade caused by visual data processing. This 362 

method considers pattern similarity as it detects changes in the variation of structural 363 

information between the two images. The algorithm formulates perception sensibility to visual 364 

changes based on the distortion luminance, contrast and structure information. By combining 365 

three components, similarity can be characterized with overall unit metric in terms of statistical 366 

properties of simulated and observed data such as mean 𝜇, standard deviation 𝜎 and covariance 367 

𝑐𝑜𝑣𝑜,𝑠, as shown in Eq. (12). 𝑐1, 𝑐2 are constants that stabiles functions when the dominator 368 

terms are close to zero. The SSIM is a fully referenced objective quality metric that gives values 369 

in the range [0,1] relative to the structural relationship between the two images. 370 

 𝑺𝑺𝑰𝑴 =
(2𝜇𝑜𝜇𝑠 + 𝑐1) (2𝑐𝑜𝑣𝑜,𝑠 + 𝑐2)

(𝜇𝑜
2 + 𝜇𝑠

2 + 𝑐1) (𝜎𝑜
2 + 𝜎𝑠

2 + 𝑐2) 
 (12) 

 371 

All nine spatial metrics were calculated separately as long term (2002-2014) monthly average 372 

of AET data for three periods covering the growing season and combined as in Eq (13) to 373 

minimize the total error, representing objective function (OF). These periods are symbolized 374 

as March-April-May (MAM), June-July-August (JJA), and September-October-November 375 

(SON). 376 

 𝑴𝒊𝒏𝒊𝒎𝒊𝒛𝒆 [(1 − 𝑀𝐸𝑇𝑅𝐼𝐶𝑀𝐴𝑀)2 + (1 − 𝑀𝐸𝑇𝑅𝐼𝐶𝐽𝐽𝐴)
2

+ (1 − 𝑀𝐸𝑇𝑅𝐼𝐶𝑆𝑂𝑁)2] 
(13) 

It should be noted that although we tested other metrics and approaches, we only reported nine 377 

selected metrics in this study. For instance, we used harmonic mean or geometric mean instead 378 

of the arithmetic mean in the second component of SPAEF. In another attempt, we replaced 379 



manuscript submitted to Water Resources Research 

the skewness coefficient ratio with different L-moments. We also used Hausdorff distance 380 

(Hausdorff, 1914) and Fréchet distance (Fréchet, 1906) as third component in SPAEF. Even 381 

we used the product of components i.e. multiplied them instead of adding them. However, all 382 

these attempts did not reveal better results than those reported in this study. Therefore, for 383 

brevity we reported the ranking of only these nine metrics above. In this calibration study, we 384 

fine-tuned only 20 parameters of daily mHM for the Mosel Basin using the popular global 385 

search algorithm Pareto-Archived Dynamically Dimensioned Search (ParaPADDS) algorithm 386 

(Asadzadeh & Tolson, 2013) using 750 maximum iteration and 3 parallel cores. The 20 387 

parameters out of 69 mHM parameters are selected based on a sensitivity analysis done in our 388 

previous study. Note that ParaPADDS is the multi-objective version of the Dynamically 389 

Dimension Search algorithm (Tolson & Shoemaker, 2007) available in OSTRICH 390 

Optimization Software Toolkit (L.S. Matott, 2017).  391 

5 Results 392 

In this study, six novel metrics are proposed and compared with existing SPAEF, SPEM and 393 

SSIM metrics in pattern analysis of distributed hydrologic model simulations. The new metrics 394 

can be called as “the sisters of SPAEF” as they have emerged from the well-established SPAEF 395 

with additional unique statistical features such as automated number of bins, kurtosis and 396 

skewness included in their structure. We ranked the nine metrics based on their effectiveness 397 

in distinguishing between two raster maps during distributed model calibration with MODIS-398 

LAI and TSEB AET for a period of 13 years from 2002 to 2014. Pre-selected 20 mHM 399 

parameters are included in the following three different pattern-only calibration cases: (1) 100 400 

iterations with satellite data, (2) 1000 iterations with satellite data, and (3) 1000 iterations with 401 

synthetic maps. Synthetic map represents a map simulated with a known mHM parameter set 402 

for a randomly selected day that is used as the target in parameter optimization (calibration) 403 

process. The use of this synthetic scenario is planned to ensure the reproducibility of the 404 

analysis and to have a fully controlled numerical experiment. Obviously, long term monthly 405 

averaging was done only with real satellite data to form robust seasonal pattern maps i.e. target 406 

in the calibration. 407 

Although water balance metrics, i.e. temporal metrics, are not included in the calibration, KGE 408 

values are calculated to evaluate the model simulations together with standard SPAEF in Table 409 

3. Streamflow simulation performance was calculated for the calibration period (2002-2014), 410 

using the KGE metric between the observed gauge streamflow and simulated streamflow from 411 

the model. This is done only for case 1 (TSEB 100 runs) and 2 (TSEB 1000runs) i.e. real 412 

satellite data are used in the pattern-based optimization. It is interesting to note that some of 413 

the pattern metrics help to improve the bias in water balance as well. The three OF columns in 414 

this table show lowest (best) values of each metrics reached using Eq. (13). This is particularly 415 

important to show the skill of the nine metrics in converging to zero i.e. certainly exists in the 416 

synthetic case (3). It should be noted that the metrics are ranked based on the standard SPAEF 417 

values. Closer inspection of the Table 3 shows that TSEB 1000 iterations significantly 418 

improves the SPAH4 performance from 0.608 to 0.688 (SPAEF value) as compared to the 419 

TSEB 100 iterations. The reduction in OF is even more remarkable since the error in SPAH4 420 

was halved from 0.70 to 0.35 when iterations are increased to 1000. It is clear from this table 421 

that SPAHE and SPAH5 are the worst performing two metrics among all three cases. 422 

Comparing the two results (100 runs vs 1000 runs) it can be seen that all metrics are improved 423 

with the increased number of iterations showing the importance of the selecting appropriate 424 

number of the iterations for the search algorithm. However, if enough freedom is not given to 425 

the optimizer, it may fail to find the global optimum point in the solution space. Combining 426 

kurtosis with skewness in the same metric (SPAH5) did not produce a discriminative metric. 427 



manuscript submitted to Water Resources Research 

This result is somewhat counterintuitive as we expect more constrain would yield improved 428 

performance. What is striking about the values in this table is histogram equalization step did 429 

not help to improve the pattern results and discriminative power of the metric. 430 

Table 3. Calibration results of the three cases. Note that metrics are ranked based on 1000 run 431 

- SPAEF values (4th numeric column). 432 

Metrics TSEB 100 runs TSEB 1000 runs 
SYNTHETIC MAP 

1000 runs 
 SPAEF KGE OF SPAEF KGE OF SPAEF OF 

SPAH4 0.608 0.78 0.70 0.688 0.77 0.35 0.948 0.05 

SPACD 0.619 0.26 0.40 0.673 0.74 0.27 0.939 0.04 

SPAEF' 0.585 0.36 0.52 0.671 0.52 0.33 0.949 0.05 

SPAK 0.558 0.89 0.39 0.638 0.87 0.25 0.906 0.01 

SPAMD 0.614 0.07 0.29 0.625 0.66 0.21 0.859 0.02 

SSIM 0.557 0.21 0.19 0.491 0.41 0.15 0.948 0.00 

SPEM 0.609 0.33 1,71 0.460 0.61 1,46 0.941 0.05 

SPAHE 0.492 0.70 0.25 0.376 0.65 0.21 0.758 0.04 

SPAH5 -0.519 0.61 8,15 0.211 0.53 2,07 0.953 0.05 

 433 

What stands out in the table is that SSIM seems to be the most tolerant metric reaching lowest 434 

OF values which corresponds to the poor SPAEF performance in all three cases. In case 3, in 435 

particular, the search algorithm could converge nearly to zero SSIM but the evaluation of the 436 

maps with SPAEF revealed that it is only a match around 0.95 SPAEF and not very close to 1 437 

SPAEF i.e. perfect pattern match. In other words, minimizing SSIM in Eq (13) nearly to zero 438 

after calibration doesn’t guarantee a perfect pattern match in terms of SPAEF currency 439 

(metric). Based on the results of case 1 and 2, SPAH4 and SPAK are the most successful spatial 440 

metrics for water balance. Obviously, SSIM and SPAMD have the worst KGE performance in 441 

case 1 and 2. Note that KGE is not calculated for the synthetic case 3. Interestingly, the 442 

minimization of SPEM and SPAH5 metrics via Eq (13) after optimization resulted in poor 443 

values above 1 both in case 1 and 2. 444 

Figure 2 shows the reference AET maps and simulated AET maps from the mHM with 445 

calibrated parameters after 100 iterations (case 1). The reference three maps are given in both 446 

columns for ease of comparison. The order of the metrics is in accordance with the performance 447 

ranking in Table 3 and also, the ranking is provided (e.g. #1, #2 etc.) to help to the reader. The 448 

combined SPAEF values of three periods (MAM, JJA and SON) are presented in brackets 449 

underneath the metric name. To use a single legend, the maps are normalized with their mean. 450 

The resultant maps from SPACD and SPAMD (second row in Figure 2) are slightly better than 451 

other rows as visually more similar to the reference maps (first row in Figure 2). Closer 452 

inspection of the maps shows that the high contrast between west and south of the basin in 453 

SON period is well-captured by most of the metrics except for the SPAH5 (row 6, rank #9).  454 

  455 
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 456 

 457 

Figure 2. Long term average three-monthly TSEB reference maps versus mHM simulated 458 

maps using MODIS-LAI and best-balanced Pareto solution parameter set from 100 run case. 459 

Figure 3 shows the reference AET maps and simulated AET maps from the mHM with 460 

calibrated parameters after 1000 iterations (case 2). It is consistent with Figure 2 that the 461 

simulated AET maps by the model parameter sets optimized with SPAH4 and SPACD metrics 462 

are most close to the reference maps. Similarly, the poor AET performance of SPAH5 maps is 463 

apparent from the maps in the last row of the figure. Map illustration of each period reveals 464 

that the combined metric value (OF) can hinder individual map performance. For instance, the 465 

SON map of the SPAHE metric in Figure 3 shows that the model better converges to the 466 

remotely sensed reference map when optimized with SPAHE whereas the MAM and JJA maps 467 

show that the model could not reproduce the AET maps of these periods as successful as with 468 

the other metrics.  469 
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 470 

 471 

Figure 3. Long term average three-monthly TSEB reference maps versus mHM simulated 472 

maps using best-balanced Pareto solution parameter set from 1000 run case. 473 

The entire calibration development process, the model improvements from beginning to end 474 

and the optimum points are depicted with scatter diagrams in Figure 4. It shows the relationship 475 

between the value and iteration based on the ParaPADDS search algorithm, more specifically, 476 

the objective function value achieved for each iteration step of the calibration process. While 477 

the OF results in Table 3 are obtained at the end of the iteration step sequence, some consistent 478 

metrics may reach this best value earlier. SPAH4 reached its best OF value at 0.70 and 0.35 in 479 

approximately quarter steps for 100 and 1000 runs, respectively. Similarly, SPACD, SPAEF' 480 

and SPAMD are also fast-improving metrics. Since the synthetic case was based on a virtually 481 

generated daily map, it took longer for the metrics to find the points where their improvement 482 

became linear, nearly a third. It is surprising to see that SPAH5 and SPEM are consistent early 483 

maturing metrics despite their poor spatial performance.  484 
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 485 

 486 

 487 

Figure 4. Scatter plots of the calibration processes, the OF value-iteration relationship of the 488 

PDSS search algorithm. First and second column sub-plots are the same figures except for 489 

different extent. 490 
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 491 

Figure 5. Monthly average hydrograph of all years in the calibration period (2002–2014) to 492 

demonstrate the flow simulation performances of nine different metrics. 493 

Figure 5 compares in-situ observed hydrographs and simulated hydrographs constrained by 494 

metrics. SPAH4 and SPAK performed better in each case, predicting the most similar 495 

discharges to the observed Cochem outflows. Otherwise, the SPAHE metric standout for the 496 

100 runs and the SPACD metric for the 1000 runs, as pointed out by the KGE column in Table 497 

3. The simulations show better hydrograph fitting during the growing season, especially during 498 

the summer months, also the hydrograph line breakpoints, peaks and valleys are coherently 499 

followed. Thus, the overall trend and characteristics of the streamflow were successfully 500 

analyzed and represented. Also, a positive correlation was found between increasing iteration 501 

and hydrograph fit. As the number of iterations increases, the hydrograph lines become closer 502 

to the observed lines and the overall consolidation of the hydrographs provides better results. 503 

The narrow range of hydrographs in Figure 5 shows that the developed new metrics can be 504 

used not only for the spatial pattern performance simulating the AET but also for the temporal 505 

streamflow performance simulating the discharges.  506 

Overall, the results indicate that the newly developed SPAH4 and SPACD are the best 507 

performing metrics for all calibration scenarios, particularly in the non-synthetic TSEB cases. 508 

The competitive performance of the SPAMD metric that follows them should not be ignored. 509 

Briefly, the four-component spatial performance metric SPAH4 stands out especially with its 510 

versatile evaluation and robust performance, indicated with bold text in Table 3. Although the 511 

modeler can use the SPAH4 and SPACD metrics in the long and short runs, respectively, both 512 

offer close values for the decision makers. We can see that the only negative output is 513 

experienced in the TSEB 100 runs i.e. SPAH5 It should not be overlooked that SPAH5 is a 514 

prominent metric for synthetic scenarios. Interestingly, there is a significant positive correlation 515 

between the KGE and the metrics containing the kurtosis statistic. 516 
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6 Discussion 517 

This study sets out to assess the importance and comparison of spatial metrics in distributed 518 

model calibration. Previous studies have noted that spatial metrics are closer to the reference 519 

model than time series metrics in model optimizations (Demirel et al., 2018). One of the first 520 

objectives of the study is to select the appropriate spatial performance metric that plays an 521 

active role in simulating inadequate spatial AET models similar to satellite-based reference 522 

models. SPAEF has been the inspiration for this study with its innovations in spatial model 523 

parameterization and spatial performance metric selection. These innovations have raised new 524 

questions in the pattern comparison used in model optimization. Numerous imperfect models 525 

are produced during these optimizations, due to limitations in the chosen objective function. 526 

To overcome these limitations and to obtain a more physically meaningful and empowered 527 

metric, we have developed new metrics that include statistical and analytical approaches. 528 

Thanks to this meta-analysis, while suggesting the most successful metric for users, different 529 

objective functions that can be used for various purposes can also be seen as an opportunity. 530 

While searching for new solutions for a more robust spatial performance metric, we derived 531 

metrics that emphasize spatiality in a more comprehensive way by increasing the number of 532 

components of SPAEF and changing the content of the components. For the three cases, 533 

significant findings that are both different from each other and support each other have been 534 

identified. The TSEB 100 and 1000 run cases in model calibration served the purpose of 535 

evaluating metric performances in short and long runs, thus providing a flexible and versatile 536 

assessment that allows the progress of the model calibration performed by the metrics to be 537 

monitored and the decision maker to choose metrics according to their preferences.  538 

TSEB 100 runs, which we tested by focusing on the performance of spatial metrics in short 539 

runs, SPACD and SPAMD demonstrated better results on the SPAEF basis compared to other 540 

metrics. Notably, SPAK and SPAH4 including the kurtosis coefficient ratio component, 541 

yielded the best KGE values even at iterations close to the beginning. TSEB 1000 runs which 542 

we tested by focusing on its performance in long runs, resulted in more decisive outcomes with 543 

no negative values for any criteria. SPAH4 emerged as the top-performing metric in this case, 544 

followed by SPACD. The competition between these metrics was notable. In the uncertainty 545 

analysis, SPAH4 has an acceptable sampling error although it has the extra component. (Table 546 

A1). Like the TSEB 100 runs, SPAK and SPAH4 exhibited the highest KGE values. This 547 

indicated consistency was strong evidence for important findings and suggests that the 548 

descriptive statistical kurtosis ratio component has a considerable positive effect on the 549 

discharge simulation. Due to the tendency of the SPAH4 metric including kurtosis for flow 550 

prediction, it worked as a metric that focused on both spatial and flow performance, although 551 

the analysis was performed with a single spatial performance-oriented objective function. It 552 

sheds light on the analysis in detecting the presence of outliers potential also differences in the 553 

tail and crests, controlling data integrity, understanding data distribution, reliability of the 554 

statistical analysis and improving the metric performance from a statistical perspective. Thus, 555 

by investigating and questioning the effect of outliers on spatial performance, the harmony and 556 

differences between them are also included in the model. Now that these outliers are introduced 557 

to the model, the histogram intercept component is also supported, the margin of error is 558 

reduced and a more exact match is made. 559 

In the synthetic scenario, the metric SPAH5 which incorporates skewness characteristics, 560 

yielded the best SPAEF value. SPACD and SPAH4 also demonstrated successful outcomes in 561 

this scenario. The kurtosis information we use in the SPAH4 metric expresses how often 562 

outliers occur, while the skewness information we use as the fifth component in the SPAH5 563 

metric gives information about the direction of the outliers. Our purpose in including the 564 
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skewness component is to question the likelihood of events in the probability distribution, and 565 

especially to consider extreme distribution. Various datasets have different characteristics, 566 

since the differences specific to this dataset represent important concepts in the calibration 567 

model, many principles are referred to using the skewness information, from the algorithm of 568 

the model to the physics-based hydrology information. Thus, we enabled a more 569 

comprehensive and more specific analysis for models consisting of diverse data. Our finding 570 

of the importance of these statistical measures in understanding the data is supported by the 571 

study by Cain et al., processing skewness and kurtosis information on distributions collected 572 

from the authors of the published articles (Cain et al., 2017). In addition, it is possible to derive 573 

a positive interpretation from a negative finding in meta-analyses as in this study. Since the 574 

only difference between the metrics with the best and the worst performance in TSEB runs, 575 

namely SPAH4 and SPAH5, is the skewness ratio component, it can be concluded that 576 

skewness is a component that negatively affects the spatial metrics used in pattern comparison. 577 

It should be noted though that skewness information is an outstanding component for synthetic 578 

cases. 579 

In TSEB 100 runs scenario, the spatial performance tussle results of the metrics show that the 580 

newly proposed metric i.e. SPACD outperforms the conventional three-component metric 581 

SPAEF (5.76% better) on the other hand 11.11% better than SSIM and 1.66% better than 582 

SPEM. In TSEB 1000 runs results demonstrate that the newly developed four-component 583 

metric i.e. SPAtial Hybrid 4 (SPAH4) slightly outperform SPAEF (2.62% better). However, 584 

SPAH4 significantly outperforms the other existing metrics i.e. 40.22% better than SSIM and 585 

49.53% better than SPEM. 586 

7 Conclusion 587 

In this study, we thoroughly assessed common existing metrics and new spatial pattern-oriented 588 

performance metrics that we developed based on SPAEF. For the consistency and reliability 589 

of the results, the Mosel Basin with high data quality was selected and the physics-based fully 590 

distributed mHM model was established for this basin. In these three different scenarios, we 591 

performed analyses with various (low-high) iterations for actual evapotranspiration maps 592 

(TSEB AET) and synthetic maps. The most popular metrics (SPAEF, SSIM and SPEM) were 593 

compared with new metrics (SPAH4, SPACD, etc.) to measure the convergence of the mHM 594 

model to long-term monthly AET maps observed during parameter calibration. The usage of 595 

this synthetic scenario is important to ensure the reproducibility of the experiments and to give 596 

us full control over the calibration process. Based on our findings we can draw the following 597 

conclusions. 598 

- The inclusion of kurtosis ratio coefficient in the spatial pattern-oriented metrics demonstrates 599 

that metric performance is improved, so it has a positive impact on the spatially objective 600 

functions. Also shows a positive effect on streamflow prediction, it successfully calibrates the 601 

KGE metric even in very short runs. Furthermore, while using the skewness ratio coefficient 602 

gave unsuccessful results for TSEB AET maps, the kurtosis information of the distribution was 603 

more prominent in the pattern performance of the models. However, the SPAH5 performs the 604 

best among the close results and is presented as a strong hypothesis for the synthetic cases. 605 

- The metric with the best performance in the short runs was SPACD, which normalizes the 606 

distribution according to density. The excellent consistency between histograms, which is the 607 

main component of the Earth mover's distance metric, has a positive effect on making this 608 

metric a sharp metric with little tolerance, making SPAMD the second-best metric.  609 
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 - The best-performing metric on long runs was SPAH4, a four-component spatial performance 610 

metric that includes the kurtosis of the distribution. It was followed by the SPACD metric, 611 

which proved its consistent performance. Thus, the decision maker is presented with a flexible 612 

and wide working area. 613 

 - Considering all the experimental results, the most successful and robust metric in all three 614 

scenarios is our newly developed spatial pattern-oriented SPAH4, which outperforms the 615 

existing metrics in the literature by up to fifty per cent. 616 

In future studies, it would significantly enhance the depth and quality of the analysis to increase 617 

the number of iterations. In fact, convergence in hydrological models is closely related to the 618 

number of parameters and the freedom of the appropriate iteration chosen. Future work may 619 

benefit from exploring untested statistical terms to add a new perspective. We expect that these 620 

newly developed metrics, especially SPAH4, will be used not only in hydrology but also in 621 

other fields including remote sensing, image processing and object detection.  622 
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Appendix A: Results of the jackknife and bootstrap based sampling uncertainty analysis. Clark 623 

et al (2021) showed that the two most popular metrics in hydrology, i.e. NSE and KGE, are 624 

vulnerable to sampling uncertainty since the differences between observed and simulated 625 

streamflow values at random time steps in time series which can have significant effects on the 626 

results (Knoben & Spieler, 2022). From this study, we are inspired to assess the sampling 627 

uncertainty in ten metrics using the gumboot R package (Clark et al., 2021) which uses a 628 

jackknife-after-bootstrap method of Efron (1992) to estimate standard errors (SEJaB) shown 629 

in Table A1.  630 

Table A1. Sampling uncertainty of the metrics i.e. ranked based on the seJab column. 631 

GOF_stat seJack seBoot p05 p50 p95 score biasJack biasBoot seJab 

SSIM 0.0103 0.0099 0.6144 0.6311 0.6457 0.6307 -0.0002 0.0000 0.0091 

SPAHE 0.0568 0.0119 0.7717 0.7917 0.8107 0.7783 0.1496 0.0131 0.0112 

SPAMD 0.0114 0.0108 0.6785 0.6972 0.7137 0.6966 0.0006 0.0001 0.0115 

SPEM 0.0180 0.0175 0.2739 0.3041 0.3309 0.3034 -0.0006 -0.0003 0.0146 

SPAEF 0.0133 0.0128 0.6489 0.6711 0.6917 0.6727 0.0017 -0.0021 0.0148 

SPAEF' 0.0133 0.0127 0.6489 0.6711 0.6917 0.6727 0.0017 -0.0021 0.0152 

SPAK 0.0302 0.0288 0.5719 0.6226 0.6661 0.6207 -0.0004 0.0007 0.0295 

SPAH4 0.0302 0.0298 0.5484 0.5999 0.6459 0.6000 0.0011 -0.0012 0.0313 

SPACD 0.0234 0.0248 0.6056 0.6571 0.6851 0.6670 -0.0219 -0.0142 0.0603 

SPAH5 0.1685 0.2077 -0.3594 0.0373 0.2636 0.0427 -0.0388 -0.0401 0.3382 

 632 

  633 
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 634 

Figure A1. eCDF plot of daily discharge for all years in the calibration period (2002-2014) to 635 

visualize the distribution of the data and identify statistical patterns. 636 

Figure A1 visualizes the empirical cumulative distribution function (eCDF) plot for the 637 

observed and simulated data, which shows how the probability of a given discharge value 638 

occurring varies over the range of discharge values. In this context, the percentage of observed 639 

discharges less than nearly 500 is 80% and less than 200 is 50% for both the TSEB 100 and 640 

1000 runs. Furthermore, the slope of the curve at any point represents the density function of 641 

the discharge values at that point, and the intervals where the curve steepens contain values 642 

close to the mean value. Hence, it can be concluded that the overall average discharge value of 643 

the steepening intervals of the flow data resulting from the simulation of the metrics is roughly 644 

300 m3/s. The mean observed outflow of Cochem station is around 315 m3/s supports this 645 

outcome. In both cases, SPAK and SPAH4 illustrated a high level of matching in terms of the 646 

fit of the curves generated by the observed data (OBS) and the metrics, with the least difference 647 

between the distributions.  648 
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 649 

 650 

Figure A2. Monthly average hydrograph of the last two years in the calibration period (2013–651 

2014) 652 

  653 
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Key Points: 9 

• Newly proposed spatial metrics offer significant improvements in discriminating 10 

between two raster maps 11 

• Selecting appropriate spatial metric proved to be very crucial even for the global search 12 

algorithms  13 

• Sampling uncertainty in metrics increases with newly added components 14 

 15 

Abstract 16 

SPAtial EFficiency (SPAEF) metric is one of the most thoroughly metrics in hydrologic 17 

community. In this study, our aim is to improve SPAEF by replacing the histogram match 18 

component with other statistical indices, i.e. kurtosis and earth mover’s distance, or by adding 19 

a fourth or fifth component such as kurtosis and skewness. The existing spatial metrics i.e. 20 

SPAtial Efficiency (SPAEF), Structural Similarity (SSIM) and Spatial Pattern Efficiency 21 

Metric (SPEM) were compared with newly proposed metrics to assess their converging 22 

performance. The mesoscale Hydrologic Model (mHM) of the Moselle River is used to 23 

simulate streamflow (Q) and actual evapotranspiration (AET). The two-source energy balance 24 

(TSEB) AET during the growing season is used as monthly reference maps to calculate the 25 

spatial performance of the model. The Moderate Resolution Imaging Spectroradiometer 26 

(MODIS) based Leaf area index (LAI) is utilized by the mHM via pedo-transfer functions and 27 

multi-scale parameter regionalization approach to scale the potential ET. In addition to the real 28 

monthly AET maps, we also tested these metrics using a synthetic true AET map simulated 29 

with a known parameter set for a randomly selected day. The results demonstrate that the newly 30 

developed four-component metric i.e. SPAtial Hybrid 4 (SPAH4) slightly outperform 31 

conventional three-component metric i.e. SPAEF (3% better). However, SPAH4 significantly 32 

outperforms the other existing metrics i.e. 40% better than SSIM and 50% better than SPEM. 33 

We believe that other fields such as remote sensing, change detection, function space 34 

optimization and image processing can also benefit from SPAH4. 35 

Keywords: mHM, model calibration, spatial pattern, SPAEF, MODIS, TSEB 36 
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1 Introduction 38 

Distributed hydrologic models have a crucial role in creating digital twin of the water cycle in 39 

nature by revealing physical mechanisms and process interactions. After identifying the best 40 

parameter set through calibration, these models are used to conduct robust numerical 41 

experiments assessing climate change impacts (Beven, 2023) or land use land cover change 42 

impacts on model output fluxes such as runoff (Busari et al., 2021), groundwater recharge, soil 43 

moisture and actual evapotranspiration (AET). A skillful model enables decision-makers to 44 

plan for and respond to water-related extremes such as hydrological droughts and floods. 45 

Accuracy of the model results depends on the success of identifying best combination of the 46 

parameters since calibration process helps us reduce discrepancies in model physics. Demirel 47 

et al. (Demirel et al., 2018) showed that using only streamflow hydrograph performance as 48 

objective function diminishes the AET patterns simulated by the model. However, 49 

incorporating satellite based remotely sensed AET into the multi-objective calibration 50 

framework that has already streamflow, surprisingly improves both water balance and AET 51 

performance of the model. Other studies benefitted from land surface temperature (Zink et al., 52 

2018), soil moisture (López et al., 2017; Wakigari & Leconte, 2023), AET (Avcuoğlu & 53 

Demirel, 2022; Gaur et al., 2022; Odusanya et al., 2022; Sirisena et al., 2020) and groundwater 54 

(Danapour et al., 2021; Stisen et al., 2018) in hydrologic model calibration. 55 

In other words, hydrologic model calibration is essential for ensuring the validity and reliability 56 

of model predictions i.e. of most important for water management and decision-making 57 

processes. However, the robustness of hydrologic model calibration heavily relies on how the 58 

model is guided in the solution space via the performance metrics (de Boer-Euser et al., 2017; 59 

Knoben et al., 2019; Martinez-Villalobos et al., 2022; Onyutha, 2022; Schneider et al., 2022). 60 

If the metric is too loose (tolerant) or prone to the sampling uncertainty (Clark et al., 2021), the 61 

calibration process can stop quickly in the local minima while the modeler searches for the best 62 

global solution. The key point of the modelling chain is the selection of appropriate metric. 63 

Our study focuses on development of a novel metric with least tolerance (highest 64 

discrimination skill) based on benchmarking existing metrics in evaluating the similarity of 65 

two raster maps. We are particularly interested in multi-component bias-insensitive spatial 66 

metrics for pattern comparison. Thus, bias sensitive temporal metrics used for water balance 67 

are not within the scope of this study. 68 

The use of multi-component spatial metrics in hydrologic model calibration is an important 69 

advancement in the field of water resource management and resource allocation. The multi-70 

component metrics provides a more nuanced evaluation of model performance compared to 71 

traditional single-component metrics e.g. mean absolute error and coefficient of determination. 72 

The adoption of these metrics allows for a more comprehensive understanding of the 73 

hydrologic system and its spatial variability, which is critical for informed decision-making. 74 

These metrics differ from single-component metrics in that they consider multiple components 75 

of the hydrological system, rather than just one component. By providing a more 76 

comprehensive evaluation of the hydrologic system, multi-component metrics help to identify 77 

areas where models can be improved. For spatial metrics, the added level of complexity 78 

provided by multi-component metrics offers a more robust evaluation of model performance, 79 

providing a better understanding of the spatial variability of the hydrologic system. 80 

In recent years, remote sensing data from satellites, such as Moderate Resolution Imaging 81 

Spectroradiometer (MODIS) products, have become commonly used in hydrologic model 82 

calibration since this product provides estimates of AET from vegetation, which is a key 83 

component and major water loss in the hydrologic cycle (Becker et al., 2019; Rientjes et al., 84 

2013). On one hand, it serves to better represent the cell-to-cell hydrological dynamics and 85 
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diversity in the basin also allows for a more detailed understanding of the water budget at the 86 

land surface and helps to better quantify the water requirements of vegetation. On the other 87 

hand, the MODIS Leaf Area Index (LAI), product provides information about the leaf area 88 

index, which is a measure of the amount of vegetation cover in an area. This information is 89 

essential for understanding how vegetation influences the water cycle by affecting factors such 90 

as precipitation, evapotranspiration, and runoff. In this study, we use LAI to dynamically scale 91 

the PET input to the model to improve AET performance and present a comprehensive 92 

benchmarking of multi-component spatial metrics using MODIS-LAI and TSEB AET 93 

products, to assess their potential for calibration (Immerzeel & Droogers, 2008).  94 

There are various performance metrics in hydrology. The Nash-Sutcliffe Efficiency (NSE) and 95 

Kling-Gupta Efficiency (KGE) are the most widely recognized performance metrics used in 96 

evaluating and calibrating rainfall-runoff models. These two metrics have been instrumental in 97 

advancing our understanding of hydrological processes and improving the performance of 98 

hydrologic models (Gupta et al., 2009; Nash & Sutcliffe, 1970). They have paved the way for 99 

the development of more advanced and sophisticated performance evaluation techniques. 100 

Despite the sampling uncertainty inherited in these metrics (Clark et al., 2021), NSE and KGE 101 

continue to be widely accepted in the hydrology community due to their simplicity and 102 

effectiveness in evaluating model performance. Many of the newer metrics that have been 103 

introduced in recent years have been inspired by and built upon the foundation established by 104 

NSE and KGE. The conventional model calibration relies on using flow-oriented temporal 105 

metrics, such as the NSE and KGE. However, these metrics have a limitation as they lack 106 

spatial considerations and are prone to the sampling uncertainty. This has driven the need for 107 

development of intolerant spatial performance metrics which can better evaluate and improve 108 

the spatial accuracy of a hydrologic model. Spatial-pattern-oriented SPAtial Efficiency 109 

(SPAEF) metric developed by Demirel et al. (Demirel et al., 2018) builds upon the strength of 110 

KGE and incorporates new idea of distribution comparison via histogram overlap index. It is 111 

designed as a multi-component metric specifically suited for comparing spatial patterns of two 112 

raster maps, with its three main data properties being co-location, variation, and distribution. 113 

Although SPAEF was primarily developed for hydrologic community, it has been used in many 114 

different disciplines such as atmospheric circulation modeling (Ahmed et al., 2019), flood risk 115 

analysis (Hossain & Meng, 2020), function space optimization, fisheries (Thoya et al., 2021) 116 

and neuroscience (Yoo et al., 2020). In these studies, SPAEF has been tested and proven to be 117 

robust and easy to interpret due to its three distinct and complementary components of 118 

correlation, variance and histogram matching. Following the multi-component structure idea, 119 

we present new metrics in this study to improve SPAEF by adding fourth of fifth new 120 

components or replacing histogram match with other components. Using this approach, we 121 

aimed for reducing uncertainty in the new metric and make it sharp (discriminant) when 122 

evaluating patterns on two raster maps whether they are similar or not.  123 

In recent literature, there has been attempts to revise SPAEF component i.e. Spatial Pattern 124 

Efficiency Metric (SPEM) (Dembélé et al., 2020). Similar to SPAEF, it has been proposed as 125 

a bias-insensitive and multi-component spatial pattern-oriented metric using satellite remote 126 

sensing data. Structural Similarity index (SSIM) is another pattern-oriented metric, it stands 127 

out with its spatial structure (Nilsson & Akenine-Möller, 2020; Wang et al., 2004). It was 128 

proposed by Wang et al. (Wang et al., 2004) for image quality assessment and has been used 129 

in different studies such as medical imaging, ecological restoration, and change detection in 130 

the hydrological cycles and remote sensing images (Arun et al., 2021; Dougherty et al., 2020; 131 

Wiederholt et al., 2019). Knoben et al. (Knoben et al., 2019) compared NSE and KGE metrics 132 

and argued that instead of relying directly on the KGE value, the components should be 133 

analyzed in depth, even the weighting of the components. A study analyzing sampling 134 
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uncertainty in popular performance metrics in hydrologic modeling highlighted that the KGE 135 

can be heavily influenced by just a few data points (Clark et al., 2021). A study on the 136 

hydrological model skill score compared metrics with different forms of correlation and 137 

measures of variability, claiming the term covariance is more appropriate for evaluation 138 

(Onyutha, 2022). Another recent study, based on the largest residuals, focused on reducing the 139 

largest errors, and argued that metrics should be less sensitive to errors and more sensitive to 140 

bias (Schneider et al., 2022). The publication (Martinez-Villalobos et al., 2022) compared 141 

metrics for evaluating precipitation probability distributions by comparing climate model 142 

simulation data with real platform satellite data, therefore they showed the importance of 143 

probability distribution functions. A study from the Netherlands (de Boer-Euser et al., 2017) 144 

stated that strong components can be included in different metrics rather than considering a 145 

single general metric for model comparison. 146 

The existing spatial metrics aimed for the best convergence using terms such as correlation, 147 

variation, histogram intersection, and root mean square error. However, kurtosis has hitherto 148 

been an underrated term for spatial performance, and a four-component spatial-pattern-oriented 149 

metric also does not exist for the hydrologic model calibration. We used the kurtosis ratio by 150 

including it as a new component for the first time in this study in order to achieve the best 151 

spatial convergence and fit. With the addition of a new component, the weighting by which the 152 

components affect the value has also changed. By revealing the effect of kurtosis on spatial 153 

performance, we developed a new four-component metric that does not require user input.  154 

We aim to investigate the best potential to use multi-component spatial metrics in hydrological 155 

model calibration, by proposing a new multi-component spatial metric that especially includes 156 

the kurtosis component and benchmarking it to existing multi-component spatial metrics. The 157 

primary purpose of this study is to evaluate the performance of the hydrological model using 158 

multicomponent spatial metrics and to determine the potential impact on model accuracy and 159 

precision. In addition, this study aims to identify the most effective combination of spatial 160 

metrics for hydrological model calibration and to develop a framework for future work in this 161 

area. A large number of metrics in the literature creates confusion and difficulty for users to 162 

choose from, so we compared metrics in this study to look for the most successful one to put a 163 

stop to metric redundancy. Addressing these goals, this study aims to contribute to ongoing 164 

research efforts to improve the accuracy and reliability of hydrological models. 165 

The accuracy of the analysis has been increased by comparing model predictions with real 166 

platforms. It is aimed to improve the convergence between observed and simulated maps by 167 

using two-source energy balance (TSEB) model’s AET data. The MODIS-LAI data were used 168 

both to correct the PET and to represent the vegetation dynamics of the Moselle basin. We 169 

utilize a spatially distributed mesoscale Hydrologic Model (mHM) with it features pedo-170 

transfer functions for LAI data and a Multiscale Parameter Regionalization (MPR) approach 171 

to scale the potential ET (Kumar et al., 2013; Samaniego et al., 2010). We tested our framework 172 

in three different cases to provide comprehensive outlook to the calibrations i.e. 100 iterations 173 

were applied in the first case and 1000 iterations in the second case, so the effect of the number 174 

of iterations was also assessed. In the third case, reproducibility was achieved by analyzing the 175 

randomly selected synthetic map. OSTRICH software (L. Shawn Matott, 2004; L.S. Matott, 176 

2017) was used as the calibration tool and Parallel Dynamically Dimensioned Search 177 

Algorithm (PDDS) was used as the calibration algorithm (Asadzadeh & Tolson, 2013). The 178 

combined SPAEF value of the growing season was used as the main objective function for ET, 179 

and the KGE was presented for discharge (Q) in addition. We developed multiple metrics with 180 

different components and different component numbers, trying to increase the effectiveness 181 

(sharpness) of each component on convergence performance. We made an elaborated 182 
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comparison between the existing performance metrics in the literature and the newly developed 183 

metrics based on SPAEF. As a result of the rigorous assessment of metrics, we identified not 184 

only the superior but also new metric. The strongest aspect of this new metric is the added 185 

kurtosis component.  186 

2 Study area and data 187 

2.1  Study area 188 

The study area is the Moselle River basin, the largest part of the Rhine River basin, of which it 189 

is one of the main tributaries, characterized by diverse landforms  (Figure 1). The origin of the 190 

river from the Vosges Mountains before the interterritorial transfer from France to enter 191 

Germany and Luxembourg. Furthermore, at the triangle where Germany, France and 192 

Luxembourg meet, the Moselle River becomes the borderline between Germany and 193 

Luxembourg for 36 km. Also, it has a surface area of approximately 27262 km2 and a length 194 

of 545 km. Whereas, land use in the basin includes forestry, agriculture and cattle breeding in 195 

the mountains and hillslopes, winegrowing on vineyards of sunny valley slopes. Moreover, the 196 

altitude varies from 59 to 1326 m, with an average altitude of around 340 m (Demirel et al., 197 

2013). In addition to having 26 sub-basins with surface areas varying from 102 to 3353 km2, 198 

the river flow is organized by different dams, dikes, powerplants and locks such as the Trier 199 

Dam, Koblenz Dam and Detzem Lock. The outlet discharge at Cochem station, located 200 

between Trier and Koblenz, varies from 14 m3/s in dry summers to a maximum of 4000 m3/s 201 

during winter floods, with a mean discharge of around 315 m3/s (Demirel et al., 2015). 202 

 203 

Figure 1. DEM, land cover and AET characteristics of Mosel River basin. 204 

An average pattern of satellite-based actual evapotranspiration for July (average of all years 205 

from 2002 to 2014) is presented to illustrate the interaction between DEM and land cover 206 

characteristics that generate the land surface flux patterns. 207 

2.2 Satellite data 208 

MODIS has a vital role in obtaining the satellite-based data used in this study, is an essential 209 

sensor aboard the Terra (EOS AM) and Aqua (EOS PM) satellites for the earth and climate 210 

measurements at a spatial resolution of approximately 1 km × 1 km. It provides terrestrial, 211 

atmospheric and thalassic data and a view of the entire Earth's surface for large and diverse 212 

user communities around the world. In this study, TSEB based AET is used as reference spatial 213 
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patterns (Allen et al., 1998; Norman et al., 1995). TSEB is an energy balance model using the 214 

energy flux principle by separating into two-layer, vegetation and soil.  215 

The water limited growing season was chosen as the analysis period because it avoids climate 216 

gradient on the AET patterns emphasizing vegetation dynamics instead of wet soil conditions 217 

i.e. AET that is equal to the PET. All remote-sensing-based AET data were converted to long 218 

term monthly mean data during the growing season across all years for the model calibration 219 

period (2002–2014). In what follows, three-monthly mean periods were obtained with a total 220 

of three-term between March and November, i.e. March-April-May (MAM), June-July-August 221 

(JJA), and September-October-November (SON), representing AET under cloud-free 222 

conditions. We will attribute these AET maps as reference observations, although they are 223 

estimates from an energy balance model based on satellite observations and not pure 224 

observations. 225 

Table 1. Overview of morphological and meteorological data used as input for mHM (Rakovec 226 

et al., 2016).  227 

Variable Description 

Spatial 

resolution 

(degrees) 

Source 

Q (daily) Streamflow Point GRDC 

P (daily) Precipitation 0.0625 E-OBS 

PET (daily) 
Potential evapotranspiration based on Hargreaves 

and Samani (Hargreaves & Samani, 1985) 
0.0625 E-OBS 

Tavg Average air temperature 0.0625 E-OBS 

LAI 
Fully distributed 12-monthly values based on 8-

day time-varying leaf area index (LAI) dataset 
0.001953125 MODIS 

Land cover Forest, agriculture and urban 0.001953125 MODIS 

DEM-related 

data 
Slope, aspect, flow accumulation and direction 0.001953125 SRTM 

Geology class Two main geological formations 0.001953125 

ESD 

UFZ – 

Leipzig 

(Rakovec et 

al., 2016) 

Soil class Fully distributed soil texture data 0.001953125 HWSD 

GRDC – Global Runoff Data Centre, E-OBS – The gridded observational dataset from Copernicus, MODIS – Moderate 228 

Resolution Imaging Spectroradiometer, SRTM – Shuttle Radar Topography Mission, ESD – European Soil Database, HWSD – 229 

Harmonized World Soil Database  230 
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3 Hydrological model 231 

This research utilizes the mesoscale Hydrologic Model (mHM) v.5.11.2 (Samaniego et al., 232 

2021) which is a grid-based spatially distributed model it features pedo-transfer functions and 233 

MPR (Kumar et al., 2013; Samaniego et al., 2010; Thober et al., 2019). Another feature of 234 

mHM is the use of leaf area index (LAI) data not only for calculating interception loss but also 235 

for dynamically scaling PET (Demirel et al., 2018). With these unique features, it is more 236 

flexible than other existing hydrologic models in line with the purpose of this study. The model 237 

features 69 adjustable global parameters that can be optimized during the calibration process 238 

(Demirel et al., 2018). The model works on the basis of water balance rather than energy 239 

balance and provides various physically meaningful spatial outputs, fluxes and states as 240 

simulating major elements of the hydrologic processes, i.e. soil moisture dynamics, 241 

interception, infiltration, evapotranspiration, snow accumulation and melting, groundwater 242 

storage, seepage, surface runoff and others. 243 

The basic data for the running mHM can be classified into meteorological data, morphological 244 

data, land cover data and gauge streamflow data. Table 1 shows a summary of the data used in 245 

mHM setup provided by Rakovec et al. (Rakovec et al., 2016). As seen in the table, mHM can 246 

handle different spatial resolutions of meteorological data and morphological data since it has 247 

internal upscaling and downscaling subroutines. At this point, the Multi-Scale Parameter 248 

Regionalization technique comes into play and enables user to map calibrated parameters to 249 

the simulated grids with pedo-transfer functions. This approach prevents uniform parameter 250 

fields and protects sub-grid heterogeneity of the fluxes. In other models, every parameter gets 251 

the same value in the entire sub-basin or in each hydrologic response units resulting in uniform 252 

flux results for the same domain.  253 

The meteorological model inputs are precipitation, average air temperature and potential 254 

evapotranspiration (PET). In our study, PET was direct input to the mHM and estimated outside 255 

with Hargreaves-Samani (Hargreaves & Samani, 1985) method using additional temperature 256 

data. All meteorological data are obtained from E-OBS at daily resolution, originally at 10-20 257 

km. The morphological variables are digital elevation model (DEM), soil maps with textural 258 

features, geological maps including specific yield, permeability and aquifer thickness. In 259 

addition to characterizing the morphology of the basin, DEM masks the grid cells with the 260 

basin boundaries to eliminate no-data parts. All morphological data are prepared at 261 

0.001953125 degrees (~200 m × 200 m) scale. The model hydrology is evaluated at 0.015625 262 

degrees (~2x2 km) spatial resolution and daily time step. Lastly, monthly leaf area index (LAI) 263 

maps are used to represent the vegetation dynamics for both interception calculation and PET 264 

correction for the entire period (2002–2014). Four years of model warm-up period (1998–2001) 265 

is used. Observed daily streamflow (Q) data at Cochem (station #6336050), provided by the 266 

Global Runoff Data Centre (GRDC), Koblenz (Germany), is used to calibrate water balance in 267 

the basin.  268 

4 Methods 269 

In this study, we tested nine different spatial metrics i.e. two of them are existing metrics, and 270 

seven of them are newly developed based on SPAEF (Table 2). To evaluate the effect of 271 

number of iterations, calibrations were pursued with either 100 or 1000 maximum iterations. 272 

Besides, synthetically created AET maps using mHM and a pre-defined parameter set are 273 

utilized to mimic a “hide and seek” case. This is crucial to test the guidance performance of the 274 

metrics in the multi-dimensional solution space to find the hided (perfect) solution within 1000 275 

iterations since search algorithms, i.e. ParaPADDS algorithm herein, require a metric to 276 

evaluate model results at every iteration. 277 
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4.1 Objective Functions 278 

Multi-component structure of our metrics was inspired by the Kling–Gupta efficiency (Gupta 279 

et al., 2009). KGE is one of the most used metrics in the hydrologic modelling to evaluate 280 

streamflow performance. As shown in Eq.(1), it has three components, i.e., correlation, 281 

variability and bias. 282 

 
KGE = 1 − √(𝛼𝑄 − 1)

2
 + (𝛽𝑄 − 1)

2
 +  (𝛾𝑄 − 1)

2

 

𝛼𝑄 = 𝜌(𝑜, 𝑠), 𝛽𝑄 =
𝜎𝑆

𝜎𝑂
 𝑎𝑛𝑑 𝛾𝑄 =

𝜇𝑠

𝜇𝑂
 

(1) 

where 𝛼𝑄 is the Pearson correlation coefficient between the observed (o) and the simulated (s) 283 

discharge time series, 𝛽𝑄 is the relative variability based on the ratio of standard deviation in 284 

simulated and observed values and 𝛾𝑄 is the bias fraction which is normalized by the standard 285 

deviation of the observed data. 286 

Table 2 shows the summary of SPAEF based metrics. For brevity, we used Eq. (2) as formula template 287 

i.e. a generic formulation type that encompasses in the number and content of components. The excessed 288 

style in Eq (2) includes all metrics form with various components. 289 

 METRIC = 1 − √(𝛼 − 1)2 + (𝛽 − 1)2 + (𝛾 − 1)2 + (𝜅 − 1)2 + (𝛿 − 1)2 (2) 

 290 
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 291 

292 

Table 2. SPAEF based metrics used as objective functions. 

Metric 
Components Index 

𝜶 𝜷 𝜸 𝜿 𝜹  

SPAtial Efficiency 

(SPAEF) 
𝜌(𝑜, 𝑠) 

𝜎𝑜

𝜇𝑜 
/

𝜎𝑠

𝜇𝑠 
 

∑ 𝑚𝑖𝑛(𝐾𝑗,𝐿𝑗)𝑛
𝑗=1

∑ 𝐾𝑗
𝑛
𝑗=1

, n=100 fixed none none Eq. (3) 

SPAtial EFficiency Prime 

(SPAEF') 
same as SPAEF same as SPAEF 

same as SPAEF except for dynamic n i.e. 

number of bins 𝑛 = 𝑓𝑙𝑜𝑜𝑟{√𝑙𝑒𝑛𝑔𝑡ℎ(𝑜)} 
none none Eq. (4) 

SPAtial Count Density 

Efficiency (SPACD) 
same as SPAEF same as SPAEF 

∑ 𝑚𝑖𝑛(𝐾𝑗,𝐿𝑗)𝑛
𝑗=1

∑ 𝐾𝑗
𝑛
𝑗=1

 (𝑣𝑛 = 𝑐𝑛 𝑤𝑛⁄ ) none none Eq. (5) 

SPAtial Hybrid 4 Efficiency 

(SPAH4) 
same as SPAEF same as SPAEF same as SPAEF' 

𝐾𝑢𝑟𝑡(𝑠)

𝐾𝑢𝑟𝑡(𝑜)
 none Eq. (6) 

SPAtial Kurtosis Efficiency 

(SPAK) 
same as SPAEF same as SPAEF none same as SPAH4 none Eq. (7) 

SPAtial Hybrid 5 Efficiency 

(SPAH5) 
same as SPAEF same as SPAEF same as SPAEF' same as SPAH4 

𝑆𝑘𝑒𝑤(𝑠)

𝑆𝑘𝑒𝑤(𝑜)
 Eq. (8) 

SPAtial Histogram 

Equalization Efficiency 

(SPAHE) 

same as SPAEF same as SPAEF 
∑ 𝑚𝑖𝑛(𝐾𝑗 , 𝐿𝑗)𝑛

𝑗=1

∑ 𝐾𝑗
𝑛
𝑗=1

 none none Eq. (9) 

SPAtial Movers’ Distance 

Efficiency (SPAMD) 
same as SPAEF same as SPAEF 

∑ ∑ 𝑓𝑖,𝑗𝑑𝑖,𝑗
𝐿
𝑖=1

𝐾
𝑖=1

∑ ∑ 𝑓𝑖,𝑗
𝐿
𝑖=1

𝐾
𝑖=1

 none none Eq. (10) 

Spatial Pattern Efficiency 

Metric (SPEM) 
1 −

6 ∑ 𝑑2𝑛
1

𝑛(𝑛2 − 1)
 same as SPAEF 1 − 𝐸𝑅𝑀𝑆(𝑍𝑋𝑠

, 𝑍𝑋𝑜
) none none Eq. (11) 
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SPAEF is the seed of our newly proposed metrics as our aim is to sharpen SPAEF. In other 293 

words, we intend to improve its discriminating power while judging whether two maps are 294 

similar or not. SPAEF uses a multi-component structure of the KGE metric. In Eq. (3), 𝛼 is the 295 

Pearson correlation coefficient between the observed (o) and simulated (s) pattern, 𝛽 is the 296 

fraction of the coefficient of variation representing spatial variability and 𝛾 is the histogram 297 

intersection, which based on z-scores, for the given histogram K of the observed pattern and 298 

the histogram L of the simulated pattern, each containing n bins (Swain & Ballard, 1991). The 299 

SPAEF can have a value between −∞ and 1, where a value closer to 1 indicates highest spatial 300 

similarity between the observations and model simulations (Koch et al., 2018).  301 

As a result of various adjustments and improvements made in the SPAEF components, new 302 

metrics were proposed and tested i.e. SPAEF', SPACD, SPAH4, SPAK, SPAH5, SPAMD, and 303 

SPAHE. We included two popular metrics, SPEM and SSIM into benchmark. 304 

First improvement in SPAEF is changing user defined the number of bins to an 305 

automated n based on the number of elements (grids) in the raster map (see Eq (3)). We 306 

introduced a simple approach i.e. the square root of the length of the observed data as 𝑛 =307 

𝑓𝑙𝑜𝑜𝑟{√𝑙𝑒𝑛𝑔𝑡ℎ(𝑜)} although there are different methods for the same purpose (Freedman & 308 

Diaconis, 1981; Scott, 1979; Sturges, 1926). This slightly new version of the SPAEF is 309 

presented as SPAEF-Prime (SPAEF') as shown in Eq (4). Unlike the standard version, the 310 

SPAEF' does not require any user-defined inputs now.  311 

Eq (5) shows Spatial Count Density Efficiency (SPACD) which has a different type of 312 

normalization based on count density approach in the calculation of the histogram intersection 313 

component. While the first two components remain constant as in SPAEF' the calculation of n 314 

in the gamma component has changed. This approach uses count or frequency scaled by the 315 

width of the bin 𝑣𝑛 = 𝑐𝑛 / 𝑤𝑛, 𝑣𝑛 is the bin value, 𝑐𝑛 is the number of elements in the bin and 316 

𝑤𝑛 is the width of the bin, respectively. 317 

Eq (6) shows SPAtial Hybrid 4 Efficiency (SPAH4) which is a four-component metric obtained 318 

by adding kurtosis i.e. a fundamental statistical property of distributions to the SPAEF' metric. 319 

Kurtosis can be defined as a measure of how prone a distribution is to outliers (Pearson, 1905). 320 

SPAH4 offers a more accurate perspective by questioning not only the match of the histograms 321 

but also the extreme values and spread in the data. The 4th component is symbolized by the 322 

expression 𝐾𝑢𝑟𝑡 and 𝜅 is the ratio of the kurtosis coefficients of the simulated (s) and observed 323 

(o) data. Eq. (7) shows SPAtial Kurtosis Efficiency (SPAK) which is a three-component metric 324 

replacing the histogram intersection component in the SPAEF metric with the kurtosis 325 

coefficient component. Thus, it dominates the metric on its affinity for discrete values without 326 

questioning histogram intersection. 𝛼 and 𝛽 were introduced and explained in previous metrics, 327 

also 𝜅 is declared in Eq. (7) as ratio of kurtosis coefficient. This metric can be characterized as 328 

a mixture of SPAH4 and SPAEF metrics. Eq. (8) shows SPAtial Hybrid 5 Efficiency (SPAH5) 329 

which is a five-component metric adding skewness to the SPAH4 metric. Skewness can be 330 

defined as a measure of the asymmetry of the data around the sample mean.  331 

Eq. (9) shows SPAtial Histogram Equalization Efficiency (SPAHE) that is very similar to 332 

SPAEF with additional step before histogram match calculation “histogram equalization” 333 

approach. This approach is a computer image processing technique used to improve contrast 334 

in raster data. Its quantitative logic is based on the grayscale transformation (𝑇) to minimize 335 

|𝑐1(𝑇(𝑘)) − 𝑐0(𝑘)|, 𝑐0 is the cumulative histogram of the input data, and 𝑐1 is the cumulative 336 

sum of target histogram for all intensities 𝑘. Histogram equalization is a specific case of the 337 

histogram remapping methods. It is an image processing technique used to advance contrast in 338 
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images which spatial patterns for this study. It achieves this by efficaciously sprawling out the 339 

most frequent intensity values, i.e. expanding the intensity range of the image (Efford, 2000).  340 

Eq. (10) shows SPAtial Efficiency Movers’ Distance (SPAMD) is another SPAEF-oriented 341 

multi-variate metric which measures the quantitative closeness of two pattern set by 342 

considering the Earth Movers’ Distance of their histograms (Rubner et al., 1998). The aim of 343 

EMD approach is minimization of overall transfer cost in the conversion one histograms to 344 

another. In Eq (10), 𝑓𝑖,𝑗 is flow cost of transfer ith term of histogram K of observed map to jth 345 

histogram L simulated map at distance 𝑑𝑖,𝑗. EMD is the ratio of work done through the total 346 

optimal flow and the total flow. The value of EMD is zero indicates the perfect consistency 347 

between two histograms. 348 

Eq. (11) shows Spatial Pattern Efficiency Metric (SPEM), a metric inspired by KGE and 349 

SPAEF, is one of the existing metrics included in our analysis (Dembélé et al., 2020). It forces 350 

the z‐scores of simulated variables and observed variables to be equal (i.e., minimizing their 351 

ERMS) corresponds to matching their grid cell locations (i.e., spatial patterns). SPEM 352 

considers a modeled variable (Xmod) and an observed variable (Xobs) of n elements, it is 353 

defined as Eq. (11); where rs is the Spearman rank‐order correlation coefficient with 𝑑 the 354 

difference between the ranks of Xmod and Xobs. γ is the variability ratio that assesses the 355 

similarity in the dispersion of the probability distributions of Xmod and Xobs, with μ and σ 356 

representing the mean and the standard deviation, respectively, and α the spatial location 357 

matching term calculated as the root‐mean‐square error (ERMS) of the standardized values (z‐358 

scores, ZX) of Xmod and Xobs (Dembélé et al., 2020). The formula for d can be written as 359 

𝑑 =  𝑑𝑖𝑓𝑓(𝑟𝑎𝑛𝑘(𝑋𝑠), 𝑟𝑎𝑛𝑘(𝑋𝑜)). SPEM ranges from −∞ to 1, which is its optimal value. 360 

Lastly, Eq. (12) shows Structural Similarity index (SSIM) (Wang et al., 2004). An image 361 

quality metric SSIM to evaluate degradation grade caused by visual data processing. This 362 

method considers pattern similarity as it detects changes in the variation of structural 363 

information between the two images. The algorithm formulates perception sensibility to visual 364 

changes based on the distortion luminance, contrast and structure information. By combining 365 

three components, similarity can be characterized with overall unit metric in terms of statistical 366 

properties of simulated and observed data such as mean 𝜇, standard deviation 𝜎 and covariance 367 

𝑐𝑜𝑣𝑜,𝑠, as shown in Eq. (12). 𝑐1, 𝑐2 are constants that stabiles functions when the dominator 368 

terms are close to zero. The SSIM is a fully referenced objective quality metric that gives values 369 

in the range [0,1] relative to the structural relationship between the two images. 370 

 𝑺𝑺𝑰𝑴 =
(2𝜇𝑜𝜇𝑠 + 𝑐1) (2𝑐𝑜𝑣𝑜,𝑠 + 𝑐2)

(𝜇𝑜
2 + 𝜇𝑠

2 + 𝑐1) (𝜎𝑜
2 + 𝜎𝑠

2 + 𝑐2) 
 (12) 

 371 

All nine spatial metrics were calculated separately as long term (2002-2014) monthly average 372 

of AET data for three periods covering the growing season and combined as in Eq (13) to 373 

minimize the total error, representing objective function (OF). These periods are symbolized 374 

as March-April-May (MAM), June-July-August (JJA), and September-October-November 375 

(SON). 376 

 𝑴𝒊𝒏𝒊𝒎𝒊𝒛𝒆 [(1 − 𝑀𝐸𝑇𝑅𝐼𝐶𝑀𝐴𝑀)2 + (1 − 𝑀𝐸𝑇𝑅𝐼𝐶𝐽𝐽𝐴)
2

+ (1 − 𝑀𝐸𝑇𝑅𝐼𝐶𝑆𝑂𝑁)2] 
(13) 

It should be noted that although we tested other metrics and approaches, we only reported nine 377 

selected metrics in this study. For instance, we used harmonic mean or geometric mean instead 378 

of the arithmetic mean in the second component of SPAEF. In another attempt, we replaced 379 
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the skewness coefficient ratio with different L-moments. We also used Hausdorff distance 380 

(Hausdorff, 1914) and Fréchet distance (Fréchet, 1906) as third component in SPAEF. Even 381 

we used the product of components i.e. multiplied them instead of adding them. However, all 382 

these attempts did not reveal better results than those reported in this study. Therefore, for 383 

brevity we reported the ranking of only these nine metrics above. In this calibration study, we 384 

fine-tuned only 20 parameters of daily mHM for the Mosel Basin using the popular global 385 

search algorithm Pareto-Archived Dynamically Dimensioned Search (ParaPADDS) algorithm 386 

(Asadzadeh & Tolson, 2013) using 750 maximum iteration and 3 parallel cores. The 20 387 

parameters out of 69 mHM parameters are selected based on a sensitivity analysis done in our 388 

previous study. Note that ParaPADDS is the multi-objective version of the Dynamically 389 

Dimension Search algorithm (Tolson & Shoemaker, 2007) available in OSTRICH 390 

Optimization Software Toolkit (L.S. Matott, 2017).  391 

5 Results 392 

In this study, six novel metrics are proposed and compared with existing SPAEF, SPEM and 393 

SSIM metrics in pattern analysis of distributed hydrologic model simulations. The new metrics 394 

can be called as “the sisters of SPAEF” as they have emerged from the well-established SPAEF 395 

with additional unique statistical features such as automated number of bins, kurtosis and 396 

skewness included in their structure. We ranked the nine metrics based on their effectiveness 397 

in distinguishing between two raster maps during distributed model calibration with MODIS-398 

LAI and TSEB AET for a period of 13 years from 2002 to 2014. Pre-selected 20 mHM 399 

parameters are included in the following three different pattern-only calibration cases: (1) 100 400 

iterations with satellite data, (2) 1000 iterations with satellite data, and (3) 1000 iterations with 401 

synthetic maps. Synthetic map represents a map simulated with a known mHM parameter set 402 

for a randomly selected day that is used as the target in parameter optimization (calibration) 403 

process. The use of this synthetic scenario is planned to ensure the reproducibility of the 404 

analysis and to have a fully controlled numerical experiment. Obviously, long term monthly 405 

averaging was done only with real satellite data to form robust seasonal pattern maps i.e. target 406 

in the calibration. 407 

Although water balance metrics, i.e. temporal metrics, are not included in the calibration, KGE 408 

values are calculated to evaluate the model simulations together with standard SPAEF in Table 409 

3. Streamflow simulation performance was calculated for the calibration period (2002-2014), 410 

using the KGE metric between the observed gauge streamflow and simulated streamflow from 411 

the model. This is done only for case 1 (TSEB 100 runs) and 2 (TSEB 1000runs) i.e. real 412 

satellite data are used in the pattern-based optimization. It is interesting to note that some of 413 

the pattern metrics help to improve the bias in water balance as well. The three OF columns in 414 

this table show lowest (best) values of each metrics reached using Eq. (13). This is particularly 415 

important to show the skill of the nine metrics in converging to zero i.e. certainly exists in the 416 

synthetic case (3). It should be noted that the metrics are ranked based on the standard SPAEF 417 

values. Closer inspection of the Table 3 shows that TSEB 1000 iterations significantly 418 

improves the SPAH4 performance from 0.608 to 0.688 (SPAEF value) as compared to the 419 

TSEB 100 iterations. The reduction in OF is even more remarkable since the error in SPAH4 420 

was halved from 0.70 to 0.35 when iterations are increased to 1000. It is clear from this table 421 

that SPAHE and SPAH5 are the worst performing two metrics among all three cases. 422 

Comparing the two results (100 runs vs 1000 runs) it can be seen that all metrics are improved 423 

with the increased number of iterations showing the importance of the selecting appropriate 424 

number of the iterations for the search algorithm. However, if enough freedom is not given to 425 

the optimizer, it may fail to find the global optimum point in the solution space. Combining 426 

kurtosis with skewness in the same metric (SPAH5) did not produce a discriminative metric. 427 
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This result is somewhat counterintuitive as we expect more constrain would yield improved 428 

performance. What is striking about the values in this table is histogram equalization step did 429 

not help to improve the pattern results and discriminative power of the metric. 430 

Table 3. Calibration results of the three cases. Note that metrics are ranked based on 1000 run 431 

- SPAEF values (4th numeric column). 432 

Metrics TSEB 100 runs TSEB 1000 runs 
SYNTHETIC MAP 

1000 runs 
 SPAEF KGE OF SPAEF KGE OF SPAEF OF 

SPAH4 0.608 0.78 0.70 0.688 0.77 0.35 0.948 0.05 

SPACD 0.619 0.26 0.40 0.673 0.74 0.27 0.939 0.04 

SPAEF' 0.585 0.36 0.52 0.671 0.52 0.33 0.949 0.05 

SPAK 0.558 0.89 0.39 0.638 0.87 0.25 0.906 0.01 

SPAMD 0.614 0.07 0.29 0.625 0.66 0.21 0.859 0.02 

SSIM 0.557 0.21 0.19 0.491 0.41 0.15 0.948 0.00 

SPEM 0.609 0.33 1,71 0.460 0.61 1,46 0.941 0.05 

SPAHE 0.492 0.70 0.25 0.376 0.65 0.21 0.758 0.04 

SPAH5 -0.519 0.61 8,15 0.211 0.53 2,07 0.953 0.05 

 433 

What stands out in the table is that SSIM seems to be the most tolerant metric reaching lowest 434 

OF values which corresponds to the poor SPAEF performance in all three cases. In case 3, in 435 

particular, the search algorithm could converge nearly to zero SSIM but the evaluation of the 436 

maps with SPAEF revealed that it is only a match around 0.95 SPAEF and not very close to 1 437 

SPAEF i.e. perfect pattern match. In other words, minimizing SSIM in Eq (13) nearly to zero 438 

after calibration doesn’t guarantee a perfect pattern match in terms of SPAEF currency 439 

(metric). Based on the results of case 1 and 2, SPAH4 and SPAK are the most successful spatial 440 

metrics for water balance. Obviously, SSIM and SPAMD have the worst KGE performance in 441 

case 1 and 2. Note that KGE is not calculated for the synthetic case 3. Interestingly, the 442 

minimization of SPEM and SPAH5 metrics via Eq (13) after optimization resulted in poor 443 

values above 1 both in case 1 and 2. 444 

Figure 2 shows the reference AET maps and simulated AET maps from the mHM with 445 

calibrated parameters after 100 iterations (case 1). The reference three maps are given in both 446 

columns for ease of comparison. The order of the metrics is in accordance with the performance 447 

ranking in Table 3 and also, the ranking is provided (e.g. #1, #2 etc.) to help to the reader. The 448 

combined SPAEF values of three periods (MAM, JJA and SON) are presented in brackets 449 

underneath the metric name. To use a single legend, the maps are normalized with their mean. 450 

The resultant maps from SPACD and SPAMD (second row in Figure 2) are slightly better than 451 

other rows as visually more similar to the reference maps (first row in Figure 2). Closer 452 

inspection of the maps shows that the high contrast between west and south of the basin in 453 

SON period is well-captured by most of the metrics except for the SPAH5 (row 6, rank #9).  454 

  455 
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 456 

 457 

Figure 2. Long term average three-monthly TSEB reference maps versus mHM simulated 458 

maps using MODIS-LAI and best-balanced Pareto solution parameter set from 100 run case. 459 

Figure 3 shows the reference AET maps and simulated AET maps from the mHM with 460 

calibrated parameters after 1000 iterations (case 2). It is consistent with Figure 2 that the 461 

simulated AET maps by the model parameter sets optimized with SPAH4 and SPACD metrics 462 

are most close to the reference maps. Similarly, the poor AET performance of SPAH5 maps is 463 

apparent from the maps in the last row of the figure. Map illustration of each period reveals 464 

that the combined metric value (OF) can hinder individual map performance. For instance, the 465 

SON map of the SPAHE metric in Figure 3 shows that the model better converges to the 466 

remotely sensed reference map when optimized with SPAHE whereas the MAM and JJA maps 467 

show that the model could not reproduce the AET maps of these periods as successful as with 468 

the other metrics.  469 
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 470 

 471 

Figure 3. Long term average three-monthly TSEB reference maps versus mHM simulated 472 

maps using best-balanced Pareto solution parameter set from 1000 run case. 473 

The entire calibration development process, the model improvements from beginning to end 474 

and the optimum points are depicted with scatter diagrams in Figure 4. It shows the relationship 475 

between the value and iteration based on the ParaPADDS search algorithm, more specifically, 476 

the objective function value achieved for each iteration step of the calibration process. While 477 

the OF results in Table 3 are obtained at the end of the iteration step sequence, some consistent 478 

metrics may reach this best value earlier. SPAH4 reached its best OF value at 0.70 and 0.35 in 479 

approximately quarter steps for 100 and 1000 runs, respectively. Similarly, SPACD, SPAEF' 480 

and SPAMD are also fast-improving metrics. Since the synthetic case was based on a virtually 481 

generated daily map, it took longer for the metrics to find the points where their improvement 482 

became linear, nearly a third. It is surprising to see that SPAH5 and SPEM are consistent early 483 

maturing metrics despite their poor spatial performance.  484 
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 485 

 486 

 487 

Figure 4. Scatter plots of the calibration processes, the OF value-iteration relationship of the 488 

PDSS search algorithm. First and second column sub-plots are the same figures except for 489 

different extent. 490 
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 491 

Figure 5. Monthly average hydrograph of all years in the calibration period (2002–2014) to 492 

demonstrate the flow simulation performances of nine different metrics. 493 

Figure 5 compares in-situ observed hydrographs and simulated hydrographs constrained by 494 

metrics. SPAH4 and SPAK performed better in each case, predicting the most similar 495 

discharges to the observed Cochem outflows. Otherwise, the SPAHE metric standout for the 496 

100 runs and the SPACD metric for the 1000 runs, as pointed out by the KGE column in Table 497 

3. The simulations show better hydrograph fitting during the growing season, especially during 498 

the summer months, also the hydrograph line breakpoints, peaks and valleys are coherently 499 

followed. Thus, the overall trend and characteristics of the streamflow were successfully 500 

analyzed and represented. Also, a positive correlation was found between increasing iteration 501 

and hydrograph fit. As the number of iterations increases, the hydrograph lines become closer 502 

to the observed lines and the overall consolidation of the hydrographs provides better results. 503 

The narrow range of hydrographs in Figure 5 shows that the developed new metrics can be 504 

used not only for the spatial pattern performance simulating the AET but also for the temporal 505 

streamflow performance simulating the discharges.  506 

Overall, the results indicate that the newly developed SPAH4 and SPACD are the best 507 

performing metrics for all calibration scenarios, particularly in the non-synthetic TSEB cases. 508 

The competitive performance of the SPAMD metric that follows them should not be ignored. 509 

Briefly, the four-component spatial performance metric SPAH4 stands out especially with its 510 

versatile evaluation and robust performance, indicated with bold text in Table 3. Although the 511 

modeler can use the SPAH4 and SPACD metrics in the long and short runs, respectively, both 512 

offer close values for the decision makers. We can see that the only negative output is 513 

experienced in the TSEB 100 runs i.e. SPAH5 It should not be overlooked that SPAH5 is a 514 

prominent metric for synthetic scenarios. Interestingly, there is a significant positive correlation 515 

between the KGE and the metrics containing the kurtosis statistic. 516 
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6 Discussion 517 

This study sets out to assess the importance and comparison of spatial metrics in distributed 518 

model calibration. Previous studies have noted that spatial metrics are closer to the reference 519 

model than time series metrics in model optimizations (Demirel et al., 2018). One of the first 520 

objectives of the study is to select the appropriate spatial performance metric that plays an 521 

active role in simulating inadequate spatial AET models similar to satellite-based reference 522 

models. SPAEF has been the inspiration for this study with its innovations in spatial model 523 

parameterization and spatial performance metric selection. These innovations have raised new 524 

questions in the pattern comparison used in model optimization. Numerous imperfect models 525 

are produced during these optimizations, due to limitations in the chosen objective function. 526 

To overcome these limitations and to obtain a more physically meaningful and empowered 527 

metric, we have developed new metrics that include statistical and analytical approaches. 528 

Thanks to this meta-analysis, while suggesting the most successful metric for users, different 529 

objective functions that can be used for various purposes can also be seen as an opportunity. 530 

While searching for new solutions for a more robust spatial performance metric, we derived 531 

metrics that emphasize spatiality in a more comprehensive way by increasing the number of 532 

components of SPAEF and changing the content of the components. For the three cases, 533 

significant findings that are both different from each other and support each other have been 534 

identified. The TSEB 100 and 1000 run cases in model calibration served the purpose of 535 

evaluating metric performances in short and long runs, thus providing a flexible and versatile 536 

assessment that allows the progress of the model calibration performed by the metrics to be 537 

monitored and the decision maker to choose metrics according to their preferences.  538 

TSEB 100 runs, which we tested by focusing on the performance of spatial metrics in short 539 

runs, SPACD and SPAMD demonstrated better results on the SPAEF basis compared to other 540 

metrics. Notably, SPAK and SPAH4 including the kurtosis coefficient ratio component, 541 

yielded the best KGE values even at iterations close to the beginning. TSEB 1000 runs which 542 

we tested by focusing on its performance in long runs, resulted in more decisive outcomes with 543 

no negative values for any criteria. SPAH4 emerged as the top-performing metric in this case, 544 

followed by SPACD. The competition between these metrics was notable. In the uncertainty 545 

analysis, SPAH4 has an acceptable sampling error although it has the extra component. (Table 546 

A1). Like the TSEB 100 runs, SPAK and SPAH4 exhibited the highest KGE values. This 547 

indicated consistency was strong evidence for important findings and suggests that the 548 

descriptive statistical kurtosis ratio component has a considerable positive effect on the 549 

discharge simulation. Due to the tendency of the SPAH4 metric including kurtosis for flow 550 

prediction, it worked as a metric that focused on both spatial and flow performance, although 551 

the analysis was performed with a single spatial performance-oriented objective function. It 552 

sheds light on the analysis in detecting the presence of outliers potential also differences in the 553 

tail and crests, controlling data integrity, understanding data distribution, reliability of the 554 

statistical analysis and improving the metric performance from a statistical perspective. Thus, 555 

by investigating and questioning the effect of outliers on spatial performance, the harmony and 556 

differences between them are also included in the model. Now that these outliers are introduced 557 

to the model, the histogram intercept component is also supported, the margin of error is 558 

reduced and a more exact match is made. 559 

In the synthetic scenario, the metric SPAH5 which incorporates skewness characteristics, 560 

yielded the best SPAEF value. SPACD and SPAH4 also demonstrated successful outcomes in 561 

this scenario. The kurtosis information we use in the SPAH4 metric expresses how often 562 

outliers occur, while the skewness information we use as the fifth component in the SPAH5 563 

metric gives information about the direction of the outliers. Our purpose in including the 564 
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skewness component is to question the likelihood of events in the probability distribution, and 565 

especially to consider extreme distribution. Various datasets have different characteristics, 566 

since the differences specific to this dataset represent important concepts in the calibration 567 

model, many principles are referred to using the skewness information, from the algorithm of 568 

the model to the physics-based hydrology information. Thus, we enabled a more 569 

comprehensive and more specific analysis for models consisting of diverse data. Our finding 570 

of the importance of these statistical measures in understanding the data is supported by the 571 

study by Cain et al., processing skewness and kurtosis information on distributions collected 572 

from the authors of the published articles (Cain et al., 2017). In addition, it is possible to derive 573 

a positive interpretation from a negative finding in meta-analyses as in this study. Since the 574 

only difference between the metrics with the best and the worst performance in TSEB runs, 575 

namely SPAH4 and SPAH5, is the skewness ratio component, it can be concluded that 576 

skewness is a component that negatively affects the spatial metrics used in pattern comparison. 577 

It should be noted though that skewness information is an outstanding component for synthetic 578 

cases. 579 

In TSEB 100 runs scenario, the spatial performance tussle results of the metrics show that the 580 

newly proposed metric i.e. SPACD outperforms the conventional three-component metric 581 

SPAEF (5.76% better) on the other hand 11.11% better than SSIM and 1.66% better than 582 

SPEM. In TSEB 1000 runs results demonstrate that the newly developed four-component 583 

metric i.e. SPAtial Hybrid 4 (SPAH4) slightly outperform SPAEF (2.62% better). However, 584 

SPAH4 significantly outperforms the other existing metrics i.e. 40.22% better than SSIM and 585 

49.53% better than SPEM. 586 

7 Conclusion 587 

In this study, we thoroughly assessed common existing metrics and new spatial pattern-oriented 588 

performance metrics that we developed based on SPAEF. For the consistency and reliability 589 

of the results, the Mosel Basin with high data quality was selected and the physics-based fully 590 

distributed mHM model was established for this basin. In these three different scenarios, we 591 

performed analyses with various (low-high) iterations for actual evapotranspiration maps 592 

(TSEB AET) and synthetic maps. The most popular metrics (SPAEF, SSIM and SPEM) were 593 

compared with new metrics (SPAH4, SPACD, etc.) to measure the convergence of the mHM 594 

model to long-term monthly AET maps observed during parameter calibration. The usage of 595 

this synthetic scenario is important to ensure the reproducibility of the experiments and to give 596 

us full control over the calibration process. Based on our findings we can draw the following 597 

conclusions. 598 

- The inclusion of kurtosis ratio coefficient in the spatial pattern-oriented metrics demonstrates 599 

that metric performance is improved, so it has a positive impact on the spatially objective 600 

functions. Also shows a positive effect on streamflow prediction, it successfully calibrates the 601 

KGE metric even in very short runs. Furthermore, while using the skewness ratio coefficient 602 

gave unsuccessful results for TSEB AET maps, the kurtosis information of the distribution was 603 

more prominent in the pattern performance of the models. However, the SPAH5 performs the 604 

best among the close results and is presented as a strong hypothesis for the synthetic cases. 605 

- The metric with the best performance in the short runs was SPACD, which normalizes the 606 

distribution according to density. The excellent consistency between histograms, which is the 607 

main component of the Earth mover's distance metric, has a positive effect on making this 608 

metric a sharp metric with little tolerance, making SPAMD the second-best metric.  609 
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 - The best-performing metric on long runs was SPAH4, a four-component spatial performance 610 

metric that includes the kurtosis of the distribution. It was followed by the SPACD metric, 611 

which proved its consistent performance. Thus, the decision maker is presented with a flexible 612 

and wide working area. 613 

 - Considering all the experimental results, the most successful and robust metric in all three 614 

scenarios is our newly developed spatial pattern-oriented SPAH4, which outperforms the 615 

existing metrics in the literature by up to fifty per cent. 616 

In future studies, it would significantly enhance the depth and quality of the analysis to increase 617 

the number of iterations. In fact, convergence in hydrological models is closely related to the 618 

number of parameters and the freedom of the appropriate iteration chosen. Future work may 619 

benefit from exploring untested statistical terms to add a new perspective. We expect that these 620 

newly developed metrics, especially SPAH4, will be used not only in hydrology but also in 621 

other fields including remote sensing, image processing and object detection.  622 
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Appendix A: Results of the jackknife and bootstrap based sampling uncertainty analysis. Clark 623 

et al (2021) showed that the two most popular metrics in hydrology, i.e. NSE and KGE, are 624 

vulnerable to sampling uncertainty since the differences between observed and simulated 625 

streamflow values at random time steps in time series which can have significant effects on the 626 

results (Knoben & Spieler, 2022). From this study, we are inspired to assess the sampling 627 

uncertainty in ten metrics using the gumboot R package (Clark et al., 2021) which uses a 628 

jackknife-after-bootstrap method of Efron (1992) to estimate standard errors (SEJaB) shown 629 

in Table A1.  630 

Table A1. Sampling uncertainty of the metrics i.e. ranked based on the seJab column. 631 

GOF_stat seJack seBoot p05 p50 p95 score biasJack biasBoot seJab 

SSIM 0.0103 0.0099 0.6144 0.6311 0.6457 0.6307 -0.0002 0.0000 0.0091 

SPAHE 0.0568 0.0119 0.7717 0.7917 0.8107 0.7783 0.1496 0.0131 0.0112 

SPAMD 0.0114 0.0108 0.6785 0.6972 0.7137 0.6966 0.0006 0.0001 0.0115 

SPEM 0.0180 0.0175 0.2739 0.3041 0.3309 0.3034 -0.0006 -0.0003 0.0146 

SPAEF 0.0133 0.0128 0.6489 0.6711 0.6917 0.6727 0.0017 -0.0021 0.0148 

SPAEF' 0.0133 0.0127 0.6489 0.6711 0.6917 0.6727 0.0017 -0.0021 0.0152 

SPAK 0.0302 0.0288 0.5719 0.6226 0.6661 0.6207 -0.0004 0.0007 0.0295 

SPAH4 0.0302 0.0298 0.5484 0.5999 0.6459 0.6000 0.0011 -0.0012 0.0313 

SPACD 0.0234 0.0248 0.6056 0.6571 0.6851 0.6670 -0.0219 -0.0142 0.0603 

SPAH5 0.1685 0.2077 -0.3594 0.0373 0.2636 0.0427 -0.0388 -0.0401 0.3382 

 632 

  633 
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 634 

Figure A1. eCDF plot of daily discharge for all years in the calibration period (2002-2014) to 635 

visualize the distribution of the data and identify statistical patterns. 636 

Figure A1 visualizes the empirical cumulative distribution function (eCDF) plot for the 637 

observed and simulated data, which shows how the probability of a given discharge value 638 

occurring varies over the range of discharge values. In this context, the percentage of observed 639 

discharges less than nearly 500 is 80% and less than 200 is 50% for both the TSEB 100 and 640 

1000 runs. Furthermore, the slope of the curve at any point represents the density function of 641 

the discharge values at that point, and the intervals where the curve steepens contain values 642 

close to the mean value. Hence, it can be concluded that the overall average discharge value of 643 

the steepening intervals of the flow data resulting from the simulation of the metrics is roughly 644 

300 m3/s. The mean observed outflow of Cochem station is around 315 m3/s supports this 645 

outcome. In both cases, SPAK and SPAH4 illustrated a high level of matching in terms of the 646 

fit of the curves generated by the observed data (OBS) and the metrics, with the least difference 647 

between the distributions.  648 
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 649 

 650 

Figure A2. Monthly average hydrograph of the last two years in the calibration period (2013–651 

2014) 652 

  653 
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