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Abstract

Sea level and its horizontal gradient are an expression of oceanic

volume, heat content, and currents. Large-scale currents have

historically been viewed as mostly “baroclinic’, and tides as

“barotropic’, respectively, in the sense of being strongly related

to the oceanic density distribution or not. The purpose of this note

is to give dynamical precision to this distinction and, in the

particular case of the tides, demonstrate the breadth of their

combined barotropic-baroclinic interactions with a realistically

forced, high-resolution simulation of the Pacific Ocean circulation.

While the different tidal sea-level contributions manifest a

horizontal scale separation (\eg more barotropic at larger scales;

more baroclinic surface pressure-gradient force at smaller scales),

there are cross-mode corrections in both at the level of tens of

percent.
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Key Points:4

• Sea level, measured relative to a geopotential iso-surface, is the surface dynamic5

pressure for the oceanic momentum balance.6

• Barotropic and baroclinic dynamics combine in determining the sea level.7

• Tidal sea level and pressure-gradient force are decomposed into barotropic and baro-8

clinic components in a Pacific Ocean simulation.9
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Abstract10

Sea level and its horizontal gradient are an expression of oceanic volume, heat content,11

and currents. Large-scale currents have historically been viewed as mostly “baroclinic”,12

and tides as “barotropic”, respectively, in the sense of being strongly related to the oceanic13

density distribution or not. The purpose of this note is to give dynamical precision to14

this distinction and, in the particular case of the tides, demonstrate the breadth of their15

combined barotropic-baroclinic interactions with a realistically forced, high-resolution16

simulation of the Pacific Ocean circulation. While the different tidal sea-level contribu-17

tions manifest a horizontal scale separation (e.g., more barotropic at larger scales; more18

baroclinic surface pressure-gradient force at smaller scales), there are cross-mode cor-19

rections in both at the level of tens of percent.20

Plain Language Summary21

Sea-level variations at tidal frequencies occur because of the “astronomical” grav-22

itational force acting nearly uniformly over the oceanic depth. Thus, they are commonly23

associated with the depth-averaged velocity, i.e., the barotropic current. However, due24

to oceanic density stratification and variable bathymetry, the resulting barotropic cur-25

rents also generate vertically varying (baroclinic) tidal currents that also have an expres-26

sion in the sea level and surface pressure-gradient force. A prescription is given for how27

to decompose sea level and its gradient into its barotropic and baroclinic parts, and the28

answers are illustrated using a Pacific Ocean numerical model.29

1 Introduction30

Changing sea-level elevation ζ is perhaps the most readily measurable oceanic prop-31

erty. Averaged over surface gravity waves, it expresses the tides and, at lower frequen-32

cies, the horizontal pressure gradient force for surface currents ~u. At even lower frequen-33

cies it expresses climate changes in global temperature and ice volume.34

Sea level is traditionally measured with coastal gauges, and in recent decades satel-35

lite measurements of elevation and Earth’s gravity field have greatly expanded our view.36

What is the three-dimensional reality that underlies these surface expressions? To37

answer this question, measurements are limited and models must be deployed, i.e., ge-38

ographically and dynamically realistic computational simulations of the oceanic current39

and density fields.40

In the large-scale, low-frequency circulation, ζ is often called the surface dynamic41

height, and its density-normalized (by ρ0), horizontal pressure-gradient force is approx-42

imately in balance with the local Coriolis force at the surface,43

−∇φs = − g∇ζ ≈ − f ~̂z × ugs . (1)

The first equality here is based on hydrostatic balance and the assumption that the air-44

sea interface is a surface of constant pressure. The surface values are denoted by the sub-45

script s; g is the gravitational constant; f is the Coriolis frequency; ~̂z is the unit vector46

in the upward vertical direction; ugs is the surface geostrophic current; the caret denotes47

a unit vector; horizontal vectors are bold face; and 3D vectors have an arrow on top. An48

accompanying vertical momentum relation for the 3D dynamically relevant pressure is49

hydrostatic balance in an integrated form,50

φ(z) = gζ −
∫ ζ

z

b dz′ , (2)

where the buoyancy field is b = g(1 − ρ/ρ0), ρ is density, and ρ0 is a constant refer-51

ence value. In a loose approximation, when only density measurements are available, it52
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is sometimes assumed that the horizontal pressure-gradient force ∇φ vanishes at depth53

(i.e., below z = −hnm, a “level of no motion”), so that the surface dynamic height54

is entirely due to the interior buoyancy variations b:55

ζnm ≈ 1

g

∫ 0

−hnm

b dz . (3)

Here the upper vertical integration limit at z = ζ has been further approximated by56

0, the mean surface elevation (i.e., ζ � hnm). While (3) is not fully accurate for basin57

and mesoscale currents due to its neglect of ∇φ at depth, together with (1) it indicates58

how interior b can influence ζ, hence u. The dynamical influence of b is referred to as59

baroclinicity, so ζnm in (3) is a type of baroclinic sea level. However, in this situation60

of a surface-intensified geostrophic current and no motion at depth, both the barotropic61

and baroclinic currents defined in (4)-(5) are non-zero; so ζnm is a mixed barotropic-baroclinic62

sea level. (See the end of Sec. 2.2 for a further remark.)63

For the tides, again ∇φs = g∇ζ at the relevant frequencies. Tides have an as-64

tronomical and self-interaction gravitational forcing that is essentially independent of65

depth within the ocean. The associated response in u is the called the “external” tide,66

which in this paper will be equated with the depth-averaged velocity, a.k.a. the barotropic67

current, ubt,68

ubt =
1

H + ζ

∫ ζ

−H
u dz , (4)

where H(x) is the resting depth of the ocean. In many papers it is also referred to as69

the “surface” tide, although that is ambiguous with respect to the barotropic-baroclinic70

decomposition. The remainder is the “internal” tide, associated with the baroclinic hor-71

izontal current,72

ubc = u − ubt , (5)

where both u and ubc are functions of depth. The existence of an internal tide is evi-73

dent in interior time series of b, which often show strong oscillations at or near the tidal74

frequencies. As will be explained in Sec. 2, ζ reflects both barotropic and baroclinic cur-75

rent dynamics.76

A simple approximate model for the external tide is to associate the dynamical re-77

sponse to the gravitational forcing with u(z) = ubt. With an approximation of an in-78

compressible mass balance (i.e., ~∇ · ~u = 0 for 3D ~u, because ρ variations are small79

compared to ρ0) and the kinematic boundary conditions at the solid bottom and top free80

surface, the column-integrated continuity relation is81

∂tζ = −∇ ·
(

(H + ζ)ubt
)
. (6)

Integrated over the area of the domain, this relation implies that the ocean has a con-82

stant volume (ignoring rivers and other surface freshwater volume fluxes, all of which have83

small effects on tidal time scales). Notice that (6) has no explicit dependency on b. With84

a further approximation that b = 0, (2) implies that ∇φ(z) = ∇φs = g∇ζ, and a85

horizontal momentum balance can be formulated entirely in terms of ubt, which together86

with (6) is called the Shallow-Water Equations. It can also be called a barotropic tidal87

model with ζ = ζbt. One of the first satellite tidal products was G. Egbert et al. (1994)88

that fits a Shallow-Water model to altimetric measurements. This model is dynamically89

inconsistent with (2) as it neglects any baroclinic effect from b 6= 0, and it is quite dif-90

ferent from (3); nevertheless, it has been widely considered useful as an estimate of ζ at91

large spatial scales comparable to the width of oceanic basins, associating it with the barotropic92

tide. A model of the barotropic tide by itself is dynamically incomplete, and any such93

model, with whatever mixture of dynamics and measurements, has to confront the im-94

portant matter of energy conversion to the baroclinic tide that occurs in stratified wa-95

ters over variable topography (Stammer et al., 2014).96
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From the perspective of this paper, a sufficiently accurate model for tides and other97

currents is the Boussinesq, hydrostatic, incompressible (i.e., non-divergent ~u) equations98

that also contain a realistic seawater equation of state and necessary forcing and damp-99

ing effects. In this system, (2) and (4)-(6) are correct relations, while (1) and (3) are only100

approximations for the indicated circumstances. The specific question posed here is how101

the sea level should be partitioned into barotropic and baroclinic components and, more102

specifically, how the astronomically forced external and internal tides should be parti-103

tioned dynamically. The theoretical answer is illustrated with Pacific-basin simulations104

using the Regional Oceanic Modeling System (ROMS) (Shchepetkin & McWilliams, 2005)105

that embodies the dynamical assumptions listed in this paragraph.106

2 Baroclinic-barotropic decomposition107

2.1 Background108

Multiple approaches have been taken for determining the barotropic-baroclinic de-109

composition of the tides. The direct approach of evaluating (4)-(5) is rarely available from110

measurements of the full water column, and it would not directly show the decomposi-111

tion of sea level.112

One approach to the decomposition113

ζ = ζbt + ζbc (7)

is by Colosi and Munk (2006), who analyzed very long time series of ζ(t) at two tide gauges114

in Hawaii. They devised a statistical model for the shape of the frequency spectrum that115

assumed that the barotropic component is entirely a “coherent” spectrum line (i.e., in116

phase with the astronomical forcing, a.k.a. the equilibrium tide), while the baroclinic117

component has both a coherent line and a smoothly varying “incoherent” shape in nearby118

frequencies in association with refraction caused by spatial variations in subtidal b; the119

latter split is measured by the variance in the phase at the tidal frequency. They con-120

cluded that for the M2 frequency ζbt is much larger than ζbc, while the latter has com-121

parable magnitudes in its coherent and incoherent parts. This is an adynamical anal-122

ysis. It also has no information about − g∇ζ, which is the horizontal pressure-gradient123

force.124

Savage et al. (2017) analyze a realistic global simulation model (HYCOM) and de-125

fine a “steric” sea-level anomaly by126

ζst =
1

g

∫ ζ

−H
b dz . (8)

They then associate ζst with ζbc and define a “non-steric” (barotropic) residual, ζbt =127

ζ − ζbc. Their conclusions regarding the tidal sea-level decomposition are qualitatively128

consistent with those of Colosi and Munk (2006) and have the advantage of global cov-129

erage. Notice the functional similarity between (8) and the low-frequency approxima-130

tion ζnm in (3), apart from a difference of integration range. In our view this definition,131

while motivated by a conception of seawater compressibility, is not dynamically defen-132

sible, as further explained in Sec. 2.2.133

Kelly (2016) opens with “The de facto standard is to define surface tides as depth-134

averaged pressure and horizontal velocity and internal tides as the residuals”, which we135

almost agree with. He then proceeds, as his main topic, to define vertical modes, asso-136

ciating mode 0 with the barotropic mode and modes 1, 2, . . . with the baroclinic modes.137

Part of his paper is to include a correct free-surface boundary condition in the modal138

calculation, even though that introduces a modest discrepancy with the principle quoted139

here. (With a rigid-lid boundary condition, it does conform; see Appendix.) Thus, the140
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linear, conservative, free-surface, gravest (a.k.a. “barotropic”) eigenmode uo for they hy-141

drostatic Primitive or Boussinesq equations does not exactly coincide with the depth-142

averaged ubt defined here in (4), and the depth-average of the “ baroclinic” eigenmodes,143

un, n ≥ 1, are not exactly zero, again in contrast with ubc here, although these eigen-144

modes nearly have these depth-averaged attributes and their differences with rigid-lid145

eigenmodes, with these exact attributes, is slight. However, this difference does allow the146

u0 eigenmode to escape the discrepancy of non-zero ζ0 while still satisfying the conti-147

nuity equation (6).148

In general we find vertical modes somewhat problematic as a representation for re-149

alistic situations because they presume as background the local values of resting depth150

H and sub-tidal stratification profile N2(z) = db/dz, both of which are geographically151

variable (temporally, too, for N2). However, our primary criticism is that this principle152

does not give a dynamically correct decomposition of the horizontal pressure-gradient153

force for general b(x) and H(x), as further explained in Sec. 2.2.154

In practice the most common approach for decomposing tidal ζ, both for satellite155

measurements and models, is on the basis of horizontal scale content (Carrere et al., 2021;156

Ubelmann et al., 2022). The conservative, linear eigenmodes for a flat, resting ocean at157

the tidal frequencies — whose vertical structure is consistent with Kelly (2016) — have158

a very large horizontal wavelength of O(104) km for the barotropic mode, in contrast with159

O(102) km for the baroclinic modes, which are near the baroclinic deformation radius160

∼ Nhpyc/f , where hpyc is the depth of the main pycnocline. Of course, real tidal dy-161

namics are forced and damped, if not also nonlinear, but this criterion does provide a162

heuristically plausible framework for the decomposition. However, it too is dynamically163

flawed due to coupling between barotropic and baroclinic currents (Secs. 2.2 and 3.2).164

Thus, we conclude that none of the existing approaches for making a barotropic-165

baroclinic tidal decomposition is fundamentally well-grounded, even though many of these166

approaches have come to sensible and mutually consistent conclusions about the phys-167

ical characteristics of the tides.168

2.2 Dynamical decomposition169

The fundamental basis for a barotropic-baroclinic decomposition in a model like170

ROMS is in terms of the horizontal velocity u, i.e., (4) and (5). While (6) suggests that171

sea level is associated with the barotropic velocity, the evolution equation for the latter172

cannot be closed entirely in terms of the sea level as its pressure-gradient force. Rather,173

the barotropic horizontal momentum equation has the form of174

∂tu
bt = − 1

H + ζ

∫ ζ

−H
∇φdz′ + . . . ≡ Pbt + . . . , (9)

with a depth-averaged pressure-gradient force Pbt; the dots indicate the non-pressure forces175

elided here (Shchepetkin & McWilliams, 2005). Using (2), we can evaluate this barotropic176

force to be177

Pbt = − g∇ζ − Pbc(ζ) , (10)

and the corresponding vertical profile of the baroclinic pressure-gradient force is178

Pbc(z) = ∇
∫ ζ

z

b dz′ − 1

H + ζ

∫ ζ

−H
∇

(∫ ζ

z′
b dz′′

)
dz′ , (11)

with a surface value of179

Pbc(ζ) = − 1

H + ζ

∫ ζ

−H
∇

(∫ ζ

z′
b dz′′

)
dz′ . (12)

–5–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Thus, the total surface pressure-gradient force is, as expected,180

Pbt + Pbc(ζ) = − g∇ζ . (13)

The relations (9)-(13) make it clear that the evolution of the barotropic current is in-181

fluenced by the buoyancy field as well as the sea level; i.e., the barotropic and baroclinic182

currents have a coupled dynamics in a stratified ocean, and ζ and P cannot be uniquely183

associated with either one alone, as in (7) and (13).184

To make the coupling explicit, ζ changes due to a divergence in the barotropic trans-185

port, ubt changes due to the depth-averaged pressure-gradient force involving both ζ and186

b, and this then feeds back onto further ζ changes; meanwhile b changes due to both ubt187

and ubc. Only for the rigid-lid linear normal modes (Sec. 2.1 and Appendix) is this barotropic-188

baroclinic coupling broken with our definition of ubt.189

The governing momentum equations contain a pressure-gradient force, not the pres-190

sure per se. With the Boussinesq approximation where |b| � g and in deep water where191

|ζ| � H, these two expressions for Pbc can be simplified by setting ζ ≈ 0. However,192

for variable H(x), Pbc cannot be expressed in the form of a baroclinic sea-level gradi-193

ent, because ∇ does not commute with H; hence, we cannot identify a ζbc such that Pbc(ζ) =194

− g∇ζbc.195

If we manipulate (12), we can write196

Pbc(ζ) = − g∇ζ̃bc + Rbc (14)

with a baroclinic pseudo sea-level,197

ζ̃bc =
1

g(H + ζ)

∫ ζ

−H

(∫ ζ

z′
b dz′′

)
dz′ , (15)

and a residual contribution to the baroclinic pressure-gradient force,198

Rbc =
1

H + ζ

∫ ζ

−H

(
b∇H − 1

H + ζ

(∫ ζ

z′
b dz′′

)
∇(H + ζ)

)
dz′ , (16)

that is associated with resting-depth gradients. Again, one can simplify these expressions199

with ζ ≈ 0. Notice that ζ̃bc in (15) differs from ζst in (8) by an extra vertical integral200

associated with the vertical averaging in the barotropic momentum equation.201

In fact, ζ̃bc is equivalent to minus the buoyancy contribution to the depth-averaged202

pressure from (2); i.e.,203

1

H + ζ

∫ ζ

−H
φ(z′) dz′ = g (ζ − ζ̃bc) , (17)

which itself is equal to g times the barotropic pseudo sea-level ζ̃bt. The existence of Rbc 6=204

0 in (14) shows that the depth-averaged pressure gradient differs from the gradient of205

the depth-averaged pressure.206

Notice that Rbc vanishes for a flat bottom, whence with this ζ simplification,207

Pbc = − g∇ζ̃bc and ζ̃bc ≈ 1

gH

∫ 0

−H

(∫ 0

z′
b dz′′

)
dz′ , (18)

when ∇H = 0. This partition in (14) is intended only to demonstrate the ζ̃bc com-208

ponent. In particular, note that the unpartitioned Pbc(ζ) in (12) does not have any di-209

rect dependency on ∇H; rather, that arises only in the partitioned expressions. For lin-210

ear eigenmodes over a flat bottom, ζbt ≈ ζ and ζ̃bc is small for the barotropic mode,211

and vice versa for the baroclinic modes. The baroclinic pseudo sea level ζ̃bc has a par-212

tial similarity with the steric ζst in (8).213
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Thus, we propose a dynamical decomposition of the horizontal pressure-gradient214

force (10)-(13) based on the barotropic-baroclinic decomposition of u, rather than a di-215

rect decomposition of sea level itself except where H is flat. The baroclinic contribution216

(e.g., ζ̃bc in (18)) can be compared with the baroclinic expressions for ζnm in (3) and217

for ζst in (8); it has similar ingredients but it adds another vertical integral. With most218

b(z) profiles the different ζ values will be quantitatively different but similar in magni-219

tude.220

This decomposition is valid for all frequencies. The application to tides is perhaps221

the most timely one with the prospect of new altimetric satellites with higher spatial res-222

olution. To make this focus, the expressions in this section should be temporally filtered223

to isolate the tidal frequencies. With the simplification |ζ| � H, these expressions are224

linear in ζ and b, which makes the filtering task easier. Furthermore, the decomposition225

does not depend on calculating vertical modes (Kelly, 2016), although that is a further226

analysis option. And, it makes no assumption a priori about the spatial scale content227

of the barotropic and baroclinic components. For the special case of conservative linear,228

rigid-lid, tidal eigenmodes, the Appendix shows that the relations in this section yield229

the familiar modal results.230

Finally, in the low-frequency context of many upper-ocean currents where ζnm is231

relevant (Sec. 1), ζ = ζnm, and ζbt = ζnm − ζ̃bc, where ζ̃bc has the same sign as but232

is smaller in magnitude than ζnm. Thus, ζbt is reduced (i.e., partly “compensated”) com-233

pared to ζ, and the vertical isopycnal displacements in the interior, η ≈ − b/N2, have234

the opposite sign as the sea level ζ. ubt and ubc have the same sign in the upper ocean235

and approximately cancel at depth. (This is not the tidal situation.)236

The choice here for the dynamically relevant decomposition of the surface pressure-237

gradient force has some similarity with the long-standing discussion about the role of bathymetry238

in large-scale circulation. Several alternative interpretive frameworks have been adopted,239

all correct and variously helpful for physical understanding: the vertical curl of the depth-240

averaged horizontal momentum balance (i.e., the barotropic balance), featuring the Joint241

Effect of Baroclinicity and Relief (JEBAR) (Sarkisyan & Ivanov, 1971; Mellor, 1999);242

the curl of the depth-integrated momentum balance (i.e., the transport balance), fea-243

turing the Bottom Pressure Torque (BPT) (Song & Wright, 1998; M. J. Molemaker et244

al., 2015); and the depth-integral of the curl of the momentum balance (i.e., the vortic-245

ity balance), featuring the Bottom Stress Divergence Torque (BSDT) (Jagannathan et246

al., 2021; Capo et al., 2023). These alternatives arise from the non-commutivity of the247

vertical integral or average and the horizontal gradient of H, as in (14)-(16). For the tides248

the vorticity or circulation tendency is less relevant than the force, hence the focus there249

is on the pressure-gradient force, using the depth-averaged decomposition in (9)-(13).250

3 Illustration251

3.1 Pacific simulation252

The UCLA version of ROMS (the Regional Oceanic Modeling System; Shchepetkin253

and McWilliams (2003, 2005)) is a terrain-following oceanic circulation model. It uses254

third-order upwind advection algorithms for the horizontal advection of tracers and mo-255

menta. These advection schemes have a dissipative discretization error that is hyper-diffusive256

or -viscous in nature and automatically scales with resolution, negating the need for an257

explicitly prescribed horizontal smoothing or regularization term. Vertical advection is258

computed with a fourth-order spline advection scheme. Unresolved mixing processes are259

parameterized with a the K-profile parameterization in the surface and bottom bound-260

ary layers, combined with a Richardson number based parameterization in the interior261

(Large et al., 1994).262
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The simulation that is the foundation of the investigation in this paper is a basin-263

scale simulation of the full Pacific Ocean with a nominal horizontal grid resolution of dx =264

6 km. It is a high-resolution descendant of the well-validated simulation in Lemarié et265

al. (2012) with additional tidal forcing. Strictly speaking, this is still a regional simu-266

lation that needs to be forced at its lateral boundaries, which are most extensive in the267

south. The information for these open boundaries is derived from the GLORYS reanal-268

ysis data set (Verezemskaya et al., 2021) that is provided at at resolution of 0.083 de-269

gree and a time interval of 1 day. The GLORYS data are interpolated in space to the270

computational grid and interpolated in time at each time-step while the model is run-271

ning. We refer to these type of computations as ’online’ computations. This is in con-272

trast with pre- and post-processing of data before or after the model run, which we re-273

fer to as ’offline’ computations. The GLORYS data does not contain tidal information,274

and the basin-scale simulation is tidally forced at the open boundaries with sea-surface275

elevations and tidal barotropic currents from the TPXO9 analysis (G. D. Egbert & Ero-276

feeva, 2002). In addition to this tidal forcing at the lateral boundaries, the model is forced277

with a surface geopotential forcing. The surface geopotential is a combination of the as-278

tronomical tide and the self-attraction and loading effect (Arbic et al., 2018). The self279

attraction and loading are the result of geopotential anomalies that arise from the evolv-280

ing sea surface elevation itself as well as the deformation of Earth’s crust under the in-281

fluence of the tidal motions (Arbic et al., 2018). Atmospheric forcing is obtained from282

the ERA5 global reanalysis (Hersbach et al., 2020). This dataset is available at a nom-283

inal 0.25 degree spatial resolution and hourly intervals. The COARE formulation (Fairall284

et al., 2011) is used to compute momentum and tracer fluxes from atmospheric variables285

using a bulk approach. The use of sufficiently high-frequency atmospheric forcing per-286

mits realistic levels of near inertial internal waves below the mixed layer, which are es-287

sential to a correct representation of the kinetic energy budget in the ocean (Shcherbina288

et al., 2013; Barkan et al., 2021). A more complete description of the tidal simulation289

and its analyses are in separate papers (M. Molemaker, Damien, Dauhajre, & McWilliams,290

2023; M. Molemaker, Damien, McWilliams, et al., 2023).291

3.2 Tidal pressure-gradient force292

We now focus on the tidal components of the Pacific simulation, and even more par-293

ticularly on the lunar semi-diurnal (M2) component that on average has the largest am-294

plitude among the components. They are extracted by time filtering the model output295

at this frequency of 2.237×10−5 cycles per second. The M2 signal is defined as the com-296

plex Fourier amplitude of a single frequency in this time series whose length is an inte-297

ger multiple of its period. Eight months of model output data are analyzed here, which298

is sufficient to accurately extract the M2 signal with its 466 cycles.299

The purpose of this paper is to decompose the surface pressure-gradient force, − g∇ζ,300

into its barotropic and baroclinic components. Furthermore, using the approximation301

(15), we can even decompose the sea-level ζ itself, noting a postiori that the “integral”302

of Rbc in (16) is rather small on larger scales, even compared to ζ̃bc itself, where inte-303

gral here is defined as the solution for a surface potential field Z that satisfies the Pois-304

son equation,305

∇2Z =
1

g
∇ ·Rbc , (19)

with zero Neumann boundary conditions; more is said about about Rbc near the end of306

this section.307

The sea-level decomposition is shown in Fig. 1. In these plots only a single phase308

in the M2 cycle is shown, but it is representative of the scales and patterns of the tide309

throughout its cycle. As expected, the ζ field appears smooth on the basin scale, and310

it is visually similar to the barotropic pseudo sea-level ζ̃bt; however, their difference, ζ̃bc311

is not particularly small (i.e., about 20% in amplitude), and this difference represents312
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Figure 1. (top) Sea-level ζ [m], (middle) barotropic pseudo sea-level ζ̃bt = ζ − ζ̃bc [m],

and (bottom) baroclinic pseudo sea-level ζ̃bc [m] for a single phase of the M2 tide in the Pacific

Ocean. Note the reduced colorbar range for ζ̃bc and the more evident small-scale fluctuations.

–9–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

the dynamical inconsistency in modeling the barotropic tide without including the buoy-313

ancy variations that represent the dynamical influence of modal coupling. The basin-314

scale pattern of ζ̃bc is quite different from that of ζ̃bt; thus, there is little evidence of “com-315

pensation” between these components (cf., ζnm). Furthermore, in ζ̃bc the smaller scale316

structure is more visually evident as “ripples” at approximately the mesoscale baroclinic317

deformation radius length of O(100) km, especially in the western Pacific, where the baro-318

clinic tidal amplitude is very strong, but also around other islands and ridges in the cen-319

tral and equatorial Pacific.320

The analogous surface pressure-gradient forces are in Fig. 2 with averaging over321

the M2 tidal cycle. Now the interior patterns are dominated by mesoscale structures that322

are quite inhomogeneously related to island and topographic generation sites, again as323

expected from baroclinic tidal generation by energy conversion from the astronomically324

forced tides at those sites. Many of the edge patterns are associated with shallow shelves325

and coasts where the barotropic tide is both amplified and dissipated. Most of the in-326

terior mesoscale patterns are mostly associated with Pbc, i.e., the baroclinic tide, but327

there are locations where Pbt is not small, e.g., especially near undersea ridges. Its in-328

terior magnitude can be nearly half of that of Pbc. The importance of Pbt in broad re-329

gions indicates that there is persistent barotropic-baroclinic dynamical coupling even away330

from the topographic generation sites for the internal tide. The common practice of in-331

terpreting mesoscale tidal signals in ∇ζ as entirely baroclinic, mostly based on the lin-332

ear eigenmode decomposition (Sec. 2.1 and Appendix), is a fairly good approximation,333

but not a perfect one because Pbt is not uniformly smaller than Pbc.334

A further decomposition of the barotropic pressure gradient force Pbt is shown in335

Fig. 3). It shows that the part of the force associated with the depth-averaged pressure,336

− g (ζ − ζ̃bc = − 1

H + ζ

∫ ζ

−H
dz′

(
gζ −

∫ ζ

z′
dz′′b

)

= − gζ +
1

H + ζ

∫ ζ

−H
dz′

∫ ζ

z′
dz′′b , (20)

is almost everywhere larger than the part due to interactions between the pressure and337

topographic gradient, Rbc in (16). The exceptions are near the island and ridge lines where338

∇H is large. Thus, for many purposes, ζ̃bc can be viewed as the baroclinic sea level field.339

These figures demonstrate that there is important dynamical coupling between the340

barotropic and baroclinic tides throughout most of the domain, beyond the particular341

topographic locations where baroclinic generation occurs. A fuller and more phenomeno-342

logical interpretation of the heterogeneous tidal signals, especially for the complex spa-343

tial patterns in Pbc and g∇ζ (Fig. 2), is made in M. Molemaker, Damien, Dauhajre, and344

McWilliams (2023).345

4 Summary and Conclusions346

A dynamically consistent barotropic-baroclinic decomposition of the pressure-gradient347

force is based on the definition of the barotropic horizontal velocity as the depth-averaged348

current. This implies there is a significant buoyancy influence on the (depth-averaged)349

pressure-gradient force for the barotropic current.350

At the surface this force cannot be decomposed into sea-level gradients because of351

variations of oceanic depth. The barotropic force has a contribution from the double depth352

integral of the density field in (10) (but not simply the steric sea level ζst in (8)), as well353

as the familiar - g∇ζ force.354

At basin scales the tidal ζ is mostly barotropic, and at mesoscales the surface pres-355

sure gradient −g∇ζ is mostly due to - Pbc. While this approximate scale partition can356
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Figure 2. Cycle-averaged amplitude of (top) surface pressure-gradient g|∇ζ| [m s−2], (middle)

barotropic surface pressure-gradient magnitude |Pbt| [m s−2], and (bottom) baroclinic surface

pressure-gradient magnitude |Pbc| [10−5 m s−2] for the M2 tide in the Pacific Ocean. Note the

reduced colorbar range for |Pbt|, which is the depth-averaged force for the barotropic mode.
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Figure 3. Decomposition of the cycle-averaged barotropic surface pressure-gradient amplitude

|Pbt| [m s−2] in (10) (shown as middle panel of Fig. 2) into its two parts associated with the

depth-averaged pressure, g |∇(ζ − ζ̃bc)|, using ζ̃bc from (15) (top), and with the interaction of the

buoyancy field with the topographic gradient |Rbc| in (16) (bottom) for the M2 tide in the Pacific

Ocean. Note the reduced colorbar range for Rbc.
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be anticipated from the linear eigenmodes at tidal frequencies, it is by no means exact357

due to the dynamical coupling between barotropic and baroclinic tidal components. The358

wide, if inhomogeneous, spatial extent of Pbt indicates that the modal dynamical cou-359

pling is not limited only to regions of barotropic-baroclinic energy conversion.360

Historically, the Shallow-Water Equations have been considered as a useful approx-361

imate model for the barotropic tides (as they are for tsunamis and storm surges). In this362

paper we show that this view has serious limitations in its accuracy, both because Shallow-363

Water lacks an expression for baroclinic energy conversion and because of the sometimes364

strong dynamical coupling through the pressure gradient force and buoyancy field. Sim-365

ilarly its bottom-drag dissipation rate in deep water cannot be well represented. Going366

forward, more care needs to be taken in interpreting a tidal decomposition. While this367

is difficult in measurements because of the requirement for depth-averaging, it is feasi-368

ble in 3D models such as the one used here. The best future tidal products will be made369

by data assimilation within such models, placing the burden of accuracy heavily on the370

model skill.371

Appendix A Vertical modes372

As an illustration of the implications of the formulas in Sec. 2.2, consider the sim-373

ple situation of linear, conservative eigenmodes over a flat bottom. We will follow the374

notation of Kelly (2016) (i.e., K16) and use rigid-lid modes with their usual diagnostic375

interpretation that the dynamic pressure at z = 0 is equal to gζ; i.e., for mode n, the376

sea-level is377

ζn =
1

g
pn(x, t)ϕn(0) , (A1)

for n = 0, 1, 2, . . .. ϕn(z) is the separable vertical eigenfunction for pressure and hor-378

izontal velocity (cf., K16, eq. (2a); n.b., the notation there is φn instead of ϕn). The K16379

convention on units is U [pn] = m2s−2 and U [ϕn] = 1 (i.e., non-dimensional). Here380

n = 0 is the barotropic mode, and n ≥ 1 are the baroclinic modes. (Compared to381

the more general free-surface modes in K16, Sec. 2, the differences are immaterial here.)382

The depth-averaged modal dynamic pressure is383

1

H

∫ 0

−H
pnϕn dz . (A2)

This equals p0 = gζ0 for n = 0 because ϕ0(z) = 1. It equals zero for n ≥ 1 be-384

cause modal orthogonality implies that the depth-average of ϕn(z) is zero (K16, eq. (7)).385

Thus, for the barotropic mode, ζ = ζbt = p0/g, and ζbc0 = 0.386

For a flat bottom, ζ̃bc in (18) is the relevant equivalent sea level ζbc for the surface387

pressure gradient relation (A1) (i.e., Rbc = 0 here). Furthermore, the buoyancy field388

for mode n is389

N2(z) bn(x, t) Φn(z) , (A3)

where Φn(z) is the vertical eigenfunction for vertical velocity (K16, eq. (2b)). Φ0 = 0390

for the barotropic mode, and dΦn/dz = ϕn(z) for n ≥ 1 to satisfy the continuity equa-391

tion. The units here are U [N ] = s−1, U [bn] = 1, and U [Φn] = m. Thus,392

ζbcn = ≈ 1

gH

∫ 0

−H

(∫ 0

z′
N2(z) bn(x, t) Φn(z) dz′′

)
dz′ . (A4)

For n = 0, this is zero. For n ≥ 1, using the boundary value problem for Φ(z) (K16,393

Sec. 3),394

ζbcn ≈ −
bnc

2
n

g

dΦ

dz
(0) =

pn
g
ϕn(0) , (A5)
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including the hydrostatic relation for the modal amplitude functions, bn = − pn/c2n,395

where c2n is the modal eigenvalue, the square of the horizontal phase speed. Thus, for396

the baroclinic modes, ζ = ζbcn , and ζbtn = 0 for n ≥ 1. The latter implies that barotropic397

sea level is fully compensated by the buoyancy effect on total sea level.398

Open Research Section399

The ROMS code for this simulation is available at M. J. Molemaker et al. (2023),400

and the solution analyzed in this paper, filtered at the M2 tidal frequency is at M. J. Mole-401

maker (2023).402
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Abstract10

Sea level and its horizontal gradient are an expression of oceanic volume, heat content,11

and currents. Large-scale currents have historically been viewed as mostly “baroclinic”,12

and tides as “barotropic”, respectively, in the sense of being strongly related to the oceanic13

density distribution or not. The purpose of this note is to give dynamical precision to14

this distinction and, in the particular case of the tides, demonstrate the breadth of their15

combined barotropic-baroclinic interactions with a realistically forced, high-resolution16

simulation of the Pacific Ocean circulation. While the different tidal sea-level contribu-17

tions manifest a horizontal scale separation (e.g., more barotropic at larger scales; more18

baroclinic surface pressure-gradient force at smaller scales), there are cross-mode cor-19

rections in both at the level of tens of percent.20

Plain Language Summary21

Sea-level variations at tidal frequencies occur because of the “astronomical” grav-22

itational force acting nearly uniformly over the oceanic depth. Thus, they are commonly23

associated with the depth-averaged velocity, i.e., the barotropic current. However, due24

to oceanic density stratification and variable bathymetry, the resulting barotropic cur-25

rents also generate vertically varying (baroclinic) tidal currents that also have an expres-26

sion in the sea level and surface pressure-gradient force. A prescription is given for how27

to decompose sea level and its gradient into its barotropic and baroclinic parts, and the28

answers are illustrated using a Pacific Ocean numerical model.29

1 Introduction30

Changing sea-level elevation ζ is perhaps the most readily measurable oceanic prop-31

erty. Averaged over surface gravity waves, it expresses the tides and, at lower frequen-32

cies, the horizontal pressure gradient force for surface currents ~u. At even lower frequen-33

cies it expresses climate changes in global temperature and ice volume.34

Sea level is traditionally measured with coastal gauges, and in recent decades satel-35

lite measurements of elevation and Earth’s gravity field have greatly expanded our view.36

What is the three-dimensional reality that underlies these surface expressions? To37

answer this question, measurements are limited and models must be deployed, i.e., ge-38

ographically and dynamically realistic computational simulations of the oceanic current39

and density fields.40

In the large-scale, low-frequency circulation, ζ is often called the surface dynamic41

height, and its density-normalized (by ρ0), horizontal pressure-gradient force is approx-42

imately in balance with the local Coriolis force at the surface,43

−∇φs = − g∇ζ ≈ − f ~̂z × ugs . (1)

The first equality here is based on hydrostatic balance and the assumption that the air-44

sea interface is a surface of constant pressure. The surface values are denoted by the sub-45

script s; g is the gravitational constant; f is the Coriolis frequency; ~̂z is the unit vector46

in the upward vertical direction; ugs is the surface geostrophic current; the caret denotes47

a unit vector; horizontal vectors are bold face; and 3D vectors have an arrow on top. An48

accompanying vertical momentum relation for the 3D dynamically relevant pressure is49

hydrostatic balance in an integrated form,50

φ(z) = gζ −
∫ ζ

z

b dz′ , (2)

where the buoyancy field is b = g(1 − ρ/ρ0), ρ is density, and ρ0 is a constant refer-51

ence value. In a loose approximation, when only density measurements are available, it52
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is sometimes assumed that the horizontal pressure-gradient force ∇φ vanishes at depth53

(i.e., below z = −hnm, a “level of no motion”), so that the surface dynamic height54

is entirely due to the interior buoyancy variations b:55

ζnm ≈ 1

g

∫ 0

−hnm

b dz . (3)

Here the upper vertical integration limit at z = ζ has been further approximated by56

0, the mean surface elevation (i.e., ζ � hnm). While (3) is not fully accurate for basin57

and mesoscale currents due to its neglect of ∇φ at depth, together with (1) it indicates58

how interior b can influence ζ, hence u. The dynamical influence of b is referred to as59

baroclinicity, so ζnm in (3) is a type of baroclinic sea level. However, in this situation60

of a surface-intensified geostrophic current and no motion at depth, both the barotropic61

and baroclinic currents defined in (4)-(5) are non-zero; so ζnm is a mixed barotropic-baroclinic62

sea level. (See the end of Sec. 2.2 for a further remark.)63

For the tides, again ∇φs = g∇ζ at the relevant frequencies. Tides have an as-64

tronomical and self-interaction gravitational forcing that is essentially independent of65

depth within the ocean. The associated response in u is the called the “external” tide,66

which in this paper will be equated with the depth-averaged velocity, a.k.a. the barotropic67

current, ubt,68

ubt =
1

H + ζ

∫ ζ

−H
u dz , (4)

where H(x) is the resting depth of the ocean. In many papers it is also referred to as69

the “surface” tide, although that is ambiguous with respect to the barotropic-baroclinic70

decomposition. The remainder is the “internal” tide, associated with the baroclinic hor-71

izontal current,72

ubc = u − ubt , (5)

where both u and ubc are functions of depth. The existence of an internal tide is evi-73

dent in interior time series of b, which often show strong oscillations at or near the tidal74

frequencies. As will be explained in Sec. 2, ζ reflects both barotropic and baroclinic cur-75

rent dynamics.76

A simple approximate model for the external tide is to associate the dynamical re-77

sponse to the gravitational forcing with u(z) = ubt. With an approximation of an in-78

compressible mass balance (i.e., ~∇ · ~u = 0 for 3D ~u, because ρ variations are small79

compared to ρ0) and the kinematic boundary conditions at the solid bottom and top free80

surface, the column-integrated continuity relation is81

∂tζ = −∇ ·
(

(H + ζ)ubt
)
. (6)

Integrated over the area of the domain, this relation implies that the ocean has a con-82

stant volume (ignoring rivers and other surface freshwater volume fluxes, all of which have83

small effects on tidal time scales). Notice that (6) has no explicit dependency on b. With84

a further approximation that b = 0, (2) implies that ∇φ(z) = ∇φs = g∇ζ, and a85

horizontal momentum balance can be formulated entirely in terms of ubt, which together86

with (6) is called the Shallow-Water Equations. It can also be called a barotropic tidal87

model with ζ = ζbt. One of the first satellite tidal products was G. Egbert et al. (1994)88

that fits a Shallow-Water model to altimetric measurements. This model is dynamically89

inconsistent with (2) as it neglects any baroclinic effect from b 6= 0, and it is quite dif-90

ferent from (3); nevertheless, it has been widely considered useful as an estimate of ζ at91

large spatial scales comparable to the width of oceanic basins, associating it with the barotropic92

tide. A model of the barotropic tide by itself is dynamically incomplete, and any such93

model, with whatever mixture of dynamics and measurements, has to confront the im-94

portant matter of energy conversion to the baroclinic tide that occurs in stratified wa-95

ters over variable topography (Stammer et al., 2014).96
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From the perspective of this paper, a sufficiently accurate model for tides and other97

currents is the Boussinesq, hydrostatic, incompressible (i.e., non-divergent ~u) equations98

that also contain a realistic seawater equation of state and necessary forcing and damp-99

ing effects. In this system, (2) and (4)-(6) are correct relations, while (1) and (3) are only100

approximations for the indicated circumstances. The specific question posed here is how101

the sea level should be partitioned into barotropic and baroclinic components and, more102

specifically, how the astronomically forced external and internal tides should be parti-103

tioned dynamically. The theoretical answer is illustrated with Pacific-basin simulations104

using the Regional Oceanic Modeling System (ROMS) (Shchepetkin & McWilliams, 2005)105

that embodies the dynamical assumptions listed in this paragraph.106

2 Baroclinic-barotropic decomposition107

2.1 Background108

Multiple approaches have been taken for determining the barotropic-baroclinic de-109

composition of the tides. The direct approach of evaluating (4)-(5) is rarely available from110

measurements of the full water column, and it would not directly show the decomposi-111

tion of sea level.112

One approach to the decomposition113

ζ = ζbt + ζbc (7)

is by Colosi and Munk (2006), who analyzed very long time series of ζ(t) at two tide gauges114

in Hawaii. They devised a statistical model for the shape of the frequency spectrum that115

assumed that the barotropic component is entirely a “coherent” spectrum line (i.e., in116

phase with the astronomical forcing, a.k.a. the equilibrium tide), while the baroclinic117

component has both a coherent line and a smoothly varying “incoherent” shape in nearby118

frequencies in association with refraction caused by spatial variations in subtidal b; the119

latter split is measured by the variance in the phase at the tidal frequency. They con-120

cluded that for the M2 frequency ζbt is much larger than ζbc, while the latter has com-121

parable magnitudes in its coherent and incoherent parts. This is an adynamical anal-122

ysis. It also has no information about − g∇ζ, which is the horizontal pressure-gradient123

force.124

Savage et al. (2017) analyze a realistic global simulation model (HYCOM) and de-125

fine a “steric” sea-level anomaly by126

ζst =
1

g

∫ ζ

−H
b dz . (8)

They then associate ζst with ζbc and define a “non-steric” (barotropic) residual, ζbt =127

ζ − ζbc. Their conclusions regarding the tidal sea-level decomposition are qualitatively128

consistent with those of Colosi and Munk (2006) and have the advantage of global cov-129

erage. Notice the functional similarity between (8) and the low-frequency approxima-130

tion ζnm in (3), apart from a difference of integration range. In our view this definition,131

while motivated by a conception of seawater compressibility, is not dynamically defen-132

sible, as further explained in Sec. 2.2.133

Kelly (2016) opens with “The de facto standard is to define surface tides as depth-134

averaged pressure and horizontal velocity and internal tides as the residuals”, which we135

almost agree with. He then proceeds, as his main topic, to define vertical modes, asso-136

ciating mode 0 with the barotropic mode and modes 1, 2, . . . with the baroclinic modes.137

Part of his paper is to include a correct free-surface boundary condition in the modal138

calculation, even though that introduces a modest discrepancy with the principle quoted139

here. (With a rigid-lid boundary condition, it does conform; see Appendix.) Thus, the140
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linear, conservative, free-surface, gravest (a.k.a. “barotropic”) eigenmode uo for they hy-141

drostatic Primitive or Boussinesq equations does not exactly coincide with the depth-142

averaged ubt defined here in (4), and the depth-average of the “ baroclinic” eigenmodes,143

un, n ≥ 1, are not exactly zero, again in contrast with ubc here, although these eigen-144

modes nearly have these depth-averaged attributes and their differences with rigid-lid145

eigenmodes, with these exact attributes, is slight. However, this difference does allow the146

u0 eigenmode to escape the discrepancy of non-zero ζ0 while still satisfying the conti-147

nuity equation (6).148

In general we find vertical modes somewhat problematic as a representation for re-149

alistic situations because they presume as background the local values of resting depth150

H and sub-tidal stratification profile N2(z) = db/dz, both of which are geographically151

variable (temporally, too, for N2). However, our primary criticism is that this principle152

does not give a dynamically correct decomposition of the horizontal pressure-gradient153

force for general b(x) and H(x), as further explained in Sec. 2.2.154

In practice the most common approach for decomposing tidal ζ, both for satellite155

measurements and models, is on the basis of horizontal scale content (Carrere et al., 2021;156

Ubelmann et al., 2022). The conservative, linear eigenmodes for a flat, resting ocean at157

the tidal frequencies — whose vertical structure is consistent with Kelly (2016) — have158

a very large horizontal wavelength of O(104) km for the barotropic mode, in contrast with159

O(102) km for the baroclinic modes, which are near the baroclinic deformation radius160

∼ Nhpyc/f , where hpyc is the depth of the main pycnocline. Of course, real tidal dy-161

namics are forced and damped, if not also nonlinear, but this criterion does provide a162

heuristically plausible framework for the decomposition. However, it too is dynamically163

flawed due to coupling between barotropic and baroclinic currents (Secs. 2.2 and 3.2).164

Thus, we conclude that none of the existing approaches for making a barotropic-165

baroclinic tidal decomposition is fundamentally well-grounded, even though many of these166

approaches have come to sensible and mutually consistent conclusions about the phys-167

ical characteristics of the tides.168

2.2 Dynamical decomposition169

The fundamental basis for a barotropic-baroclinic decomposition in a model like170

ROMS is in terms of the horizontal velocity u, i.e., (4) and (5). While (6) suggests that171

sea level is associated with the barotropic velocity, the evolution equation for the latter172

cannot be closed entirely in terms of the sea level as its pressure-gradient force. Rather,173

the barotropic horizontal momentum equation has the form of174

∂tu
bt = − 1

H + ζ

∫ ζ

−H
∇φdz′ + . . . ≡ Pbt + . . . , (9)

with a depth-averaged pressure-gradient force Pbt; the dots indicate the non-pressure forces175

elided here (Shchepetkin & McWilliams, 2005). Using (2), we can evaluate this barotropic176

force to be177

Pbt = − g∇ζ − Pbc(ζ) , (10)

and the corresponding vertical profile of the baroclinic pressure-gradient force is178

Pbc(z) = ∇
∫ ζ

z

b dz′ − 1

H + ζ

∫ ζ

−H
∇

(∫ ζ

z′
b dz′′

)
dz′ , (11)

with a surface value of179

Pbc(ζ) = − 1

H + ζ

∫ ζ

−H
∇

(∫ ζ

z′
b dz′′

)
dz′ . (12)
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Thus, the total surface pressure-gradient force is, as expected,180

Pbt + Pbc(ζ) = − g∇ζ . (13)

The relations (9)-(13) make it clear that the evolution of the barotropic current is in-181

fluenced by the buoyancy field as well as the sea level; i.e., the barotropic and baroclinic182

currents have a coupled dynamics in a stratified ocean, and ζ and P cannot be uniquely183

associated with either one alone, as in (7) and (13).184

To make the coupling explicit, ζ changes due to a divergence in the barotropic trans-185

port, ubt changes due to the depth-averaged pressure-gradient force involving both ζ and186

b, and this then feeds back onto further ζ changes; meanwhile b changes due to both ubt187

and ubc. Only for the rigid-lid linear normal modes (Sec. 2.1 and Appendix) is this barotropic-188

baroclinic coupling broken with our definition of ubt.189

The governing momentum equations contain a pressure-gradient force, not the pres-190

sure per se. With the Boussinesq approximation where |b| � g and in deep water where191

|ζ| � H, these two expressions for Pbc can be simplified by setting ζ ≈ 0. However,192

for variable H(x), Pbc cannot be expressed in the form of a baroclinic sea-level gradi-193

ent, because ∇ does not commute with H; hence, we cannot identify a ζbc such that Pbc(ζ) =194

− g∇ζbc.195

If we manipulate (12), we can write196

Pbc(ζ) = − g∇ζ̃bc + Rbc (14)

with a baroclinic pseudo sea-level,197

ζ̃bc =
1

g(H + ζ)

∫ ζ

−H

(∫ ζ

z′
b dz′′

)
dz′ , (15)

and a residual contribution to the baroclinic pressure-gradient force,198

Rbc =
1

H + ζ

∫ ζ

−H

(
b∇H − 1

H + ζ

(∫ ζ

z′
b dz′′

)
∇(H + ζ)

)
dz′ , (16)

that is associated with resting-depth gradients. Again, one can simplify these expressions199

with ζ ≈ 0. Notice that ζ̃bc in (15) differs from ζst in (8) by an extra vertical integral200

associated with the vertical averaging in the barotropic momentum equation.201

In fact, ζ̃bc is equivalent to minus the buoyancy contribution to the depth-averaged202

pressure from (2); i.e.,203

1

H + ζ

∫ ζ

−H
φ(z′) dz′ = g (ζ − ζ̃bc) , (17)

which itself is equal to g times the barotropic pseudo sea-level ζ̃bt. The existence of Rbc 6=204

0 in (14) shows that the depth-averaged pressure gradient differs from the gradient of205

the depth-averaged pressure.206

Notice that Rbc vanishes for a flat bottom, whence with this ζ simplification,207

Pbc = − g∇ζ̃bc and ζ̃bc ≈ 1

gH

∫ 0

−H

(∫ 0

z′
b dz′′

)
dz′ , (18)

when ∇H = 0. This partition in (14) is intended only to demonstrate the ζ̃bc com-208

ponent. In particular, note that the unpartitioned Pbc(ζ) in (12) does not have any di-209

rect dependency on ∇H; rather, that arises only in the partitioned expressions. For lin-210

ear eigenmodes over a flat bottom, ζbt ≈ ζ and ζ̃bc is small for the barotropic mode,211

and vice versa for the baroclinic modes. The baroclinic pseudo sea level ζ̃bc has a par-212

tial similarity with the steric ζst in (8).213
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Thus, we propose a dynamical decomposition of the horizontal pressure-gradient214

force (10)-(13) based on the barotropic-baroclinic decomposition of u, rather than a di-215

rect decomposition of sea level itself except where H is flat. The baroclinic contribution216

(e.g., ζ̃bc in (18)) can be compared with the baroclinic expressions for ζnm in (3) and217

for ζst in (8); it has similar ingredients but it adds another vertical integral. With most218

b(z) profiles the different ζ values will be quantitatively different but similar in magni-219

tude.220

This decomposition is valid for all frequencies. The application to tides is perhaps221

the most timely one with the prospect of new altimetric satellites with higher spatial res-222

olution. To make this focus, the expressions in this section should be temporally filtered223

to isolate the tidal frequencies. With the simplification |ζ| � H, these expressions are224

linear in ζ and b, which makes the filtering task easier. Furthermore, the decomposition225

does not depend on calculating vertical modes (Kelly, 2016), although that is a further226

analysis option. And, it makes no assumption a priori about the spatial scale content227

of the barotropic and baroclinic components. For the special case of conservative linear,228

rigid-lid, tidal eigenmodes, the Appendix shows that the relations in this section yield229

the familiar modal results.230

Finally, in the low-frequency context of many upper-ocean currents where ζnm is231

relevant (Sec. 1), ζ = ζnm, and ζbt = ζnm − ζ̃bc, where ζ̃bc has the same sign as but232

is smaller in magnitude than ζnm. Thus, ζbt is reduced (i.e., partly “compensated”) com-233

pared to ζ, and the vertical isopycnal displacements in the interior, η ≈ − b/N2, have234

the opposite sign as the sea level ζ. ubt and ubc have the same sign in the upper ocean235

and approximately cancel at depth. (This is not the tidal situation.)236

The choice here for the dynamically relevant decomposition of the surface pressure-237

gradient force has some similarity with the long-standing discussion about the role of bathymetry238

in large-scale circulation. Several alternative interpretive frameworks have been adopted,239

all correct and variously helpful for physical understanding: the vertical curl of the depth-240

averaged horizontal momentum balance (i.e., the barotropic balance), featuring the Joint241

Effect of Baroclinicity and Relief (JEBAR) (Sarkisyan & Ivanov, 1971; Mellor, 1999);242

the curl of the depth-integrated momentum balance (i.e., the transport balance), fea-243

turing the Bottom Pressure Torque (BPT) (Song & Wright, 1998; M. J. Molemaker et244

al., 2015); and the depth-integral of the curl of the momentum balance (i.e., the vortic-245

ity balance), featuring the Bottom Stress Divergence Torque (BSDT) (Jagannathan et246

al., 2021; Capo et al., 2023). These alternatives arise from the non-commutivity of the247

vertical integral or average and the horizontal gradient of H, as in (14)-(16). For the tides248

the vorticity or circulation tendency is less relevant than the force, hence the focus there249

is on the pressure-gradient force, using the depth-averaged decomposition in (9)-(13).250

3 Illustration251

3.1 Pacific simulation252

The UCLA version of ROMS (the Regional Oceanic Modeling System; Shchepetkin253

and McWilliams (2003, 2005)) is a terrain-following oceanic circulation model. It uses254

third-order upwind advection algorithms for the horizontal advection of tracers and mo-255

menta. These advection schemes have a dissipative discretization error that is hyper-diffusive256

or -viscous in nature and automatically scales with resolution, negating the need for an257

explicitly prescribed horizontal smoothing or regularization term. Vertical advection is258

computed with a fourth-order spline advection scheme. Unresolved mixing processes are259

parameterized with a the K-profile parameterization in the surface and bottom bound-260

ary layers, combined with a Richardson number based parameterization in the interior261

(Large et al., 1994).262
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The simulation that is the foundation of the investigation in this paper is a basin-263

scale simulation of the full Pacific Ocean with a nominal horizontal grid resolution of dx =264

6 km. It is a high-resolution descendant of the well-validated simulation in Lemarié et265

al. (2012) with additional tidal forcing. Strictly speaking, this is still a regional simu-266

lation that needs to be forced at its lateral boundaries, which are most extensive in the267

south. The information for these open boundaries is derived from the GLORYS reanal-268

ysis data set (Verezemskaya et al., 2021) that is provided at at resolution of 0.083 de-269

gree and a time interval of 1 day. The GLORYS data are interpolated in space to the270

computational grid and interpolated in time at each time-step while the model is run-271

ning. We refer to these type of computations as ’online’ computations. This is in con-272

trast with pre- and post-processing of data before or after the model run, which we re-273

fer to as ’offline’ computations. The GLORYS data does not contain tidal information,274

and the basin-scale simulation is tidally forced at the open boundaries with sea-surface275

elevations and tidal barotropic currents from the TPXO9 analysis (G. D. Egbert & Ero-276

feeva, 2002). In addition to this tidal forcing at the lateral boundaries, the model is forced277

with a surface geopotential forcing. The surface geopotential is a combination of the as-278

tronomical tide and the self-attraction and loading effect (Arbic et al., 2018). The self279

attraction and loading are the result of geopotential anomalies that arise from the evolv-280

ing sea surface elevation itself as well as the deformation of Earth’s crust under the in-281

fluence of the tidal motions (Arbic et al., 2018). Atmospheric forcing is obtained from282

the ERA5 global reanalysis (Hersbach et al., 2020). This dataset is available at a nom-283

inal 0.25 degree spatial resolution and hourly intervals. The COARE formulation (Fairall284

et al., 2011) is used to compute momentum and tracer fluxes from atmospheric variables285

using a bulk approach. The use of sufficiently high-frequency atmospheric forcing per-286

mits realistic levels of near inertial internal waves below the mixed layer, which are es-287

sential to a correct representation of the kinetic energy budget in the ocean (Shcherbina288

et al., 2013; Barkan et al., 2021). A more complete description of the tidal simulation289

and its analyses are in separate papers (M. Molemaker, Damien, Dauhajre, & McWilliams,290

2023; M. Molemaker, Damien, McWilliams, et al., 2023).291

3.2 Tidal pressure-gradient force292

We now focus on the tidal components of the Pacific simulation, and even more par-293

ticularly on the lunar semi-diurnal (M2) component that on average has the largest am-294

plitude among the components. They are extracted by time filtering the model output295

at this frequency of 2.237×10−5 cycles per second. The M2 signal is defined as the com-296

plex Fourier amplitude of a single frequency in this time series whose length is an inte-297

ger multiple of its period. Eight months of model output data are analyzed here, which298

is sufficient to accurately extract the M2 signal with its 466 cycles.299

The purpose of this paper is to decompose the surface pressure-gradient force, − g∇ζ,300

into its barotropic and baroclinic components. Furthermore, using the approximation301

(15), we can even decompose the sea-level ζ itself, noting a postiori that the “integral”302

of Rbc in (16) is rather small on larger scales, even compared to ζ̃bc itself, where inte-303

gral here is defined as the solution for a surface potential field Z that satisfies the Pois-304

son equation,305

∇2Z =
1

g
∇ ·Rbc , (19)

with zero Neumann boundary conditions; more is said about about Rbc near the end of306

this section.307

The sea-level decomposition is shown in Fig. 1. In these plots only a single phase308

in the M2 cycle is shown, but it is representative of the scales and patterns of the tide309

throughout its cycle. As expected, the ζ field appears smooth on the basin scale, and310

it is visually similar to the barotropic pseudo sea-level ζ̃bt; however, their difference, ζ̃bc311

is not particularly small (i.e., about 20% in amplitude), and this difference represents312
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Figure 1. (top) Sea-level ζ [m], (middle) barotropic pseudo sea-level ζ̃bt = ζ − ζ̃bc [m],

and (bottom) baroclinic pseudo sea-level ζ̃bc [m] for a single phase of the M2 tide in the Pacific

Ocean. Note the reduced colorbar range for ζ̃bc and the more evident small-scale fluctuations.
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the dynamical inconsistency in modeling the barotropic tide without including the buoy-313

ancy variations that represent the dynamical influence of modal coupling. The basin-314

scale pattern of ζ̃bc is quite different from that of ζ̃bt; thus, there is little evidence of “com-315

pensation” between these components (cf., ζnm). Furthermore, in ζ̃bc the smaller scale316

structure is more visually evident as “ripples” at approximately the mesoscale baroclinic317

deformation radius length of O(100) km, especially in the western Pacific, where the baro-318

clinic tidal amplitude is very strong, but also around other islands and ridges in the cen-319

tral and equatorial Pacific.320

The analogous surface pressure-gradient forces are in Fig. 2 with averaging over321

the M2 tidal cycle. Now the interior patterns are dominated by mesoscale structures that322

are quite inhomogeneously related to island and topographic generation sites, again as323

expected from baroclinic tidal generation by energy conversion from the astronomically324

forced tides at those sites. Many of the edge patterns are associated with shallow shelves325

and coasts where the barotropic tide is both amplified and dissipated. Most of the in-326

terior mesoscale patterns are mostly associated with Pbc, i.e., the baroclinic tide, but327

there are locations where Pbt is not small, e.g., especially near undersea ridges. Its in-328

terior magnitude can be nearly half of that of Pbc. The importance of Pbt in broad re-329

gions indicates that there is persistent barotropic-baroclinic dynamical coupling even away330

from the topographic generation sites for the internal tide. The common practice of in-331

terpreting mesoscale tidal signals in ∇ζ as entirely baroclinic, mostly based on the lin-332

ear eigenmode decomposition (Sec. 2.1 and Appendix), is a fairly good approximation,333

but not a perfect one because Pbt is not uniformly smaller than Pbc.334

A further decomposition of the barotropic pressure gradient force Pbt is shown in335

Fig. 3). It shows that the part of the force associated with the depth-averaged pressure,336

− g (ζ − ζ̃bc = − 1

H + ζ

∫ ζ

−H
dz′

(
gζ −

∫ ζ

z′
dz′′b

)

= − gζ +
1

H + ζ

∫ ζ

−H
dz′

∫ ζ

z′
dz′′b , (20)

is almost everywhere larger than the part due to interactions between the pressure and337

topographic gradient, Rbc in (16). The exceptions are near the island and ridge lines where338

∇H is large. Thus, for many purposes, ζ̃bc can be viewed as the baroclinic sea level field.339

These figures demonstrate that there is important dynamical coupling between the340

barotropic and baroclinic tides throughout most of the domain, beyond the particular341

topographic locations where baroclinic generation occurs. A fuller and more phenomeno-342

logical interpretation of the heterogeneous tidal signals, especially for the complex spa-343

tial patterns in Pbc and g∇ζ (Fig. 2), is made in M. Molemaker, Damien, Dauhajre, and344

McWilliams (2023).345

4 Summary and Conclusions346

A dynamically consistent barotropic-baroclinic decomposition of the pressure-gradient347

force is based on the definition of the barotropic horizontal velocity as the depth-averaged348

current. This implies there is a significant buoyancy influence on the (depth-averaged)349

pressure-gradient force for the barotropic current.350

At the surface this force cannot be decomposed into sea-level gradients because of351

variations of oceanic depth. The barotropic force has a contribution from the double depth352

integral of the density field in (10) (but not simply the steric sea level ζst in (8)), as well353

as the familiar - g∇ζ force.354

At basin scales the tidal ζ is mostly barotropic, and at mesoscales the surface pres-355

sure gradient −g∇ζ is mostly due to - Pbc. While this approximate scale partition can356
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Figure 2. Cycle-averaged amplitude of (top) surface pressure-gradient g|∇ζ| [m s−2], (middle)

barotropic surface pressure-gradient magnitude |Pbt| [m s−2], and (bottom) baroclinic surface

pressure-gradient magnitude |Pbc| [10−5 m s−2] for the M2 tide in the Pacific Ocean. Note the

reduced colorbar range for |Pbt|, which is the depth-averaged force for the barotropic mode.

–11–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 3. Decomposition of the cycle-averaged barotropic surface pressure-gradient amplitude

|Pbt| [m s−2] in (10) (shown as middle panel of Fig. 2) into its two parts associated with the

depth-averaged pressure, g |∇(ζ − ζ̃bc)|, using ζ̃bc from (15) (top), and with the interaction of the

buoyancy field with the topographic gradient |Rbc| in (16) (bottom) for the M2 tide in the Pacific

Ocean. Note the reduced colorbar range for Rbc.
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be anticipated from the linear eigenmodes at tidal frequencies, it is by no means exact357

due to the dynamical coupling between barotropic and baroclinic tidal components. The358

wide, if inhomogeneous, spatial extent of Pbt indicates that the modal dynamical cou-359

pling is not limited only to regions of barotropic-baroclinic energy conversion.360

Historically, the Shallow-Water Equations have been considered as a useful approx-361

imate model for the barotropic tides (as they are for tsunamis and storm surges). In this362

paper we show that this view has serious limitations in its accuracy, both because Shallow-363

Water lacks an expression for baroclinic energy conversion and because of the sometimes364

strong dynamical coupling through the pressure gradient force and buoyancy field. Sim-365

ilarly its bottom-drag dissipation rate in deep water cannot be well represented. Going366

forward, more care needs to be taken in interpreting a tidal decomposition. While this367

is difficult in measurements because of the requirement for depth-averaging, it is feasi-368

ble in 3D models such as the one used here. The best future tidal products will be made369

by data assimilation within such models, placing the burden of accuracy heavily on the370

model skill.371

Appendix A Vertical modes372

As an illustration of the implications of the formulas in Sec. 2.2, consider the sim-373

ple situation of linear, conservative eigenmodes over a flat bottom. We will follow the374

notation of Kelly (2016) (i.e., K16) and use rigid-lid modes with their usual diagnostic375

interpretation that the dynamic pressure at z = 0 is equal to gζ; i.e., for mode n, the376

sea-level is377

ζn =
1

g
pn(x, t)ϕn(0) , (A1)

for n = 0, 1, 2, . . .. ϕn(z) is the separable vertical eigenfunction for pressure and hor-378

izontal velocity (cf., K16, eq. (2a); n.b., the notation there is φn instead of ϕn). The K16379

convention on units is U [pn] = m2s−2 and U [ϕn] = 1 (i.e., non-dimensional). Here380

n = 0 is the barotropic mode, and n ≥ 1 are the baroclinic modes. (Compared to381

the more general free-surface modes in K16, Sec. 2, the differences are immaterial here.)382

The depth-averaged modal dynamic pressure is383

1

H

∫ 0

−H
pnϕn dz . (A2)

This equals p0 = gζ0 for n = 0 because ϕ0(z) = 1. It equals zero for n ≥ 1 be-384

cause modal orthogonality implies that the depth-average of ϕn(z) is zero (K16, eq. (7)).385

Thus, for the barotropic mode, ζ = ζbt = p0/g, and ζbc0 = 0.386

For a flat bottom, ζ̃bc in (18) is the relevant equivalent sea level ζbc for the surface387

pressure gradient relation (A1) (i.e., Rbc = 0 here). Furthermore, the buoyancy field388

for mode n is389

N2(z) bn(x, t) Φn(z) , (A3)

where Φn(z) is the vertical eigenfunction for vertical velocity (K16, eq. (2b)). Φ0 = 0390

for the barotropic mode, and dΦn/dz = ϕn(z) for n ≥ 1 to satisfy the continuity equa-391

tion. The units here are U [N ] = s−1, U [bn] = 1, and U [Φn] = m. Thus,392

ζbcn = ≈ 1

gH

∫ 0

−H

(∫ 0

z′
N2(z) bn(x, t) Φn(z) dz′′

)
dz′ . (A4)

For n = 0, this is zero. For n ≥ 1, using the boundary value problem for Φ(z) (K16,393

Sec. 3),394

ζbcn ≈ −
bnc

2
n

g

dΦ

dz
(0) =

pn
g
ϕn(0) , (A5)
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including the hydrostatic relation for the modal amplitude functions, bn = − pn/c2n,395

where c2n is the modal eigenvalue, the square of the horizontal phase speed. Thus, for396

the baroclinic modes, ζ = ζbcn , and ζbtn = 0 for n ≥ 1. The latter implies that barotropic397

sea level is fully compensated by the buoyancy effect on total sea level.398
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The ROMS code for this simulation is available at M. J. Molemaker et al. (2023),400

and the solution analyzed in this paper, filtered at the M2 tidal frequency is at M. J. Mole-401

maker (2023).402

Acknowledgments403

We appreciate discussions with Brian Arbic in developing this paper. The research is sup-404

ported by the Office of Naval Research through grant N00014-21-1-2693 and by the NSF405

ACCESS supercomputing centers.406

References407

Arbic, B. K., Alford, M. H., Ansong, J. K., Buijsman, M. C., Ciotti, R., Farrar,408

J. T., . . . Zhao, Z. (2018). A Primer on Global Internal Tide and Internal409

Gravity Wave Continuum Modeling in HYCOM and MITgcm. New Frontiers410

in Operational Oceanography . (doi:10.17125/gov2018.ch13)411

Barkan, R., Srinivasan, K., Yang, L., & McWilliams, J. (2021). Oceanic cross-scale412

energy transfers under the influence of internal waves. Geophys. Res. Lett., 48 ,413

e2021GL094376.414

Capo, E., McWilliams, J., & Jagannathan, A. (2023). Topographic vorticity genera-415

tion along the Spanish coast in the Alboran Sea. J. Geophys. Res. Oceans. (in416

press)417

Carrere, L., Arbic, B., Dushaw, B., Egbert, G., Erofeeva, S., Lyard, F., . . . Pico,418

N. (2021). Accuracy assessment of global internal-tide models using satellite419

altimetry. Ocean Science, 17 , 147–180.420

Colosi, J., & Munk, W. (2006). Tales of the venerable honolulu tide gauge. J. Phys.421

Ocean., 36 , 967-996.422

Egbert, G., Bennett, A., & Foreman, M. (1994). TOPEX/Poseidon tides estimated423

using a global inverse model. J. Geophys. Res., 99 , 24,821-24,852.424

Egbert, G. D., & Erofeeva, S. Y. (2002). Efficient inverse modeling425

of barotropic ocean tides. J. Atmos. Ocean. Tech, 19 , 183-204.426

(doi:10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2)427

Fairall, C., Yang, M., Bariteau, L., Edson, J., Helmig, D., McGillis, W., . . .428

Blomquist, B. (2011). Implementation of the Coupled Ocean-Atmosphere429

Response Experiment flux algorithm with CO2, dimethyl sulfide, and O3. J.430

Geophys. Res., 116 , C00F09.431

Hersbach, H., Bell, B., P.Berrisford, et al. (2020). The ERA5 global reanalysis. Q. J.432

R. Meteor. Soc., 146 , 1999-2049.433

Jagannathan, A., Srinivasan, K., McWilliams, J., Molemaker, M., & Stewart, A.434

(2021). Boundary layer mediated vorticity generation in currents over sloping435

topography. J. Phys. Ocean., 51 , 1757-1778.436

Kelly, S. (2016). The vertical mode decomposition of surface and internal tides in437

the presence of a free surface and arbitrary topography. J. Phys. Ocean., 46 ,438

3777-3788.439

Large, W. G., McWilliams, J. C., & Doney, S. C. (1994). Oceanic vertical mixing:440

A review and a model with a nonlocal boundary layer parameterization. Rev.441

Geophys., 32 , 363-403.442

–14–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)
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