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Abstract

Dynamical models used in climate prediction often suffer from systematic errors that can deteriorate their predictions. We

propose a hybrid model that combines both dynamical model and artificial neural network (ANN) correcting model errors

to improve climate predictions. We conducted a series of experiments using the Modular Arbitrary-Order Ocean-Atmosphere

Model (MAOOAM) and trained the ANN with input from both atmospheric and oceanic variables and output from analysis

increments. Our results demonstrate that the hybrid model outperforms the dynamical model in terms of prediction skill

for both atmospheric and oceanic variables across different lead times. Furthermore, we conducted additional experiments to

identify the key factors influencing the prediction skill of the hybrid model. We found that correcting both atmospheric and

oceanic errors yields the highest prediction skill while correcting only atmospheric or oceanic errors has limited improvement.
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Key Points:9

• Artificial neural network (ANN) has the ability to learn errors in a simplified10

coupled ocean-atmosphere model.11

• Combining the ANN-based error correction model with the dynamical model12

significantly enhanced the prediction skills.13

• Correcting both atmospheric and oceanic errors achieved the best prediction14

skill for climate prediction.15
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Abstract16

Dynamical models used in climate prediction often suffer from systematic errors that17

can deteriorate their predictions. We propose a hybrid model that combines both18

dynamical model and artificial neural network (ANN) correcting model errors to im-19

prove climate predictions. We conducted a series of experiments using the Modular20

Arbitrary-Order Ocean-Atmosphere Model (MAOOAM) and trained the ANN with21

input from both atmospheric and oceanic variables and output from analysis incre-22

ments. Our results demonstrate that the hybrid model outperforms the dynamical23

model in terms of prediction skill for both atmospheric and oceanic variables across24

different lead times. Furthermore, we conducted additional experiments to identify25

the key factors influencing the prediction skill of the hybrid model. We found that26

correcting both atmospheric and oceanic errors yields the highest prediction skill27

while correcting only atmospheric or oceanic errors has limited improvement.28

Plain Language Summary29

Climate prediction is crucial for understanding and preparing for the effects of30

the atmosphere and the ocean on our societies. However, current climate prediction31

models (scientific software) can have errors that limit their accuracy. To overcome32

this, we introduce a hybrid model that combines climate models with the artificial33

neural network (ANN). The ANN component is trained to identify and correct er-34

rors in the climate model. By reducing these errors with ANN, our hybrid model35

provides more reliable climate predictions. This is important for decision-making36

and planning related to climate impacts.37

1 Introduction38

Climate prediction aims at predicting the future state of the climate system39

based on the initial conditions and external forcings (e.g., greenhouse gases and40

aerosols) covering various lead times from seasons to decades (Merryfield et al.,41

2020). It helps scientists, policymakers, and communities in understanding potential42

risks and impacts. It differs from climate projections that focus primarily on cap-43

turing long-term climate trends and patterns from several decades to centuries by44

anticipating changes in external forcings and their impact on the climate system.45
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Dynamical models, such as ocean-atmosphere coupled general circulation mod-46

els, have been widely used for climate predictions (e.g., F. J. Doblas-Reyes et al.,47

2013; Boer et al., 2016). Uncertainties in initial conditions fed to dynamical models48

and model errors are two critical sources that limit the prediction skill of dynamical49

models. To reduce the uncertainties of initial conditions, climate prediction centers50

(Balmaseda & Anderson, 2009; F. Doblas-Reyes et al., 2013) have been evolving51

towards the use of data assimilation (DA, Carrassi et al., 2018) which combines52

observations with dynamical models to best estimate the state of the climate sys-53

tem (S. G. Penny & Hamill, 2017). Reducing the model error is challenging since54

the model error can be caused by many factors, e.g., model parameterizations (e.g.,55

T. N. Palmer, 2001), unresolved physical processes (e.g., Moufouma-Okia & Jones,56

2015), or numerical approximations (e.g., Williamson et al., 1992). Although there57

have been massive efforts in climate model development, the model error remains58

significantly large (e.g., Richter, 2015; T. Palmer & Stevens, 2019; Richter & Toki-59

naga, 2020; Tian & Dong, 2020).60

There is a growing interest in utilizing machine learning (ML) techniques to61

address errors in dynamical models. ML can be employed to construct a data-driven62

predictor of model errors, which can then be integrated with the dynamical model to63

create a hybrid statistical-dynamical model (e.g., Watson, 2019; Farchi et al., 2021;64

Brajard et al., 2021; Watt-Meyer et al., 2021; Bretherton et al., 2022; Chen et al.,65

2022).66

Some notable studies (e.g., Watson, 2019; Farchi et al., 2021) have focused on67

methodological developments within low-order or simplified coupled models operat-68

ing in an idealized framework where the ground truth is known. For example, Farchi69

et al. (2021) investigated two approaches in a two-scale Lorenz model, both of which70

are potential candidates for implementation in operational systems. One approach71

involves correcting the so-called resolvent of the dynamical model, i.e., modifying72

the model output after each numerical integration of the model. The other approach73

entails adjusting the ordinary or partial differential equation governing the model74

tendency prior to the numerical integration of the model. In a similar vein, Watson75

(2019) examined the tendency correction approach in the Lorenz 96 model. Brajard76

et al. (2021) explored the resolvent correction approach in the two-scale Lorenz77

model as well as in a low-order coupled ocean-atmosphere model called the Modu-78

–3–



manuscript submitted to Geophysical Research Letters

lar Arbitrary-Order Ocean-Atmosphere Model (MAOOAM) (De Cruz et al., 2016).79

Their study aimed to infer model errors associated with unresolved processes within80

the dynamical model.81

Several other investigations (e.g., Watt-Meyer et al., 2021; Bretherton et al.,82

2022; Chen et al., 2022) have tested ML-based error correction methods in realis-83

tic weather or climate models. However, in the real framework, the ground truth84

is unknown and the error characteristics are complex. Moreover, the availability of85

observational data for training, validation, and testing is relatively limited. These86

factors impose limitations on exploring the full potential of developing a data-driven87

predictor for model errors.88

Furthermore, in the works mentioned here-before, the hybrid model is tested89

in an idealized setting in which initial conditions are perfectly known. In realis-90

tic climate predictions, there is uncertainty in initial conditions which is generally91

represented as an ensemble of initial conditions, and an ensemble of predictions is92

obtained (Wang et al., 2019). To our knowledge, the skill of hybrid models in the93

realistic case of imperfect initial conditions with an ensemble of forecasts has not94

been thoroughly assessed.95

In this study, we aim at filling this gap. We utilize the low-order coupled96

ocean-atmosphere model named MAOOAM (section 2) to investigate the potential97

of ML-based model error correction for climate prediction within an idealized frame-98

work. Our primary objective is to explore how the combination of the data-driven99

error predictor and the dynamical model can enhance climate prediction as a func-100

tion of lead time. Furthermore, we aim to identify whether atmosphere model errors101

or ocean model errors play a pivotal role in degrading climate prediction accuracy.102

This study presents novel findings as it directly addresses a research gap in our cur-103

rent understanding. The insights obtained from this research hold significant value104

for the climate prediction community, contributing to advancements in the field.105

The article is organized as follows. Section 2 introduces the main methodolog-106

ical aspects of the study. Section 3 shows the prediction skill of the hybrid model107

compared with the dynamical model and discusses factors affecting the prediction108

skill of the hybrid model. Finally, a brief concluding summary is presented in section109

4.110
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2 Methodology111

In this study, we simplify the analysis by considering model errors solely at-112

tributed to coarse resolutions. We adopt similar configurations of the model (section113

2.1), DA technique (section 2.2), and Artificial Neural Network (ANN) approach114

(section 2.3) as outlined by Brajard et al. (2021). However, it is important to note115

that our objectives are different. While they focused on methodological develop-116

ments, our primary aim is to investigate how the benefits of ML-based error cor-117

rection evolve with lead time for climate prediction purposes. Furthermore, our118

experimental setup incorporates a more realistic approach. For further details, please119

refer to section 2.4.120

2.1 Modular Arbitrary-Order Ocean-Atmosphere Model121

We utilize MAOOAM developed by De Cruz et al. (2016) in our study.122

MAOOAM consists of a two-layer quasi-geostrophic (QG) atmospheric component123

coupled with a QG shallow-water oceanic component. The coupling between these124

components incorporates wind forcings, and radiative and heat exchanges, enabling125

it to replicate climate variability. MAOOAM has been widely employed in qualita-126

tive analyses for various purposes (e.g., S. Penny et al., 2019; Brajard et al., 2021).127

Moreover, MAOOAM’s numerical efficiency allows us the execution of numerous128

climate prediction experiments at a relatively low computational cost.129

In MAOOAM, the model variables are represented in terms of spectral modes.130

Specifically, dax (dox) represents the x-direction resolution and day (doy) represents131

the y-direction resolution in the atmosphere (ocean). The model state comprises na132

(na = day(2dax + 1)) modes of the atmospheric stream function ψa and temperature133

anomaly θa, as well as no (no = doydox) modes of the oceanic stream function ψo134

and temperature anomaly θo. Consequently, the model state can be expressed as:135

x = (ψa,1, ψa,2, ..., ψa,na , θa,1, θa,2, ..., θa,na , ψo,1, ψo,2, ..., ψo,no , θo,1, θo,2, ..., θo,no) (1)

The total number of variables in the model state is 2na + 2no. One of the key fea-136

tures of MAOOAM is its ability to modify the number of atmospheric and oceanic137

model variables simply by adjusting the model’s resolution in the x-direction or138

y-direction.139
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In this study, we utilize two different configurations of MAOOAM: one denoted140

as M56 and the other as M36. The M56 configuration comprises a total of 56141

variables, with 20 atmospheric modes (na = 20) and 8 oceanic modes (no = 8).142

Specifically, the atmosphere in M56 operates at a 2x-4y (i.e., dax = 2 and day = 4)143

resolution, while the ocean operates at a 2x-4y (i.e., dox = 2 and doy = 4) resolution.144

On the other hand, the M36 configuration consists of 36 variables, with 10145

atmospheric modes (na = 10) and the same 8 oceanic modes (no = 8) as in M56.146

The atmospheric component in M36 operates at a 2x-2y (i.e., dax = 2 and day = 2)147

resolution, while the ocean component maintains a 2x-4y (i.e., dox = 2 and doy = 4)148

resolution, identical to that of M56.149

It is important to note that the key distinction between M36 and M56 lies150

in the atmosphere, where M36 has a reduced number of atmospheric modes,151

specifically 10 less than M56 in the y-direction. This difference leads to a lack of152

higher-order atmospheric modes in M36, thereby resulting in an inability to capture153

variability on small scales. Consequently, the primary source of model error in this154

study is attributed to the coarse resolution of the model.155

2.2 Ensemble Kalman Filter156

The EnKF is a flow-dependent and multivariate DA method and has been157

implemented for climate prediction (e.g., Karspeck et al., 2013; Wang et al., 2019;158

Zhang et al., 2007). The EnKF constructing the background error covariance from159

the dynamical ensemble is more reliable than other DA methods using the static160

error covariance (e.g., Sakov & Sandery, 2015). Moreover, the utilization of an161

ensemble-based error covariance ensures that the assimilation updates adhere to the162

model dynamics, thereby mitigating assimilation shocks (Evensen, 2003).163

In this study, we utilize the DAPPER package (Raanes, 2018) for conducting164

all experiments, as described in section 2.4 and depicted in Figure 1. Specifically,165

we employ the finite-size ensemble Kalman filter (EnKF-N) method proposed by166

Bocquet et al. (2015). This method automatically estimates the inflation factor, a167

critical parameter in ensemble DA systems, thereby enhancing the performance of168

the assimilation experiments.169
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It is worth mentioning that we expect no significant alterations in the conclu-170

sions of this paper when using the traditional EnKF instead of EnKF-N. Hence, for171

simplicity, we refer to both methods as the EnKF in the following discussions, as172

their differences do not have a substantial impact on the overall outcomes of this173

study.174

2.3 Artificial Neural Network Architecture175

We consider the dynamical model (described in section 2.1) in the following176

form:177

xk+1 = M(xk), (2)

where xk+1 represents the full model state at tk+1, xk represents the full model178

state at tk and M represents the dynamical model integration from time tk to tk+1.179

The model error at time tk+1 is defined as:180

εk+1 = xt
k+1 − xk+1, (3)

where xt
k+1 represents the truth state at time tk+1.181

We aim to use ANN to emulate the model error ε. For simplicity, our ANN182

configuration is set to the same as that of Brajard et al. (2021). The architecture of183

ANN used in this study consists of four layers:184

• The input layer includes a batch normalization layer (Ioffe, 2017), which helps185

to regularize and normalize the training process.186

• The second layer is a dense layer with 100 neurons. It applies the rectified187

linear unit (ReLU) activation function, which introduces non-linearity into the188

network.189

• The third layer has the same configuration as the second layer, with 50 neu-190

rons and ReLU activation function.191

• The output layer, which is a dense layer with a linear activation function192

and produces the final predictions, is optimized using the “RMSprop” op-193

timizer (Hinton et al., 2012) and includes an L2 regularization term with a194

value of 10−4.195
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During training, the model is trained with a batch size of 128 and for a total of 300196

epochs.197

The error surrogate model can be expressed as follows:198

ε′k+1 = MANN(xk), (4)

where MANN represents the data-driven model built by the ANN and ε′k+1 rep-199

resents the model error estimated by the ANN. The full state at time tk+1 of the200

hybrid model can be expressed as follows:201

xh
k+1 = M(xk) +MANN(xk) (5)

2.4 Experimental settings202

We present the experimental setup in Figure 1. The experiments are conducted203

using two configurations of MAOOAM, as described in section 2.1. The configura-204

tion with 56 variables (referred to as M56, section 2.1) represents the true climate205

system, while the configuration with 36 variables (referred to as M36) represents a206

dynamical prediction system. The experiments (depicted in Figure 1) are performed207

as follows:208

• We integrate the M56 configuration with a time step of approximately 1.6209

minutes for a spin-up period of 30726.5 years, as specified in De Cruz et al.210

(2016). Following the spin-up period, we continue the simulation for an addi-211

tional 219 years, which we refer to as the “truth”. To generate observations,212

we perturb the “truth” state using a Gaussian random noise. The standard213

deviation of the noise is set to 10% of the temporal standard deviation of the214

true state after subtracting the one-month running average (σhf). Observa-215

tions are generated at intervals of approximately 27 hours.216

• We perform a simulation with 50 ensemble members. The initial conditions of217

the ensemble are randomly sampled from a long free-run simulation of M36218

after the spin-up period. We assimilate synthetic observations and generate an219

analysis dataset with an ensemble size of 50.220
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• We generate two sets of ensemble predictions, each consisting of 50 members.221

The first set is based on the dynamical model (M36), while the second set222

is based on the hybrid model. The prediction experiments start in each sec-223

ond year from the year 125 to the year 185, with each experiment lasting for224

30 years. Each prediction consists of 50 ensemble members. The initial con-225

ditions for these ensembles are taken from the analysis conducted (refer to226

Figure 1).227

We split the analysis into two parts:228

• Training data: The former 124.6 years of the dataset are used to train the229

ANN parameters to build the hybrid model (Figure 1).230

• Validation/testing data: The latter 94.6 years of the dataset are used to vali-231

date the ANN training and initialize prediction experiments (Figure 1).232

It is worth noting that we employ the identical ANN configurations as outlined in233

Brajard et al. (2021) who have developed the methodology in MAOOAM. In this234

study, the ANN parameters are trained only once, without any modifications to the235

ANN model throughout the training process. We examined the loss curves (Fig-236

ure S1) to assess the suitability of the ANN model for our specific application. The237

training curves provided evidence that the network was continuing to learn through-238

out the training process. To simplify, we utilize the same dataset for both validation239

and testing purposes.240

Brajard et al. (2021) focused on developing the hybrid model methodology, our241

study aims to explore the evolution of prediction skill as a function of lead time. We242

assess the prediction skill over a wider range of lead times, specifically up to 20 days243

for atmospheric variables and up to 30 years for oceanic variables. By examining244

the skill at various lead times, we can gain insights into the temporal evolution and245

long-term performance of the hybrid model, providing a more comprehensive under-246

standing of their capabilities and limitations. To do so, our experimental setup is247

different in the following ways:248

• We extended the simulation time to 219.2 years, while Brajard et al. (2021)249

generated an analysis dataset spanning 62 years for training, validation and250

testing. We divided the dataset into two distinct parts: one for training the251

–9–



manuscript submitted to Geophysical Research Letters

ANN and the other for validation/test purposes. This separation allows us to252

independently evaluate the performance of the trained ANN using data that253

was not used during the training phase.254

• Our experiments utilize the analysis as initial conditions, while Brajard et al.255

(2021) using perfect initial conditions (i.e., the truth) to initialize predictions.256

This choice reflects a more realistic scenario, as perfect knowledge of initial257

conditions is rarely available in the real framework. By using the analysis as258

initial conditions, we aim to capture the practical challenges associated with259

imperfect knowledge of the initial state in climate prediction.260

• Our study incorporates an ensemble prediction strategy with 50 members,261

while Brajard et al. (2021) performed predictions using a single member (i.e.,262

deterministic prediction). In the climate prediction community, probabilis-263

tic forecasts based on ensembles are widely recognized. Ensembles provide a264

valuable means of quantifying uncertainty in climate predictions by generating265

multiple realizations rather than a single deterministic prediction.266

2.5 Validation metrics267

To evaluate the prediction skill, we employ the root mean square skill score268

(RMSE-SS), a commonly used metric in weather forecasting and climate prediction.269

The RMSE-SS compares the root mean square error (RMSE) of the prediction to270

the RMSE of a persistence prediction. It is defined as:271

RMSE− SS = 1− RMSEprediction

RMSEpersistence
, (6)

where RMSEprediction represents the RMSE between the prediction (ensemble mean)272

and the corresponding truth and RMSEpersistence represents the RMSE between a273

persistence prediction (where the state remains the same as the initial conditions)274

and the truth. A positive RMSE-SS indicates that the prediction outperforms the275

persistence and demonstrates skill. On the other hand, a negative RMSE-SS indi-276

cates that the prediction performs worse than the persistence and lacks skill. By277

utilizing the RMSE-SS, we can assess and compare the skill of the predictions gener-278

ated by the dynamical model and the hybrid model across different variables within279

the same panel, as shown in Figure 2.280
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To assess the significance of the RMSE-SS results, we employ a two-tailed Stu-281

dent’s t-test to compare the mean squared errors of the prediction and persistence.282

This statistical test helps determine if the difference between the two sets of errors283

is statistically significant. To estimate the uncertainties of the RMSE-SS, we uti-284

lize the bootstrap method. We randomly select, with replacement, 30 data points285

from the 30 prediction experiments and calculate the RMSE-SS based on this sam-286

pled data. This procedure is repeated 10,000 times, resulting in a sample of 10,000287

RMSE-SS values. The standard deviation of this sample is then used to estimate288

the uncertainties associated with the RMSE-SS. By conducting the t-test and uti-289

lizing the bootstrap method, we can obtain a more comprehensive understanding of290

the significance and reliability of the RMSE-SS values obtained from the prediction291

experiments.292

3 Result293

3.1 Prediction skill294

Figure 2a presents the prediction skills of the dynamical model for atmospheric295

temperature (θa) and stream function (ψa). Notably, the variables associated with296

lower-order atmospheric modes, such as ψa,2, ψa,3, θa,2, and θa,3, exhibit significant297

prediction skills for up to 14 days. On the other hand, the temperature in higher-298

order modes demonstrates significant prediction skills within an 8-day lead time,299

while the stream function in higher-order modes shows no prediction skill through-300

out the forecast period.301

Figure 2b shows the prediction skills of the hybrid model for atmospheric vari-302

ables. Regarding temperature, the hybrid model exhibits skillful predictions for up303

to 18 days across most modes. For the stream function, the hybrid model demon-304

strates skillful predictions for lower-order atmospheric modes for up to 20 days and305

for higher-order modes for up to 14 days (with the exception of ψa,9, which extends306

up to 20 days). Overall, the hybrid model outperforms the dynamical model signifi-307

cantly in terms of prediction skills for atmospheric variables.308

Figure 2c illustrates the prediction skills of the dynamical model for oceanic309

temperature and stream function. Due to the lower variability of the ocean com-310

pared to the atmosphere, the dynamical model displays significant prediction skills311
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for oceanic temperature for up to 30 years in most modes, as well as for oceanic312

stream function in certain modes. Notably, temperature exhibits higher predictabil-313

ity compared to the stream function. However, the ocean stream function variables314

with even numbers exhibit a lack of skill, which may be attributed to the discrep-315

ancy in resolution in the y-direction between the true model’s atmosphere and the316

dynamical model.317

In Figure 2d, the prediction skills of the hybrid model are presented. The hy-318

brid model demonstrates significant prediction skills for both oceanic temperature319

and stream function across all modes for up to 30 years. It is worth mentioning that320

the hybrid model yields higher RMSE-SS values compared to the dynamical model,321

particularly for oceanic temperature in the first and last modes, as well as for cer-322

tain oceanic stream functions where the dynamical model shows no prediction skill323

at all (e.g., ψo,2 and ψo,6).324

In Movies S1-S4, we provide examples of restoring variables in the physical325

space. These examples highlight that the hybrid model exhibits a closer behavior to326

the truth in terms of spatial distribution and temporal evolution compared to the327

dynamical model. For long-term climate prediction, there are additional require-328

ments that the hybrid model must meet. Specifically, the model should be capable329

of running for extended periods without diverging or exhibiting significant physical330

instability. In our study, we find that the hybrid model maintains stability and does331

not experience significant physical instability during the 30-year prediction period.332

The overall performance of the hybrid model surpasses that of the dynamical333

model, demonstrating the advantages of incorporating a data-driven error correction334

model constructed by the ANN. This highlights the potential benefits of leveraging335

data-driven approaches to improve climate predictions.336

3.2 Sensitivity experiments337

In this section, we extend our analysis by constructing two additional hybrid338

models to assess the importance of correcting atmospheric and oceanic errors sep-339

arately. These models are trained using the same inputs as in the previous section340

but are designed to correct either only atmospheric errors or only oceanic errors. By341

comparing the prediction skills of the three key variables of MAOOAM (Vannitsem,342
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2015) - ψa,1, ψo,2, and θo,2 - in these hybrid models, we aim to identify which com-343

ponent’s error correction has a greater impact on the predictions. Through this344

analysis, we gain insights into the relative importance of atmospheric and oceanic345

error correction for the overall prediction performance.346

In Figure 3a, we present the prediction skill of different models specifically for347

the key atmospheric variable ψa,1. Please refer to Figures S2 and S3 for the predic-348

tion skill of other atmospheric variables. We observe that there is minimal difference349

in prediction skill between correcting only the atmospheric errors (purple line) and350

correcting both the atmospheric and oceanic errors (cyan line). When comparing351

the hybrid models with the dynamical model result (black dashed line), we find that352

correcting only the oceanic errors (blue line) does not lead to improvements in at-353

mospheric prediction within a 20-day lead time. This suggests that the influence of354

low-frequency variability originating from the ocean has a limited impact on short-355

term predictions of atmospheric variables. These findings indicate that atmospheric356

error correction plays a more significant role in improving the short-term prediction357

skill of ψa,1, while the oceanic error correction alone does not provide noticeable358

benefits in this context.359

In Figures 3b and 3c, we focus on the prediction skill of various hybrid models360

for the two crucial oceanic variables, ψo,2 and θo,2. Please refer to Figures S4 and361

S5 for prediction skill analysis of other oceanic variables. Our results reveal that362

the highest prediction skill over a 30-year period is achieved when both atmospheric363

and oceanic errors are corrected (cyan line). For ψo,2, correcting solely oceanic er-364

rors (blue line) yields a minor enhancement. When correcting atmospheric errors365

(purple line), a noticeable improvement in prediction skill occurs except for the366

first five years. This phenomenon may stem from the time required for the oceanic367

processes to adjust to an error-corrected atmosphere. Regarding θo,2, we note that368

either correcting oceanic errors (blue line) or atmospheric errors (purple line) re-369

sults in positive RMSE-SS values. This suggests that both forms of error correction370

contribute to enhancing the prediction skill of θo,2. Furthermore, these two hybrid371

models significantly outperform the results of the dynamical model (black dashed372

line) from lead year 15 to lead year 25. In summary, the correction of both atmo-373

spheric and oceanic errors proves to be more effective in enhancing prediction accu-374
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racy for oceanic variables compared to addressing just one component. Noteworthy375

improvements are observable, particularly after a few years of prediction.376

4 Conclusions and Discussions377

In this study, we applied a method to online correct the error in a simplified378

ocean-atmosphere coupled model (MAOOAM). We constructed a data-driven pre-379

dictor of model error with the ML techniques and integrated it with the dynamical380

model, creating a hybrid statistical-dynamical model. By incorporating the model381

error correction through the hybrid model, we significantly enhanced the prediction382

skills of both atmospheric and oceanic variables at different lead times. This ap-383

proach allowed us to mitigate the limitations of the dynamical model and achieve384

more accurate climate predictions.385

We also investigated the impact of correcting either atmospheric or oceanic386

model errors individually. Our findings revealed that correcting both atmospheric387

and oceanic errors achieved the best prediction skill for short-term atmosphere pre-388

diction and long-term ocean prediction. Correcting only oceanic errors showed some389

improvement in long-term ocean prediction but a very limited effect on short-term390

atmosphere prediction. On the other hand, correcting only atmospheric errors effec-391

tively improved short-term atmosphere prediction and slightly enhanced long-term392

ocean prediction.393

This study serves as a proof of concept, demonstrating the potential of using394

ML to learn and correct climate model errors, thus enhancing the prediction skills of395

climate models. Future applications could involve applying this method to realistic396

climate models, which are inherently more complex than MAOOAM, and exploring397

the prediction skills under such conditions.398

Open Research Section399

All data used in this study are generated by the experiments in section 2.4400

and are available at https://doi.org/10.5281/zenodo.7725687. And the code is401

available at https://github.com/zikanghe/MAOOAM-hybrid-papaer.402
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Figure 2. RMSE-SS as a function of the prediction lead time for different variables. (a,c)

The RMSE-SS of the dynamical model (b,d) the RMSE-SS of the hybrid model. The black dot

indicates the RMSE-SS does not exceed the 95 significance test.
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Figure 3. RMSE-SS for three key variables (a) ψa,1, (b) ψo,2 and (c) θo,2 as a function of lead

time (20 days for the atmospheric variable and 30 years for the ocean variables). The cyan line

represents the RMSE-SS of the hybrid model that corrects both atmospheric and oceanic model

errors. The purple line corresponds to the RMSE-SS of the hybrid model that corrects only at-

mospheric model errors, while the blue line represents the RMSE-SS of the hybrid model that

corrects only oceanic model errors. The dashed black line represents the RMSE-SS of the dynam-

ical model. The shading represents one standard deviation calculated using the bootstrap method

described in section 2.5. The shaded area provides an estimate of the uncertainty associated with

the RMSE-SS values.
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Key Points:9

• Artificial neural network (ANN) has the ability to learn errors in a simplified10

coupled ocean-atmosphere model.11

• Combining the ANN-based error correction model with the dynamical model12

significantly enhanced the prediction skills.13

• Correcting both atmospheric and oceanic errors achieved the best prediction14

skill for climate prediction.15
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Abstract16

Dynamical models used in climate prediction often suffer from systematic errors that17

can deteriorate their predictions. We propose a hybrid model that combines both18

dynamical model and artificial neural network (ANN) correcting model errors to im-19

prove climate predictions. We conducted a series of experiments using the Modular20

Arbitrary-Order Ocean-Atmosphere Model (MAOOAM) and trained the ANN with21

input from both atmospheric and oceanic variables and output from analysis incre-22

ments. Our results demonstrate that the hybrid model outperforms the dynamical23

model in terms of prediction skill for both atmospheric and oceanic variables across24

different lead times. Furthermore, we conducted additional experiments to identify25

the key factors influencing the prediction skill of the hybrid model. We found that26

correcting both atmospheric and oceanic errors yields the highest prediction skill27

while correcting only atmospheric or oceanic errors has limited improvement.28

Plain Language Summary29

Climate prediction is crucial for understanding and preparing for the effects of30

the atmosphere and the ocean on our societies. However, current climate prediction31

models (scientific software) can have errors that limit their accuracy. To overcome32

this, we introduce a hybrid model that combines climate models with the artificial33

neural network (ANN). The ANN component is trained to identify and correct er-34

rors in the climate model. By reducing these errors with ANN, our hybrid model35

provides more reliable climate predictions. This is important for decision-making36

and planning related to climate impacts.37

1 Introduction38

Climate prediction aims at predicting the future state of the climate system39

based on the initial conditions and external forcings (e.g., greenhouse gases and40

aerosols) covering various lead times from seasons to decades (Merryfield et al.,41

2020). It helps scientists, policymakers, and communities in understanding potential42

risks and impacts. It differs from climate projections that focus primarily on cap-43

turing long-term climate trends and patterns from several decades to centuries by44

anticipating changes in external forcings and their impact on the climate system.45
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Dynamical models, such as ocean-atmosphere coupled general circulation mod-46

els, have been widely used for climate predictions (e.g., F. J. Doblas-Reyes et al.,47

2013; Boer et al., 2016). Uncertainties in initial conditions fed to dynamical models48

and model errors are two critical sources that limit the prediction skill of dynamical49

models. To reduce the uncertainties of initial conditions, climate prediction centers50

(Balmaseda & Anderson, 2009; F. Doblas-Reyes et al., 2013) have been evolving51

towards the use of data assimilation (DA, Carrassi et al., 2018) which combines52

observations with dynamical models to best estimate the state of the climate sys-53

tem (S. G. Penny & Hamill, 2017). Reducing the model error is challenging since54

the model error can be caused by many factors, e.g., model parameterizations (e.g.,55

T. N. Palmer, 2001), unresolved physical processes (e.g., Moufouma-Okia & Jones,56

2015), or numerical approximations (e.g., Williamson et al., 1992). Although there57

have been massive efforts in climate model development, the model error remains58

significantly large (e.g., Richter, 2015; T. Palmer & Stevens, 2019; Richter & Toki-59

naga, 2020; Tian & Dong, 2020).60

There is a growing interest in utilizing machine learning (ML) techniques to61

address errors in dynamical models. ML can be employed to construct a data-driven62

predictor of model errors, which can then be integrated with the dynamical model to63

create a hybrid statistical-dynamical model (e.g., Watson, 2019; Farchi et al., 2021;64

Brajard et al., 2021; Watt-Meyer et al., 2021; Bretherton et al., 2022; Chen et al.,65

2022).66

Some notable studies (e.g., Watson, 2019; Farchi et al., 2021) have focused on67

methodological developments within low-order or simplified coupled models operat-68

ing in an idealized framework where the ground truth is known. For example, Farchi69

et al. (2021) investigated two approaches in a two-scale Lorenz model, both of which70

are potential candidates for implementation in operational systems. One approach71

involves correcting the so-called resolvent of the dynamical model, i.e., modifying72

the model output after each numerical integration of the model. The other approach73

entails adjusting the ordinary or partial differential equation governing the model74

tendency prior to the numerical integration of the model. In a similar vein, Watson75

(2019) examined the tendency correction approach in the Lorenz 96 model. Brajard76

et al. (2021) explored the resolvent correction approach in the two-scale Lorenz77

model as well as in a low-order coupled ocean-atmosphere model called the Modu-78
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lar Arbitrary-Order Ocean-Atmosphere Model (MAOOAM) (De Cruz et al., 2016).79

Their study aimed to infer model errors associated with unresolved processes within80

the dynamical model.81

Several other investigations (e.g., Watt-Meyer et al., 2021; Bretherton et al.,82

2022; Chen et al., 2022) have tested ML-based error correction methods in realis-83

tic weather or climate models. However, in the real framework, the ground truth84

is unknown and the error characteristics are complex. Moreover, the availability of85

observational data for training, validation, and testing is relatively limited. These86

factors impose limitations on exploring the full potential of developing a data-driven87

predictor for model errors.88

Furthermore, in the works mentioned here-before, the hybrid model is tested89

in an idealized setting in which initial conditions are perfectly known. In realis-90

tic climate predictions, there is uncertainty in initial conditions which is generally91

represented as an ensemble of initial conditions, and an ensemble of predictions is92

obtained (Wang et al., 2019). To our knowledge, the skill of hybrid models in the93

realistic case of imperfect initial conditions with an ensemble of forecasts has not94

been thoroughly assessed.95

In this study, we aim at filling this gap. We utilize the low-order coupled96

ocean-atmosphere model named MAOOAM (section 2) to investigate the potential97

of ML-based model error correction for climate prediction within an idealized frame-98

work. Our primary objective is to explore how the combination of the data-driven99

error predictor and the dynamical model can enhance climate prediction as a func-100

tion of lead time. Furthermore, we aim to identify whether atmosphere model errors101

or ocean model errors play a pivotal role in degrading climate prediction accuracy.102

This study presents novel findings as it directly addresses a research gap in our cur-103

rent understanding. The insights obtained from this research hold significant value104

for the climate prediction community, contributing to advancements in the field.105

The article is organized as follows. Section 2 introduces the main methodolog-106

ical aspects of the study. Section 3 shows the prediction skill of the hybrid model107

compared with the dynamical model and discusses factors affecting the prediction108

skill of the hybrid model. Finally, a brief concluding summary is presented in section109

4.110
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2 Methodology111

In this study, we simplify the analysis by considering model errors solely at-112

tributed to coarse resolutions. We adopt similar configurations of the model (section113

2.1), DA technique (section 2.2), and Artificial Neural Network (ANN) approach114

(section 2.3) as outlined by Brajard et al. (2021). However, it is important to note115

that our objectives are different. While they focused on methodological develop-116

ments, our primary aim is to investigate how the benefits of ML-based error cor-117

rection evolve with lead time for climate prediction purposes. Furthermore, our118

experimental setup incorporates a more realistic approach. For further details, please119

refer to section 2.4.120

2.1 Modular Arbitrary-Order Ocean-Atmosphere Model121

We utilize MAOOAM developed by De Cruz et al. (2016) in our study.122

MAOOAM consists of a two-layer quasi-geostrophic (QG) atmospheric component123

coupled with a QG shallow-water oceanic component. The coupling between these124

components incorporates wind forcings, and radiative and heat exchanges, enabling125

it to replicate climate variability. MAOOAM has been widely employed in qualita-126

tive analyses for various purposes (e.g., S. Penny et al., 2019; Brajard et al., 2021).127

Moreover, MAOOAM’s numerical efficiency allows us the execution of numerous128

climate prediction experiments at a relatively low computational cost.129

In MAOOAM, the model variables are represented in terms of spectral modes.130

Specifically, dax (dox) represents the x-direction resolution and day (doy) represents131

the y-direction resolution in the atmosphere (ocean). The model state comprises na132

(na = day(2dax + 1)) modes of the atmospheric stream function ψa and temperature133

anomaly θa, as well as no (no = doydox) modes of the oceanic stream function ψo134

and temperature anomaly θo. Consequently, the model state can be expressed as:135

x = (ψa,1, ψa,2, ..., ψa,na , θa,1, θa,2, ..., θa,na , ψo,1, ψo,2, ..., ψo,no , θo,1, θo,2, ..., θo,no) (1)

The total number of variables in the model state is 2na + 2no. One of the key fea-136

tures of MAOOAM is its ability to modify the number of atmospheric and oceanic137

model variables simply by adjusting the model’s resolution in the x-direction or138

y-direction.139
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In this study, we utilize two different configurations of MAOOAM: one denoted140

as M56 and the other as M36. The M56 configuration comprises a total of 56141

variables, with 20 atmospheric modes (na = 20) and 8 oceanic modes (no = 8).142

Specifically, the atmosphere in M56 operates at a 2x-4y (i.e., dax = 2 and day = 4)143

resolution, while the ocean operates at a 2x-4y (i.e., dox = 2 and doy = 4) resolution.144

On the other hand, the M36 configuration consists of 36 variables, with 10145

atmospheric modes (na = 10) and the same 8 oceanic modes (no = 8) as in M56.146

The atmospheric component in M36 operates at a 2x-2y (i.e., dax = 2 and day = 2)147

resolution, while the ocean component maintains a 2x-4y (i.e., dox = 2 and doy = 4)148

resolution, identical to that of M56.149

It is important to note that the key distinction between M36 and M56 lies150

in the atmosphere, where M36 has a reduced number of atmospheric modes,151

specifically 10 less than M56 in the y-direction. This difference leads to a lack of152

higher-order atmospheric modes in M36, thereby resulting in an inability to capture153

variability on small scales. Consequently, the primary source of model error in this154

study is attributed to the coarse resolution of the model.155

2.2 Ensemble Kalman Filter156

The EnKF is a flow-dependent and multivariate DA method and has been157

implemented for climate prediction (e.g., Karspeck et al., 2013; Wang et al., 2019;158

Zhang et al., 2007). The EnKF constructing the background error covariance from159

the dynamical ensemble is more reliable than other DA methods using the static160

error covariance (e.g., Sakov & Sandery, 2015). Moreover, the utilization of an161

ensemble-based error covariance ensures that the assimilation updates adhere to the162

model dynamics, thereby mitigating assimilation shocks (Evensen, 2003).163

In this study, we utilize the DAPPER package (Raanes, 2018) for conducting164

all experiments, as described in section 2.4 and depicted in Figure 1. Specifically,165

we employ the finite-size ensemble Kalman filter (EnKF-N) method proposed by166

Bocquet et al. (2015). This method automatically estimates the inflation factor, a167

critical parameter in ensemble DA systems, thereby enhancing the performance of168

the assimilation experiments.169
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It is worth mentioning that we expect no significant alterations in the conclu-170

sions of this paper when using the traditional EnKF instead of EnKF-N. Hence, for171

simplicity, we refer to both methods as the EnKF in the following discussions, as172

their differences do not have a substantial impact on the overall outcomes of this173

study.174

2.3 Artificial Neural Network Architecture175

We consider the dynamical model (described in section 2.1) in the following176

form:177

xk+1 = M(xk), (2)

where xk+1 represents the full model state at tk+1, xk represents the full model178

state at tk and M represents the dynamical model integration from time tk to tk+1.179

The model error at time tk+1 is defined as:180

εk+1 = xt
k+1 − xk+1, (3)

where xt
k+1 represents the truth state at time tk+1.181

We aim to use ANN to emulate the model error ε. For simplicity, our ANN182

configuration is set to the same as that of Brajard et al. (2021). The architecture of183

ANN used in this study consists of four layers:184

• The input layer includes a batch normalization layer (Ioffe, 2017), which helps185

to regularize and normalize the training process.186

• The second layer is a dense layer with 100 neurons. It applies the rectified187

linear unit (ReLU) activation function, which introduces non-linearity into the188

network.189

• The third layer has the same configuration as the second layer, with 50 neu-190

rons and ReLU activation function.191

• The output layer, which is a dense layer with a linear activation function192

and produces the final predictions, is optimized using the “RMSprop” op-193

timizer (Hinton et al., 2012) and includes an L2 regularization term with a194

value of 10−4.195

–7–



manuscript submitted to Geophysical Research Letters

During training, the model is trained with a batch size of 128 and for a total of 300196

epochs.197

The error surrogate model can be expressed as follows:198

ε′k+1 = MANN(xk), (4)

where MANN represents the data-driven model built by the ANN and ε′k+1 rep-199

resents the model error estimated by the ANN. The full state at time tk+1 of the200

hybrid model can be expressed as follows:201

xh
k+1 = M(xk) +MANN(xk) (5)

2.4 Experimental settings202

We present the experimental setup in Figure 1. The experiments are conducted203

using two configurations of MAOOAM, as described in section 2.1. The configura-204

tion with 56 variables (referred to as M56, section 2.1) represents the true climate205

system, while the configuration with 36 variables (referred to as M36) represents a206

dynamical prediction system. The experiments (depicted in Figure 1) are performed207

as follows:208

• We integrate the M56 configuration with a time step of approximately 1.6209

minutes for a spin-up period of 30726.5 years, as specified in De Cruz et al.210

(2016). Following the spin-up period, we continue the simulation for an addi-211

tional 219 years, which we refer to as the “truth”. To generate observations,212

we perturb the “truth” state using a Gaussian random noise. The standard213

deviation of the noise is set to 10% of the temporal standard deviation of the214

true state after subtracting the one-month running average (σhf). Observa-215

tions are generated at intervals of approximately 27 hours.216

• We perform a simulation with 50 ensemble members. The initial conditions of217

the ensemble are randomly sampled from a long free-run simulation of M36218

after the spin-up period. We assimilate synthetic observations and generate an219

analysis dataset with an ensemble size of 50.220
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• We generate two sets of ensemble predictions, each consisting of 50 members.221

The first set is based on the dynamical model (M36), while the second set222

is based on the hybrid model. The prediction experiments start in each sec-223

ond year from the year 125 to the year 185, with each experiment lasting for224

30 years. Each prediction consists of 50 ensemble members. The initial con-225

ditions for these ensembles are taken from the analysis conducted (refer to226

Figure 1).227

We split the analysis into two parts:228

• Training data: The former 124.6 years of the dataset are used to train the229

ANN parameters to build the hybrid model (Figure 1).230

• Validation/testing data: The latter 94.6 years of the dataset are used to vali-231

date the ANN training and initialize prediction experiments (Figure 1).232

It is worth noting that we employ the identical ANN configurations as outlined in233

Brajard et al. (2021) who have developed the methodology in MAOOAM. In this234

study, the ANN parameters are trained only once, without any modifications to the235

ANN model throughout the training process. We examined the loss curves (Fig-236

ure S1) to assess the suitability of the ANN model for our specific application. The237

training curves provided evidence that the network was continuing to learn through-238

out the training process. To simplify, we utilize the same dataset for both validation239

and testing purposes.240

Brajard et al. (2021) focused on developing the hybrid model methodology, our241

study aims to explore the evolution of prediction skill as a function of lead time. We242

assess the prediction skill over a wider range of lead times, specifically up to 20 days243

for atmospheric variables and up to 30 years for oceanic variables. By examining244

the skill at various lead times, we can gain insights into the temporal evolution and245

long-term performance of the hybrid model, providing a more comprehensive under-246

standing of their capabilities and limitations. To do so, our experimental setup is247

different in the following ways:248

• We extended the simulation time to 219.2 years, while Brajard et al. (2021)249

generated an analysis dataset spanning 62 years for training, validation and250

testing. We divided the dataset into two distinct parts: one for training the251
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ANN and the other for validation/test purposes. This separation allows us to252

independently evaluate the performance of the trained ANN using data that253

was not used during the training phase.254

• Our experiments utilize the analysis as initial conditions, while Brajard et al.255

(2021) using perfect initial conditions (i.e., the truth) to initialize predictions.256

This choice reflects a more realistic scenario, as perfect knowledge of initial257

conditions is rarely available in the real framework. By using the analysis as258

initial conditions, we aim to capture the practical challenges associated with259

imperfect knowledge of the initial state in climate prediction.260

• Our study incorporates an ensemble prediction strategy with 50 members,261

while Brajard et al. (2021) performed predictions using a single member (i.e.,262

deterministic prediction). In the climate prediction community, probabilis-263

tic forecasts based on ensembles are widely recognized. Ensembles provide a264

valuable means of quantifying uncertainty in climate predictions by generating265

multiple realizations rather than a single deterministic prediction.266

2.5 Validation metrics267

To evaluate the prediction skill, we employ the root mean square skill score268

(RMSE-SS), a commonly used metric in weather forecasting and climate prediction.269

The RMSE-SS compares the root mean square error (RMSE) of the prediction to270

the RMSE of a persistence prediction. It is defined as:271

RMSE− SS = 1− RMSEprediction

RMSEpersistence
, (6)

where RMSEprediction represents the RMSE between the prediction (ensemble mean)272

and the corresponding truth and RMSEpersistence represents the RMSE between a273

persistence prediction (where the state remains the same as the initial conditions)274

and the truth. A positive RMSE-SS indicates that the prediction outperforms the275

persistence and demonstrates skill. On the other hand, a negative RMSE-SS indi-276

cates that the prediction performs worse than the persistence and lacks skill. By277

utilizing the RMSE-SS, we can assess and compare the skill of the predictions gener-278

ated by the dynamical model and the hybrid model across different variables within279

the same panel, as shown in Figure 2.280
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To assess the significance of the RMSE-SS results, we employ a two-tailed Stu-281

dent’s t-test to compare the mean squared errors of the prediction and persistence.282

This statistical test helps determine if the difference between the two sets of errors283

is statistically significant. To estimate the uncertainties of the RMSE-SS, we uti-284

lize the bootstrap method. We randomly select, with replacement, 30 data points285

from the 30 prediction experiments and calculate the RMSE-SS based on this sam-286

pled data. This procedure is repeated 10,000 times, resulting in a sample of 10,000287

RMSE-SS values. The standard deviation of this sample is then used to estimate288

the uncertainties associated with the RMSE-SS. By conducting the t-test and uti-289

lizing the bootstrap method, we can obtain a more comprehensive understanding of290

the significance and reliability of the RMSE-SS values obtained from the prediction291

experiments.292

3 Result293

3.1 Prediction skill294

Figure 2a presents the prediction skills of the dynamical model for atmospheric295

temperature (θa) and stream function (ψa). Notably, the variables associated with296

lower-order atmospheric modes, such as ψa,2, ψa,3, θa,2, and θa,3, exhibit significant297

prediction skills for up to 14 days. On the other hand, the temperature in higher-298

order modes demonstrates significant prediction skills within an 8-day lead time,299

while the stream function in higher-order modes shows no prediction skill through-300

out the forecast period.301

Figure 2b shows the prediction skills of the hybrid model for atmospheric vari-302

ables. Regarding temperature, the hybrid model exhibits skillful predictions for up303

to 18 days across most modes. For the stream function, the hybrid model demon-304

strates skillful predictions for lower-order atmospheric modes for up to 20 days and305

for higher-order modes for up to 14 days (with the exception of ψa,9, which extends306

up to 20 days). Overall, the hybrid model outperforms the dynamical model signifi-307

cantly in terms of prediction skills for atmospheric variables.308

Figure 2c illustrates the prediction skills of the dynamical model for oceanic309

temperature and stream function. Due to the lower variability of the ocean com-310

pared to the atmosphere, the dynamical model displays significant prediction skills311
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for oceanic temperature for up to 30 years in most modes, as well as for oceanic312

stream function in certain modes. Notably, temperature exhibits higher predictabil-313

ity compared to the stream function. However, the ocean stream function variables314

with even numbers exhibit a lack of skill, which may be attributed to the discrep-315

ancy in resolution in the y-direction between the true model’s atmosphere and the316

dynamical model.317

In Figure 2d, the prediction skills of the hybrid model are presented. The hy-318

brid model demonstrates significant prediction skills for both oceanic temperature319

and stream function across all modes for up to 30 years. It is worth mentioning that320

the hybrid model yields higher RMSE-SS values compared to the dynamical model,321

particularly for oceanic temperature in the first and last modes, as well as for cer-322

tain oceanic stream functions where the dynamical model shows no prediction skill323

at all (e.g., ψo,2 and ψo,6).324

In Movies S1-S4, we provide examples of restoring variables in the physical325

space. These examples highlight that the hybrid model exhibits a closer behavior to326

the truth in terms of spatial distribution and temporal evolution compared to the327

dynamical model. For long-term climate prediction, there are additional require-328

ments that the hybrid model must meet. Specifically, the model should be capable329

of running for extended periods without diverging or exhibiting significant physical330

instability. In our study, we find that the hybrid model maintains stability and does331

not experience significant physical instability during the 30-year prediction period.332

The overall performance of the hybrid model surpasses that of the dynamical333

model, demonstrating the advantages of incorporating a data-driven error correction334

model constructed by the ANN. This highlights the potential benefits of leveraging335

data-driven approaches to improve climate predictions.336

3.2 Sensitivity experiments337

In this section, we extend our analysis by constructing two additional hybrid338

models to assess the importance of correcting atmospheric and oceanic errors sep-339

arately. These models are trained using the same inputs as in the previous section340

but are designed to correct either only atmospheric errors or only oceanic errors. By341

comparing the prediction skills of the three key variables of MAOOAM (Vannitsem,342
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2015) - ψa,1, ψo,2, and θo,2 - in these hybrid models, we aim to identify which com-343

ponent’s error correction has a greater impact on the predictions. Through this344

analysis, we gain insights into the relative importance of atmospheric and oceanic345

error correction for the overall prediction performance.346

In Figure 3a, we present the prediction skill of different models specifically for347

the key atmospheric variable ψa,1. Please refer to Figures S2 and S3 for the predic-348

tion skill of other atmospheric variables. We observe that there is minimal difference349

in prediction skill between correcting only the atmospheric errors (purple line) and350

correcting both the atmospheric and oceanic errors (cyan line). When comparing351

the hybrid models with the dynamical model result (black dashed line), we find that352

correcting only the oceanic errors (blue line) does not lead to improvements in at-353

mospheric prediction within a 20-day lead time. This suggests that the influence of354

low-frequency variability originating from the ocean has a limited impact on short-355

term predictions of atmospheric variables. These findings indicate that atmospheric356

error correction plays a more significant role in improving the short-term prediction357

skill of ψa,1, while the oceanic error correction alone does not provide noticeable358

benefits in this context.359

In Figures 3b and 3c, we focus on the prediction skill of various hybrid models360

for the two crucial oceanic variables, ψo,2 and θo,2. Please refer to Figures S4 and361

S5 for prediction skill analysis of other oceanic variables. Our results reveal that362

the highest prediction skill over a 30-year period is achieved when both atmospheric363

and oceanic errors are corrected (cyan line). For ψo,2, correcting solely oceanic er-364

rors (blue line) yields a minor enhancement. When correcting atmospheric errors365

(purple line), a noticeable improvement in prediction skill occurs except for the366

first five years. This phenomenon may stem from the time required for the oceanic367

processes to adjust to an error-corrected atmosphere. Regarding θo,2, we note that368

either correcting oceanic errors (blue line) or atmospheric errors (purple line) re-369

sults in positive RMSE-SS values. This suggests that both forms of error correction370

contribute to enhancing the prediction skill of θo,2. Furthermore, these two hybrid371

models significantly outperform the results of the dynamical model (black dashed372

line) from lead year 15 to lead year 25. In summary, the correction of both atmo-373

spheric and oceanic errors proves to be more effective in enhancing prediction accu-374
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racy for oceanic variables compared to addressing just one component. Noteworthy375

improvements are observable, particularly after a few years of prediction.376

4 Conclusions and Discussions377

In this study, we applied a method to online correct the error in a simplified378

ocean-atmosphere coupled model (MAOOAM). We constructed a data-driven pre-379

dictor of model error with the ML techniques and integrated it with the dynamical380

model, creating a hybrid statistical-dynamical model. By incorporating the model381

error correction through the hybrid model, we significantly enhanced the prediction382

skills of both atmospheric and oceanic variables at different lead times. This ap-383

proach allowed us to mitigate the limitations of the dynamical model and achieve384

more accurate climate predictions.385

We also investigated the impact of correcting either atmospheric or oceanic386

model errors individually. Our findings revealed that correcting both atmospheric387

and oceanic errors achieved the best prediction skill for short-term atmosphere pre-388

diction and long-term ocean prediction. Correcting only oceanic errors showed some389

improvement in long-term ocean prediction but a very limited effect on short-term390

atmosphere prediction. On the other hand, correcting only atmospheric errors effec-391

tively improved short-term atmosphere prediction and slightly enhanced long-term392

ocean prediction.393

This study serves as a proof of concept, demonstrating the potential of using394

ML to learn and correct climate model errors, thus enhancing the prediction skills of395

climate models. Future applications could involve applying this method to realistic396

climate models, which are inherently more complex than MAOOAM, and exploring397

the prediction skills under such conditions.398
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(c) Dynamical model
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(d) Hybrid model
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Figure 2. RMSE-SS as a function of the prediction lead time for different variables. (a,c)

The RMSE-SS of the dynamical model (b,d) the RMSE-SS of the hybrid model. The black dot

indicates the RMSE-SS does not exceed the 95 significance test.
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Figure 3. RMSE-SS for three key variables (a) ψa,1, (b) ψo,2 and (c) θo,2 as a function of lead

time (20 days for the atmospheric variable and 30 years for the ocean variables). The cyan line

represents the RMSE-SS of the hybrid model that corrects both atmospheric and oceanic model

errors. The purple line corresponds to the RMSE-SS of the hybrid model that corrects only at-

mospheric model errors, while the blue line represents the RMSE-SS of the hybrid model that

corrects only oceanic model errors. The dashed black line represents the RMSE-SS of the dynam-

ical model. The shading represents one standard deviation calculated using the bootstrap method

described in section 2.5. The shaded area provides an estimate of the uncertainty associated with

the RMSE-SS values.
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4. Movie S4: Same as Movie S1 but for oceanic stream function.

Introduction This supporting information file contains supporting figures for the training

curves (Figure S1) and RMSE-SS of sensitive experiments for all variables (Figures S2-S5).
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Figure S2. RMSE-SS for all atmosphere streamfunctions as a function of lead time. The cyan

line represents the RMSE-SS of the hybrid model that corrects both atmospheric and oceanic

model errors. The purple line corresponds to the RMSE-SS of the hybrid model that corrects

only atmospheric model errors, while the blue line represents the RMSE-SS of the hybrid model

that corrects only oceanic model errors. The dashed black line represents the RMSE-SS of the

dynamical model. The shading represents one standard deviation calculated using the bootstrap

method. The shaded area provides an estimate of the uncertainty associated with the RMSE-SS

values.
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Figure S3. Same as Figure S2 but for atmosphere temperature.
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Figure S4. Same as Figure S2 but for oceanic streamfunction.
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Figure S5. Same as Figure S2 but for oceanic temperature.
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