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Abstract

Internal solitary waves (ISWs) have considerable energy to drive the mixing of water masses in the Sulu Sea. The propagation

speed is a critical parameter in demonstrating the dynamic characteristics of ISWs. We collected 1354 groups of ISWs’ speeds

from tandem satellite remote sensing images with short temporal intervals and analyzed their spatial and multi-scale temporal

variations in the Sulu Sea. The wave speeds increase exponentially with water depth with a power of 0.26. The fortnightly

spring/neap tidal currents cause daily variations of wave speeds up to 30%. In addition to the well-recognized stratification

that leads to monthly variations of wave speed, the seasonal circulations lead to a maximum decrease of wave speeds by 0.27

m/s. With respect to interannual variations, the wave speeds increase in La Niña years and decrease in El Niño years, caused

by the climatic modulation of ocean stratification.
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Key Points:  14 

• Satellite observations yield wave speeds of ISWs in the Sulu Sea presenting multi-scale 15 
temporal variations from days to years.  16 

• Tidal currents and seasonal circulations significantly modulate the wave speed.  17 

• Evidence for interannual variation of wave speed driven by ENSO is presented. 18 
  19 
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Abstract 20 

Internal solitary waves (ISWs) have considerable energy to drive the mixing of water 21 
masses in the Sulu Sea. The propagation speed is a critical parameter in demonstrating the 22 
dynamic characteristics of ISWs. We collected 1354 groups of ISWs’ speeds from tandem 23 
satellite remote sensing images with short temporal intervals and analyzed their spatial and 24 
multi-scale temporal variations in the Sulu Sea. The wave speeds increase exponentially with 25 
water depth with a power of 0.26. The fortnightly spring/neap tidal currents cause daily 26 
variations of wave speeds up to 30%. In addition to the well-recognized stratification that leads 27 
to monthly variations of wave speed, the seasonal circulations lead to a maximum decrease of 28 
wave speeds by 0.27 m/s. With respect to interannual variations, the wave speeds increase in La 29 
Niña years and decrease in El Niño years, caused by the climatic modulation of ocean 30 
stratification.  31 

Plain Language Summary 32 

Internal solitary waves (ISWs) are a subsurface analogy of surface gravity waves. They 33 
are characterized by large vertical isopycnal displacements and strong current shears. 34 
Understanding their characteristics and variations is essential to know how they generate and 35 
dissipate. The Sulu Sea, which has high-frequency and strong ISWs, is a natural laboratory for 36 
exploring the secrets of ISWs. The propagation speed is one of the critical parameters in studying 37 
the characteristics of the dynamical processes of ISWs. In this paper, we collected 1354 groups 38 
of ISWs’ speeds in the Sulu Sea using tandem satellite images and analyzed their spatiotemporal 39 
variations. The results reveal that the variations of ISWs’ speeds are primarily dependant on 40 
water depth, ocean stratification and background currents. Above all, it is the first time to give 41 
observational evidence about the appreciable effect of tidal currents, seasonal circulations, and El 42 
Niño Southern Oscillation on ISWs’ speeds from days through months to years. 43 

1 Introduction 44 

Internal solitary waves (ISWs) are ubiquitous oceanic dynamics, characterized by a 45 
temporal scale of tens of minutes and a spatial scale of hundreds to thousands of meters (Zheng 46 
and Klemas, 1993; Apel, 2002; Jackson, 2004). They present an indispensable step for the 47 
energy cascade from barotropic tides to diapycnal mixing (Garrett, 2003; Mackinnon et al., 48 
2017). Moreover, ISWs greatly affect acoustic propagation (Zhou et al., 1991; Apel et al., 2007; 49 
Lynch et al., 2010), submarine navigation (Osborne et al., 1978; Wang et al., 2022), nutrient 50 
distribution (Haury et al., 1979; Wang et al., 2007), and sediment transport (Da Silva, 2002). 51 
Understanding their characteristics, variability, formation, and fate is important to parameterize 52 
their mixing in numerical climate models (Alford et al., 2015). 53 

Sulu Sea (SS, Figure 1a) is a natural laboratory to study the characteristics and dynamic 54 
processes of ISWs (Apel et al., 1985; Liu et al., 1985; Liu et al., 2019). The ISWs in the SS are 55 
thought to be generated by the lee-wave mechanism (Apel et al., 1985). The ebb tide traps a 56 
thermocline depression; then, as the tide turns, the depression escapes upstream over the sill 57 
barrier. They are formed near the Pearl Bank sill and propagate through the basin to dissipate as 58 
they reach Palawan Island (Apel et al., 1985; Jackson et al., 2011). During their lifetime in the 59 
SS, complex factors can affect the ISWs’ generation and evolution: the fortnightly spring/neap 60 
tidal cycle, seasonal circulations in the upper layer (Cai et al., 2009; Han et al., 2009), and the 61 
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climate effect related to the El Niño–Southern Oscillation (ENSO) (Klein et al., 1999). However, 62 
how these factors affect the dynamic processes of ISWs in the SS is still poorly understood.  63 

Propagation speed is one of the critical parameters to understanding dynamics and 64 
energetics of the ISWs (Jackson et al., 2009; Lien et al., 2012; Zhang et al., 2022), also called 65 
wave speed (Liu et al., 1985). Many studies have tried to figure out the characteristics and 66 
variations of wave speed. By deploying moorings along a wave propagation path, researchers 67 
estimate wave speed according to the wave arrival times at nearby moorings (Ramp et al., 2010; 68 
Huang et al., 2017). However, field experiments are often costly and may introduce uncertainties 69 
due to the considerable distance between mooring sites. Since the launch of the SEASAT in 70 
1978, satellite remote sensing has been proven to be a powerful tool in investigating ISWs 71 
(Alpers et al., 1985; Da Silva et al., 1998; Jackson et al., 2007). With the advantage of large 72 
spatial coverage and high temporal resolution, satellite images are widely used for estimating 73 
wave speed. In the early days, the wave speed was roughly calculated with a single satellite 74 
image containing two wave packets separated by one tidal period (Porter and Thompson, 1999; 75 
Li et al., 2000; Liu et al., 2004). Later, the emergence of multi-source and multi-type satellites 76 
provides conditions for using tandem satellite images to calculate the wave speed (Liu et al., 77 
2014).  78 

Based on satellite observations and field measurements, many studies show that wave 79 
speed is primarily dependent on water depth (Jackson et al., 2009; Liu et al., 2014; Lindsey et al., 80 
2018; Liu et al., 2019; Tensuban et al., 2021) and has seasonal variations mainly controlled by 81 
ocean stratification (Gises et al., 1998; Liu et al., 2014; Cho et al., 2016; Liu et al., 2019). 82 
However, in this study, we found that the wave speed in the SS is also strongly modulated by 83 
tidal currents, seasonal circulations, and ENSO. Thus, the wave speed in the SS exhibits a multi-84 
scale temporal variation, from daily through monthly to interannual variation due to the 85 
abovementioned environmental factors. 86 

Here, we show such a multi-scale variation of wave speed by in the SS by collecting 87 
1354 groups of wave speeds using tandem satellite images with temporal intervals typically 88 
shorter than 20 minutes. The details of the data and method are described in Section 2. Section 3 89 
presents the spatial and multi-scale temporal variations of the wave speeds. Discussion and 90 
conclusions are in Section 4.  91 

2 Data and Methods 92 

2.1 Satellite images  93 

This study uses satellite images taken by Moderate Resolution Imaging 94 
Spectroradiometer (MODIS) onboard Aqua and Visible Infrared Imaging Radiometer Suite 95 
(VIIRS) onboard Suomi National Polar-orbiting Partnership (NPP) satellites. The former has a 96 
swath of 2330 km and the latter has an even wider swath of 3060 km. The MODIS and VIIRS 97 
data have a spatial resolution of 250 m and 375 m, respectively. Large swath coverage and 98 
moderate spatial resolution of the two sensors are particularly effective in tracking ISWs with 99 
spatial scales of thousands of meters in the SS. Combining the two sensors additionally yields 100 
short temporal intervals of observations for accurate estimation of wave speeds. Finally, we 101 
collected 41 image pairs acquired by NPP/VIIRS and AQUA/MODIS (called NPP-AQUA pair 102 
hereafter) from 2015 to 2022 with temporal intervals ranging from 5 to 19 minutes.  103 
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2.2 ISW speeds estimated from tandem satellite images 104 

The MODIS and VIIRS data are projected into GCS_WGS_1984 geographic coordinate 105 
system. We draw a line normal (white arrows in Figure 1b) to the two dark strips of the same 106 
ISW observed by two satellites (red and blue lines) and then measured the length of the normal 107 
line. The wave speed was calculated by dividing the spatial displacement of the ISW by the 108 
temporal interval of the two satellite images. In total, 1354 groups of wave speeds were obtained, 109 
and their spatial distribution is shown in Figure 1a.  110 

 111 

Figure 1. (a) The spatial variation of the wave speeds in the Sulu Sea. Each dot represents a 112 
displacement of ISW and its color means the magnitude of wave speed. The gray line is the 113 
isobath and the black line is the coastline. The blue solid rectangles show the study region for 114 
Section 3.2. (b) presents an NPP-AQUA pair of images acquired on 3 May 2022. The red and 115 
blue lines are the wave crests in the MODIS and VIIRS images, respectively. White arrows 116 
represent the displacements of the ISW.The yellow line represents 1000 m isobath. (c) shows the 117 
variation of wave speed with water depth. The black line represents the fitting curve.  118 

2.3 Linear phase speeds derived from the Sturm-Liouville equation  119 

The phase speed of a linear internal wave can be determined by solving the Sturm-120 
Liouville (S-L) equation (Gill, 1982)  121 𝑑𝑑𝑧 (𝑈 (𝑧) − 𝑐 ) 𝑑𝜑𝑑𝑧 + 𝑁 𝜑 = 0 (1) 
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subject to the boundary conditions: 122 𝜑(0) = 𝜑(−𝐻) = 0 (2) 

where 𝜑 and 𝑐  represent the vertical structure and linear phase speed, respectively. 𝑈 (z) is the 123 
background current velocity. 𝑁  is the squared buoyancy frequency relating to the stratification. 124 𝐻 is water depth. Information about bathymetry, ocean stratification, and background currents 125 
are all needed to solve equation (1). We obtained the local bathymetry in 15 arc-second interval 126 
grids from GEBCO_2022 datasets (GEBCO Compilation Group, 2022). The Hybrid Coordinate 127 
Ocean Model (HYCOM) run at 1/12o resolution provides information about ocean stratification 128 
and background current (Chassignet et al., 2007). Argo profiling data in 2007, 2008, 2009, and 129 
2015 to 2019 are used to obtain actual ocean stratification data (see details in S1). 130 

In a two-layer ocean model, 𝑐  can be calculated by 131 

𝑐 = 𝑔𝜎ℎ ℎℎ + ℎ  (3) 

where ℎ  and ℎ  are the upper and lower depths, respectively. 𝑔 is the gravitational acceleration, 132 𝜎 = 2(𝜌 − 𝜌 )/(𝜌 + 𝜌 ) is the relative layer density difference, and  𝜌 (𝜌 ) is the density of 133 
the upper (lower) layer.  134 

ISWs are nonlinear waves, and thus their wave speed 𝑐 is not equal to the linear phase speed 135 𝑐 . According to the Korteweg-de Vries (KdV) theory, the two speeds are related by the 136 
following equation: 137 𝑐 = 𝑐 + 𝛼𝜂3  (4) 

where 𝜂  is the wave amplitude and α is the nonlinear coefficient. Equation 4 predicts that wave 138 
speed consistently exceeds linear phase speed because the productive of α and 𝜂  is positive. 139 

3 Spatiotemporal characteristics of ISW speed 140 

3.1 Spatial variation  141 

As shown in Figure 1a, the wave speeds roughly increase from the shallow Pearl Bank 142 
(5.87oN, 119.8oE), peak at the place near 7oN (the marked Region I), and then gradually decrease 143 
towards Palawan Island. For a single ISW, its speed decreases from east to west, corresponding 144 
to a decreasing water depth. For example, in Figure 1b, the ISW acquired on 3 May 2022 has a 145 
higher average speed (2.32 m/s) on the east side of the 1000 m isobath than on its west side (1.71 146 
m/s). Thus, the bathymetry in the SS has a significant impact on the spatial variation of wave 147 
speeds. We derived the relationship between the wave speeds (𝑐 ) and water depth (𝐻), as 148 
presented by the fitting curve (black line) in Figure 1c. The fitting formula is: 149 𝑐 = 0.421 × (0.274 × 𝐻 + 0.647) .  (5) 
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The formula suggests that the wave speeds increase exponentially with water depth with a power 150 
of 0.26, indicating that the water depth significantly modulates the wave speeds. Thus, this 151 
strong bathemetry effect may interfere with our study of the impacts of tidal currents, ocean 152 
stratification, and background currents on wave speeds.To reduce this interference, here, we 153 
define 𝐻  = 500 m as the threshold (see details in S2), beyond which the the effect of bathymetry 154 
can be neglected.  155 

In addition, Figure 1c demonstrates that wave speeds vary considerably for the same 156 
water depth, suggesting the temporal variations and manual error in estimating wave speeds from 157 
satellite images. Statistically, based on a large amount of data, the manual error will not 158 
influence the following analysis about the temporal variations of wave speeds. 159 

3.2 Daily variation 160 

According to equation 4, tidal currents may influence the wave speed by changing the 161 
wave amplitude 𝜂  (Apel et al., 1985). To explore the effect of tidal currents, we delineated 162 
Region Ⅰ (see details in S3) as the study area where wave speeds from 16 ISWs were extracted. 163 
We compared these wave speeds and their linear counterparts with the maximum ebb tidal 164 
current speeds corresponding to the wave generation. The dark-red dots in Figure 2a are the 165 
satellite-derived wave speeds, which reveals that they increase by 31% when the maximum ebb 166 
current speeds increase from 50 cm/s to 91 cm/s. The fitting function is:  167 𝑐 = 8.85 × 10 × 𝑈 + 2.055 (6) 

where 𝑈  represents the maximum ebb tidal current speed predicted by the barotropic 168 
tidal models. Here we use the regional TPXO tidal solutions in the Indian Ocean (Egbert and 169 
Erofeeva, 2002). The estimation of 𝑈  is described in the S4. It is the first time to show 170 
how the tidal currents quantitively affect the wave speeds (Equation 6).  171 

The strong tidal current creates ISWs with large amplitude (Wang et al., 2011); the larger 172 
the amplitude, the greater the nonlinear part of the wave speeds (𝛼𝜂 /3 in equation 4). However, 173 
the linear phase speed (the dark-blue dots in Figure 2a) is independent of wave amplitude and 174 
varies with ocean stratification and background currents. The speeds used here are all acquired in 175 
April, May and June (called AMJ month hereafter, seeing details in S3). Thus, ocean 176 
stratification and background currents (dominated by monsoon) have small change, and so do the 177 
linear phase speeds. 178 

Figure 2b presents the 𝑈  and the corresponding wave speeds estimated from 179 
equation 6 in a typical spring/neap tidal cycle, showing synchronized changes in the 𝑈  180 
and wave speeds on a daily scale. The wave speeds increase by 30% from the neap to spring tide 181 
period, indicating that tidal currents significantly impact the daily variation of the wave speeds.  182 



manuscript submitted to Geophysical Research Letters 

 

Figure 2. (a) The relationship between the satellite-derived speeds (red dots) and their linear 183 
phase speeds (dark-blue dots) with the maximum ebb tidal current speeds. The lines with 184 
different colors represent the fitting curve for the corresponding scatterd dots. (b) The maximum 185 
ebb tidal currents (red triangles) and the corresponding wave speeds (dark-blue circles)in a 186 
typical spring/neap tidal cycle from 20 June 2021 to 5 July 2021.  187 

3.3 Monthly variation 188 

In this section, 1231 groups of wave speeds (see details in S3) were used to study their 189 
monthly variation (𝑐 in Figure 3a). The wave speed decreases from January to February, and 190 
then fluctuates up until August. After that, it rapidly drops to the lowest value in October and 191 
then maintains its upward trend until December.  192 

Ocean stratification is a recognized factor that impacts the monthly wave speed variation. 193 
To analyze the effects of stratification on wave speeds, we collected profiling data from all Argo 194 
floats in the SS to derive monthly averages of the maximum value of buoyancy frequency 195 
(𝑁 ) and the depth at 𝑁  (𝑁 ), which are shown in Figure 3b and 3c, respectively. 196 
It is worth noting that the ISWs were not detected in tandem satellite images in July during 2015 197 
to 2022, therefore, the 𝑁  and 𝑁  in July are also excluded in comparsion. From 198 
Figure 3a to 3c, we found that 𝑁  (𝑁 ) reaches its highest (lowest) in August, while 199 
the corresponding wave speed is also the largest in August. This result can be explained by 200 
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equation 3: higher 𝑁  and lower 𝑁  imply larger 𝜎  and higher ℎ , and thus higher 201 
linear phase speed of ISW, suggesting the enhanced ocean stratification increases wave speeds.  202 

 203 

Figure 3. (a) The monthly variations of satellite-derived wave speeds (𝑐), HYCOM-derived 204 
linear phase speeds without (𝑐 ) and with (𝑐 (𝑈 )) background currents. (b) and (c) presents the 205 
monthly variation of 𝑁  and 𝑁  estimated from Argo profiling data, respectively. The 206 
vertical bars represent ranges of one standard deviation. 207 

 208 

Previous studies show a basin-scale anticyclonic/cyclonic circulation in the upper layer of 209 
SS caused by the summer/winter monsoon (Cai et al., 2009; Han et al., 2009). This unique 210 
feature may also play a role in modulating the monthly variation of wave speeds. Here, we used 211 
the HYCOM datasets to estimate the corresponding linear phase speeds of the satellite-derived 212 
wave speeds (𝑐) through equation 1 without (𝑐 ) and with (𝑐 (𝑈 )) background currents (𝑈 (z) 213 
in equation 1). The monthly variations of 𝑐 , 𝑐 , and 𝑐 (𝑈 )  in Figure 3a show that the 214 
background currents do modulate the wave speeds, especially from October to March with 215 
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differences up to 0.27 m/s between 𝑐  and 𝑐 (𝑈 ) , indicating that the background currents 216 
impact the monthly variation of the wave speeds.  217 

There are some other interesting findings in Figure 3a. In October and November, the 𝑐  218 
are higher than 𝑐, contrary to the KdV theory (equation 4). After superimposing the background 219 
currents, the result in November is consistent with the KdV theory, but the result in October still 220 
challenges it. The reason for this condradiction may be a flaw in the KdV theory or the 221 
uncertainty of the model-derived stratification for calculating phase speeds. 222 

3.4 Interannual variation 223 

On interannual scales, the ENSO affects the stratification of the SS by changing 224 
precipitations and sea surface temperature. Generally, the stratification is strengthened in La 225 
Niña years and weakened in El Niño years (DeCarlo et al., 2015; Emberson et al., 2021). The 226 
occurrence of La Niña and El Niño years can be diagnosed by the NINO3.4 index of ENSO 227 
(Trenberth and Stepaniak, 2001). To investigate the effect of ENSO on wave speed, we collected 228 
all available Argo profiling data in the SS for estimating the 𝑁  and  𝑁 . Figure 4a, 4b 229 
and 4c show the interannual variations of 𝑁 , 𝑁 , and the NINO3.4 index, respectively. 230 
The 𝑁  increases and the 𝑁  decreases with the decrease of the NINO3.4 index. 2015 231 
was a strong El Niño year, in which the 𝑁  reaches its lowest value among the eight years and 232 𝑁  also becomes shallow. The Pearson correlation coefficients are -0.46 (the NINO3.4 233 
index and 𝑁 ) and 0.68 (the NINO3.4 index and 𝑁 ), suggesting that stratification was 234 
enhanced with the decrease of the NINO3.4 index. Besides, according to Section 3.3, greater 235 𝑁  and smaller 𝑁  imply greater 𝑐 , indicating that there is a negative correlation 236 
between wave speed and NINO3.4 index. 237 

We collected 759 wave speeds from 46 ISWs to examine our analysis of the impact of 238 
ENSO on wave speeds (see details in S3). The comparison between wave speed and the 239 
NINO3.4 index from 2016 and 2022 (no ISW was detected in tandem satellite images in the 240 
AMJ month of 2015) is made with the following cautions: the NINO3.4 index used here is the 241 
average of AMJ month for each year to ensure the consistency of data during comparison since 242 
the wave speeds are only collected in the AMJ month.  243 

The interannual variations of wave speeds (Figure 4d) and the NINO3.4 index (Figure 4e) 244 
are presented. Their Pearson correlation coefficient is -0.79, suggesting that there is a strong 245 
year-to-year inverse correlation between wave speed and the NINO3.4 index. In specific, the 246 
wave speed increases in La Niña years and decreases in El Niño years, in agreement with our 247 
theoretical analysis based on the Argo data. 248 
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 249 

Figure 4. The interannual variations: the annual averages of the 𝑁  (a) and the 𝑁  (b) 250 
from Argo profiling data in the Sulu Sea and the NINO3.4 index (c) in 2007, 2008, 2009, 2015, 251 
2016, 2017, 2018, and 2019; the averages of wave speeds (d) and the NINO3.4 index (e) in AMJ 252 
month from 2016 to 2022. The vertical bars represent ranges of one standard deviation. 253 

4 Summary and Discussion  254 

In this study, we collected 1354 groups of wave speeds in the SS from tandem satellite 255 
images with temporal intervals below 20 minutes. Based on these data, we analyzed their 256 
spatiotemporal variations and identified the potential contributing factors. The full picture of the 257 
spatial variation of wave speeds has been provided, and the multi-scale temporal variations from 258 
daily through monthly to interannual variations have also been demonstrated. Tidal current plays 259 
a significant role in modulating the daily changes of wave speeds by dominating the wave’s 260 
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amplitude, while the combined effect of ocean stratification and background circulations 261 
modifies the monthly variation of wave speeds. The interannual variation of wave speeds 262 
contributed by ENSO is also found. We found that the Pearson correlation coefficient between 263 
wave speeds and the NINO3.4 index of ENSO is -0.79. The high negative correlation suggests 264 
that ISWs have a speedup in La Niña years and a slowdown in El Niño years. 265 

We present a statistical formula for the close relationship between the wave speed and the 266 
maximum ebb tidal current speed, which has never been shown in previous studies due to the 267 
limited data volume (Apel et al., 1985; Zhao et al., 2006). The results support the study about the 268 
modulation of tidal currents on the amplitude of ISWs. However, how the tidal currents 269 
quantitatively modulate the wave amplitude needs further study.  270 

According to the monthly averages of the wave speeds and their linear phase speeds, we 271 
found that the latter is higher than the former in October (Figure 3a), contrary to the KdV theory. 272 
Similar situations happened in previous studies (Liu et al., 2019; Tensubam et al., 2021) but were 273 
attributed to the background current that was not considered when estimating the linear phase 274 
speeds. However, our results reveal that even though the background circulation has been 275 
included, the result in October still cannot be explained by the KdV theory. Deficiencies of the 276 
KdV theory or the uncertainty of the model-derived stratification for calculating phase speeds 277 
may take this responsibility. In the future, further theoretical derivations, field measurements, 278 
and numerical simulations should be carefully designed and performed to interpret this 279 
interesting finding in October and improve the theoretical system for describing the 280 
characteristics of the ISWs. 281 

We present for the first time a clear effect of ENSO on the wave speeds, which does not 282 
focus exclusively on the effect of ENSO on the occurrence frequency of ISWs, as in previous 283 
studies (DeCarlo et al., 2015; Chonnaniyah et al., 2021), but is more concerned with their 284 
dynamical processes. However, we have to point out that this study is restricted to a single 285 
season (spring) due to data limitations. More research on interannual variation of wave speed in 286 
different seasons  are needed for verification in the future. Additionally, the same analysis can be 287 
expanded to study the interannual variations of wave speed and its relationship with ENSO in 288 
other hot spot regions, such as the SCS (Qu et al., 2004; Fang et al., 2006) and the Lombok Strait 289 
(Aiki et al., 2011), where there are strong ISWs and significant impacts from ENSO. 290 
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