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Abstract

To aid development of sub-grid scale (SGS) parameterizations for Earth system models which consider heterogeneity in land-

surface fields and land-atmosphere coupling, results from large-eddy simulations of 92 shallow convection cases over the Southern

Great Plains are presented and analyzed. Each case is simulated with heterogeneous surface fields obtained from an offline field-

scale land-surface model, and with spatially homogeneous surface fields with the same domain-wide mean value. By comparing

corresponding heterogeneous and homogeneous cases, it is found that turbulent kinetic energy and liquid water path has a high

correlation with the spatial variance of the surface heat flux fields. By further comparing the source of this correlation over

the range of wavelengths in the surface fields, it is found that the majority of the heterogeneous land-atmosphere coupling is

contained in wavelengths of order 10 km and larger, suggesting an encouraging degree of feasibility of including land-surface

heterogeneity in global-scale SGS parameterizations.
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Abstract11

To aid development of sub-grid scale (SGS) parameterizations for Earth system mod-12

els which consider heterogeneity in land-surface fields and land-atmosphere coupling, re-13

sults from large-eddy simulations of 92 shallow convection cases over the Southern Great14

Plains are presented and analyzed. Each case is simulated with heterogeneous surface15

fields obtained from an offline field-scale land-surface model, and with spatially homo-16

geneous surface fields with the same domain-wide mean value. By comparing correspond-17

ing heterogeneous and homogeneous cases, it is found that turbulent kinetic energy and18

liquid water path has a high correlation with the spatial variance of the surface heat flux19

fields. By further comparing the source of this correlation over the range of wavelengths20

in the surface fields, it is found that the majority of the heterogeneous land-atmosphere21

coupling is contained in wavelengths of order 10 km and larger, suggesting an encour-22

aging degree of feasibility of including land-surface heterogeneity in global-scale SGS pa-23

rameterizations.24

Plain Language Summary25

To help efforts to alleviate some of the issues associated with the relatively low-26

resolution grids used by modern global weather and climate models, we first created a27

dataset of 92 high-resolution simulations over the Southern Great Plains region of Ok-28

lahoma. All of the cases in the dataset are based on days which where observed to pro-29

duce shallow clouds, which can have a significant impact on the incoming solar radia-30

tion. The high-resolution simulations were designed to cover a region large enough to31

contain relevant cloud production which is also too small to be represented on a mod-32

ern global model. The dataset of high-resolution simulations is analyzed to compare the33

strength of the patterns in the land surface to the associated increase in cloud produc-34

tion. It is hoped that this and similar future studies will provide insights which increase35

the fidelity of cloud production models which intend to capture effects which are smaller36

than the grid used for global models.37

1 Introduction38

Modern coupled Earth system models (ESMs) are run at horizontal resolutions39

that are O(10 – 100 km), which is decided by the balance between computational re-40

sources and the demands of the atmospheric component of the coupled model, while41

the land-surface model (LSM) component could conceivably have an effective hori-42

zontal spatial resolution around O(10 – 100 m) (e.g., Chaney et al., 2018). This loss43

of land-surface information is made more significant by the fact that it spans the44

relevant length scales for many important coupled processes, namely those related to45

boundary-layer growth and cloud production (Bertoldi et al., 2013; Kang & Bryan,46

2011; Ntelekos et al., 2008; Weaver, 2004).47

The parameterization associated with sub-grid scale (SGS) cumulus production48

is very important in contemporary ESMs, by virtue of the importance of cloud pro-49

duction to the Earth system in general. Many modeling and observational studies50

find that secondary circulations induced by thermal surface heterogeneity can act as51

sources of convection and significantly alter local cloud production rates and distri-52

bution (e.g., Albertson et al., 2001; Dixon et al., 2013; Kang, 2020; Marsham et al.,53

2008; Mendes & Prevedello, 2020; Taylor et al., 2011; Phillips & Klein, 2014).54

While the aforementioned land-surface patterns are SGS on grids used for most55

modern global models, there is a large amount of information available regarding56

the characteristics of the land-surface which could potentially be utilized by SGS57

parameterizations. Towards this effort, we present a large-eddy simulation (LES)58

study of 92 shallow convection cases over the Southern Great Plains (SGP) site,59
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based on cases developed by the LES ARM Symbiotic Simulation and Observation60

Workflow (LASSO) campaign (W. Gustafson et al., 2019; W. I. Gustafson et al.,61

2020). The cases are run using high-resolution spatially-heterogeneous land-surface62

fields and also using spatially-homogeneous land-surface fields, which match the het-63

erogeneous cases’ domain-wide mean values through time but contain none of the64

spatial structure.65

We find that there is a strong correlation between basic metrics of heterogene-66

ity in the surface heat flux fields and the resultant additional production of liquid67

water path (LWP) and circulating kinetic energy. We also find that, for the cases68

considered here, the majority of the relevant information about the heterogeneity of69

the land-surface is contained in the few Fourier modes of the fields with the largest70

wavelengths, which is encouraging from the perspective of computational resources71

potentially required to consider SGS land-surface features.72

2 Model description73

Large-eddy simulations are conducted using version 3.8.1 of the WRF74

model (Skamarock et al., 2008) with modifications as described by J. S. Simon75

et al. (2021). Cases here use a horizontal resolution of 250 m and a domain of76

130× 130 km2 laterally. The land-surface fields in the outer 15 km of the domain77

are tapered to linearly approach their domain-wide mean on each boundary to elim-78

inate discontinuities in the land-surface that may otherwise be introduced by the79

periodic boundary conditions. Each domain is also rotated to closer align the bulk80

liquid-water flux normally to the boundaries, based on results from an initial simu-81

lation using the unrotated land-surface, to limit artificial spreading of liquid water82

caused by the fluxes through the boundaries not aligning with the periodicity of83

the domain. The model configuration is otherwise the same as in J. S. Simon et al.84

(2021).85

Each case is run with heterogeneous and homogeneous land-surface fields (sen-86

sible heat flux, latent heat flux, skin temperature, albedo, and momentum drag co-87

efficient), where homogeneous cases specify a uniform (in space) surface of each field88

to match the time-evolving domain-wide mean of the corresponding heterogeneous89

case. There is no feedback from the atmosphere to the land surface in the LES; the90

HydroBlocks LSM is run offline and the output surface fields are specified as the91

bottom boundary in the WRF model. Further details of the HydroBlocks LSM and92

its coupling to the WRF model can be found in the Supporting Information.93
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Figure 1. Example maps of sensible (H) and latent (Q) heat flux fields.
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3 Results94

3.1 Evaluation Metrics95

The domain-wide measure of vertically-integrated, mass-coupled turbulent ki-
netic energy (TKE) is compared between cases, serving as a metric for general activ-
ity in ABL development. For brevity, “TKE” will refer to the vertically-integrated,
mass-coupled form unless otherwise stated. On the discretized WRF grid, the TKE
is found as

TKE =
∑

z

ρa

[
1

2

(
u′2 + v′2 + w′2)

]
∆z, (1)

where ρa is air density, (u, v, w) are the velocity components in the (x, y, z) di-
rections, ∆z is the grid spacing in the vertical direction, and a primed variable
indicates deviation from the mean value in the (x, y) plane. For illustration, a time
series of TKE for heterogeneous and homogeneous simulations of an example case is
shown in Fig. 2a. Cases are also compared by their domain-wide LWP signal, which
serves as a proxy for overall cloud production. On the discretized WRF grid, our
measure of LWP is found as

LWP =
∑

z

ρaql∆z, (2)

where ql is liquid water mixing ratio.96

Part of the LASSO modification to the WRF code is the addition of output
solution fields as average values over a given interval of time, in addition to the stan-
dard instantaneous output fields. Here, time-averaged fields are found over 10 min
intervals from samples taken internally every 30 s. Notationally, we will use µ(ϕ)
and σ(ϕ) to indicate the spatial mean and standard deviation, respectively, of a
field ϕ = ϕ(x, y) at a point in time. For temporal averages, we will use the notation
mean[ϑ], found as

mean[ϑ] =

∑
t gsϑ∑
t gs

, (3)

where ϑ = ϑ(t) is a domain-wide scalar, with gs = gs(t) defined as

gs(t) =

{
1 : s (t) > 0.05 max(s),
0 : s (t) ≤ 0.05 max(s),

(4)

where s(t) is the surface downward clear-sky shortwave radiation at time t, and97

max(s) is the maximum value of s over the given simulation. The averaging pro-98

cedure in (3) is used for both the atmospheric fields (Fig. 2c) and the land-surface99

statistics (Fig. 2e).100

The heterogeneous vs. homogeneous statistics for TKE and LWP are compared
using the metric γ(ϑ), defined as

γ(ϑ) = mean [log γt(ϑ)] , (5)

where

γt(ϑ) =
gsϑheterogeneous + 1

gsϑhomogeneous + 1
. (6)

Equations (6) and (5) are demonstrated visually in Fig. 2c and d, respectively. The101

form of (6) is motivated as a ratio of ϑ between heterogeneous and homogeneous102

cases, which is weighted by gs to isolate daytime values. The addition of 1 to both103
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terms is included to limit the influence of very small values which are effectively neg-104

ligible, as well as to avoid the edge cases of γt = 0 or γt = ∞ when ϑheterogeneous = 0105

or ϑhomogeneous = 0, respectively. When ϑ ≈ 0 for both the heterogeneous and ho-106

mogeneous cases, γt ≈ 1, indicating the two cases have approximately equal mea-107

sures of ϑ, as intended. In (6), TKE is given in units of kg s−2 and LWP in units of108

g m−2.109

In addition to γ(TKE) and γ(LWP), we also compare corresponding heteroge-
neous and homogeneous cases by only the circulating portion of kinetic energy. This
is found from the turbulence spectra of 10-minute averaged u and v fields, where
only the energy from modes that are in the lowest 5 km of the atmosphere and
longer than 10 km laterally are included. The ratio of circulating energy between the
heterogeneous and homogeneous cases, which we denote χ, is found as similarly to
the TKE and LWP fields, as

χ = mean
[
log

√
γt(Eu)γt(Ev)

]
, (7)

where

Eφ = Eφ (t) =
∑

z<5 km


 ∑

ℓ>10 km

|f̂(φ′)|2

 , (8)

and |f̂(φ′)| is absolute value of the normalized two-dimensional discrete Fourier110

transform of φ′, ℓ is the component of the Fourier mode’s wavelength, λ, in the111

direction aligned with φ (e.g., ℓ = λx for φ = u).112

Two length-scale metrics, L∆ and L2, are presented for the land-surface fields,
based on their Fourier spectra (the relaxation to the mean value on the outer 15 km
of the land-surface fields render their boundaries as effectively periodic). The L∆

length scale gives the approximate scale of the largest coherent structures in the
field, and is found as

L∆(ϕ) =

∑
λ λ∆λ

√
|f̂(ϕ)|

∑
λ ∆λ

√
|f̂(ϕ)|

, (9)

where ϕ = ϕ(x, y) is a heterogeneous surface field, and ∆λ is the difference between
λ and the next (smaller) wavelength in the discrete spectrum. The L2 length scale
gives the approximate scale of the smallest coherent structures in the field, and is
found as

[L2(ϕ)]
2
=

∑
λ λ

2

√
|f̂(ϕ)|

∑
λ

√
|f̂(ϕ)|

. (10)

Correlations between atmosphere and land-surface fields are evaluated by the113

Pearson (ρp) and Spearman (ρs) correlation coefficients, as implemented by Virtanen114

et al. (2020) (e.g., Fig. 2f).115

–6–



manuscript submitted to Geophysical Research Letters

1000 1500 2000
0

1

2

3

4

T
K

E
(×

10
3

k
g

s−
2
)

(a)

heterogeneous
homogeneous

1000 1500 2000
0

1

g s

(b)

s/max(s)

1000 1500 2000
0

1

2

γ
t
(T

K
E

)

(c)

without gs

1000 1500 2000
0.0

0.2

0.4

lo
g
γ
t
(T

K
E

)
γ = mean[log γt] = 0.13

(d)

log γt(TKE)

1000 1500 2000

t (LST)

0

20

40

σ
(H

)
(W

m
−

2
)

mean[σ(H)] = 27.2 W m−2
(e)

gsσ(H)

10 20 40 80

mean
[
σ (H)

]
(W m−2)

1.0

0.1

γ
(T

K
E

)

(f)

ρp = 0.84

ρs = 0.82

Figure 2. Demonstration of the comparison process for heterogeneous and homogeneous

cases: (a) the domain-wide time series of TKE for the two simulations of 2017/08/30; (b) the

time filter, gs, used by the mean[ϑ] function as described by (4); (c) the calculation of γt, as de-

scribed by (6); (d) the calculation of γ as described by (5); (e) the application of the time filter,

gs, and the mean[ϑ] function to the σ(H) time series; (f) an example scatter plot of mean[σ(H)]

vs. γ(TKE) for all 92 days with the datapoint for 2017/08/30 shown in red.
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3.2 Land-Atmosphere Correlation116

The emergent secondary circulations driven by land-surface heterogeneity are117

analyzed by the correlation between χ and each of µ(H), σ(H), L∆(H), and L2(H)118

(Figs. 3a–d, respectively). There is a strong positive relationship between χ and all119

of σ(H), L∆(H), and L2(H), but only a trivial correlation with µ(H). The same120

presentation is repeated for γ(LWP) in Fig. 3e–h. The γ(LWP) data is very similar121

to that of the χ metric, but with ∼ 20% smaller magnitudes. Of the 92 cases, 4 have122

more liquid water production in the homogeneous simulation, indicated by a nega-123

tive value of γ(LWP); these datapoints are not shown in Fig. 3 but are included in124

the calculation of the correlation coefficients.125

Visually, the data for γ(LWP) compared to σ(H), L∆(H), and L2(H) show a126

very similar pattern as χ but with a broader spread, suggesting from that LWP pro-127

duction is statistically driven similarly to circulation production but with additional128

considerations which are not captured by the land-surface heterogeneity, which is129

certainly in agreement with the physical perspective of ABL development. The same130

analysis considering γ(TKE), or using statistics from the latent heat flux or skin131

temperature fields gives very similar results, which is presented in the Supporting132

Information.133
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Figure 3. The χ (a – d) and γ(LWP) (e – h) metrics as functions of statistics of the sur-

face sensible heat flux field, H. Four negative-valued data points for γ(LWP) with magnitudes

O(10−4) are not shown, but are included in the calculation of ρp and ρs.

3.3 Dominant Length Scales134

The results presented in Sec. 3.2 bolster the motivation to include informa-
tion about the underlying land-surface heterogeneity in global SGS boundary-layer
parameterizations. The best methodology to make such considerations in either
existing or new parameterization models is not immediately obvious, and potential
solutions must add value on a level that is commensurate with their computational
and implementation costs. To evaluate the relevance of the different ranges of length
scales present in the land surface on the present dataset, the land surface fields
are filtered over a range of length scales and compared. The filter, F , is applied in
Fourier space as

F = 1− exp

[
−2π2

(
∆filter

λ

)2
]
, (11)

where ∆filter is the nominal filter length. To avoid ambiguity in the discussion,135

the operation of F is referred to as passing λ < ∆filter. An example of a mid-day136

sensible heat flux field from the dataset for different filter lengths is shown in the137

Supporting Information.138

For each filter length, the heterogeneous land-atmosphere coupling is reevalu-139

ated following the same procedure as in Sec. 3.2. The average value over the dataset140

of mean[σ(H)] as a function of filter length is shown in Fig. 4a. Correlation coef-141

ficients for mean[σ(H)] of the filtered dataset with γ(TKE), γ(LWP), and χ are142

shown as a function of filter length in Fig. 4b, c, and d, respectively.143

–9–



manuscript submitted to Geophysical Research Letters

0

10

20

30

40

m
ea

n
[σ

(H
)]

(W
m
−

2
)

(a)

Average; all cases 0.4

0.5

0.6

0.7

0.8

ρ
w

it
h
γ

(T
K

E
)

(b)

ρp
ρs

100 101 102

∆filter (km)

0.4

0.5

0.6

0.7

ρ
w

it
h
γ

(L
W

P
)

(c)

ρp
ρs

100 101 102

∆filter (km)

0.4

0.5

0.6

0.7

0.8

0.9

ρ
w

it
h
χ

(d)

ρp
ρs

Figure 4. Average value of mean[σ(H)] over the 92 days after filtering (a) and correlation

coefficients of mean[σ(H)] after filtering with γ(TKE) (b), γ(LWP) (c), and χ (d).

Figure 4a demonstrates that the majority of the standard deviation in the sen-144

sible heat flux field over the dataset is contained in length scales 10 km and larger.145

Figures 4b – d show the same concentration at length scales larger than 10 km146

for the Pearson and Spearman correlation coefficients between σ(H) and γ(TKE),147

γ(LWP), χ. Because the wavelengths of Fourier modes grow geometrically, the re-148

sults seen in Fig. 4 suggest that the bulk of the correlation between σ(H) and the149

atmospheric metrics is contained in the longest few modes.150

4 Discussion and Conclusions151

We have presented a statistical analysis of the TKE and cloud production152

caused by land-surface heterogeneity for 92 LES cases representing different summer153

days from 2015 – 2019 over the SGP site by comparing simulations using heteroge-154

neous and homogeneous land-surface fields. In Sec. 3.2 it is found that, despite all 92155

days having unique initial profiles and large-scale tendencies, there is a strong corre-156

lation between the production of circulating TKE (measured as the metric χ) over a157

diurnal cycle and land-surface heterogeneity. The correlation between cloud produc-158

tion, as measured by LWP, is ∼ 20% smaller but is also significant. It is also seen in159

Sec. 3.3 that a large portion of the correlation between the atmosphere and hetero-160

geneous land-surfaces is concentrated in a relatively small number of the largest (by161

wavelength) modes in the land-surface fields.162

The results in Sec. 3.2 demonstrate a strong, but incomplete, correlation be-163

tween heterogeneous land surface fluxes and secondary circulations. The land-surface164

heterogeneity is more strongly related to χ than LWP, which was expected: while165

TKE production does depend on the temperature and stability of the initial atmo-166

spheric profile, liquid water production is additionally constrained by condensation167

conditions. Still, the correlation coefficient values seen between γ(LWP) and σ(H),168

–10–
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even without considerations for the state of the atmosphere, are quite strong with169

ρp = 0.70 (Fig. 3f). The concentration of relevant land-surface heterogeneity in170

structures with length scales of O(10 km) and larger seen in Sec. 3.3 is easily un-171

derstood in the context of heterogeneous land-atmosphere coupling being largely172

driven by emergent mesoscale circulations. That there is such a sharp increase in173

correlation contained in the longest few modes of the land surface does have the174

encouraging implication that the level of detail necessary for the successful devel-175

opment of global-scale SGS parameterizations of heterogeneous land-atmosphere176

coupling may not be overwhelming.177

While a large amount of additional work is necessary before the realization178

of an effective parameterization, the results seen here are encouraging. The most179

immediate future work is a detailed analysis of the relationship between initial and180

large-scale atmospheric conditions and land-surface heterogeneity on the atmospheric181

response. The necessary increase in cases to realize such an experiment would also182

enable the use of more sophisticated methods for analysis, perhaps eventually in-183

cluding machine learning, which itself has the potential to provide a huge value to184

parameterization development efforts.185
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WRF Model Description

Large-eddy simulations are conducted using a modification of version 3.8.1 of the WRF

model (Skamarock et al., 2008). Changes implemented, maintained, and distributed by

the LES ARM Symbiotic Simulation and ObservationWorkflow (LASSO) campaign (Endo

et al., 2015; W. Gustafson et al., 2019; W. I. Gustafson et al., 2020) notably include the

addition of specified large-scale tendency terms and enhanced output fields. An additional

modification implemented by Simon, Bragg, Dirmeyer, and Chaney (2021) is also used

here to specify heterogeneous surface properties from an offline LSM.

Each case is run with heterogeneous and homogeneous land-surface fields. Hetero-

geneous land-surface cases use solutions from the HydroBlocks LSM to specify two-

dimensional, time-evolving surface fields for sensible heat flux, latent heat flux, skin tem-

perature (found via specified emissivity and upward longwave radiation fields), albedo, and

momentum drag coefficient. The homogeneous cases specify a uniform (in space) surface

of each field to match the time-evolving domain-wide mean of the corresponding heteroge-

neous case (skin temperature is diagnosed from mean values of upward longwave radiation

and emissivity, rather than a domain-average of skin temperature directly). There is no

feedback from the atmosphere to the land surface in the LES; the HydroBlocks LSM is

run offline and the output surface fields are specified as the bottom boundary in the WRF

model. Histograms of means and standard deviations of mid-day latent and sensible heat

flux fields are shown in Fig. S1.

Following the LASSO configuration, simulations use the Thompson graupel micro-

physics scheme and the RRTMG radiation scheme (though surfaces are specified offline
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by HydroBlocks) with the cumulus and PBL schemes turned off. The model timestep is

0.5 s. The domain is approximately 14.5 km tall with 227 vertical levels and a vertical

resolution of 30 m in the lower 5 km of the column. Periodic boundary conditions are used

in both lateral directions and a w-Rayleigh damping layer is applied in the upper 2 km of

the column. The LES domain uses a flat bottom boundary, though terrain is considered

by the offline HydroBlocks simulation for subsurface and surface routing. Initial profiles

for potential temperature, water vapor mixing ratio, and lateral velocity components are

obtained from the LASSO database and are applied uniformly to the domain. Large-scale

heat and moisture tendency profiles based on the VARANAL dataset, obtained from the

LASSO database and configuration, are also included. The model configuration is oth-

erwise the same as in Simon et al. (2021), which is in turn largely based on the LASSO

configuration.

HydroBlocks Model Description

HydroBlocks is a field-scale resolving land-surface model (Chaney, Metcalfe, & Wood,

2016) that accounts for the water, energy, and carbon balance to solve land-surface pro-

cesses at field scales (30 m) over regional to continental extents (Chaney, Metcalfe, &

Wood, 2016; Chaney et al., 2020; Vergopolan et al., 2020). The core of HydroBlocks

is the Noah-MP vertical land surface scheme (Niu et al., 2011). For this study, Hy-

droBlocks is spun up for two years and uses high-resolution (30 m) soil type and land

cover maps from the Probabilistic Remapping of SSURGO (POLARIS) (Chaney, Wood,

et al., 2016; Chaney et al., 2019) and National Land Cover Database (NLCD) (Homer et

al., 2012) datasets, respectively, and one-eighth degree NLDAS-2 meteorology (Cosgrove
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et al., 2003; Mitchell et al., 2004) with NCEP Stage-IV radar rainfall (∼4 km) data (Lin

& Mitchell, 2005). The hourly state of the land surface produced by HydroBlocks for

the period of interest is then used to specify surface values in the WRF model. For

consistency, surface-flux fields are adjusted so that the domain-wide averages match the

time-evolving scalar surface fluxes specified by the LASSO campaign, which are from the

observationally-improved VARANAL dataset.
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Additional Fields

The analysis shown in Sec. 3.2 of the primary text for χ and γ(LWP) compared to

statistics of the surface sensible heat flux field, H, is repeated here for γ(TKE) compared

to statistics of H in Fig. S2. The correlations between γ(TKE) and mean values of σ(H),

L∆(H), L2(H) are not appreciably different than the correlations between χ and the

same statistics of the H field, particularly when considering σ(H). There is a small, but

nontrivial, negative Pearson correlation between γ(TKE) and µ(H), where ρp = −0.22

(Fig. S2a), which is understood by recalling that γ(TKE) is the ratio of TKE in corre-

sponding heterogeneous and homogeneous cases. Thus, larger mean surface sensible heat

flux values reduce the relative significance of TKE generated by any heterogeneous surface

patterns, making the total TKE more comparable between heterogeneous and homoge-

neous cases. Indeed, this negative correlation is virtually eliminated when comparing only

the circulating components of TKE (χ) to µ(H), where ρp = 0.00 (Fig. 3a in the main

text).

The same analysis for χ, γ(LWP), and γ(TKE) compared to statistics of the surface

latent heat flux field, Q, is shown in Fig. S3. The relationships between the χ, γ(LWP),

and γ(TKE) metrics and the surface latent heat flux field are very similar to those seen for

the surface sensible heat flux field, both quantitatively and qualitatively. The only notable

difference between the two surface fields is that the correlation between γ(TKE) and µ(Q)

is positive rather than the negative correlation seen for µ(H), though the two are similar in

magnitude. The small positive correlation between γ(TKE) and µ(Q) (Fig. S3a) appears

logical, as a larger mean latent heat flux would not be expected to inherently generate
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TKE in the atmosphere but may increase cloud production rates and thus exaggerate

heterogeneous surface effects.

The relationships between χ, γ(LWP), and γ(TKE) compared to statistics of the sur-

face temperature field, T , do show some distinctive features relative to those with H and

Q (Fig. S4). The relationships between the atmospheric metrics and σ(T ) is very similar

to those seen for σ(H) and σ(Q), but there is a larger correlation between µ(T ) and all

three atmospheric metrics, particularly χ (Fig. S4a), than is seen for µ(H) or µ(Q). This

suggests that while mean energy flux values do not correlate with the development of

secondary circulations, larger mean surface temperatures may help in circulation devel-

opment. As well, both length-scale metrics, L∆(T ) and L2(T ), show a lower correlation

with the atmospheric metrics than the length scales calculated from H or Q, suggesting

that the spatial structures of surface heat fluxes are more related to the atmospheric re-

sponse than the spatial structures of surface temperature. Intuitively, it should be the

case that the surface flux fields have a more direct impact on the atmosphere than surface

temperature; the surface sensible and latent heat fluxes directly connect the land-surface

to the atmosphere whereas the surface temperature is connected to the atmosphere via

the surface heat fluxes.
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Example Filtered Fields

The filter used in Sec. 3.3 of the primary text, defined as

F = 1− exp

[
−2π2

(
∆filter

λ

)2
]
, (1)

where ∆filter is the nominal filter length, is shown as applied to a representative mid-day

sensible heat flux field at an increasingly fine filter length in Fig. S5.
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Figure S1. Histogram of mean (µ) and standard deviation (σ) for mid-day sensible

(H) and latent (Q) heat flux fields for the 92 cases.
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Figure S2. The γ(TKE) metric as functions of statistics of the surface sensible heat

flux field, H. One negative-valued data point for γ(TKE) with a magnitudes O(10−2) is

not shown, but is included in the calculation of ρp and ρs.
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Figure S3. The χ (a – d), γ(LWP) (e – h), γ(TKE) (i – l) and metrics as functions of

statistics of the surface latent heat flux field, Q.
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Figure S4. The χ (a – d), γ(LWP) (e – h), γ(TKE) (i – l) and metrics as functions of

statistics of the surface temperature field, T .

August 13, 2023, 8:17pm



X - 14 :

Figure S5. Comparison of a mid-day sensible heat flux field without filtering (a) and

after applying increasingly fine filters (b – f).
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