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Constantin Bône1, Guillaume Gastineau2, Sylvie Thiria3, Patrick Gallinari4, and Carlos E
Mejia5

1LOCEAN, ISIR,Sorbonne Université/CNRS/IRD/MNHN
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Abstract

The internal variability pertains to fluctuations originating from processes inherent to the climate component and their mutual

interactions. On the other hand, forced variability delineates the influence of external boundary conditions on the physical

climate system. A methodology is formulated to distinguish between internal and forced variability within the surface air

temperature. The noise-to-noise approach is employed for training a neural network, drawing an analogy between internal

variability and image noise. A large training dataset is compiled using surface air temperature data spanning from 1901 to

2020, obtained from an ensemble of Atmosphere-Ocean General Circulation Model (AOGCM) simulations. The neural network

utilized for training is a U-Net, a widely adopted convolutional network primarily designed for image segmentation. To assess

performance, comparisons are made between outputs from two single-model initial-condition large ensembles (SMILEs), the

ensemble mean, and the U-Net’s predictions. The U-Net reduces internal variability by a factor of four, although notable

discrepancies are observed at the regional scale. While demonstrating effective filtering of the El Niño Southern Oscillation, the

U-Net encounters challenges in areas dominated by forced variability, such as the Arctic sea ice retreat region. This methodology

holds potential for extension to other physical variables, facilitating insights into the enduring changes triggered by external

forcings over the long term.
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Abstract15

The internal variability pertains to fluctuations originating from processes inherent to16

the climate component and their mutual interactions. On the other hand, forced vari-17

ability delineates the influence of external boundary conditions on the physical climate18

system. A methodology is formulated to distinguish between internal and forced vari-19

ability within the surface air temperature. The noise-to-noise approach is employed for20

training a neural network, drawing an analogy between internal variability and image21

noise. A large training dataset is compiled using surface air temperature data spanning22

from 1901 to 2020, obtained from an ensemble of Atmosphere-Ocean General Circula-23

tion Model (AOGCM) simulations. The neural network utilized for training is a U-Net,24

a widely adopted convolutional network primarily designed for image segmentation. To25

assess performance, comparisons are made between outputs from two single-model initial-26

condition large ensembles (SMILEs), the ensemble mean, and the U-Net’s predictions.27

The U-Net reduces internal variability by a factor of four, although notable discrepan-28

cies are observed at the regional scale. While demonstrating effective filtering of the El29

Niño Southern Oscillation, the U-Net encounters challenges in areas dominated by forced30

variability, such as the Arctic sea ice retreat region. This methodology holds potential31

for extension to other physical variables, facilitating insights into the enduring changes32

triggered by external forcings over the long term.33

Plain Language Summary34

To comprehensively grasp future climate change, it becomes imperative to differ-35

entiate between forced variability and internal climate variability. Internal variability refers36

to the climate’s variations driven by the chaotic nature of geophysical fluids. Conversely,37

forced variability denotes changes prompted by external forcings, predominantly alter-38

ations in radiative forcing, primarily due to anthropogenic activities. Here, a novel ap-39

proach is introduced for filtering internal variability through the utilisation of a convo-40

lutional neural network. This neural network is trained using a noise-to-noise method-41

ology, targeting the filtration of internal variability from surface air temperature outputs42

of climate models or observational data. Internal variability is treated analogously to noise43

within an image, which is removed to restore the ”true image,” corresponding to forced44

variability in our case. This method capitalises on the data generated by state-of-the-45

art climate models through the coupled model intercomparison project (CMIP). To val-46
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idate this methodology, we assess its performance using very large ensembles of climate47

model simulations, enabling precise estimation of forced variability. Our findings demon-48

strate a reduction in internal variability by a factor of four, accompanied by notable re-49

gional variations.50

1 Introduction51

The phenomenon of climate warming is characterized by an elevated surface air tem-52

perature, notably reaching a pivotal juncture during the latter half of the twentieth cen-53

tury (Eyring et al., 2021). Nevertheless, the observed anomalies in surface air temper-54

ature arise from a dual spectrum of variabilities. The first source of variability is due to55

the effect of the external forcings, such as the increase in the greenhouse gases concen-56

tration, the variations of concentration in anthropogenic and natural aerosols, the fluc-57

tuations in solar variability or volcanic eruptions and the land-use changes. The related58

variability is designated as the forced variability. The second source of variability is com-59

ing from processes internal to the atmosphere, oceans, cryosphere and land or the inter-60

actions between them (Cassou et al., 2018). Subsequently, this form of variability is re-61

ferred to as ’internal variability,’ encapsulating its inception within the climate system62

and its persistence even without alterations in external forcings. Despite the overarch-63

ing dominance of forced variability in shaping the broad-scale and long-term trajectory64

of surface air temperature across the 1900-2020 timeframe (Deser et al., 2012; Kay et65

al., 2015), a comprehensive understanding of the distinct contributions of internal and66

forced variability remains elusive. Internal variability takes center stage in briefer tem-67

poral scales and smaller spatial dimensions. For instance, the leading mode of internal68

variability in global air surface temperature manifests as the El Niño Southern Oscilla-69

tion (ENSO), characterized by significant anomalies in the equatorial Pacific Ocean, ac-70

companied by distant teleconnections, and a prevailing cycle spanning two to seven years71

(Wang & Picaut, 2004). Additionally, the interdecadal Pacific variability (Newman et72

al., 2016) and the Atlantic Multidecadal variability (Zhang et al., 2019) wield the capac-73

ity to influence climate dynamics across the decadal to multidecadal spectrum. A no-74

table example involves the deceleration in the global warming rate experienced during75

2002-2012, commonly referred to as the global warming hiatus, which has been robustly76

linked to Interdecadal Pacific Variability (Meehl et al., 2013; Kosaka & Xie, 2013; Eng-77

land et al., 2014). Lastly, internal variability exercises influence even over centennial and78
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multi-centennial spans (Jiang et al., 2021; S. Li & Huang, 2022) exerting substantial im-79

pact on trends within the 1900-2015 interval (Bonnet et al., 2022).80

The distinction between forced variability and internal variability is essential for81

conducting detection and attribution studies, enabling accurate estimation and simula-82

tion of the climate’s reaction to alterations in radiative forcing. Moreover, this differen-83

tiation aids in recognizing and comprehending internal climate variability. Nevertheless,84

the availability of instrumental observations is limited to the period since 1850, and the85

relatively brief duration of these observations presents challenges in effectively and con-86

fidently discerning internal variability.87

For identifying both internal and forced variability, linear trends (Swart et al., 2015;88

Vincent et al., 2015) or quadratic trends (Enfield & Cid-Serrano, 2010) have been em-89

ployed to characterize forced variability. However, linear or quadratic trends inadequately90

capture the temporal evolution of temperature, particularly failing to account for the abrupt91

cooling subsequent to significant volcanic eruptions, which hold significant climate im-92

pact (Schmidt et al., 2018). Additional approaches include the application of Empiri-93

cal Orthogonal Functions (EOF) analysis (Parker et al., 2007), low-frequency pattern94

filtering (Wills et al., 2020), and linear inverse models (Marini & Frankignoul, 2014). These95

techniques deconstruct forced variability into a combination of modes featuring distinct96

patterns and corresponding time series. Regression analysis of the global mean surface97

temperature (GMST) has also been employed, although this may inadvertently estab-98

lish misleading links between the Atlantic and Pacific basins (Frankignoul et al., 2017;99

Deser & Phillips, 2023). However, a comprehensive and systematic examination of these100

methodologies remains notably absent.101

Climate model simulations have been employed to overcome the limitations of sparse102

observation sampling. Conducting an ensemble of climate model simulations with diverse103

initial conditions enables estimation of forced variability via the ensemble mean. This104

approach effectively mitigates the variance linked to internal variability by a factor of105

n, where n signifies the ensemble’s size (Harzallah & Sadourny, 1995; Hawkins & Sut-106

ton, 2009; Ting et al., 2009; Solomon et al., 2011; Deser et al., 2014; Frankcombe et al.,107

2015). As a result, modeling centers have undertaken substantial ensembles with over108

20 or 30 ensemble members (Jeffrey et al., 2013; Rodgers et al., 2015; Sun et al., 2018;109

Deser et al., 2020). These large ensembles are commonly referred to as Single-Model Initial-110
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Condition Large Ensembles (SMILE; Deser et al. (2020)). Multiple SMILE initiatives111

have been undertaken using models such as CCSM3 (Collins et al., 2006), CCSM4 (Gent112

et al., 2011), CESM (Kay et al., 2015), MPI-ESM (Maher et al., 2019), FGOALS-g3 (Li113

et al., 2020), CanESM2 (Chylek et al., 2011), and IPSL-CM6A-LR (Bonnet et al., 2021),114

among others. This offers a valuable dataset for crafting methodologies dedicated to the115

disentanglement of forced and internal variability. Notably, employing members of a large116

ensemble model as surrogate observations allows for a comparison of results with the en-117

semble mean. Differences primarily mirror residual internal variability or limitations in-118

herent in the method.119

Nevertheless, the forced variability estimated through an ensemble mean remains120

contingent upon the specific climate model employed. These climate models carry sub-121

stantial uncertainties, particularly in terms of their climate sensitivity (Sherwood et al.,122

2020), often attributed to factors like uncertain cloud retroaction which significantly im-123

pact equilibrium climate sensitivity (Zelinka et al., 2016). Additionally, significant un-124

certainties surround historical emissions and the linked radiative forcing from aerosols125

(Menary et al., 2020; C. J. Smith & Forster, 2021). Moreover, the internal variability ex-126

hibited by different models also varies significantly (Parsons et al., 2020).127

Several methodologies have been devised to harness data from diverse climate mod-128

els, as employing a multi-model approach holds the potential to alleviate the uncertain-129

ties inherent in individual climate models. Multi-model ensemble means are widely adopted130

for estimating the forced signal (Steinman et al., 2015). Notably, techniques such as the131

signal-to-noise-maximizing empirical orthogonal functions (Ting et al., 2009; Wills et al.,132

2020) and the discriminant analysis and maximization of the average predictability time133

(DelSole et al., 2011) have been put forth to extract forced variability with superior ef-134

ficacy compared to ensemble means. Furthermore, scaling techniques that adjusts the135

forced signal from models using observational data have been proposed. Among these136

methodologies are fingerprinting methods grounded in linear regression, commonly ap-137

plied for detecting and attributing climate change with a unified forcing that encapsu-138

lates the influence of all external forcings (Hasselmann, 1993; Allen & Tett, 1999; Allen139

& Stott, 2003). More recently, the use of scaling factors was also proposed by Frankcombe140

et al. (2015).141
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This paper introduces an alternative approach to distinguishing internal and forced142

variability using climate model data, employing a non-linear method that takes into ac-143

count the spatio-temporal data covariances. This method is rooted in a neural network144

trained on data from Atmosphere-Ocean General Circulation Models (AOGCMs). Among145

the areas where neural networks have excelled is image analysis (Egmont-Petersen et al.,146

2002). One of the prominent applications of neural networks in image processing is im-147

age denoising, involving the elimination of noise from an image to restore its true form148

(Ilesanmi & Ilesanmi, 2021; Tian et al., 2020). In this context, internal variability is treated149

as noise. It is demonstrated that machine learning image denoising methodologies can150

subsequently isolate forced variability. The internal variability is eliminated, leaving be-151

hind a quantifiable residue. This method leverages the temporal and spatial information152

inherent in climate models to establish the weights and biases of a neural network. With153

these parameters in place, the neural network is also employed with observations to delve154

into and attribute the progression of climate change since 1905 to 2016. To the best of155

our knowledge, this represents the pioneering application of a dedicated neural network156

for the purpose of disentangling internal and forced variability.157

The structure of this paper is as follows: Section 2 outlines the data utilized. Sec-158

tion 3 introduces the method anchored in a neural network. Section 4 assesses the method’s159

performance. In Section 5, the neural network method is applied to observations. Lastly,160

Section 6 offers the conclusion and discussion.161

2 Data162

2.1 Observations163

The gridded monthly Surface Air Temperature anomaly (SAT) from 1901 to 2020,164

as provided by GISS Surface Temperature Analysis version 4 (GISTEMP; Hansen et al.165

(2010); Lenssen et al. (2019)), is employed in this study. GISTEMP amalgamates me-166

teorological station data over land (NOAA GHCN v4) with sea surface temperature (SST)167

estimates from ERSST v5. This data is available on a consistent 2°x2° grid. The monthly168

values are aggregated to calculate annual means, and the SAT anomalies are determined169

using the reference period 1950-2014.170
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2.2 Climate model simulations171

The monthly SAT data is sourced from historical simulations within the Coupled172

Model Intercomparison Project Phase 5 (CMIP5; Taylor et al. (2012)) and the Coupled173

Model Intercomparison Project Phase 6 (CMIP6; (Eyring et al., 2016)), along with sev-174

eral Single-Model Initial-Condition Large Ensembles (SMILEs) from distinct models: MPI-175

ESM (Maher et al., 2019), CSIRO-Mk3-6-0 (Collier et al., 2011), EC-Earth (Döscher et176

al., 2021), and FGOALS-g3 (Li et al., 2020). For the historical simulations, spanning 1901177

to 2005 (2014) for CMIP5 (CMIP6), all external forcings are integrated. These forcings178

encompass the effects of historical greenhouse gas concentrations, anthropogenic and nat-179

ural aerosols, stratospheric ozone, solar activity, and land-use changes. Each climate model180

delivers multiple realizations referred to as ensemble members, generated through dis-181

tinct initial conditions. From 2005 (2014 for CMIP6) until 2020, the outputs under the182

pessimistic Representation Concentration Pathway 8.5 (RCP8.5) scenario for CMIP5 (Van Vu-183

uren et al., 2011) and the intermediate Shared Socio-economic Pathway 2 4.5 (SSP2-4.5)184

for CMIP6 (Tebaldi et al., 2020) are employed. These simulations utilize socio-economic185

assumptions to project future external forcing patterns. Additionally, several SMILEs186

are incorporated, employing distinct historical forcings or scenario simulations of CMIP5187

or CMIP6 (elaborated in Table S3). While minor differences are anticipated in exter-188

nal forcing between CMIP5 and CMIP6 simulations, notable uncertainties arise in aerosol189

emissions (C. J. Smith et al., 2020; Fyfe et al., 2021). Modest differences may also emerge190

between the RCP8.5 (strong) and SSP2-4.5 (moderate) scenarios, particularly until 2020,191

where actual forcings mirror observed forcings to a considerable extent (Masson-Delmotte192

et al., 2021).193

The count of members accessible for scenario simulations is fewer compared to the194

historical counterparts. Therefore, we extended the outputs from historical experiments195

using the scenario ensemble member of the same model with the same number identi-196

fication. In case the number identification is lacking, we select randomly an scenario en-197

semble member of the same climate model.198

All monthly data are aggregated into annual means. Subsequently, the SAT anoma-199

lies are computed for each ensemble member using 1950-2014 as a reference period. This200

furnishes a multi-model ensemble comprising 801 members derived from 47 AOGCMs.201

Subsequently, the concatenated historical and scenario members are harnessed within202
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the 1901-2020 timeframe. All model data is regridded using bilinear interpolation on the203

horizontal grid from GISTEMP. The details pertaining to the climate model names, en-204

semble sizes, and the names of the employed scenario simulations are elucidated in Tabs.205

S1, S2, and S3.206

2.3 Validation of the data set207

The forced variability simulated within the multi-model ensemble is succinctly ex-208

amined for two specific data subsets. We investigate the MPI-ESM and FGOALS-g3 cli-209

mate models from SMILE, as they have a very large size of 100 and 115 members, re-210

spectively, which largely exceed the size of other model ensembles. Anticipatedly, the es-211

timated forced variability derived from the ensemble mean for each of these models is212

expected to be accurate, as the reduction in variance attributed to internal variability213

reaches 100 and 115, respectively. For instance, Deser et al. (2012, 2014) demonstrated214

that identifying regional climate responses on time scales of several decades may neces-215

sitate between 10 to 40 members. Specifically, to detect a change in SAT between the216

decades 2005-2014 and 2028-2037 on a global scale, the use of 3 to 6 members is requi-217

site. This requirement can surge beyond 10 for local analyses such as in North Amer-218

ica. Subsequently, the data originating from these two models is subsequently employed219

to appraise the outcomes of the neural network model in section 4.1.220

We utilize the ensemble mean to characterize the forced variability and employ the221

standard deviations from the ensemble members for evaluating the internal variability.222

Figure 1 illustrates the standard deviation of the SAT deviation from the ensemble mean223

for FGOALS-g3 and MPI-ESM. The variability in SAT is more pronounced over land224

surfaces (∼0.3°C) compared to oceans (∼0.1°C), consistent with the lower thermal in-225

ertia of land. Notably, substantial variability (ranging from approximately 1.5°C to 2.5°C)226

is observed over regions coinciding with the sea ice edge, such as the Bering Sea and Nordic227

Seas in the Northern Hemisphere, as well as the Amundsen and Weddell Seas in the South-228

ern Hemisphere. Additionally, a marked variability is observed in the equatorial Pacific229

Ocean, with a standard deviation of 0.8°C, and this variability is more prominent in MPI-230

ESM compared to FGOALS-g3. A localized peak of variability is situated over the sub-231

polar North Atlantic, especially notable for FGOALS-g3 (reaching up to 2°C). These out-232

comes coherently reflect a significant internal variability stemming from extratropical weather233

fluctuations over land surfaces, exhibiting local maxima around regions adjacent to the234
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Figure 1. Standard deviation of the SAT deviations from the ensemble mean for (top) MPI-

ESM and (bottom) FGOALS-g3.

sea ice edge. Moreover, the variability observed in the equatorial Pacific mirrors the phe-235

nomenon of El Nino Southern Oscillation (Neelin et al., 1998).236

The forced variability is estimated through the ensemble mean of each model. Sub-237

sequently, the multi-model mean (MMM) is computed by averaging the ensemble means238

across all models, ensuring equal weight for each model. Nonetheless, MPI-ESM and FGOALS-239

g3 are excluded from this computation, as the intention is to later compare them to the240

MMM. To assess the prominent impact of greenhouse gas forcing, Figure 2 (a, c, e) il-241

lustrates the ensemble mean SAT anomaly for MPI-ESM, FGOALS-g3, and the MMM242

throughout the 2010-2020 interval. Furthermore, Figure 2 (b, d, f) presents the tempo-243

ral standard deviation of the ensemble means across the period from 1901 to 2020. As244

anticipated, all climate models project more substantial warming over land (up to 0.8°C)245

than over oceans (approximately 0.3°C). Notably, the Arctic exhibits an amplification246

of global warming, with warming exceeding 2°C north of 60°N. The MMM showcases an247

average warming of 0.8°C for the 2010-2020 period, surpassing MPI-ESM (0.64°C) and248
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FGOALS-g3 (0.69°C). This aligns with the comparatively lower equilibrium climate sen-249

sitivity (ECS) of these two models (3.6°C for MPI-ESM and 2.8°C for FGOALS-g3) when250

compared to other models employed in this study (Zelinka et al., 2020). Within the sub-251

polar Atlantic, the SAT anomalies exhibit a minimum, with negative temperatures anoma-252

lies observed in FGOALS-g3 over the Labrador Sea, or in MPI-ESM over the subpolar253

gyre. This phenomenon, known as the North Atlantic warming hole (Keil et al., 2020),254

is associated with a deceleration of the Atlantic meridional overturning circulation (He255

et al., 2022). It is worth noting that such a minimum is less pronounced in the MMM,256

presumably due to considerable uncertainties regarding the precise location of this warm-257

ing hole and the linked processes. An equivalent spatial pattern can be derived using stan-258

dard deviations, revealing values of approximately 0.3°C for the majority of global re-259

gions and higher values over land (∼0.6°C). Grid points located north of 60° also exhibit260

elevated values, peaking at around 2°C in the Barents Sea for MPI-ESM or the Labrador261

Sea for FGOALS-g3.262

The forced variability exhibited by MPI-ESM and FGOALS-g3 diverges from that263

of the MMM, revealing a comparatively weaker global warming trend and standard de-264

viation pattern. This divergence is particularly evident north of 60°N, where the warm-265

ing exhibits greater amplification (refer to Fig. 2), amounting to 1.54°C for MPI-ESM266

and 1.45°C for FGOALS-g3. Local variations are also observed in regions such as the Labrador267

Sea, Barents and Kara Sea, the Canadian archipelago, and the Bering Sea in the case268

of FGOALS-g3. Notably, MPI-ESM similarly presents notable differences in the Barents269

Sea. These discrepancies may arise from biases related to sea ice representation. Specif-270

ically, FGOALS-g3 depicts an excessive extent of Arctic sea ice (Li et al., 2020), which271

in turn leads to inaccuracies in simulating the location of the sea ice edge. This discrep-272

ancy can account for spurious SAT variability attributed to the misplaced sea ice edge273

within the Labrador Sea. The mean standard deviation of the ensemble mean registers274

as 0.34°C for MPI-ESM and 0.43°C for FGOALS-g3, exceeding the mean standard de-275

viation of the SAT deviations of the members to the ensemble mean which is of 0.51°C276

for MPI-ESM and 0.46°C for FGOALS-g3. This underscores that the internal variabil-277

ity is marginally more pronounced than the forced variability.278
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Figure 2. a) Ensemble mean of the air surface temperature (°C) in MPI-ESM in 2010-2020.

c) Same as a) but for FGOALS-g3. e) Same as a) but for the MMM. b) Standard deviation of

the ensemble mean surface air temperature (°C) in 1901-2020 for MPI-ESM. d) Same as b) but

for FGOALS-g3. f) Same as b) but for the MMM.
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3 Methods279

3.1 Neural network280

We design a neural network to remove the internal variability from the SAT. The281

input data is structured with dimensions (120, 90, 180), corresponding to time spanning282

from 1901 to 2020, latitude, and longitude, respectively. On the other hand, the output283

holds dimensions of (112, 90, 180), encompassing the years 1905 to 2016, while maintain-284

ing the latitude and longitude dimensions intact. Notably, the output’s temporal span285

is truncated compared to the input, by excluding the initial and final four years. This286

reduction addresses the substantial uncertainty typically observed at the dataset’s end-287

points, an aspect that will be elaborated upon later.288

A neural network’s characteristics are shaped by its hyperparameters, which dic-289

tate both its architecture and training process. Our approach involves utilizing three dis-290

tinct datasets, each composed of input and desired output pairs. The training dataset291

serves the purpose of establishing the neural network’s weights and biases. Meanwhile,292

the validation dataset comes into play for estimating the hyperparameters. Finally, the293

test dataset is employed to assess the neural network’s performance.294

3.2 Constitution of the database295

To construct the training dataset, we adapt a noise-to-noise methodology originally296

introduced in Lehtinen et al. (2018). This approach was initially designed to train a neu-297

ral network in denoising images. In this method, the network is exclusively trained on298

noisy images depicting various objects. Each object has more than one noised image de-299

picting it. In the noise to noise method, we create an input/output training database300

that comprises pairs of noisy image combinations for identical objects. It’s essential to301

note that the network cannot effectively learn to transform a random noise realization302

into another. Instead, the configuration is designed to approximate the mathematical303

expectation of all noisy images associated with the same object, culminating in an es-304

timate that closely resembles the noise-free image.305

For our application, we consider the forced spatio-temporal SAT anomalies from306

each climate model as distinct objects. These anomalies, inherent to each member, can307

be likened to noisy images, where the internal variability introduces the noise compo-308
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nent. The ensemble members’ mathematical expectation equates to the forced variabil-309

ity, which can be approximated through the ensemble mean.310

To create the training dataset, we follow a procedure wherein we compute pairs of311

members for each climate model, except for MPI-ESM, FGOALS-g3, and MIROC6, which312

are reserved for testing and validation purposes. Adopting an approach similar to Lehtinen313

et al. (2018), we augment the dataset by introducing the ensemble mean of the climate314

model’s members as an additional member. This inclusion serves to expedite the train-315

ing process without introducing any other influences. In this process, each pair of mem-316

bers becomes an input/output pair. If we denote the number of ensemble members ob-317

tained from a specific climate model as n, this approach yields n(n+1) input/output318

pairs per model. By accumulating such pairs from all models, the resulting training dataset319

primarily comprises simulations characterized by the most extensive ensemble sizes (namely320

IPSL-CM6A-LR, CanESM5, CNRM-CM6-1, and ACCESS-ESM1-5).321

To create the validation set, we employ the ensemble simulation data from the MIROC6322

model, which ranks as the third-largest ensemble in terms of size (with n = 50 mem-323

bers). For this purpose, we designate the ensemble members as inputs, while the ensem-324

ble mean spanning the period from 1905 to 2016 serves as the desired output.325

To form the test dataset, we draw upon data derived from the FGOALS-g3 and326

MPI-ESM models, leveraging their extensive ensemble sizes of n = 110 and n = 100327

respectively. Subsequently, we proceed to make comparisons between the outputs of the328

neural network obtained from ensemble members and their corresponding ensemble means329

for both of these models.330

The conclusions drawn from these tests and validation processes may exhibit some331

dependence on the specific model being analyzed, as alternative models could yield vary-332

ing outcomes. Nevertheless, this approach has been chosen due to its simplicity and its333

potential to mitigate the impact of any remaining internal variability.334

3.3 U-Net335

Convolutional neural networks (CNNs, Yamashita et al. (2018)) constitute a cat-336

egory of non-linear neural networks, notably applied in tasks related to imagery (O’Shea337

& Nash, 2015). A distinctive attribute of CNNs is their utilization of convolutional lay-338

ers, which incorporate a trainable kernel that slides across the input data.339
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Figure 3. Schematic of the U-Net. The arrows represent the operations within the network.

The numbers shows the dimension of the data and the number of filters used.

In this context, a U-Net architecture is employed, which falls within the realm of340

CNNs. Originally introduced by Ronneberger et al. (2015) for image segmentation, the341

U-Net structure has gained widespread popularity in image-related analyses such as de-342

noising (Ilesanmi & Ilesanmi, 2021; Tian et al., 2020). The U-Net architecture is char-343

acterized by its inclusion of a contracting path and an expansive path, which collectively344

give rise to its characteristic U shape (refer to Fig. 3). The contracting path adheres to345

a conventional design of a convolutional network, featuring numerous convolutional lay-346

ers, each followed by an activation function and a max-pooling operation. As the con-347

tracting path advances, spatial information is diminished while feature information is348

enriched. Conversely, the expansive path amalgamates feature and spatial information349

through a sequence of up-convolutions and concatenations with high-resolution features350

derived from the contracting path.351

The U-Net architecture employed in this study shares similarities with the design352

proposed by Ronneberger et al. (2015). However, a modification is made by replacing353

the 2-dimensional convolutional layers with 3-dimensional counterparts. This alteration354

is introduced to encompass not only the spatial dimension but also the temporal dimen-355

sion of the data. The selected activation function is the hyperbolic tangent. Addition-356

ally, adaptations have been made to the output layer to accommodate an output com-357
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prising 112 time steps. The neural network is comprised of a total of 5,659,009 trainable358

parameters.359

A batch size of 8 is chosen, and the optimization process employs the Adam op-360

timizer with a learning rate of 0.001. To ensure proper application of the CNN to the361

data, padding is introduced. This involves extending the image by appending zero val-362

ues at its edges. For the longitudinal dimension, which is periodic, the zero padding only363

results in a slight discontinuity at 180°E, the edge of the data. Indeed, due to the na-364

ture of convolutional layers, a U-Net has more difficulty processing information located365

at the edge of the data. This is the reason why we excluded the initial and final four years366

(1901-1904 and 2017-2020) in the U-Net’s outputs. The chosen cost function is the root367

mean squared error (RSME), calculated using an area-weighted mean of the gridded data.368

The validation dataset is utilized to determine the optimal values for two key hy-369

perparameters: the number of epochs and the number of filters used in the convolutional370

layers. The term ”number of filters” pertains to the thickness of the convolutional lay-371

ers. The number of epochs refers to how many times the training dataset is processed372

during the training phase. These hyperparameters are selected to minimize the root mean373

squared error (RMSE) using the validation dataset. Examination of the validation RMSE374

for different values of epochs and layer thickness reveals a consistent pattern (see Fig.375

S1): a significant reduction in RMSE occurs in the initial epochs, followed by a grad-376

ual increase. As a result, we settle on a layer thickness of 16 for the first layer (as shown377

in Fig. 3) and a total of 32 epochs.378

3.4 Example379

Figure 4 provides an illustrative example featuring two randomly selected ensem-380

ble members from MPI-ESM and FGOALS-g3. The comparison focuses on the SAT at381

the year 2016, depicted in the top panels, as well as the resulting output generated by382

the neural network in 2016 (centre panels), juxtaposed against the ensemble mean anomaly383

for the same year (bottom panels). The anticipated impact of elevated greenhouse gas384

concentrations in 2016 is evident in the SAT of both MPI-ESM and FGOALS-g3 mem-385

bers, which exhibit warm anomalies. However, the internal variability introduces anoma-386

lies that surpass those of the ensemble mean in numerous regions, accompanied by some387

negative anomalies in other areas. To elaborate, an instance of cooling is simulated across388
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the Equatorial Pacific Ocean, possibly linked to a La Niña event in the case of MPI-ESM.389

The same ensemble member displays cooling over land in equatorial Africa, South-Eastern390

Asia, and Australia, as well as in extratropical zones like the North Atlantic Ocean and391

the Weddell Sea. In the example from FGOALS-g3, cold anomalies emerge over the Nordic392

Seas and the Labrador Sea. Such cooling diverges from the ensemble average, which ex-393

hibits a relatively uniform warming pattern across the globe, with a more pronounced394

effect over landmasses. Notably, the Arctic and its environs experience heightened warm-395

ing compared to other global regions, due to polar amplification. Conversely, minimal396

warming is observed in the Southern Ocean and the subpolar North Atlantic Ocean, and397

even a cooling tendency is noted in the Northern Atlantic warming hole.398

The SAT obtained from the U-Net’s output, utilizing the same ensemble member399

as input, exhibits a pattern strikingly similar to that of the ensemble mean (compare cen-400

tre and bottom panels). In both instances, the pattern is relatively uniform, albeit with401

heightened warming observed over land areas, coupled with an Arctic Amplification phe-402

nomenon. This suggests that the internal variability—such as the influence of ENSO events403

or the effects of prolonged weather patterns over continents—has been successfully elim-404

inated. The regions displaying subdued warming or cooling tendencies are replicated,405

although the exact positioning and intensity might not precisely match those of the en-406

semble mean in certain areas, particularly the Southern and subpolar North Atlantic.407

It’s worth noting a minor discontinuity at 180°E resulting from the padding process.408

The performance of the method is quantified more systematically in the next sec-409

tion.410

4 The U-Net as an internal variability filter411

The U-Net was applied to every member of FGOALS-g3 and MPI-ESM. We then412

compare the results obtained with the respective ensemble mean of these two climate mod-413

els.414

Figures 5a and 5b illustrate the root mean squared error (RMSE) between the out-415

comes generated by the U-Net and the corresponding ensemble mean for the time pe-416

riod of 1905-2016. Notably, the discrepancies in U-Net’s predictions are not uniformly417

distributed across space. The RMSE values fall within the range of 0.05°C to 0.5°C. The418

discrepancies generally remain below 0.2°C in tropical regions, except for instances over419
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Figure 4. (First column) Anomalies of SAT in a randomly chosen member of MPI-ESM, the

associated U-Net output and ensemble mean in 2016. (Second column) Same as the first column

but for a randomly chosen ensemble member for FGOALS-g3.
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Western Africa in the MPI-ESM model. In contrast, the largest errors are concentrated420

in polar areas, encompassing the Nordic Seas, Labrador Sea, and Bering Sea. Moreover,421

sizable errors are also evident over the Southern Ocean and the continents of the North-422

ern Hemisphere situated above 45°N. These high-error regions correspond to locales char-423

acterized by substantial internal variability (refer to Figure 1). Nevertheless, it is note-424

worthy that the errors produced by the U-Net are approximately five times smaller than425

the actual internal variability. Between the years 1996 and 2016, both ensemble results426

exhibit a warming trend that is roughly 0.1°C lower in the U-Net results when compared427

to the ensemble mean (as observed in Figs. 5cd). This difference is indicated by the nearly428

consistent negative divergence situated between latitudes 45°N and 45°S.429

The prevailing trend of systematic underestimation is, however, disrupted by an430

exception involving the subpolar Atlantic and the Southern Ocean, where an overesti-431

mation of warming is observed. This overestimation is particularly conspicuous in the432

FGOALS-g3 model, with warming anomalies extending to approximately 1°C over the433

Labrador Sea and 0.5°C over the Bering Sea. This divergence from the ensemble mean434

highlights the limited capacity of the neural network to accurately predict forced changes435

within the subpolar North Atlantic, which is a region that exhibits inconsistent surface436

temperature shifts across models (Swingedouw et al., 2021). The neural network’s per-437

formance is restricted due to this discrepancy among models, which hampers its abil-438

ity to discern the specific features of each climate model. For example, in the case of FGOALS-439

g3, the extensive anomalies in the Labrador and Bering Seas are not mirrored in the multi-440

model mean (see Figure 2). It’s also plausible that the substantial internal variability441

observed in these regions poses a challenge for accurate removal by the neural network442

(refer to Figure 1). This underestimation extends to the continents, with a greater im-443

pact on South America, Africa, and Australia in the tropics, as well as North America444

and Northern Siberia in boreal regions. The degree of underestimation reaches 0.15°C445

for MPI-ESM and 0.13°C for FGOALS-g3 in these regions.446

Figures 6c and 6d illustrate the temporal evolution of the global surface air tem-447

perature (GSAT) for both the MPI-ESM and FGOALS-g3 models, before and after ap-448

plying the U-Net correction. The range of data variability is portrayed by a 90% con-449

fidence interval assuming an Gaussian distribution. The forced variability’s temporal trend450

extracted via ensemble mean (depicted by the red line) is effectively captured by the U-451

Net outputs (represented by the blue line and blue shading).452
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Figure 5. a) Root mean square difference of the surface air temperature, in C°, between the

outputs of the U-Net and the mean ensemble in MPI-ESM, calculated across the members and

all years in 1905-2016 b. b) Same as a) but for FGOALS-g3 c) Difference of the time mean SAT

anomaly during 1996-2016, in °C, between the mean output of the U-Net and the corresponding

ensemble mean, for MPI-ESM. d) Same as c) but for FGOALS-g3

From 1905 to 2016, a GSAT rise is observed, aligning with the anticipated shifts453

in radiative forcing (Gulev et al., 2021). Additionally, a cooling pattern emerges a few454

years subsequent to the significant volcanic eruptions of Agung (1963), El Chichón (1982),455

and Pinatubo (1991), a phenomenon accurately estimated by the U-Net. This outcome456

aligns with expectations based on climate models incorporating volcanic aerosol emis-457

sions. Impressively, the U-Net’s outputs exhibit a marginal spread, reduced approximately458

tenfold, indicating a substantial removal of internal variability.459

Nonetheless, the U-Net results exhibit anomalies with a slightly diminished am-460

plitude compared to the ensemble mean. The spread of the U-Net outputs is also ap-461

proximately twice as wide at the time series’ beginning and end. The distribution of spa-462

tially averaged RMSE values within 90°S-90°N, comparing all U-Net outputs to the en-463

semble mean (depicted in Fig. 6a and 6b as blue histograms), reveals errors of around464

0.12°C in MPI-ESM and 0.13°C in FGOALS-g3. Additionally, we examine the RMSE465

values when averaging within 60°N-90°N, as Fig. 5ab suggests that errors are most pro-466

nounced in this region (illustrated in Fig. 6ab as red histograms). Errors north of 60°N467
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are approximately twice as substantial as global averages, with an average error of around468

0.23°C in MPI-ESM and 0.26°C in FGOALS-g3. In Fig. 6ef, the internal variability ob-469

served when averaging the SAT north of 60°N (as depicted by the red shading) is con-470

siderable in the raw model outputs (around 0.8°C). The ensemble mean SAT anomalies471

in this region increase from approximately -1°C in the early twentieth century to about472

1.2°C in 2010. The temporal evolution of the SAT north of 60°N demonstrates notable473

similarity between the ensemble mean and the ensemble mean of U-Net outputs, with474

a roughly 10-fold reduction in spread. However, the amplitude of the anomalies is slightly475

underestimated, with a reduction of around 0.3°C in negative anomalies in the U-Net476

output between 1905 and 1930 in MPI-ESM. For FGOALS-g3, the SAT is underestimated477

by around 0.2°C during 1970-1990.478

In Figure S2, the quadratic errors between the mean ensemble members and the479

U-Net output are presented for each year, with global (90°S-90°N) and north of 60°N av-480

erages considered for both MPI-ESM and FGOALS-g3. Notably, the RMSE exhibits el-481

evated values during the initial and final years, characterized by peaks around the years482

1975-1985 in both models. This pattern underscores the presence of substantial uncer-483

tainties at the data’s onset and conclusion. When applying the 1900-2020 period for the484

output (without excluding the first and last four years), the errors actually surpass those485

portrayed in Figure S2, a fact that elucidates the rationale for excluding the endpoints486

in the ongoing analysis, as detailed in the methods (section 2). Moreover, the notable487

error peak during 1975-1985 lacks a definitive explanation, although it’s plausible that488

this discrepancy could be linked to uncertainties associated with the implementation of489

aerosol forcings, notably CMIP5 for MPI-ESM and CMIP6 for FGOALS-g3.490

The errors exhibited by the U-Net in relation to data from FGOALS-g3 are more491

prominent compared to those arising from the use of MPI-ESM data. This discrepancy492

can be attributed to the fact that MPI-ESM’s simulated forced variability aligns more493

closely with the training data’s characteristics, on average. Specifically, the training data’s494

forced variability is in line with that of the MMM, and MPI-ESM demonstrates a smaller495

root mean squared difference from the MMM compared to FGOALS-g3 (as illustrated496

in Fig. 2).497

To assess the reduction in internal variability achieved by the U-Net, we can quan-498

titatively measure the number of ensemble members needed to surpass the U-Net’s in-499
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Figure 6. a) Histogram showing the distribution of the RMSE between the mean ensemble

and the U-Net outputs of MPI-ESM. b) Same as a), but for FGOALS-g3. c) Time evolutions

of the global mean surface air temperature, in °C, for the ensemble mean and the mean U-Net

outputs for MPI-ESM. Color shade shows the spread of the time series, with 90% the ensemble

members uncertainty assuming a gaussian distribution. d) Same as c) but for FGOALS-g3. e)

and f) are the same as c) and d) but when averaging the SAT, in °C, north of 60°N.
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dividual member results using a basic ensemble mean approach. This evaluation is con-500

ducted through a random subsampling process involving 500 sets of m members, where501

m varies from 1 to 40, for both the FGOALS-g3 and MPI-ESM ensembles. Within each502

subset, ensemble means are calculated. The RMSE between these subsample ensemble503

means and the actual ensemble mean obtained from all members is then determined (de-504

picted by vertical red and blue lines in Figure 7). This RMSE computation is performed505

across all grid points and is spatially averaged. The 90% intervals, assuming an Gaus-506

sian distribution, of the 500 subsamples are also illustrated. This analysis is done for both507

the MPI-ESM and FGOALS-g3 ensembles across distinct geographical regions: global508

(90°S-90°N), North Atlantic (60°W-0°E, 0°N-60°N), North Pacific (120°E-100°W, 20°N-509

60°N), Niño3 (5°N-5°S, 150°W-90°W), as well as polar regions north of 60°N and south510

of 60°S. These chosen regions exhibit considerable forced and internal variability, as vi-511

sually demonstrated in Fig. 1 and Fig. 2. Additionally, this evaluation is extended to512

encompass both oceanic and terrestrial areas in the 60°S-60°N band, allowing for a more513

comprehensive understanding of the U-Net’s performance. The horizontal lines in the514

illustration correspond to the same RMSE values but for the U-Net output from each515

individual member. The accompanying color shade represents the spread of 90% uncer-516

tainty assuming an Gaussian distribution.517

Figure 7a visually illustrates the progression of errors within the subset of mem-518

bers as the size of the subset increases. This pattern aligns with expectations, as a larger519

subset size leads to better estimations of forced variability and a corresponding reduc-520

tion in residual internal variability by a factor of
√
n. The distribution of U-Net outputs521

mirrors the histograms presented in Figure 6, showing a high degree of similarity across522

both climate models. The U-Net effectively diminishes internal variability in GSAT by523

approximately a factor of slightly more than four, which is analogous to the residual vari-524

ability observed within subsets containing around 17 members for FGOALS-g3 and 20525

members for MPI-ESM. When focusing on regions spanning oceans and land between526

60°N and 60°S, the outcomes remain largely consistent, showcasing a reduction in error527

magnitude by a factor of approximately four. This reduction corresponds closely to that528

achieved by using a subset of 15 to 20 members.529

The U-Net’s efficacy stands out prominently over the equatorial Pacific region, as530

depicted in panel 7f. This region is known for being heavily influenced by the ENSO, which531

dominates internal variability. The U-Net achieves a substantial reduction in variabil-532

–22–



manuscript submitted to Journal of Advances in Modeling Earth Systems

ity, amounting to a factor of 5.5. This reduction is akin to the outcome of utilizing an533

ensemble mean derived from around 30 members for both MPI-ESM and FGOALS-G3.534

In other regions, the variability reduction is quite similar to that found globally.535

For instance, this consistency is observed in the North Pacific and polar regions, where536

the required number of members for equivalent outcomes remains relatively steady. How-537

ever, in terms of removing internal variability, the U-Net showcases higher efficiency in538

the context of MPI-ESM for most scenarios. This pattern holds true except for the North539

Atlantic, where a notable deviation is observed: a set of 15 members is necessary in MPI-540

ESM to achieve results equivalent to the U-Net (∼4-fold reduction in residual variabil-541

ity), while merely 5 members suffice for FGOALS-g3 (halving of the residual variabil-542

ity).543

The variation in performance between FGOALS-g3 and MPI-ESM might arise from544

dissimilarities in their internal variability, particularly over multi-decadal timescales, or545

due to differences in forced variability compared to the training data. Having completed546

this method evaluation, our focus now shifts to examining the outcomes when the U-Net547

is employed with observational data.548

4.1 Filtering of the observations549

The U-Net is now employed to process SAT observations derived from GISSTEMP.550

By utilizing observed data as input, the U-Net provides an estimate of the forced vari-551

ability. In the interval from 1996 to 2016, the U-Net-derived forced SAT (depicted in Fig-552

ure 8a) illustrates a fairly uniform warming, with amplified warming evident over the553

Arctic region, consistent with Arctic amplification. Furthermore, this warming effect is554

slightly more pronounced over land compared to oceans. Conversely, the Southern Ocean555

experiences less warming in comparison to other global regions. The spatial distribution556

of standard deviations (Figure 8b), computed from 1905 to 2016 using U-Net output,557

mirrors the anomalies observed in the 1996-2016 period. This agreement indicates the558

prevailing influence of increasing anthropogenic forcing. Notably, this pattern closely re-559

sembles the changes observed in the multi-model mean (MMM) (as depicted in Fig. 2).560

This underscore the significant contribution of the training dataset in determining the561

identified forced changes.562
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Figure 7. Spatial average of the RMSE for the forced variability estimated with the U-Net

outputs obtained from each ensemble member, and the forced variability obtained with ensemble

averages subsampling ensemble of size 1 to 40; for (red) MPI-ESM and (blue) FGOALS-g3. The

RMSE calculated from the U-Net and each ensemble member is given by (color shade) the inter-

val including 90% of the distribution, assuming a gaussian distribution, and (horizontal dashed

line) the mean RMSE. The RMSE calculated from 500 subsample of size between 1 to 40 is illus-

trated with (vertical lines) the intervals including 90% of the ensemble member distribution, also

assuming a gaussian distribution.
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Figure 8. Forced surface air temperature (in °C) anomaly when applying the U-Net to GIS-

STEMP observation : a) time average in 1996-2016; b) standard deviation in 1905-2016.
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Figure 9. Standard deviation of the SAT deviations from the forced SAT, as estimated using

the U-Net, in 1905-2016.

To quantify internal variability within the observations, we compute the deviations563

of observed SAT anomalies from the estimated forced changes. The resulting internal564

variability pattern, illustrated by the time standard deviation of these deviations shown565

in Figure 9, mirrors the model-derived pattern (Fig. 1). Higher internal variability val-566

ues are observed over land areas, as well as regions near the boundaries of sea ice, such567

as the Labrador Sea and the Nordic Seas in the Northern Hemisphere, and the South-568

ern Ocean. Notably, a local maximum of internal variability emerges in the equatorial569

Pacific, corresponding to the El Niño-Southern Oscillation region. This similarity in the570

spatial distribution of internal variability between observations and models underscores571

the consistency of our findings.572

We now shift our focus to the GSAT and the Niño 3.4 region (5°N-5°S, 170°W-120°W),573

with a particular emphasis on Niño 3.4 due to its notably improved performance in our574

study. In the global context (Figure 10a), the forced variability reveals a consistent warm-575

ing trend, which becomes more pronounced during the 1960s. Notably, the major vol-576

canic eruptions of Agung (1963), El Chichón (1982), and Pinatubo (1991) are associated577

with temporary cooling patterns. By 2016, the GSAT anomaly reaches 0.7°C. As expected,578

the forced variability time series exhibits a significant reduction in inter-annual variabil-579

ity. This reduction is particularly striking within the Niño 3.4 region (Figure 10b), where580

variability at 2 to 7 years is almost entirely eliminated. The U-Net estimates the Niño581
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Figure 10. Time series of (red) the observed SAT anomaly and (blue) the forced SAT

anomaly estimated by the U-Net for a) the global mean b) NINO 3.4 and c) the relative SAT,

calculated as the difference between the averaged SAT in Niño 3.4 region and the tropical ocean

SAT (30°S-30°N).

3.4 forced variability, depicting a steady warming trend. To quantify the changes of SAT582

in Niño 3.4 relative to the tropics, we calculate also the relative SAT, defined as the dif-583

ference between the average SAT on the NINO 3.4 region and the average SAT on ocean584

grid between 30°S-30°N. The relative SST shows that the warming over the Niño 3.4 fol-585

lows that of the tropics, so that no clear El Niño-like reponse is found, unlike climate586

models (Fig. 2). Some authors (Clement et al., 1996; Heede et al., 2020) have suggested587

that a forced cooling could exists in the relative SAT, called thermostat effect. Here the588

relative SAT shows a very small cooling (see Fig. 10c). In addition the SAT in the Niño589

3.4 region are not affected by the forcing from the main volcanic eruptions. Therefore,590

no evidence of a Niño-like response to volcanic eruption (as in Khodri et al. (2017)) is591

found.592
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5 Conclusion593

A novel approach is introduced in this study to effectively eliminate internal vari-594

ability from a time-evolving two-dimensional dataset, specifically focusing on surface air595

temperature. The method employs a U-Net neural network and draws inspiration from596

the noise-to-noise technique. This framework treats internal variability as an analogous597

noise superimposed on the underlying forced variability. The U-Net model is trained us-598

ing outputs from a diverse ensemble of climate models obtained from the CMIP simu-599

lations. Subsequently, this trained network is applied to observational data to unveil the600

forced variability signal by attenuating internal variability. The validation of this method601

involves utilizing large ensemble simulations from individual models, specifically the MPI-602

ESM and FGOALS-g3, to gauge its effectiveness. The forced variability derived from the603

ensemble mean is then contrasted with the outcomes from the U-Net application. To quan-604

titatively assess the U-Net’s efficacy in reducing internal variability, an ”equivalent en-605

semble size” is computed. This metric indicates the ensemble size that would be required606

to achieve the same level of precision in capturing forced changes as the U-Net which is607

applied to a single member. The U-Net outputs for these two climate models’ test data608

exhibit an error equivalent to an internal variability reduction of a factor of more than609

4. This magnitude corresponds to the internal variability one could expect from an en-610

semble averaging 17 to 20 members. Furthermore, when the U-Net is applied to surface611

air temperature observations, the inferred forced changes align closely with the multi-612

model mean in terms of spatial patterns. The U-Net’s results do not suggest an El Niño-613

like response to global warming. We observe that the U-Net encounters greater challenges614

in accurately estimating forced variability over the Arctic region. This discrepancy can615

be attributed to the significant forced and internal variability associated with changes616

in sea-ice extent in that area. Additionally, the U-Net’s performance in capturing forced617

variability in the North Atlantic is less successful for the FGOALS-g3 model. This lim-618

itation might be linked to uncertainties stemming from the multi-decadal variability preva-619

lent in these regions (Menary & Wood, 2018; Zhang, 2007).620

In the pursuit of enhancing the U-Net methodology, several avenues for future im-621

provements have been identified. One potential approach is to address the U-Net’s sen-622

sitivity to the multi-model consensus of future variability by employing neural network623

regularization techniques, such as weights penalisation. Additionally, preprocessing meth-624

ods like data augmentation could be explored to potentially mitigate such impacts. Im-625
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proving the evaluation process of the U-Net’s performance is also on the horizon. This626

could involve testing the U-Net on a broader range of climate models to assess its gen-627

eralizability. Comparing its outcomes with results from alternative methods, such as signal-628

to-noise filtering, could offer a comprehensive evaluation of the U-Net’s effectiveness. To629

broaden the scope of application, the U-Net’s performance might be further investigated630

using additional climate variables beyond surface air temperature (SAT). Variables such631

as sea level surface pressure and precipitation could be explored, capitalizing on poten-632

tial correlations among these variables to provide more comprehensive insights. Lastly,633

the proposed method holds the potential for wider applications, including its deployment634

on simulations from projects like the Detection and Attribution Model Intercomparison635

Project (Gillett et al., 2016) or the Large Ensemble Single Forcing Model Intercompara-636

ison Project (D. M. Smith et al., 2022). By leveraging transfer learning, the U-Net trained637

on historical simulations could be adapted to these datasets. This adaptation could fa-638

cilitate the evaluation of specific forcing effects in individual climate models, offering a639

valuable tool for studying the impact of different external factors on the climate system.640

Such extensions of the method could contribute significantly to our understanding of cli-641

mate attribution and variability.642
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Key Points:8

• We present a new method to separate the forced and internal variability of the sur-9

face air temperature.10

• We utilise a U-Net trained with global climate models outputs and implement a11
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• The results are assessed through the utilisation of very large ensemble simulations13

of two distinct climate models.14
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Abstract15

The internal variability pertains to fluctuations originating from processes inherent to16

the climate component and their mutual interactions. On the other hand, forced vari-17

ability delineates the influence of external boundary conditions on the physical climate18

system. A methodology is formulated to distinguish between internal and forced vari-19

ability within the surface air temperature. The noise-to-noise approach is employed for20

training a neural network, drawing an analogy between internal variability and image21

noise. A large training dataset is compiled using surface air temperature data spanning22

from 1901 to 2020, obtained from an ensemble of Atmosphere-Ocean General Circula-23

tion Model (AOGCM) simulations. The neural network utilized for training is a U-Net,24

a widely adopted convolutional network primarily designed for image segmentation. To25

assess performance, comparisons are made between outputs from two single-model initial-26

condition large ensembles (SMILEs), the ensemble mean, and the U-Net’s predictions.27

The U-Net reduces internal variability by a factor of four, although notable discrepan-28

cies are observed at the regional scale. While demonstrating effective filtering of the El29

Niño Southern Oscillation, the U-Net encounters challenges in areas dominated by forced30

variability, such as the Arctic sea ice retreat region. This methodology holds potential31

for extension to other physical variables, facilitating insights into the enduring changes32

triggered by external forcings over the long term.33

Plain Language Summary34

To comprehensively grasp future climate change, it becomes imperative to differ-35

entiate between forced variability and internal climate variability. Internal variability refers36

to the climate’s variations driven by the chaotic nature of geophysical fluids. Conversely,37

forced variability denotes changes prompted by external forcings, predominantly alter-38

ations in radiative forcing, primarily due to anthropogenic activities. Here, a novel ap-39

proach is introduced for filtering internal variability through the utilisation of a convo-40

lutional neural network. This neural network is trained using a noise-to-noise method-41

ology, targeting the filtration of internal variability from surface air temperature outputs42

of climate models or observational data. Internal variability is treated analogously to noise43

within an image, which is removed to restore the ”true image,” corresponding to forced44

variability in our case. This method capitalises on the data generated by state-of-the-45

art climate models through the coupled model intercomparison project (CMIP). To val-46
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idate this methodology, we assess its performance using very large ensembles of climate47

model simulations, enabling precise estimation of forced variability. Our findings demon-48

strate a reduction in internal variability by a factor of four, accompanied by notable re-49

gional variations.50

1 Introduction51

The phenomenon of climate warming is characterized by an elevated surface air tem-52

perature, notably reaching a pivotal juncture during the latter half of the twentieth cen-53

tury (Eyring et al., 2021). Nevertheless, the observed anomalies in surface air temper-54

ature arise from a dual spectrum of variabilities. The first source of variability is due to55

the effect of the external forcings, such as the increase in the greenhouse gases concen-56

tration, the variations of concentration in anthropogenic and natural aerosols, the fluc-57

tuations in solar variability or volcanic eruptions and the land-use changes. The related58

variability is designated as the forced variability. The second source of variability is com-59

ing from processes internal to the atmosphere, oceans, cryosphere and land or the inter-60

actions between them (Cassou et al., 2018). Subsequently, this form of variability is re-61

ferred to as ’internal variability,’ encapsulating its inception within the climate system62

and its persistence even without alterations in external forcings. Despite the overarch-63

ing dominance of forced variability in shaping the broad-scale and long-term trajectory64

of surface air temperature across the 1900-2020 timeframe (Deser et al., 2012; Kay et65

al., 2015), a comprehensive understanding of the distinct contributions of internal and66

forced variability remains elusive. Internal variability takes center stage in briefer tem-67

poral scales and smaller spatial dimensions. For instance, the leading mode of internal68

variability in global air surface temperature manifests as the El Niño Southern Oscilla-69

tion (ENSO), characterized by significant anomalies in the equatorial Pacific Ocean, ac-70

companied by distant teleconnections, and a prevailing cycle spanning two to seven years71

(Wang & Picaut, 2004). Additionally, the interdecadal Pacific variability (Newman et72

al., 2016) and the Atlantic Multidecadal variability (Zhang et al., 2019) wield the capac-73

ity to influence climate dynamics across the decadal to multidecadal spectrum. A no-74

table example involves the deceleration in the global warming rate experienced during75

2002-2012, commonly referred to as the global warming hiatus, which has been robustly76

linked to Interdecadal Pacific Variability (Meehl et al., 2013; Kosaka & Xie, 2013; Eng-77

land et al., 2014). Lastly, internal variability exercises influence even over centennial and78
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multi-centennial spans (Jiang et al., 2021; S. Li & Huang, 2022) exerting substantial im-79

pact on trends within the 1900-2015 interval (Bonnet et al., 2022).80

The distinction between forced variability and internal variability is essential for81

conducting detection and attribution studies, enabling accurate estimation and simula-82

tion of the climate’s reaction to alterations in radiative forcing. Moreover, this differen-83

tiation aids in recognizing and comprehending internal climate variability. Nevertheless,84

the availability of instrumental observations is limited to the period since 1850, and the85

relatively brief duration of these observations presents challenges in effectively and con-86

fidently discerning internal variability.87

For identifying both internal and forced variability, linear trends (Swart et al., 2015;88

Vincent et al., 2015) or quadratic trends (Enfield & Cid-Serrano, 2010) have been em-89

ployed to characterize forced variability. However, linear or quadratic trends inadequately90

capture the temporal evolution of temperature, particularly failing to account for the abrupt91

cooling subsequent to significant volcanic eruptions, which hold significant climate im-92

pact (Schmidt et al., 2018). Additional approaches include the application of Empiri-93

cal Orthogonal Functions (EOF) analysis (Parker et al., 2007), low-frequency pattern94

filtering (Wills et al., 2020), and linear inverse models (Marini & Frankignoul, 2014). These95

techniques deconstruct forced variability into a combination of modes featuring distinct96

patterns and corresponding time series. Regression analysis of the global mean surface97

temperature (GMST) has also been employed, although this may inadvertently estab-98

lish misleading links between the Atlantic and Pacific basins (Frankignoul et al., 2017;99

Deser & Phillips, 2023). However, a comprehensive and systematic examination of these100

methodologies remains notably absent.101

Climate model simulations have been employed to overcome the limitations of sparse102

observation sampling. Conducting an ensemble of climate model simulations with diverse103

initial conditions enables estimation of forced variability via the ensemble mean. This104

approach effectively mitigates the variance linked to internal variability by a factor of105

n, where n signifies the ensemble’s size (Harzallah & Sadourny, 1995; Hawkins & Sut-106

ton, 2009; Ting et al., 2009; Solomon et al., 2011; Deser et al., 2014; Frankcombe et al.,107

2015). As a result, modeling centers have undertaken substantial ensembles with over108

20 or 30 ensemble members (Jeffrey et al., 2013; Rodgers et al., 2015; Sun et al., 2018;109

Deser et al., 2020). These large ensembles are commonly referred to as Single-Model Initial-110
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Condition Large Ensembles (SMILE; Deser et al. (2020)). Multiple SMILE initiatives111

have been undertaken using models such as CCSM3 (Collins et al., 2006), CCSM4 (Gent112

et al., 2011), CESM (Kay et al., 2015), MPI-ESM (Maher et al., 2019), FGOALS-g3 (Li113

et al., 2020), CanESM2 (Chylek et al., 2011), and IPSL-CM6A-LR (Bonnet et al., 2021),114

among others. This offers a valuable dataset for crafting methodologies dedicated to the115

disentanglement of forced and internal variability. Notably, employing members of a large116

ensemble model as surrogate observations allows for a comparison of results with the en-117

semble mean. Differences primarily mirror residual internal variability or limitations in-118

herent in the method.119

Nevertheless, the forced variability estimated through an ensemble mean remains120

contingent upon the specific climate model employed. These climate models carry sub-121

stantial uncertainties, particularly in terms of their climate sensitivity (Sherwood et al.,122

2020), often attributed to factors like uncertain cloud retroaction which significantly im-123

pact equilibrium climate sensitivity (Zelinka et al., 2016). Additionally, significant un-124

certainties surround historical emissions and the linked radiative forcing from aerosols125

(Menary et al., 2020; C. J. Smith & Forster, 2021). Moreover, the internal variability ex-126

hibited by different models also varies significantly (Parsons et al., 2020).127

Several methodologies have been devised to harness data from diverse climate mod-128

els, as employing a multi-model approach holds the potential to alleviate the uncertain-129

ties inherent in individual climate models. Multi-model ensemble means are widely adopted130

for estimating the forced signal (Steinman et al., 2015). Notably, techniques such as the131

signal-to-noise-maximizing empirical orthogonal functions (Ting et al., 2009; Wills et al.,132

2020) and the discriminant analysis and maximization of the average predictability time133

(DelSole et al., 2011) have been put forth to extract forced variability with superior ef-134

ficacy compared to ensemble means. Furthermore, scaling techniques that adjusts the135

forced signal from models using observational data have been proposed. Among these136

methodologies are fingerprinting methods grounded in linear regression, commonly ap-137

plied for detecting and attributing climate change with a unified forcing that encapsu-138

lates the influence of all external forcings (Hasselmann, 1993; Allen & Tett, 1999; Allen139

& Stott, 2003). More recently, the use of scaling factors was also proposed by Frankcombe140

et al. (2015).141
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This paper introduces an alternative approach to distinguishing internal and forced142

variability using climate model data, employing a non-linear method that takes into ac-143

count the spatio-temporal data covariances. This method is rooted in a neural network144

trained on data from Atmosphere-Ocean General Circulation Models (AOGCMs). Among145

the areas where neural networks have excelled is image analysis (Egmont-Petersen et al.,146

2002). One of the prominent applications of neural networks in image processing is im-147

age denoising, involving the elimination of noise from an image to restore its true form148

(Ilesanmi & Ilesanmi, 2021; Tian et al., 2020). In this context, internal variability is treated149

as noise. It is demonstrated that machine learning image denoising methodologies can150

subsequently isolate forced variability. The internal variability is eliminated, leaving be-151

hind a quantifiable residue. This method leverages the temporal and spatial information152

inherent in climate models to establish the weights and biases of a neural network. With153

these parameters in place, the neural network is also employed with observations to delve154

into and attribute the progression of climate change since 1905 to 2016. To the best of155

our knowledge, this represents the pioneering application of a dedicated neural network156

for the purpose of disentangling internal and forced variability.157

The structure of this paper is as follows: Section 2 outlines the data utilized. Sec-158

tion 3 introduces the method anchored in a neural network. Section 4 assesses the method’s159

performance. In Section 5, the neural network method is applied to observations. Lastly,160

Section 6 offers the conclusion and discussion.161

2 Data162

2.1 Observations163

The gridded monthly Surface Air Temperature anomaly (SAT) from 1901 to 2020,164

as provided by GISS Surface Temperature Analysis version 4 (GISTEMP; Hansen et al.165

(2010); Lenssen et al. (2019)), is employed in this study. GISTEMP amalgamates me-166

teorological station data over land (NOAA GHCN v4) with sea surface temperature (SST)167

estimates from ERSST v5. This data is available on a consistent 2°x2° grid. The monthly168

values are aggregated to calculate annual means, and the SAT anomalies are determined169

using the reference period 1950-2014.170
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2.2 Climate model simulations171

The monthly SAT data is sourced from historical simulations within the Coupled172

Model Intercomparison Project Phase 5 (CMIP5; Taylor et al. (2012)) and the Coupled173

Model Intercomparison Project Phase 6 (CMIP6; (Eyring et al., 2016)), along with sev-174

eral Single-Model Initial-Condition Large Ensembles (SMILEs) from distinct models: MPI-175

ESM (Maher et al., 2019), CSIRO-Mk3-6-0 (Collier et al., 2011), EC-Earth (Döscher et176

al., 2021), and FGOALS-g3 (Li et al., 2020). For the historical simulations, spanning 1901177

to 2005 (2014) for CMIP5 (CMIP6), all external forcings are integrated. These forcings178

encompass the effects of historical greenhouse gas concentrations, anthropogenic and nat-179

ural aerosols, stratospheric ozone, solar activity, and land-use changes. Each climate model180

delivers multiple realizations referred to as ensemble members, generated through dis-181

tinct initial conditions. From 2005 (2014 for CMIP6) until 2020, the outputs under the182

pessimistic Representation Concentration Pathway 8.5 (RCP8.5) scenario for CMIP5 (Van Vu-183

uren et al., 2011) and the intermediate Shared Socio-economic Pathway 2 4.5 (SSP2-4.5)184

for CMIP6 (Tebaldi et al., 2020) are employed. These simulations utilize socio-economic185

assumptions to project future external forcing patterns. Additionally, several SMILEs186

are incorporated, employing distinct historical forcings or scenario simulations of CMIP5187

or CMIP6 (elaborated in Table S3). While minor differences are anticipated in exter-188

nal forcing between CMIP5 and CMIP6 simulations, notable uncertainties arise in aerosol189

emissions (C. J. Smith et al., 2020; Fyfe et al., 2021). Modest differences may also emerge190

between the RCP8.5 (strong) and SSP2-4.5 (moderate) scenarios, particularly until 2020,191

where actual forcings mirror observed forcings to a considerable extent (Masson-Delmotte192

et al., 2021).193

The count of members accessible for scenario simulations is fewer compared to the194

historical counterparts. Therefore, we extended the outputs from historical experiments195

using the scenario ensemble member of the same model with the same number identi-196

fication. In case the number identification is lacking, we select randomly an scenario en-197

semble member of the same climate model.198

All monthly data are aggregated into annual means. Subsequently, the SAT anoma-199

lies are computed for each ensemble member using 1950-2014 as a reference period. This200

furnishes a multi-model ensemble comprising 801 members derived from 47 AOGCMs.201

Subsequently, the concatenated historical and scenario members are harnessed within202
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the 1901-2020 timeframe. All model data is regridded using bilinear interpolation on the203

horizontal grid from GISTEMP. The details pertaining to the climate model names, en-204

semble sizes, and the names of the employed scenario simulations are elucidated in Tabs.205

S1, S2, and S3.206

2.3 Validation of the data set207

The forced variability simulated within the multi-model ensemble is succinctly ex-208

amined for two specific data subsets. We investigate the MPI-ESM and FGOALS-g3 cli-209

mate models from SMILE, as they have a very large size of 100 and 115 members, re-210

spectively, which largely exceed the size of other model ensembles. Anticipatedly, the es-211

timated forced variability derived from the ensemble mean for each of these models is212

expected to be accurate, as the reduction in variance attributed to internal variability213

reaches 100 and 115, respectively. For instance, Deser et al. (2012, 2014) demonstrated214

that identifying regional climate responses on time scales of several decades may neces-215

sitate between 10 to 40 members. Specifically, to detect a change in SAT between the216

decades 2005-2014 and 2028-2037 on a global scale, the use of 3 to 6 members is requi-217

site. This requirement can surge beyond 10 for local analyses such as in North Amer-218

ica. Subsequently, the data originating from these two models is subsequently employed219

to appraise the outcomes of the neural network model in section 4.1.220

We utilize the ensemble mean to characterize the forced variability and employ the221

standard deviations from the ensemble members for evaluating the internal variability.222

Figure 1 illustrates the standard deviation of the SAT deviation from the ensemble mean223

for FGOALS-g3 and MPI-ESM. The variability in SAT is more pronounced over land224

surfaces (∼0.3°C) compared to oceans (∼0.1°C), consistent with the lower thermal in-225

ertia of land. Notably, substantial variability (ranging from approximately 1.5°C to 2.5°C)226

is observed over regions coinciding with the sea ice edge, such as the Bering Sea and Nordic227

Seas in the Northern Hemisphere, as well as the Amundsen and Weddell Seas in the South-228

ern Hemisphere. Additionally, a marked variability is observed in the equatorial Pacific229

Ocean, with a standard deviation of 0.8°C, and this variability is more prominent in MPI-230

ESM compared to FGOALS-g3. A localized peak of variability is situated over the sub-231

polar North Atlantic, especially notable for FGOALS-g3 (reaching up to 2°C). These out-232

comes coherently reflect a significant internal variability stemming from extratropical weather233

fluctuations over land surfaces, exhibiting local maxima around regions adjacent to the234
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Figure 1. Standard deviation of the SAT deviations from the ensemble mean for (top) MPI-

ESM and (bottom) FGOALS-g3.

sea ice edge. Moreover, the variability observed in the equatorial Pacific mirrors the phe-235

nomenon of El Nino Southern Oscillation (Neelin et al., 1998).236

The forced variability is estimated through the ensemble mean of each model. Sub-237

sequently, the multi-model mean (MMM) is computed by averaging the ensemble means238

across all models, ensuring equal weight for each model. Nonetheless, MPI-ESM and FGOALS-239

g3 are excluded from this computation, as the intention is to later compare them to the240

MMM. To assess the prominent impact of greenhouse gas forcing, Figure 2 (a, c, e) il-241

lustrates the ensemble mean SAT anomaly for MPI-ESM, FGOALS-g3, and the MMM242

throughout the 2010-2020 interval. Furthermore, Figure 2 (b, d, f) presents the tempo-243

ral standard deviation of the ensemble means across the period from 1901 to 2020. As244

anticipated, all climate models project more substantial warming over land (up to 0.8°C)245

than over oceans (approximately 0.3°C). Notably, the Arctic exhibits an amplification246

of global warming, with warming exceeding 2°C north of 60°N. The MMM showcases an247

average warming of 0.8°C for the 2010-2020 period, surpassing MPI-ESM (0.64°C) and248
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FGOALS-g3 (0.69°C). This aligns with the comparatively lower equilibrium climate sen-249

sitivity (ECS) of these two models (3.6°C for MPI-ESM and 2.8°C for FGOALS-g3) when250

compared to other models employed in this study (Zelinka et al., 2020). Within the sub-251

polar Atlantic, the SAT anomalies exhibit a minimum, with negative temperatures anoma-252

lies observed in FGOALS-g3 over the Labrador Sea, or in MPI-ESM over the subpolar253

gyre. This phenomenon, known as the North Atlantic warming hole (Keil et al., 2020),254

is associated with a deceleration of the Atlantic meridional overturning circulation (He255

et al., 2022). It is worth noting that such a minimum is less pronounced in the MMM,256

presumably due to considerable uncertainties regarding the precise location of this warm-257

ing hole and the linked processes. An equivalent spatial pattern can be derived using stan-258

dard deviations, revealing values of approximately 0.3°C for the majority of global re-259

gions and higher values over land (∼0.6°C). Grid points located north of 60° also exhibit260

elevated values, peaking at around 2°C in the Barents Sea for MPI-ESM or the Labrador261

Sea for FGOALS-g3.262

The forced variability exhibited by MPI-ESM and FGOALS-g3 diverges from that263

of the MMM, revealing a comparatively weaker global warming trend and standard de-264

viation pattern. This divergence is particularly evident north of 60°N, where the warm-265

ing exhibits greater amplification (refer to Fig. 2), amounting to 1.54°C for MPI-ESM266

and 1.45°C for FGOALS-g3. Local variations are also observed in regions such as the Labrador267

Sea, Barents and Kara Sea, the Canadian archipelago, and the Bering Sea in the case268

of FGOALS-g3. Notably, MPI-ESM similarly presents notable differences in the Barents269

Sea. These discrepancies may arise from biases related to sea ice representation. Specif-270

ically, FGOALS-g3 depicts an excessive extent of Arctic sea ice (Li et al., 2020), which271

in turn leads to inaccuracies in simulating the location of the sea ice edge. This discrep-272

ancy can account for spurious SAT variability attributed to the misplaced sea ice edge273

within the Labrador Sea. The mean standard deviation of the ensemble mean registers274

as 0.34°C for MPI-ESM and 0.43°C for FGOALS-g3, exceeding the mean standard de-275

viation of the SAT deviations of the members to the ensemble mean which is of 0.51°C276

for MPI-ESM and 0.46°C for FGOALS-g3. This underscores that the internal variabil-277

ity is marginally more pronounced than the forced variability.278

–10–



manuscript submitted to Journal of Advances in Modeling Earth Systems

Figure 2. a) Ensemble mean of the air surface temperature (°C) in MPI-ESM in 2010-2020.

c) Same as a) but for FGOALS-g3. e) Same as a) but for the MMM. b) Standard deviation of

the ensemble mean surface air temperature (°C) in 1901-2020 for MPI-ESM. d) Same as b) but

for FGOALS-g3. f) Same as b) but for the MMM.
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3 Methods279

3.1 Neural network280

We design a neural network to remove the internal variability from the SAT. The281

input data is structured with dimensions (120, 90, 180), corresponding to time spanning282

from 1901 to 2020, latitude, and longitude, respectively. On the other hand, the output283

holds dimensions of (112, 90, 180), encompassing the years 1905 to 2016, while maintain-284

ing the latitude and longitude dimensions intact. Notably, the output’s temporal span285

is truncated compared to the input, by excluding the initial and final four years. This286

reduction addresses the substantial uncertainty typically observed at the dataset’s end-287

points, an aspect that will be elaborated upon later.288

A neural network’s characteristics are shaped by its hyperparameters, which dic-289

tate both its architecture and training process. Our approach involves utilizing three dis-290

tinct datasets, each composed of input and desired output pairs. The training dataset291

serves the purpose of establishing the neural network’s weights and biases. Meanwhile,292

the validation dataset comes into play for estimating the hyperparameters. Finally, the293

test dataset is employed to assess the neural network’s performance.294

3.2 Constitution of the database295

To construct the training dataset, we adapt a noise-to-noise methodology originally296

introduced in Lehtinen et al. (2018). This approach was initially designed to train a neu-297

ral network in denoising images. In this method, the network is exclusively trained on298

noisy images depicting various objects. Each object has more than one noised image de-299

picting it. In the noise to noise method, we create an input/output training database300

that comprises pairs of noisy image combinations for identical objects. It’s essential to301

note that the network cannot effectively learn to transform a random noise realization302

into another. Instead, the configuration is designed to approximate the mathematical303

expectation of all noisy images associated with the same object, culminating in an es-304

timate that closely resembles the noise-free image.305

For our application, we consider the forced spatio-temporal SAT anomalies from306

each climate model as distinct objects. These anomalies, inherent to each member, can307

be likened to noisy images, where the internal variability introduces the noise compo-308
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nent. The ensemble members’ mathematical expectation equates to the forced variabil-309

ity, which can be approximated through the ensemble mean.310

To create the training dataset, we follow a procedure wherein we compute pairs of311

members for each climate model, except for MPI-ESM, FGOALS-g3, and MIROC6, which312

are reserved for testing and validation purposes. Adopting an approach similar to Lehtinen313

et al. (2018), we augment the dataset by introducing the ensemble mean of the climate314

model’s members as an additional member. This inclusion serves to expedite the train-315

ing process without introducing any other influences. In this process, each pair of mem-316

bers becomes an input/output pair. If we denote the number of ensemble members ob-317

tained from a specific climate model as n, this approach yields n(n+1) input/output318

pairs per model. By accumulating such pairs from all models, the resulting training dataset319

primarily comprises simulations characterized by the most extensive ensemble sizes (namely320

IPSL-CM6A-LR, CanESM5, CNRM-CM6-1, and ACCESS-ESM1-5).321

To create the validation set, we employ the ensemble simulation data from the MIROC6322

model, which ranks as the third-largest ensemble in terms of size (with n = 50 mem-323

bers). For this purpose, we designate the ensemble members as inputs, while the ensem-324

ble mean spanning the period from 1905 to 2016 serves as the desired output.325

To form the test dataset, we draw upon data derived from the FGOALS-g3 and326

MPI-ESM models, leveraging their extensive ensemble sizes of n = 110 and n = 100327

respectively. Subsequently, we proceed to make comparisons between the outputs of the328

neural network obtained from ensemble members and their corresponding ensemble means329

for both of these models.330

The conclusions drawn from these tests and validation processes may exhibit some331

dependence on the specific model being analyzed, as alternative models could yield vary-332

ing outcomes. Nevertheless, this approach has been chosen due to its simplicity and its333

potential to mitigate the impact of any remaining internal variability.334

3.3 U-Net335

Convolutional neural networks (CNNs, Yamashita et al. (2018)) constitute a cat-336

egory of non-linear neural networks, notably applied in tasks related to imagery (O’Shea337

& Nash, 2015). A distinctive attribute of CNNs is their utilization of convolutional lay-338

ers, which incorporate a trainable kernel that slides across the input data.339
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Figure 3. Schematic of the U-Net. The arrows represent the operations within the network.

The numbers shows the dimension of the data and the number of filters used.

In this context, a U-Net architecture is employed, which falls within the realm of340

CNNs. Originally introduced by Ronneberger et al. (2015) for image segmentation, the341

U-Net structure has gained widespread popularity in image-related analyses such as de-342

noising (Ilesanmi & Ilesanmi, 2021; Tian et al., 2020). The U-Net architecture is char-343

acterized by its inclusion of a contracting path and an expansive path, which collectively344

give rise to its characteristic U shape (refer to Fig. 3). The contracting path adheres to345

a conventional design of a convolutional network, featuring numerous convolutional lay-346

ers, each followed by an activation function and a max-pooling operation. As the con-347

tracting path advances, spatial information is diminished while feature information is348

enriched. Conversely, the expansive path amalgamates feature and spatial information349

through a sequence of up-convolutions and concatenations with high-resolution features350

derived from the contracting path.351

The U-Net architecture employed in this study shares similarities with the design352

proposed by Ronneberger et al. (2015). However, a modification is made by replacing353

the 2-dimensional convolutional layers with 3-dimensional counterparts. This alteration354

is introduced to encompass not only the spatial dimension but also the temporal dimen-355

sion of the data. The selected activation function is the hyperbolic tangent. Addition-356

ally, adaptations have been made to the output layer to accommodate an output com-357
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prising 112 time steps. The neural network is comprised of a total of 5,659,009 trainable358

parameters.359

A batch size of 8 is chosen, and the optimization process employs the Adam op-360

timizer with a learning rate of 0.001. To ensure proper application of the CNN to the361

data, padding is introduced. This involves extending the image by appending zero val-362

ues at its edges. For the longitudinal dimension, which is periodic, the zero padding only363

results in a slight discontinuity at 180°E, the edge of the data. Indeed, due to the na-364

ture of convolutional layers, a U-Net has more difficulty processing information located365

at the edge of the data. This is the reason why we excluded the initial and final four years366

(1901-1904 and 2017-2020) in the U-Net’s outputs. The chosen cost function is the root367

mean squared error (RSME), calculated using an area-weighted mean of the gridded data.368

The validation dataset is utilized to determine the optimal values for two key hy-369

perparameters: the number of epochs and the number of filters used in the convolutional370

layers. The term ”number of filters” pertains to the thickness of the convolutional lay-371

ers. The number of epochs refers to how many times the training dataset is processed372

during the training phase. These hyperparameters are selected to minimize the root mean373

squared error (RMSE) using the validation dataset. Examination of the validation RMSE374

for different values of epochs and layer thickness reveals a consistent pattern (see Fig.375

S1): a significant reduction in RMSE occurs in the initial epochs, followed by a grad-376

ual increase. As a result, we settle on a layer thickness of 16 for the first layer (as shown377

in Fig. 3) and a total of 32 epochs.378

3.4 Example379

Figure 4 provides an illustrative example featuring two randomly selected ensem-380

ble members from MPI-ESM and FGOALS-g3. The comparison focuses on the SAT at381

the year 2016, depicted in the top panels, as well as the resulting output generated by382

the neural network in 2016 (centre panels), juxtaposed against the ensemble mean anomaly383

for the same year (bottom panels). The anticipated impact of elevated greenhouse gas384

concentrations in 2016 is evident in the SAT of both MPI-ESM and FGOALS-g3 mem-385

bers, which exhibit warm anomalies. However, the internal variability introduces anoma-386

lies that surpass those of the ensemble mean in numerous regions, accompanied by some387

negative anomalies in other areas. To elaborate, an instance of cooling is simulated across388
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the Equatorial Pacific Ocean, possibly linked to a La Niña event in the case of MPI-ESM.389

The same ensemble member displays cooling over land in equatorial Africa, South-Eastern390

Asia, and Australia, as well as in extratropical zones like the North Atlantic Ocean and391

the Weddell Sea. In the example from FGOALS-g3, cold anomalies emerge over the Nordic392

Seas and the Labrador Sea. Such cooling diverges from the ensemble average, which ex-393

hibits a relatively uniform warming pattern across the globe, with a more pronounced394

effect over landmasses. Notably, the Arctic and its environs experience heightened warm-395

ing compared to other global regions, due to polar amplification. Conversely, minimal396

warming is observed in the Southern Ocean and the subpolar North Atlantic Ocean, and397

even a cooling tendency is noted in the Northern Atlantic warming hole.398

The SAT obtained from the U-Net’s output, utilizing the same ensemble member399

as input, exhibits a pattern strikingly similar to that of the ensemble mean (compare cen-400

tre and bottom panels). In both instances, the pattern is relatively uniform, albeit with401

heightened warming observed over land areas, coupled with an Arctic Amplification phe-402

nomenon. This suggests that the internal variability—such as the influence of ENSO events403

or the effects of prolonged weather patterns over continents—has been successfully elim-404

inated. The regions displaying subdued warming or cooling tendencies are replicated,405

although the exact positioning and intensity might not precisely match those of the en-406

semble mean in certain areas, particularly the Southern and subpolar North Atlantic.407

It’s worth noting a minor discontinuity at 180°E resulting from the padding process.408

The performance of the method is quantified more systematically in the next sec-409

tion.410

4 The U-Net as an internal variability filter411

The U-Net was applied to every member of FGOALS-g3 and MPI-ESM. We then412

compare the results obtained with the respective ensemble mean of these two climate mod-413

els.414

Figures 5a and 5b illustrate the root mean squared error (RMSE) between the out-415

comes generated by the U-Net and the corresponding ensemble mean for the time pe-416

riod of 1905-2016. Notably, the discrepancies in U-Net’s predictions are not uniformly417

distributed across space. The RMSE values fall within the range of 0.05°C to 0.5°C. The418

discrepancies generally remain below 0.2°C in tropical regions, except for instances over419
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Figure 4. (First column) Anomalies of SAT in a randomly chosen member of MPI-ESM, the

associated U-Net output and ensemble mean in 2016. (Second column) Same as the first column

but for a randomly chosen ensemble member for FGOALS-g3.

–17–



manuscript submitted to Journal of Advances in Modeling Earth Systems

Western Africa in the MPI-ESM model. In contrast, the largest errors are concentrated420

in polar areas, encompassing the Nordic Seas, Labrador Sea, and Bering Sea. Moreover,421

sizable errors are also evident over the Southern Ocean and the continents of the North-422

ern Hemisphere situated above 45°N. These high-error regions correspond to locales char-423

acterized by substantial internal variability (refer to Figure 1). Nevertheless, it is note-424

worthy that the errors produced by the U-Net are approximately five times smaller than425

the actual internal variability. Between the years 1996 and 2016, both ensemble results426

exhibit a warming trend that is roughly 0.1°C lower in the U-Net results when compared427

to the ensemble mean (as observed in Figs. 5cd). This difference is indicated by the nearly428

consistent negative divergence situated between latitudes 45°N and 45°S.429

The prevailing trend of systematic underestimation is, however, disrupted by an430

exception involving the subpolar Atlantic and the Southern Ocean, where an overesti-431

mation of warming is observed. This overestimation is particularly conspicuous in the432

FGOALS-g3 model, with warming anomalies extending to approximately 1°C over the433

Labrador Sea and 0.5°C over the Bering Sea. This divergence from the ensemble mean434

highlights the limited capacity of the neural network to accurately predict forced changes435

within the subpolar North Atlantic, which is a region that exhibits inconsistent surface436

temperature shifts across models (Swingedouw et al., 2021). The neural network’s per-437

formance is restricted due to this discrepancy among models, which hampers its abil-438

ity to discern the specific features of each climate model. For example, in the case of FGOALS-439

g3, the extensive anomalies in the Labrador and Bering Seas are not mirrored in the multi-440

model mean (see Figure 2). It’s also plausible that the substantial internal variability441

observed in these regions poses a challenge for accurate removal by the neural network442

(refer to Figure 1). This underestimation extends to the continents, with a greater im-443

pact on South America, Africa, and Australia in the tropics, as well as North America444

and Northern Siberia in boreal regions. The degree of underestimation reaches 0.15°C445

for MPI-ESM and 0.13°C for FGOALS-g3 in these regions.446

Figures 6c and 6d illustrate the temporal evolution of the global surface air tem-447

perature (GSAT) for both the MPI-ESM and FGOALS-g3 models, before and after ap-448

plying the U-Net correction. The range of data variability is portrayed by a 90% con-449

fidence interval assuming an Gaussian distribution. The forced variability’s temporal trend450

extracted via ensemble mean (depicted by the red line) is effectively captured by the U-451

Net outputs (represented by the blue line and blue shading).452
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Figure 5. a) Root mean square difference of the surface air temperature, in C°, between the

outputs of the U-Net and the mean ensemble in MPI-ESM, calculated across the members and

all years in 1905-2016 b. b) Same as a) but for FGOALS-g3 c) Difference of the time mean SAT

anomaly during 1996-2016, in °C, between the mean output of the U-Net and the corresponding

ensemble mean, for MPI-ESM. d) Same as c) but for FGOALS-g3

From 1905 to 2016, a GSAT rise is observed, aligning with the anticipated shifts453

in radiative forcing (Gulev et al., 2021). Additionally, a cooling pattern emerges a few454

years subsequent to the significant volcanic eruptions of Agung (1963), El Chichón (1982),455

and Pinatubo (1991), a phenomenon accurately estimated by the U-Net. This outcome456

aligns with expectations based on climate models incorporating volcanic aerosol emis-457

sions. Impressively, the U-Net’s outputs exhibit a marginal spread, reduced approximately458

tenfold, indicating a substantial removal of internal variability.459

Nonetheless, the U-Net results exhibit anomalies with a slightly diminished am-460

plitude compared to the ensemble mean. The spread of the U-Net outputs is also ap-461

proximately twice as wide at the time series’ beginning and end. The distribution of spa-462

tially averaged RMSE values within 90°S-90°N, comparing all U-Net outputs to the en-463

semble mean (depicted in Fig. 6a and 6b as blue histograms), reveals errors of around464

0.12°C in MPI-ESM and 0.13°C in FGOALS-g3. Additionally, we examine the RMSE465

values when averaging within 60°N-90°N, as Fig. 5ab suggests that errors are most pro-466

nounced in this region (illustrated in Fig. 6ab as red histograms). Errors north of 60°N467
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are approximately twice as substantial as global averages, with an average error of around468

0.23°C in MPI-ESM and 0.26°C in FGOALS-g3. In Fig. 6ef, the internal variability ob-469

served when averaging the SAT north of 60°N (as depicted by the red shading) is con-470

siderable in the raw model outputs (around 0.8°C). The ensemble mean SAT anomalies471

in this region increase from approximately -1°C in the early twentieth century to about472

1.2°C in 2010. The temporal evolution of the SAT north of 60°N demonstrates notable473

similarity between the ensemble mean and the ensemble mean of U-Net outputs, with474

a roughly 10-fold reduction in spread. However, the amplitude of the anomalies is slightly475

underestimated, with a reduction of around 0.3°C in negative anomalies in the U-Net476

output between 1905 and 1930 in MPI-ESM. For FGOALS-g3, the SAT is underestimated477

by around 0.2°C during 1970-1990.478

In Figure S2, the quadratic errors between the mean ensemble members and the479

U-Net output are presented for each year, with global (90°S-90°N) and north of 60°N av-480

erages considered for both MPI-ESM and FGOALS-g3. Notably, the RMSE exhibits el-481

evated values during the initial and final years, characterized by peaks around the years482

1975-1985 in both models. This pattern underscores the presence of substantial uncer-483

tainties at the data’s onset and conclusion. When applying the 1900-2020 period for the484

output (without excluding the first and last four years), the errors actually surpass those485

portrayed in Figure S2, a fact that elucidates the rationale for excluding the endpoints486

in the ongoing analysis, as detailed in the methods (section 2). Moreover, the notable487

error peak during 1975-1985 lacks a definitive explanation, although it’s plausible that488

this discrepancy could be linked to uncertainties associated with the implementation of489

aerosol forcings, notably CMIP5 for MPI-ESM and CMIP6 for FGOALS-g3.490

The errors exhibited by the U-Net in relation to data from FGOALS-g3 are more491

prominent compared to those arising from the use of MPI-ESM data. This discrepancy492

can be attributed to the fact that MPI-ESM’s simulated forced variability aligns more493

closely with the training data’s characteristics, on average. Specifically, the training data’s494

forced variability is in line with that of the MMM, and MPI-ESM demonstrates a smaller495

root mean squared difference from the MMM compared to FGOALS-g3 (as illustrated496

in Fig. 2).497

To assess the reduction in internal variability achieved by the U-Net, we can quan-498

titatively measure the number of ensemble members needed to surpass the U-Net’s in-499
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Figure 6. a) Histogram showing the distribution of the RMSE between the mean ensemble

and the U-Net outputs of MPI-ESM. b) Same as a), but for FGOALS-g3. c) Time evolutions

of the global mean surface air temperature, in °C, for the ensemble mean and the mean U-Net

outputs for MPI-ESM. Color shade shows the spread of the time series, with 90% the ensemble

members uncertainty assuming a gaussian distribution. d) Same as c) but for FGOALS-g3. e)

and f) are the same as c) and d) but when averaging the SAT, in °C, north of 60°N.
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dividual member results using a basic ensemble mean approach. This evaluation is con-500

ducted through a random subsampling process involving 500 sets of m members, where501

m varies from 1 to 40, for both the FGOALS-g3 and MPI-ESM ensembles. Within each502

subset, ensemble means are calculated. The RMSE between these subsample ensemble503

means and the actual ensemble mean obtained from all members is then determined (de-504

picted by vertical red and blue lines in Figure 7). This RMSE computation is performed505

across all grid points and is spatially averaged. The 90% intervals, assuming an Gaus-506

sian distribution, of the 500 subsamples are also illustrated. This analysis is done for both507

the MPI-ESM and FGOALS-g3 ensembles across distinct geographical regions: global508

(90°S-90°N), North Atlantic (60°W-0°E, 0°N-60°N), North Pacific (120°E-100°W, 20°N-509

60°N), Niño3 (5°N-5°S, 150°W-90°W), as well as polar regions north of 60°N and south510

of 60°S. These chosen regions exhibit considerable forced and internal variability, as vi-511

sually demonstrated in Fig. 1 and Fig. 2. Additionally, this evaluation is extended to512

encompass both oceanic and terrestrial areas in the 60°S-60°N band, allowing for a more513

comprehensive understanding of the U-Net’s performance. The horizontal lines in the514

illustration correspond to the same RMSE values but for the U-Net output from each515

individual member. The accompanying color shade represents the spread of 90% uncer-516

tainty assuming an Gaussian distribution.517

Figure 7a visually illustrates the progression of errors within the subset of mem-518

bers as the size of the subset increases. This pattern aligns with expectations, as a larger519

subset size leads to better estimations of forced variability and a corresponding reduc-520

tion in residual internal variability by a factor of
√
n. The distribution of U-Net outputs521

mirrors the histograms presented in Figure 6, showing a high degree of similarity across522

both climate models. The U-Net effectively diminishes internal variability in GSAT by523

approximately a factor of slightly more than four, which is analogous to the residual vari-524

ability observed within subsets containing around 17 members for FGOALS-g3 and 20525

members for MPI-ESM. When focusing on regions spanning oceans and land between526

60°N and 60°S, the outcomes remain largely consistent, showcasing a reduction in error527

magnitude by a factor of approximately four. This reduction corresponds closely to that528

achieved by using a subset of 15 to 20 members.529

The U-Net’s efficacy stands out prominently over the equatorial Pacific region, as530

depicted in panel 7f. This region is known for being heavily influenced by the ENSO, which531

dominates internal variability. The U-Net achieves a substantial reduction in variabil-532
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ity, amounting to a factor of 5.5. This reduction is akin to the outcome of utilizing an533

ensemble mean derived from around 30 members for both MPI-ESM and FGOALS-G3.534

In other regions, the variability reduction is quite similar to that found globally.535

For instance, this consistency is observed in the North Pacific and polar regions, where536

the required number of members for equivalent outcomes remains relatively steady. How-537

ever, in terms of removing internal variability, the U-Net showcases higher efficiency in538

the context of MPI-ESM for most scenarios. This pattern holds true except for the North539

Atlantic, where a notable deviation is observed: a set of 15 members is necessary in MPI-540

ESM to achieve results equivalent to the U-Net (∼4-fold reduction in residual variabil-541

ity), while merely 5 members suffice for FGOALS-g3 (halving of the residual variabil-542

ity).543

The variation in performance between FGOALS-g3 and MPI-ESM might arise from544

dissimilarities in their internal variability, particularly over multi-decadal timescales, or545

due to differences in forced variability compared to the training data. Having completed546

this method evaluation, our focus now shifts to examining the outcomes when the U-Net547

is employed with observational data.548

4.1 Filtering of the observations549

The U-Net is now employed to process SAT observations derived from GISSTEMP.550

By utilizing observed data as input, the U-Net provides an estimate of the forced vari-551

ability. In the interval from 1996 to 2016, the U-Net-derived forced SAT (depicted in Fig-552

ure 8a) illustrates a fairly uniform warming, with amplified warming evident over the553

Arctic region, consistent with Arctic amplification. Furthermore, this warming effect is554

slightly more pronounced over land compared to oceans. Conversely, the Southern Ocean555

experiences less warming in comparison to other global regions. The spatial distribution556

of standard deviations (Figure 8b), computed from 1905 to 2016 using U-Net output,557

mirrors the anomalies observed in the 1996-2016 period. This agreement indicates the558

prevailing influence of increasing anthropogenic forcing. Notably, this pattern closely re-559

sembles the changes observed in the multi-model mean (MMM) (as depicted in Fig. 2).560

This underscore the significant contribution of the training dataset in determining the561

identified forced changes.562
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Figure 7. Spatial average of the RMSE for the forced variability estimated with the U-Net

outputs obtained from each ensemble member, and the forced variability obtained with ensemble

averages subsampling ensemble of size 1 to 40; for (red) MPI-ESM and (blue) FGOALS-g3. The

RMSE calculated from the U-Net and each ensemble member is given by (color shade) the inter-

val including 90% of the distribution, assuming a gaussian distribution, and (horizontal dashed

line) the mean RMSE. The RMSE calculated from 500 subsample of size between 1 to 40 is illus-

trated with (vertical lines) the intervals including 90% of the ensemble member distribution, also

assuming a gaussian distribution.
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Figure 8. Forced surface air temperature (in °C) anomaly when applying the U-Net to GIS-

STEMP observation : a) time average in 1996-2016; b) standard deviation in 1905-2016.
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Figure 9. Standard deviation of the SAT deviations from the forced SAT, as estimated using

the U-Net, in 1905-2016.

To quantify internal variability within the observations, we compute the deviations563

of observed SAT anomalies from the estimated forced changes. The resulting internal564

variability pattern, illustrated by the time standard deviation of these deviations shown565

in Figure 9, mirrors the model-derived pattern (Fig. 1). Higher internal variability val-566

ues are observed over land areas, as well as regions near the boundaries of sea ice, such567

as the Labrador Sea and the Nordic Seas in the Northern Hemisphere, and the South-568

ern Ocean. Notably, a local maximum of internal variability emerges in the equatorial569

Pacific, corresponding to the El Niño-Southern Oscillation region. This similarity in the570

spatial distribution of internal variability between observations and models underscores571

the consistency of our findings.572

We now shift our focus to the GSAT and the Niño 3.4 region (5°N-5°S, 170°W-120°W),573

with a particular emphasis on Niño 3.4 due to its notably improved performance in our574

study. In the global context (Figure 10a), the forced variability reveals a consistent warm-575

ing trend, which becomes more pronounced during the 1960s. Notably, the major vol-576

canic eruptions of Agung (1963), El Chichón (1982), and Pinatubo (1991) are associated577

with temporary cooling patterns. By 2016, the GSAT anomaly reaches 0.7°C. As expected,578

the forced variability time series exhibits a significant reduction in inter-annual variabil-579

ity. This reduction is particularly striking within the Niño 3.4 region (Figure 10b), where580

variability at 2 to 7 years is almost entirely eliminated. The U-Net estimates the Niño581
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Figure 10. Time series of (red) the observed SAT anomaly and (blue) the forced SAT

anomaly estimated by the U-Net for a) the global mean b) NINO 3.4 and c) the relative SAT,

calculated as the difference between the averaged SAT in Niño 3.4 region and the tropical ocean

SAT (30°S-30°N).

3.4 forced variability, depicting a steady warming trend. To quantify the changes of SAT582

in Niño 3.4 relative to the tropics, we calculate also the relative SAT, defined as the dif-583

ference between the average SAT on the NINO 3.4 region and the average SAT on ocean584

grid between 30°S-30°N. The relative SST shows that the warming over the Niño 3.4 fol-585

lows that of the tropics, so that no clear El Niño-like reponse is found, unlike climate586

models (Fig. 2). Some authors (Clement et al., 1996; Heede et al., 2020) have suggested587

that a forced cooling could exists in the relative SAT, called thermostat effect. Here the588

relative SAT shows a very small cooling (see Fig. 10c). In addition the SAT in the Niño589

3.4 region are not affected by the forcing from the main volcanic eruptions. Therefore,590

no evidence of a Niño-like response to volcanic eruption (as in Khodri et al. (2017)) is591

found.592
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5 Conclusion593

A novel approach is introduced in this study to effectively eliminate internal vari-594

ability from a time-evolving two-dimensional dataset, specifically focusing on surface air595

temperature. The method employs a U-Net neural network and draws inspiration from596

the noise-to-noise technique. This framework treats internal variability as an analogous597

noise superimposed on the underlying forced variability. The U-Net model is trained us-598

ing outputs from a diverse ensemble of climate models obtained from the CMIP simu-599

lations. Subsequently, this trained network is applied to observational data to unveil the600

forced variability signal by attenuating internal variability. The validation of this method601

involves utilizing large ensemble simulations from individual models, specifically the MPI-602

ESM and FGOALS-g3, to gauge its effectiveness. The forced variability derived from the603

ensemble mean is then contrasted with the outcomes from the U-Net application. To quan-604

titatively assess the U-Net’s efficacy in reducing internal variability, an ”equivalent en-605

semble size” is computed. This metric indicates the ensemble size that would be required606

to achieve the same level of precision in capturing forced changes as the U-Net which is607

applied to a single member. The U-Net outputs for these two climate models’ test data608

exhibit an error equivalent to an internal variability reduction of a factor of more than609

4. This magnitude corresponds to the internal variability one could expect from an en-610

semble averaging 17 to 20 members. Furthermore, when the U-Net is applied to surface611

air temperature observations, the inferred forced changes align closely with the multi-612

model mean in terms of spatial patterns. The U-Net’s results do not suggest an El Niño-613

like response to global warming. We observe that the U-Net encounters greater challenges614

in accurately estimating forced variability over the Arctic region. This discrepancy can615

be attributed to the significant forced and internal variability associated with changes616

in sea-ice extent in that area. Additionally, the U-Net’s performance in capturing forced617

variability in the North Atlantic is less successful for the FGOALS-g3 model. This lim-618

itation might be linked to uncertainties stemming from the multi-decadal variability preva-619

lent in these regions (Menary & Wood, 2018; Zhang, 2007).620

In the pursuit of enhancing the U-Net methodology, several avenues for future im-621

provements have been identified. One potential approach is to address the U-Net’s sen-622

sitivity to the multi-model consensus of future variability by employing neural network623

regularization techniques, such as weights penalisation. Additionally, preprocessing meth-624

ods like data augmentation could be explored to potentially mitigate such impacts. Im-625
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proving the evaluation process of the U-Net’s performance is also on the horizon. This626

could involve testing the U-Net on a broader range of climate models to assess its gen-627

eralizability. Comparing its outcomes with results from alternative methods, such as signal-628

to-noise filtering, could offer a comprehensive evaluation of the U-Net’s effectiveness. To629

broaden the scope of application, the U-Net’s performance might be further investigated630

using additional climate variables beyond surface air temperature (SAT). Variables such631

as sea level surface pressure and precipitation could be explored, capitalizing on poten-632

tial correlations among these variables to provide more comprehensive insights. Lastly,633

the proposed method holds the potential for wider applications, including its deployment634

on simulations from projects like the Detection and Attribution Model Intercomparison635

Project (Gillett et al., 2016) or the Large Ensemble Single Forcing Model Intercompara-636

ison Project (D. M. Smith et al., 2022). By leveraging transfer learning, the U-Net trained637

on historical simulations could be adapted to these datasets. This adaptation could fa-638

cilitate the evaluation of specific forcing effects in individual climate models, offering a639

valuable tool for studying the impact of different external factors on the climate system.640

Such extensions of the method could contribute significantly to our understanding of cli-641

mate attribution and variability.642
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Table 1. List of climate CMIP5 climate model used. Nb indicates the ensemble size of each

simulation.
Table 1.

Name Nb Historical Nb RCP8.5

GISS-E2-R-p1 2 2

MPI-ESM-LR 3 3

CanESM2 5 5

CESM1-CAM5 3 3

FIO-ESM 3 3

CNRM-CM5 10 5

CSIRO-Mk3-6-0 10 10

FGOALS-g3-s2 3 3

GISS-E2-H-p1 6 3

GISS-E2-H-p3 2 2

HadGEM2-ES 3 3

IPSL-CM5A-LR 6 4

GISS-E2-R-p3 3 2
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Table 2. List of climate CMIP6 climate model used. Nb indicates the ensemble size of each

simulation.
Name Nb Historical Nb SSP2-4.5

ACCESS-CM2 3 3

CanESM5 25 25

CESM2 11 3

CanESM5-CanOE 3 3

GISS-E2-1-G 27 27

EC-Earth3 16 16

MIROC-ES2L 23 23

HadGEM3-GC31-LL 5 4

GFDL-ESM4 3 3

FIO-ESM-2-0 3 3

KACE-1-0-G 3 3

GISS-E2-1-G-p3 9 4

ACCESS-ESM1-5 40 30

CAS-ESM2-0 4 2

NESM3 5 2

MPI-ESM1-2-HR 10 2

NorESM2-LM 3 3

GISS-E2-1-G-p5 9 9

IPSL-CM6A-LR 33 11

GISS-E2-1-H 14 5

CESM2-WACCM 3 3

CNRM-CM6-1 30 10

CAMS-CSM1-0 3 2

UKESM1-0-LL 19 17

MPI-ESM1-2-LR 10 10

MRI-ESM2-0 9 9

CNRM-ESM2-1 10 6

FGOALS-f3 6 4

CanESM5 40 25

MIROC6 50 50
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Table 3. List of climate SMILE climate model used. Nb indicates the ensemble size of each

simulation.

Name of the model Nb of historical members Nb scenario members Origin of forcings Scenario

CSIRO-Mk3-6-0 29 29 CMIP5 RCP8.5

EC-EARTH 15 15 CMIP6 SSP2-4.5

MPI-ESM 100 100 CMIP6 SSP2-4.5

FGOALS-g3 110 110 CMIP6 SSP2-4.5
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Figure S1. Validation RMSE (in °C) using the ensemble mean of MIROC6 outputs as a target,

and each member as inputs for different epochs and when varying the numbers of filters for each

convolutionnal layer of the U-Net. Vertical line of the same colour shows the epoch where the

minimum RMSE is obtained for the three changes in the number of filters.
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Figure S2. a) Spatial average of the RMSE, in °C, between the U-Net output obtained from

each member of MPI-ESM and the ensemble average (blue) over 90°S-90°N and (red) over 60°N-

90°N. The line provides the ensemble mean error obtained with an average from the errors of all

U-Net outputs. Colour shade shows one standard deviation among the error of the outputs from

all members. b) Same as a) but for FGOALS-g3 members.
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