
P
os
te
d
on

22
A
u
g
20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
69
27
22
23
.3
86
42
66
7/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Distributed Flashiness-Intensity-Duration-Frequency products over

the conterminous US

Zhi Li1, Shang Gao2, Mengye Chen1, Jiaqi Zhang1, Jonathan J. Gourley3, Humberto
Vergara4, Siyu Zhu1, Sebastian Charles Ferraro1, Yixin Wen5, Tiantian Yang1, and Yang
Hong1

1University of Oklahoma
2University of Arizona
3National Oceanic and Atmospheric Administration (NOAA)
4University of Iowa
5University of Florida

August 22, 2023

Abstract

Effective flash flood forecasting and risk communication are imperative for mitigating the impacts of flash floods. However, the

current forecasting of flash flood occurrence and magnitude largely depends on forecasters’ expertise. An emerging flashiness-

intensity-duration-frequency (F-IDF) product is anticipated to facilitate forecasters by quantifying the frequency and magnitude

of an imminent flash flood event. To make this concept usable, we develop two distributed F-IDF products across the contiguous

US, utilizing both a Machine Learning (ML) approach and a physics-based hydrologic simulation approach that can be applied at

ungaged pixels. Specifically, we explored 20 common ML methods and interpreted their predictions using the Shapley Additive

exPlanations method. For the hydrologic simulation, we applied the operational flash flood forecast framework – EF5/CREST.

It is found that: (1) both CREST and ML depict similar flash flood hot spots across the CONUS; (2) The ML approach

outperforms the CREST-based approach, with the drainage area, air temperature, channel slope, potential evaporation, soil

erosion identified as the five most important factors; (3) The CREST-based approach exhibits high model bias in regions

characterized by dam/reservoir regulation, urbanization, or mild slopes. We discuss two application use cases for these two

products. The CREST-based approach, with its dynamic streamflow predictions, can be integrated into the existing real-time

flash flood forecast system to provide event-based forecasts of the frequency and intensity of floods at multiple durations. On the

other hand, the ML-based approach, which is a static measure, can be integrated into a flash flood risk assessment framework

for urban planners.
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Key Points: 14 

• We developed distributed flashiness-intensity-duration-frequency products with machine 15 
learning and hydrologic simulation 16 

• Both products can identify flash flood-prone regions in the CONUS 17 

• We cross-compared both products over the CONUS and highlight their strengths and 18 
limitations 19 

• The utility of the two products is discussed with their synergistic use by decision makers 20 
  21 



Abstract 22 
Effective flash flood forecasting and risk communication are imperative for mitigating the 23 

impacts of flash floods. However, the current forecasting of flash flood occurrence and 24 

magnitude largely depends on forecasters’ expertise. An emerging flashiness-intensity-duration-25 

frequency (F-IDF) product is anticipated to facilitate forecasters by quantifying the frequency 26 

and magnitude of an imminent flash flood event. To make this concept usable, we develop two 27 

distributed F-IDF products across the contiguous US, utilizing both a Machine Learning (ML) 28 

approach and a physics-based hydrologic simulation approach that can be applied at ungaged 29 

pixels. Specifically, we explored 20 common ML methods and interpreted their predictions using 30 

the Shapley Additive exPlanations method. For the hydrologic simulation, we applied the 31 

operational flash flood forecast framework – EF5/CREST. It is found that: (1) both CREST and 32 

ML depict similar flash flood hot spots across the CONUS; (2) The ML approach outperforms 33 

the CREST-based approach, with the drainage area, air temperature, channel slope, potential 34 

evaporation, soil erosion identified as the five most important factors; (3) The CREST-based 35 

approach exhibits high model bias in regions characterized by dam/reservoir regulation, 36 

urbanization, or mild slopes. We discuss two application use cases for these two products. The 37 

CREST-based approach, with its dynamic streamflow predictions, can be integrated into the 38 

existing real-time flash flood forecast system to provide event-based forecasts of the frequency 39 

and intensity of floods at multiple durations. On the other hand, the ML-based approach, which 40 

is a static measure, can be integrated into a flash flood risk assessment framework for urban 41 

planners.  42 

1. Introduction 43 

1.1 Background 44 

Flash floods are a type of flooding that occur rapidly, often within a few minutes or hours 45 

of the onset of rainfall (Hong et al., 2013). Flash floods are oftentimes a weather phenomenon, 46 

which is closely tied to storms (e.g., convective system, squall lines, supercells) in the US 47 

(Doswell et al., 1996; Maddox et al., 1979). Forecasting flash floods is perceived as one of the 48 

grand challenges within the hydrology community. Weather forecasting inherently carries 49 

significant challenges. When considering flash flood forecasting, an additional uncertainty arises 50 

due to the impact of land surface that can both act as a buffer or even exacerbate flooding. 51 



Forecasting flash flood qualitatively is difficult, forecasting and quantifying the specific 52 

magnitudes of flash flooding at a specific location is much more challenging. Due to these 53 

challenges, operational forecasting flash floods on a national scale was not feasible until the 54 

1980s (Georgakakos, 1986). Two types of threshold-based guidance products have emerged and 55 

are currently being utilized by forecasters at the National Weather Service (NWS). The Flash 56 

Flood Guidance (FFG), implemented after a deadly 1969 flash flood in Ohio, has become a 57 

national standard for weather forecasters henceforth (Clark et al., 2014). Taking quantitative 58 

precipitation estimates (QPE) as inputs, FFG determines if the amount of rain will produce bank-59 

full conditions on streams. However, FFG does not account for the land cover and routing in 60 

simulating pluvial flash flooding. Hydrologic models, on the other hand, simulate the rainfall-61 

runoff processes to predict the occurrence of flash floods with unit streamflow values (Gourley et 62 

al., 2017). With increasing available computational resources, flash flood forecast products 63 

derived from hydrologic models are beginning to play a more prominent role in predictive storm 64 

warning and disaster management. Gourley & Vergara (2021) found the equitable threat score 65 

generally increases with the sophistication of flash flood forecast products, particularly 66 

highlighting the importance of land cover and surface routing process.  67 

1.2 Problem statement 68 

Previously developed flash flooding methods present several challenges related to 69 

forecast ability and risk communication. First and foremost, the threshold-based system, as 70 

previously discussed, is a form of subjective guidance that necessitates the incorporation of past 71 

experience. For instance, the best predictors of flash flood occurrence were with 1- and 3-h 72 

rainfall that exceeded FFG by ratios greater than 100% (Clark et al., 2014). For the unit 73 

streamflow simulated by a hydrologic model, this threshold is subject to different model 74 

simulations and configuration (Gourley et al., 2021). There is an absence of a comprehensive, 75 

objective reference system to support decision-making process (Morss et al., 2016). Second, the 76 

severity of a flash flood event is still challenging to describe to the public, with respect to risk 77 

communication. Despite its frequent misuse in the news press, the terms such as ‘100-year flood’ 78 

often used in frequentist statistics, provide the public with a perception of flood risk. However, 79 

such frequency associations are not available for flash floods, primarily because they require a 80 

quantifiable measure to describe their nature – specifically, the speed and depth of the water 81 



flow. These two factors hinder effective communication between decision-makers and the 82 

public, consequently placing vulnerable communities at increased risk.  83 

1.3 New promises 84 

In light of these issues, Li et al. (2023) first proposed a new metric called Flashiness-85 

Intensity-Duration-Frequency (F-IDF), analogous to rainfall IDF in a way that attempts to 86 

quantify a flash flood event by its duration and return periods. This not only allows us to 87 

determine the likelihood of a flash flood event but also enables us to quantify its severity (such 88 

as a 100-year flash flood event). As a proof-of-concept, our previous study was conducted only 89 

at 3,722 stream gage sites across the contiguous US (CONUS), but we recognize the pressing 90 

need to be generalized to ungaged areas. This study aims to develop a distributed F-IDF product 91 

that addresses the data gap of ungaged basins, particularly in urban areas. In pursuing this goal, 92 

we employ two methods. The first is a traditional approach that relies on a distributed hydrologic 93 

model, which resolves the rainfall-runoff process at a flash flood scale (i.e., 1 km and 10 94 

minutes) over the CONUS. The second is an emerging statistical approach that uses Machine 95 

Learning (ML) to construct the correlation between basin attributes and F-IDF quantities. Albeit 96 

with the same end product, these two methods are distinct in the way that they are developed. 97 

The hydrologic simulation, despite being less accurate than ML models as demonstrated by 98 

many studies (Kim et al., 2021; Ouyang et al., 2021), provides an interpretable framework that 99 

enhances our understanding of hydrologic processes (Clark et al., 2008). Conversely, while ML 100 

models may offer superior solutions (because of targeted training), they present challenges in 101 

interpreting the underlying hydrologic processes (Shen, 2018). This study advocates the 102 

synergistic application of these two approaches for decision making and risk management to 103 

mitigate flash flood risks. The objectives of this study are threefold: (1) To develop first-of-its-104 

kind distributed F-IDF products over the CONUS based on both a physics-based model and an 105 

ML model; (2) To cross-compare the advantages and limitations of each approach; (3) To 106 

discuss the utility of both products and benefits of their synergistic use.  107 

The rest of this paper is organized as follows. Section 2 introduces the data used in this study 108 

and the framework we propose for this work. Section 3 elucidates the results of this study 109 

regarding model verification, cross comparison, and presents a case study. In Section 4, we 110 

discuss the limitations of the model simulation and the utility of the F-IDF products. 111 



2. Data and Methods 112 

2.1 Data for hydrologic simulation 113 

We use the CREST hydrologic model to simulate sub-hourly streamflow from 2001 to 114 

2012. The model inputs include precipitation and potential evapotranspiration as forcings and a 115 

set of a-priori parameters at a desired resolution (i.e., 1 km). We use the Multi-Radar Multi-116 

Sensor reanalysis product at 10-min time intervals over the CONUS to provide precipitation data 117 

(Zhang & Gourley, 2018) and the USGS monthly climatological potential evapotranspiration for 118 

the model (Allen et al., 1998). The MRMS is a radar-gauge merged quantitative precipitation 119 

estimation (QPE) product by merging 180 operational radars and creating a 3D radar mosaic 120 

over the CONUS (Zhang et al., 2016). A set of calibrated a-priori model parameters are accessed 121 

from https://github.com/chrimerss/EF5-US-Parameters, and the model performance with such 122 

data is evaluated by Vergara et al. (2016) and Flamig et al. (2020).  123 

2.2 RiverAtlas data 124 

The training features for the ML-based model arise from the RiverAtlas v10 dataset, 125 

hosted on the hydrosheds website (https://www.hydrosheds.org/hydroatlas) (Lehner et al., 2022). 126 

The RiverAtlas data are a compilation of river attributes, spanning eight sections: (1) Hydrology 127 

(e.g., annual runoff, natural discharge, groundwater table), (2) Physiography (e.g., channel slope, 128 

basin slope, elevation, drainage area), (3) Climate (e.g., annual precipitation, actual evaporation, 129 

climate moisture index, aridity index), (4) Soils & Geology (e.g., soil water content, clay 130 

fraction, silt fraction, karst fraction), (5) Anthropogenic (e.g., road density, urban density, 131 

population), (6) Land cover (e.g., area extent of trees, shrubs, herbaceous), (7) Natural vegetation 132 

(e.g., evergreen, deciduous, savanna), and (8) Wetland (e.g., peatland, river). Overall, 59 river 133 

attributes are used as training features, and a detailed table of these attributes can be found in 134 

Supplementary Table 1. 135 

2.3 Framework 136 

Figure 1 depicts the overall framework used in this study to produce distributed F-IDF 137 

values over the CONUS. This framework intends to produce two distributed F-IDF products 138 

covering the CONUS. One is CREST-based F-IDF that is generated by the CREST hydrologic 139 

model and fits an Extreme Value Distribution (EVD). A counterpart is machine-learning (ML)-140 

based F-IDF that is an extrapolation of gage-based F-IDF values over the CONUS, which was 141 



conducted by Li et al. (2023). Another distinct feature of these two approaches is their spatial 142 

representativeness. The CREST-based F-IDF product is gridded, with the cell size the same as 143 

the distributed hydrologic model (i.e., 1 km). The ML-based F-IDF product is river reach-based 144 

since the hydrologic attributes are aggregated in hydrologic response units (i.e., sub-basins) and 145 

assigned to corresponding river reaches. The methods for calculating CREST-based and ML-146 

based F-IDF are articulated in Sections 2.5 and 2.6, respectively. 147 

 148 

Figure 1. A schematic framework of the two approaches. 149 

2.4 Definition of Flashiness-Intensity-Duration-Frequency 150 

We have introduced the definition of F-IDF in Li et al. (2023) and reiterate the core 151 

concept here. The rationale for proposing a new metric is three-fold. First, this new metric 152 

quantifies the severity of a flash flood event with return periods (e.g., a 100-year flash flood 153 

event). Second, flash flood events are multi-dimensional, meaning that the duration of the event 154 

impacts the severity of the event. Third, the F-IDF is a tailored metric that can assist decision-155 

makers in planning for and mitigating flash flood risks. The calculation of the F-IDF is as 156 

follows. First, we compute the flashiness index (Eq. 1), which is the slope of a hydrograph over a 157 

moving window that represents the duration of an event. Then, the annual maximum flashiness 158 



index is extracted by aggregating the time series. Lastly, we fit the annual maximum values into 159 

GEV and extract flashiness values for desired flash flood return periods. The flashiness values, in 160 

principle, reflect the speed at which the flood rises and the magnitude of the flood peak. 161 

Although the definitions for the flashiness index are variable, we see similarities in different 162 

methods from identified flash flood hot spots (Li et al., 2023). In addition, our method is fairly 163 

simple and reproducible compared to others (Gannon et al., 2022; Saharia et al., 2017; Smith & 164 

Smith, 2015).  165 

𝐹 = !"#	{&!'&!"#,&!'&!"$,…	&!'&!"%}
+,-×/

,                                                 (1) 166 

where 𝑄0 is the streamflow time series at time t, d is the duration from 1 hour to 6 hours, FAC is 167 

the drainage area (km2). By transforming the streamflow to unit streamflow, we account for 168 

streamflow generally increasing with drainage basin size. The unit of F is dependent on the 169 

streamflow units and modeling frequency but is generally expressed in units of [L/T2]. We 170 

standardize the unit of flashiness value to be measured in mm/h2. In this study, we use the 171 

simulated streamflow at a 10-minute time interval, so a conversion factor of 21.6 is applied to 172 

convert m3/s/km2/10-min to mm/h2. 173 

2.5 The CREST-based approach 174 

In this study, we leverage the Coupled Routing and Excess STorage (CREST) model for 175 

its strength in flood prediction. The CREST model was jointly developed by the University of 176 

Oklahoma and NASA (Wang et al., 2011), as the first hydrologic model operated by NASA for 177 

global flood forecast during the Tropical Rainfall Measuring Mission era (Wu et al., 2012). Since 178 

its inception in 2011, the CREST model has primarily served as a flood-centric distributed 179 

hydrologic model that encapsulates a suite of remote sensing products (Chen et al., 2022; Wang 180 

et al., 2011; Li et al., 2023). As a component of the Ensemble Framework For Flash Flood 181 

Forecast (EF5) framework, EF5/CREST has been an operational setup for real-time flash flood 182 

forecast by NOAA/NSSL since 2016 and provides critical and timely information for weather 183 

forecasters in the continental US (http://flash.ou.edu/; Gourley et al., 2017). While we 184 

concentrate on the application of F-IDF using CREST in this study, F-IDF values can be 185 

generated using any distributed hydrologic model.  186 



We simulate the 11-year streamflow using CREST from 2001 to 2011, with the first year 187 

reserved for warming up the model states. The MRMS precipitation reanalysis data at a 10-min 188 

interval and 1-km spatial resolution are used to drive the model. The model setup, such as grid 189 

resolution (1km) and a-priori parameters, are the same as the operational one, and its 190 

performance has been assessed by Flamig et al. (2020). The output streamflow is produced every 191 

10 minutes to capture the nature of flash floods. With the streamflow values at each 1km grid 192 

cell, we extract the ten-year time series (10 years x 365 days/year x 24 hours/day x 6 10-193 

minute/hour=525,600 time steps) and follow the F-IDF calculation as detailed in Section 2.4. We 194 

repeat this process for 4 million grid cells that have flow accumulation values greater than 1 km2 195 

over the CONUS to generate a distributed F-IDF product. 196 

2.6 Machine learning based approach 197 

Given the nature of how river attributes are aggregated, we perform the ML model at a 198 

river reach level over the CONUS using the riverATLAS dataset. Fifty-nine river attributes are 199 

fed into a suite of ML models for training on 3,722 USGS streamgage sites and then applied for 200 

556,771 river reaches. To build the gage-based F-IDF product for ML, we extract the 15-minute 201 

streamflow time series from 1950 to 2020. These time series were fed into the F-IDF calculation 202 

as described in Section 2.4 (Li et al., 2023). With no prior information on ML model 203 

performance, we selected 20 commonly used ML models including linear, tree-based, kernel-204 

based, and instance-based models. They are Light Gradient Boosting Machine, Random Forest 205 

Regressor, Gradient Boosting Regressor, Extra Trees Regressor, Extreme Gradient Boosting, K 206 

Neighbors Regressor, Ridge Regression, Linear Regression, Elastic Net, Lasso Least Angle 207 

Regression, Lasso Regression, Decision Tree Regressor, Bayesian Ridge, Least Angle 208 

Regression, Huber Regressor, Orthogonal Matching Pursuit, Dummy Regressor, and Passive 209 

Aggressive Regressor. A table of detailed descriptions for each model is listed in Supplementary 210 

Table 2. We use the pycaret package in Python to benchmark and automate workflows (Ali, 211 

2020). 212 

To split the training-testing samples, we adhere to the 70-30 principle, in which 70% of 213 

the samples are used for training, and the rest is for testing. Beyond that, we perform a 10-fold 214 

cross-validation to select the best-performing ML model out of 20 models for each return period 215 

and duration. Given six return periods (i.e., 2-yr, 5-yr, 10-yr, 25-yr, 50-yr, and 100-yr) and six 216 

durations (i.e., 1-hr, 2-hr, 3-hr, 4-hr, 5-hr, and 6-hr) of flashiness values, 36 ML models are 217 



retained for further evaluation. Because the distribution of flashiness values is positively skewed, 218 

meaning that a large number of samples are concentrated on the low end, we transform the 219 

flashiness data to resemble a Gaussian-like distribution using the Box-Cox transformation 220 

(Eq.2). 221 

𝐹1 = %
𝑙𝑜𝑔(𝐹), 𝑖𝑓	𝜆 = 0

(𝐹2 − 1)/𝜆,				𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                (2) 222 

where 𝐹1 is the transformed flashiness values, F is the original flashiness values before 223 

transformation, and 𝜆 is the parameter chosen so that the distribution approximates a normal 224 

distribution. The optimal 𝜆 can be calibrated by maximizing the log-likelihood function.   225 

2.7 Explainable Machine Learning 226 

The Shapley Additive exPlanations (SHAP) values are used in this study to interpret the 227 

contribution of each feature to the overall prediction of flashiness values. Based on the concept 228 

of cooperative game theory, the SHAP estimates the contribution of each feature to the 229 

prediction for every instance (i.e., feature present or not) (Lundberg & Lee, 2017). Put 230 

differently, the SHAP value can be considered as the average marginal contribution of a feature 231 

value across all possible coalitions. Eq. 3 shows the mathematical expression of a shapley value 232 

given a prediction model f and an instance x: 233 

ϕ3(𝑓, 𝑥) = ∑ |5|!(|8|'|5|'9)!
|8|!5⊆8∖{3} [𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆)]                           (3) 234 

where N is the set of all features; S is a subset of N that does not include feature i; |𝑆| is the 235 

number of elements in S; |𝑁| is the total number of features; 𝑓(𝑆 ∪ {𝑖}) is the prediction of the 236 

model with features in S and i; 𝑓(𝑆) is the prediction of the model with features in S only. 237 

In practice, the SHAP values are generally calculated through the following steps. First, we 238 

enumerate all possible combinations of features. For a given instance to be predicted, we 239 

consider all possible combinations of input features. Given 59 features in our case, computing all 240 

combinations is infeasible, as the total number of combinations is 2=> − 1 > 5 × 109?. We 241 

decided to select only the 20 best features, so the number of combinations becomes 1,048,575. 242 

The selection criterion is based on the univariate statistical tests – the F-statistic in this case – to 243 

measure the general significance of the explanatory factor in regression analysis. Second, we 244 

calculate the prediction with and without a particular feature and record the difference as the 245 



marginal contribution of that feature for that combination. Third, we calculate the average of its 246 

marginal contributions across all combinations. 247 

3. Results 248 

3.1 Model verification 249 

We evaluate the model performance with respect to calculated flashiness values for the 250 

testing samples used by the ML approach. The Spearman correlation coefficient (CC) is used to 251 

depict the goodness-of-fit of predicted flashiness values and target values.  252 

3.1.1 ML-based approach 253 
The ML-based approach depicts an overall good fit (mean CC>0.9) between predicted 254 

flashiness and target flashiness values (processed from USGS streamgages), indicating that the 255 

59 hydrologic attributes adequately explain the variability of flashiness values over the CONUS 256 

(Fig. 2). Among 36 enumerations (6 frequencies x 6 durations), the Light Gradient Boosting 257 

Machine model tops in 33 combinations, except for the 25yr-3hr, 100yr-2hr, and 100-6hr, which 258 

are best predicted by Gradient Boosting Machine, Random Forest, and Gradient Boosting 259 

Machine, respectively. In general, tree-based machine learning models perform better than linear 260 

models, instance-based models (i.e., k Neighbors Regressor), and kernel-based models (i.e., 261 

Support Vector Machine); and ensemble-based models perform better than deterministic models. 262 

The tree-based models resemble human decision-making processes and have been widely 263 

applied in flood attribution and for identifying flood-generating mechanisms (Kemter et al., 264 

2023; Stein et al., 2021). 265 

Figure 2 also indicates that ML model performance deteriorates with increasing return 266 

periods (column-wise comparison), but improves with longer durations (row-wise comparison). 267 

When referring to performance improvement (or deterioration), we mean not only the increase 268 

(or decrease) in CC but also the decrease (or increase) in the uncertainty spread, as indicated by 269 

the contour area. This is expected for two reasons. First, for rare events (e.g., 1-in-100-year), 270 

static hydrologic signatures become less impactful while it depends more on the event 271 

characteristics such as event rainfall, antecedent soil moisture, channel routing, etc. In other 272 

words, as the rainfall event magnitude increases, it  overshadows underlying climatological 273 

characteristics. For instance, rainfall spatiotemporal variability is found to determine heavier 274 

streamflow tails (Wang et al., 2022). Second, the rare event dynamics involve more hydrologic 275 



processes and thus need more variables to describe. In other words, in the occurrences of 276 

extreme runoff events, nonlinear hydrological responses start to dominate (Basso et al., 2023). 277 

Under these circumstances, the ML model becomes less effective due to a lack of training 278 

samples. 279 

 280 

Figure 2. Density plot of the predicted flashiness values by the Machine Learning model versus 281 

target data for the testing data (processed from USGS streamgages). The red line is a 1:1 line 282 

showing the bias of the prediction – the model is overestimating (underestimating) if it is above 283 

(below) the 1:1 line. 284 



The important factors ranked by the SHAP values are shown in Fig. 3. The drainage area 285 

is the most important factor in the ML prediction methods. We note that the flow accumulation 286 

(a proxy for drainage area) appears in the denominator of Eq. 1 and thus normalizes the 287 

streamflow values into unit streamflow. Even following the normalization, the drainage area 288 

values contribute positively to the model prediction. Put simply, including drainage areas in the 289 

ML model can improve ML prediction skills in small drainage basins. Smaller basins are more 290 

susceptible to being below the scale of the contributing storm scale and thus completely covered 291 

by the causative rainfall. Conversely, the ML model is less skillful in large drainage basins to 292 

predict flashiness values, as we can expect, larger basins have spatially heterogeneous attributes 293 

such as spatial rainfall variability and soil classes, which complicate the prediction. Air 294 

temperature is ranked as the second important factor, and higher temperature positively impacts 295 

the model prediction. The spatial distribution of the SHAP values suggests that air temperature 296 

exerts its most positive influence on model predictions only to the south of 30°N, especially for 297 

southern Texas and central Florida (Fig. S1). The channel slope factor, as expected, improves 298 

model predictions when its values are high. On the contrary, basin slope impacts less on model 299 

predictions, probably because the time scale of a hillslope routing is beyond the flash flood time 300 

scale for large basins. The comparison of spatial SHAP values is presented in Fig. S2a, where 301 

one can see higher SHAP values of channel slope across the Appalachians, Intermountain West, 302 

and Missouri Valley. In these regions, the importance of channel slope outweighs basin slope 303 

(Fig. S2b). The potential evapotranspiration factor is similar to the air temperature because 304 

higher temperature leads to higher saturated water vapor and thus requires less energy to 305 

evaporate (Thornthwaite, 1948). The spatial distribution of the annual runoff variable (Fig. S2c) 306 

corresponds better with flash flood hotspots (e.g., West Coast) than that of annual rainfall (Fig. 307 

S2d). Despite the Southeast receiving abundant annual rainfall, the SHAP values in this region 308 

are negative. This implies that rainfall, in this context, acts more as a confounder than as a 309 

contributor to predicting flashiness. Related to soil variables, soil water content and clay soil 310 

fraction are the two leading variables to improve model prediction. They have similar behavior – 311 

higher soil water content or higher clay soil fraction leads to positive model performance. That 312 

is, regions with higher soil water content and/or clay soil fractions are more susceptible to flash 313 

flooding. For human impacts, densely populated regions and higher road density enhance model 314 

predictability by taking into account the fast flow generation process (Yang et al., 2011). The 315 



SHAP method assists us in retracing significant contributing factors for flash flood prediction 316 

and in identifying hydrologic processes through data mining. These processes should be 317 

incorporated into hydrologic model development to better simulate rapid runoff generation.  318 

 319 

Figure 3. Important features are ranked by the SHAP values (increase from bottom to top). The 320 

color of the dots shows the feature values, and locations show the SHAP values for 2-year and 1-321 

hour flash flood events. Positive SHAP values indicate that the inclusion of this factor can 322 

improve the model prediction. Likewise, negative values mean that this factor does not 323 
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contribute to the model performance improvement. Take the drainage area as an example, we see 324 

that low drainage area values contribute positively to the model prediction.  325 

3.1.2 CREST-based approach 326 

Generally, the performance of the CREST-based approach falls short of the ML-based 327 

approach, as it is not specifically designed for flashiness simulation. The highest CC value in 328 

Fig. 4 among the 36 combinations is 0.6, occurring in the 2-year and 6-hour event, as compared 329 

to 0.95 for the ML-based model. Similar to the results from the ML model, CC values increase 330 

with event duration and decrease with return periods. Conversely, the uncertainty range 331 

decreases with event duration and increases with return periods. Different from the ML model, 332 

CREST model tends to overestimate the flashiness values, as indicated by the core density region 333 

lying above the 1:1 line. The overestimation could be attributed to a positive bias of streamflow 334 

and faster flood rising with the kinematic wave parameterization (Flamig et al., 2020; Vergara et 335 

al., 2016). In short, the CREST model routes overland runoff and in-channel flood water through 336 

a simplified shallow water equation – kinematic wave model, and a-priori kinematic wave model 337 

parameters were derived based on statistical relationships with physiography, precipitation, and 338 

soil parameters (Vergara et al., 2016). However, at the higher end (with a flashiness index 339 

greater than 10), the CREST-based approach exhibits an underestimation across 36 340 

combinations. We explore possible reasons for the bias in Section 3.1.3. 341 



 342 

Figure 4. Similar to Fig. 2, but for the CREST-based results. 343 

3.1.3 Comparing CREST- and ML-based approaches at all gages 344 
The spatial distribution of the flashiness bias is shown in Fig. 5 for CREST (Fig. 5a) and 345 

ML (Fig. 5b). At a first glance, CREST-simulated flashiness values exhibit higher biases than 346 

those of ML, which is expected and has been demonstrated in Figs. 2 and 4. CREST model tends 347 

to underestimate flash flood hotspot regions, such as the Appalachians, the Southwest, and the 348 

Flash Flood Alley in Texas. It corroborates with the observation from the density plot – the 349 

CREST model exhibits an underestimation at high flashiness values. For other regions, the 350 



CREST model demonstrates a high positive bias, probably falling within the flashiness range of 351 

0.1 to 1 in the density plot (Fig. 4). For the ML model, it shows a sporadic spatial distribution of 352 

flashiness biases, which are the random errors.  353 

We further dissect the bias based on four factors – annual rainfall, degrees of regulation, 354 

urban extent, and channel slope, as depicted in Fig. 6. The annual rainfall has the least impact on 355 

the CREST model bias among the four factors, largely because it has been incorporated when 356 

developing the kinematic wave parameters as a proxy (Vergara et al., 2016). The highest bias is 357 

associated with the regulation factor, as the CREST model has not yet considered any human 358 

controls in the streamflow generation process. The model biases are positive across various 359 

degrees of regulation, but they peak between 0 and 10, where the drainage area is relatively small 360 

compared to regions with higher degrees of regulation. For the urban extent, the CREST model 361 

bias transitions from positive to negative with increasing urbanization. In a highly urbanized 362 

region, which is more prone to flash floods, the CREST model tends to underpredict the 363 

flashiness values. Given the fact that CREST has incorporated urban imperviousness as a land 364 

surface parameter, the error term should originate from this parameterization or perhaps the 365 

kinematic wave parameterization. Lastly, the channel slope presents a similar pattern as the 366 

urban extent, where CREST model results have a positive bias over regions with mild slopes yet 367 

a slight negative bias over steeper terrain.  368 

 369 



Figure 5. Maps of the flashiness bias by (a) CREST-simulated FIDF and (b) ML-simulated 370 

FIDF. It shows the 2-yr and 1-hr flashiness biases and others have a similar pattern. 371 

 372 

Figure 6. The plot of conditional bias of CREST-predicted and ML-predicted flashiness values 373 

based on (a) annual precipitation, (b) degrees of regulation, (c) urban extent, and (d) channel 374 

slope. 375 

3.2 CONUS-wide distributed FIDF 376 

After verifying our model at gaged locations, we have a certain confidence to produce a 377 

distributed product. Figures 7 and 8 show the CONUS-wide distributed F-IDF curves for the 378 

CREST and ML simulations, respectively. The CREST-simulated results have some voids over 379 



the Intermountain West. Some of these voids correspond to gaps in the NEXRAD radar 380 

coverage, which are the basis of the precipitation inputs. Notably, the CREST model generates 381 

gridded outputs, whereas the ML model generates reach-based outputs (in a vector format). A 382 

common feature of both products is that large rivers, such as the Mississippi River, appear in a 383 

dim color, indicating that flash flooding is not a disastrous concern due to the nature of their 384 

slow-rising flow. In contrast, rivers in headwater catchments, urbanized regions, and complex 385 

terrain exhibit high flashiness values. In particular, regions such as the Missouri Valley, 386 

Appalachians, Flash Flood Alley in Texas, and the Southwest are identified as flash flood 387 

hotspots. However, the results simulated by the CREST model appear more fragmented than 388 

those simulated by the ML model. This is because each grid cell extracts its own streamflow 389 

time series and fits into the GEV, making it independent from others. On the contrary, the ML 390 

model uses a single model to interpolate/extrapolate the flashiness values in space, which serves 391 

to smooth out any speckles.  392 



 393 

Figure 7. A grid-based F-IDF map over the CONUS by the CREST model.  394 



 395 

Figure 8. Similar to Fig. 7, but for the ML-based prediction. 396 

 397 



3.3 Event-based analysis 398 

To illustrate the utility of the distributed F-IDF products, we showcase their performance 399 

for a real flash flood event – the 2006 Louisville flash flooding event. On September 22 and 23, 400 

2006, a slow-moving storm system passed through, resulting in up to 10 inches (254 mm) of rain 401 

in the Louisville region within a 24-hour period. The northwestern region suffered the most  and 402 

six people lost their lives during this event (https://louisvillemsd.org/programs/programs-and-403 

projects/floodplain-management/flooding-history-louisville#:~:text=September%202006,-404 

A%20slow%2Dmoving&text=Up%20to%2010%20inches%20of,since%20the%20March%2019405 

97%20flood). Because the city of Louisville is surrounded by mountains, it is susceptible to flash 406 

flooding and has long been known as a flash flood hot spot in the Missouri Valley.  407 

We extracted the time series of streamflow simulation over this region, calculated the 408 

event flashiness values, and then compared them to the CREST-simulated F-IDF curves to plot 409 

the gridded return periods (Fig.9). The results of return periods are also compared with those by 410 

streamgages with the same approach except using its own F-IDF values. The CREST and 411 

streamgage values have agreement on the flash flood core region, as highlighted by the ellipse. 412 

For a 1 (2/3/4/5/6) hour event, 4 (5/4/5/5/5) out of 7 gages in the highlighted region classifies this 413 

as a 100-year flash flood event. Since it is a slow-moving event, event frequency becomes rarer 414 

with higher event duration. However, the CREST simulation tends to overestimate the magnitude 415 

of this event, especially on a dichotomous metric – streamgages that did not recognize this as a 416 

flash flood event (with return periods < 2 years) were incorrectly predicted by CREST as an 417 

event (return periods >= 2 years. There is a generally good agreement between the CREST 418 

model and streamgage values when considering high-end events (return periods >= 50 years). 419 

This demonstrates the utility of the CREST-simulated F-IDF product, which can quantify the 420 

frequency of an impending flash flood event coupled with a weather forecast model or radar-421 

based precipitation inputs. It not only enables us to define the extent of a flash flood warning but 422 

also to gauge the severity of the event for effective emergency communication. 423 

Unlike the dynamic hydrologic model, the ML-based prediction does not directly 424 

generate streamflow time series, so event-based analyses, such as determining event return 425 

periods, are not feasible. Figure 10 provides a close-up view of the flashiness values in this 426 

region instead. One can observe that streamgages identified as flash flood events (return 427 

periods >= 2 years) are located in smaller drainage basins, and their flashiness values range 428 



between 1 and 10. While the ML-based F-IDF product cannot function on a forecast basis due to 429 

its limitations, it still possesses significant value in risk management. For instance, certain 430 

influential factors determining flashiness values, such as regulation or land use, can be 431 

engineered. Therefore, this tool could be effectively integrated into flash flood risk management 432 

strategies.  433 

 434 

Figure 9. Maps of the return periods of flashiness values by the CREST simulation for the event, 435 

overlaid with gage-based return periods of flashiness values. The inset on the top left of each 436 

panel is the histogram of estimated return periods by CREST model and stream gages. The 437 

ellipse highlights the region with high return periods.  438 
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 439 

Figure 10. Maps of the flashiness values by the ML model for the event, overlaid with return 440 

periods estimated by the streamflow at gages. 441 

4. Discussion 442 
4.1 Uncertainties in Models 443 

The accuracy and effectiveness of the F-IDF curves rely heavily on two models, which 444 

inevitably bear uncertainties with respect to inputs, model physics, aggregating methods, etc. We 445 

break down the uncertainties into two main categories: epistemic and aleatoric uncertainty 446 

(Beven, 2016). The epistemic uncertainty arises from a lack of knowledge about the forcing data, 447 

model structure, and model parameters. The nature of epistemic uncertainty is reducible, 448 

meaning that with the advancement in our knowledge and techniques, we can narrow down the 449 

epistemic uncertainty. However, the aleatoric uncertainty is a main result of random noise but 450 

may be structured (bias, autocorrelation, and long-term persistence). The CREST model 451 

simulation embraces major epistemic uncertainties from precipitation inputs, evapotranspiration, 452 

model parameters, and model structure. Among them, precipitation data is one of the primary 453 

uncertainty sources for flash flood prediction. In this study, we use the MRMS reanalysis data 454 

consisting of weather radar and in-situ instruments because it is so far the only available 455 

precipitation product at sub-hourly and 1 km resolution over the CONUS. One of the noticeable 456 



limitations of this product is its coverage in complex terrain such as the Rockies which is the 457 

radar “blind” zone (Zhang et al., 2016). Even within radar coverage, its quality degrades because 458 

of beam broadening issues over radar sparse regions (Zhang et al., 2012). The MRMS data can 459 

be fused with satellite precipitation data, such as the GPM IMERG to fill the gap and produce 460 

reliable F-IDF values over the Rockies. The second source of uncertainty stems from the model 461 

parameters and physics (Clark et al., 2016). Despite calibration, the performance of the CREST 462 

model is not uniformly high across different regions. For instance, the model tends to have large 463 

errors in snow-dominant regions due to its simplified conceptualization of the snow process 464 

(Flamig et al., 2020). Fortunately, flash floods are typically less influenced by snowmelt and 465 

more so by heavy rainfall. Pertaining to calculating the flashiness index, the routing parameters 466 

are arguably crucial as they have a high sensitivity to both the timing and magnitude of the flood 467 

simulation. These parameters control how water is routed through the hydrological system, 468 

effectively determining how quickly a flood rises and how high the flood peak becomes. Thus, 469 

they have a significant impact on the flashiness index and ultimately, the assessment of flash 470 

flood risk. Careful calibration of these parameters can lead to more accurate and reliable flash 471 

flood forecasts.  472 

On the other hand, the ML model mainly suffers from aleatoric uncertainty, as its model 473 

bias tends to be random (Fig. 5b). But it still has epistemic uncertainties that are reducible, one of 474 

such being the training data length. The model is now only trained on 3,722 streamgage sites that 475 

have 15-minute time interval of streamflow observations with at least 25-years length. Increasing 476 

sample sizes can enhance its representation of tree-based models and mitigate the overfitting 477 

issue. Particularly, a lack of training samples in rare events (e.g., 100-year flash flood event) 478 

degrades model performance, as shown in Fig. 2. In parallel to increase sample sizes, including 479 

more features relevant to flash flood prediction could be beneficial. Another way of reducing 480 

epistemic uncertainty is to use Bayesian methods to encode our prior knowledge about the 481 

distribution of the model parameters and provide probabilistic outputs (Nuti et al., 2021). Also 482 

notably, the SHAP method, used in this study to unearth the interpretability of the ML model, 483 

does not elucidate any causality or correlation between each feature and flashiness. Rather, it 484 

provides insights into how a feature influences the model’s predictability.  485 



4.2 Synergetic use of two products to mitigate flash flood impacts 486 

The CREST-based and ML-based F-IDF products have different characteristics and can 487 

serve different purposes. In terms of prediction accuracy, the ML-based F-IDF demonstrates a 488 

closer resemblance to the observed F-IDF values derived from streamgages, whereas the 489 

performance of the CREST-based simulation is somewhat inferior. However, the ML method 490 

cannot be utilized to derive event-based statistics, a task for which the CREST simulation is 491 

well-suited. 492 

Given its dynamic feature, the CREST simulation can be of use for operational flash 493 

flood forecasts. Currently, weather forecasters from the National Weather Service issue flash 494 

flood warnings guided by the unit streamflow variable from the CREST model amongst other 495 

information (Gourley & Vergara, 2021). This F-IDF product offers a more tangible and 496 

comprehensive approach to conceptualize the severity of flash floods. By framing the intensity of 497 

a flash flood in terms of a “100-year event,” for example, we aim to facilitate more effective 498 

public communication. This approach allows the public to correlate their accumulated experience 499 

with 100-year floods, enabling a better understanding of the severity of flash flood events. 500 

Importantly, this framework is model agnostic. This means it can seamlessly integrate with any 501 

hydrologic model, such as the National Water Model, provided that the model is capable of 502 

generating timely streamflow predictions.  503 

The ML-based FIDF, on the contrary, cannot be used on an event basis because it 504 

produces static flashiness values. Yet, it can be of use to risk managers in the city with its high 505 

prediction accuracy. In regions characterized by high risks or equivalently elevated flashiness 506 

values, the implementation of protective measures is imperative to mitigate potential impacts. 507 

For instance, signage such as “potential flash flood areas” and “when flooded, turn around, don’t 508 

drown” are crucial to improve driver’s safety. Some flood defense measures can also be 509 

implemented to reduce the flashiness values, such as changing land use. Using the ML model, 510 

urban planners have the capacity to adjust different feature values, enabling them to identify 511 

feasible and effective strategies to decrease flashiness values. This approach offers a quantitative 512 

assessment of how flashiness changes with certain feature values, thereby supporting the 513 

decision-making process. 514 



By integrating both these products into operational risk communication and long-term 515 

planning strategies, we anticipate a reduction in the impacts of flash floods, achieved through a 516 

blend of soft and hard measures for flood management. For model development, the important 517 

variables identified by the ML model can be incorporated into the hydrologic model, ensuring 518 

that the hydrologic processes are not overlooked. Certainly, the applications of F-IDF products 519 

are not only limited to the examples provided above.  520 

5. Conclusion 521 
This study presents a pioneering creation of the distributed F-IDF products over the CONUS 522 

with a physics-based hydrologic model approach and the statistics-based machine learning (ML) 523 

approach. The two products exhibit similar performance in identifying regions prone to flash 524 

floods, but their differences result in distinct applications. For the ML model, we explored its 525 

interpretability by incorporating the SHAP values for each feature to rank their importance. The 526 

conclusions are summarized as follows: 527 

1.  Both CREST and ML predict flashiness values reasonably well, with average CC values 528 

of 0.58 and 0.95, respectively, for a 2-year flash flood event; 529 

2. The drainage area, air temperature, channel slope, potential evapotranspiration, and soil 530 

erosion features are identified as the five most important factors influencing the ML 531 

model’s prediction. These factors can yield valuable insights that could inform the 532 

development of hydrologic models for better flash flood forecasting;  533 

3. The CREST simulation exhibits high biases in regions that are characterized by 534 

dam/reservoir regulation, urbanization, or mild slopes, suggesting areas for future 535 

improvement; 536 

4. The distributed F-IDF products, both by CREST and ML provide similar risk maps for 537 

flash flood-prone regions. However, the spatial patterns of ML-produced maps are 538 

smoother, compared to those generated by CREST. This is attributable to two primary 539 

factors. On one hand, grid cells in the CREST simulation are independent, while the ML 540 

model interpolates or extrapolates between features. On the other hand, CREST 541 

simulation benefits from radar-based rainfall inputs, a feature not available to the ML 542 

model; 543 



5. Different yet synergistic applications for the two products are emphasized. The CREST-544 

based simulation can provide event-based forecasts, making it suitable for operational 545 

flash flood forecasts employed by weather forecasters and emergency responders. 546 

Conversely, the ML-based simulation, which is a static feature, can be integrated into a 547 

flash flood risk assessment framework, offering a valuable tool for urban planners; 548 

In future research, we hope to expand the study area to the globe by developing a global F-549 

IDF product. This would enhance our ability to communicate risks associated with flash floods 550 

effectively on a worldwide scale. 551 

Data Availability 552 
The MRMS reanalysis data is acquired from Zhang & Gourley (2018). The RiverAtlas product is 553 

acquired from https://www.hydrosheds.org/hydroatlas. The F-IDF products generated by CREST 554 

and ML can be accessed from Li (2023). 555 
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