
P
os
te
d
on

21
A
u
g
20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
69
26
47
96
.6
92
05
14
2/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Sensitivity of Simulated Fire-Generated Circulations to Fuel

Characteristics During Large Wildfires

Matthew Roberts1, Neil Lareau1, Timothy W Juliano2, Kasra Shamsaei1, Hamed
Ebrahimian1, and Branko Kosovic3

1University of Nevada, Reno
2National Center for Atmospheric Research
3National Center for Atmospheric Research (UCAR)

August 21, 2023

Abstract

Coupled fire-atmosphere models often struggle to simulate important fire processes like fire generated flows, deep flaming fronts,

extreme updrafts, and stratospheric smoke injection during large wildfires. This study uses the coupled fire-atmosphere model,

WRF-Fire to examine the sensitivities of some of these phenomena to the modeled surface fuel load. Specifically, the 2020

Bear Fire and 2021 Caldor Fire in California’s Sierra Nevada are simulated using three fuel loading scenarios (1x, 4x, and

8x LANDFIRE derived surface fuel), while controlling the fire rate of spread, to isolate the fuel loading needed to produce

fire-generated flows and plume rise comparable to NEXRAD radar observations of these events. Increasing fuel loads and

corresponding fire residence time in WRF-Fire leads to deep plumes in excess of 10 km, strong vertical velocities of 40-45 m s-1,

and combustion fronts several kilometers in width (in the along wind direction). These results indicate that LANDFIRE-based

surface fuel loads in WRF-Fire likely under-represent fuel loading, having significant implications for simulating landscape-scale

wildfire processes, associated impacts on spread, and fire-atmosphere feedbacks.
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Key Points: 8 

• Coupled fire-atmosphere models struggle to simulate critical fire-generated winds and 9 

plume rise during large wildland fires 10 

• Deficient fire-generated winds are linked to inadequate fuel loads and burnout timescale 11 
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• Adjustment of the fuel characteristics results in more realistic simulated plumes and fire-13 

generated winds  14 
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Abstract 15 

Coupled fire-atmosphere models often struggle to simulate important fire processes like fire 16 

generated flows, deep flaming fronts, extreme updrafts, and stratospheric smoke injection during 17 

large wildfires. This study uses the coupled fire-atmosphere model, WRF-Fire to examine the 18 

sensitivities of some of these phenomena to the modeled surface fuel load. Specifically, the 2020 19 

Bear Fire and 2021 Caldor Fire in California’s Sierra Nevada are simulated using three fuel 20 

loading scenarios (1x, 4x, and 8x LANDFIRE derived surface fuel), while controlling the fire 21 

rate of spread, to isolate the fuel loading needed to produce fire-generated flows and plume rise 22 

comparable to NEXRAD radar observations of these events. Increasing fuel loads and 23 

corresponding fire residence time in WRF-Fire leads to deep plumes in excess of 10 km, strong 24 

vertical velocities of 40-45 m s-1, and combustion fronts several kilometers in width (in the along 25 

wind direction). These results indicate that LANDFIRE-based surface fuel loads in WRF-Fire 26 

likely under-represent fuel loading, having significant implications for simulating landscape-27 

scale wildfire processes, associated impacts on spread, and fire-atmosphere feedbacks. 28 

Plain Language Summary 29 

Coupled fire-atmosphere models poorly depict large-scale fire processes, such as fire generated 30 

winds and deep smoke plumes. In this study, the 2020 Bear Fire and 2021 Caldor Fire in 31 

California are simulated under various fuel scenarios. The simulations show that fuel 32 

characteristics used in the fire-atmosphere model under-represent observed conditions and thus 33 

produce inadequate fire-generated winds and plume characteristics. When the modeled fuels are 34 

augmented to match observed fuel load and burnout time, simulated fire-atmosphere feedbacks 35 

better resemble fire generated winds and deep convective plumes seen in radar observations. The 36 

results of these simulations will help inform future improvements to coupled fire-atmosphere 37 

models to better simulate large wildland fires. 38 

1 Introduction 39 

Fire size and intensity has been increasing in the western United States in recent decades 40 

(Westerling et al., 2006, 2016; Williams, 2013; Holden et al., 2018; Parks and Abatzaglou 2020). 41 

These larger, more intense fires are often characterized by 1000s of acres of simultaneous 42 

combustion (i.e., mass fire, Finney and McAllister, 2011), deep convective columns, 43 

pyrocumulonimbus (pyroCu/Cb) capable of injecting smoke into the stratosphere (Fromm et al., 44 

2006, 2010; Rodriguez et al., 2020; Peterson et al., 2021), and extreme fire-generated winds 45 

including fire-generated tornadic vortices (FGTVs) (Fromm et al., 2006, 2010; Cunningham and 46 

Reeder, 2009; Lareau et al., 2018, 2022a). Given the complex threats posed by landscape fires on 47 

the social, ecological, and built environments and the expected increase in fire frequency and 48 

intensity in a warming climate (Abatzoglou and Williams, 2016; Dowdy et al., 2019), accurate 49 

simulation of fires and their impacts are necessary for improved societal resilience, pre-fire 50 

planning, and active-fire situational awareness.  51 

Uncertainties in combustion processes, fire spread, fuel representation, and atmospheric 52 

feedbacks make simulations of large real-world fires challenging (Peace et al., 2020; Shamsaei et 53 

al., 2023a). For example, current fire spread models used in fire-fighting operations such as 54 

FARSITE (Finney, 1998) and ELMFire (Lautenberger, 2013, 2017) rely on the semi-empirical 55 

Rothermel (1972) rate of spread model but are not coupled to the atmosphere. Thus, these 56 

models cannot simulate turbulent flow fields or the feedbacks between fire and atmospheric 57 
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processes, such as fire-induced updrafts and associated inflow winds that alter the rate and 58 

direction of fire spread. This is problematic in that these fire-induced winds can become the 59 

dominant driver of large wildland fires (Coen et al., 2018). Rather, to simulate these feedbacks, 60 

coupled fire-atmosphere modes are required, wherein an atmospheric model resolves the wind 61 

field that drives fire spread. In turn, the fire’s heat and moisture fluxes are released back into the 62 

atmosphere, thereby perturbing the wind field, which are then passed back to the fire spread code 63 

to represent coupling between the fire and atmosphere (Clark et al., 2004).   64 

WRF-Fire, and the similar WRF-SFIRE, are examples of coupled fire-atmosphere 65 

simulation platforms that link the Weather Research and Forecasting (WRF) atmospheric model 66 

(Skamarock and Klemp, 2008; Skamarock et al., 2019) with the Rothermel rate of spread model 67 

(Rothermel, 1972) to simulate fire spread along with atmospheric responses and feedbacks on the 68 

fire (Clark et al., 2004; Mandel et al., 2011; Coen et al., 2013). While these coupled models show 69 

promise in simulating perimeter changes in landscape scale fires (Kochanski et al., 2013; 70 

Jimenez et al., 2018; DeCastro et al., 2022; Shamsaei et al. 2023a,b; Juliano et al., 2023), 71 

thorough validation of the atmospheric response and feedbacks to the fire are lacking outside of 72 

small-scale grass fire experiments (e.g., FIREFLUX, FIREFLUX II). For example, most studies 73 

validate perimeter changes without providing validation of plume responses or flow 74 

modifications, and thus it is possible that these models sometimes produce the right answer (e.g., 75 

a correct perimeter) for the wrong reason. This can be problematic in simulations of landscape-76 

scale fires, where atmospheric responses and feedbacks become more important in dictating fire 77 

spread and its impacts.  78 

To investigate these model deficiencies, we conduct a sequence of sensitivity tests 79 

designed to isolate the role of fuel loading and consumption on simulated fire-generated 80 

circulations, including the plume rise and inflow winds. We first motivate this work with an 81 

example of the model deficiencies (Section 2), before moving on to our methods, results, and 82 

implications (Sections 3-5). 83 

2 Problem Statement 84 

Shamsaei et al. (2023a, b) showed in two recent simulations of California’s deadliest fire, 85 

the Camp Fire in 2018, that burn area was relatively well depicted by WRF-Fire, however fire 86 

and atmospheric feedbacks were deficient in terms of heat release, fire-generated flows, and 87 

plume depth. With this in mind, a preliminary simulation of another landscape-scale fire (2020 88 

Bear Fire in California’s northern Sierra Nevada; Fig. 1) was conducted using a similar WRF-89 

Fire configuration to that of Shamsaei et al. (2023a, b) based on the operational Colorado Fire 90 

Prediction System (CO-FPS; Jimenez et al., 2018). The details of this simulation, including the 91 

namelist are contained in supplements S1 and S2. In this preliminary simulation, although WRF-92 

Fire depicts a similar fire perimeter (Fig. 1c) to the observed perimeter (Fig. 1a), comparison 93 

with radar observed winds reveals that the simulation lacks both the pronounced region of fire-94 

generated flow reversal and inflow wind opposing the background flow to the west of the head 95 

fire (note red shading in Fig. 1a, b) and the deep plume structure that lofts smoke and ash into the 96 

mid-troposphere (Fig. 1a-d). Thus, while this operational WRF-Fire configuration produces 97 

adequate fire spread, it does not produce the fire-generated winds and plume dynamics that are 98 

critical drivers of the fire behavior. The preliminary simulations are further deficient in that they 99 

inadequately represent the breadth of the combustion, measured in terms of the satellite observed 100 

infrared footprint of the fire (Fig. 2). For example, the broad region of high heat release rates in  101 
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Figure 1. Comparison of observed and simulated fire properties. (a) Beale Air Force Base 

(KBBX) NEXRAD radial velocity PPI (shaded) and radar-estimated fire perimeter (red contour), 

(b) radial wind and radar-estimated fire perimeter cross section (red line) along black dashed line 

in (a), (c) WRF-Fire simulated in-plume radial velocity PPI and fire perimeter, and (d) simulated 

in-plume radial wind and fire perimeter cross section (red line) along black dashed line in (c) 

during a period of pronounced fire atmosphere coupling on the Bear Fire around 0200 UTC 

September 9, 2020. In-plane directional flow vectors annotated in b and d. 

 
Figure 2. Comparison of (a) GOES-17 Fire-Radiative Power (FRP) converted to sensible heat 

flux (FRPx10; from Val Martin et al., 2012) with (b) preliminary WRF-Fire sensible heat flux 

down-sampled to a 2x2 km grid in the Bear Fire. 
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observations (Fig. 2a) is much larger than that of the preliminary WRF-Fire simulation, even 102 

when we resample the WRF output to match the satellite’s spatial resolutions (Fig. 2b). While 103 

previous studies have noted deficiencies with fuel representations in fire models and their impact 104 

on fire perimeter changes (DeCastro et al., 2022; Stephens et al., 2022), the goal of this work is 105 

to isolate how fuel characteristics affect fire-generated winds and plume development using 106 

observations of these processes as a validation metric.  107 

 We hypothesize that exisitng coupled fire-atmosphere models are deficient in producing 108 

the observed fire-atmosphere coupling during landscape-scale fires because they have (1) 109 

insufficient fuel loads and consumption and (2) inadequate representations of how fires move 110 

through the landscape due to inherent limitations of the fire spread model (e.g., lack of mass fire 111 

and spotting).  112 

To test these hypotheses, we use WRF-Fire to simulate two landscape-scale wildfires 113 

(details below) during periods of strong fire-atmosphere coupling and conduct a series of fuel 114 

load sensitivity tests while prescribing the fire’s rate of spread. This is accomplished by turning 115 

off the model’s fire spread code and using a “time-of-arrival” grid (similar to the process 116 

described in Farguell et al., 2021) based on radar observations (methodology described in Lareau 117 

et al., 2022b). We also modify the fire residence time (i.e., the time required for the fuel to burn 118 

down to ~37% of its initial load) to generate broader combusting regions more consistent with 119 

the observations. These permutations allow us to determine the threshold fuel loading for WRF-120 

Fire to generate reasonable fire-atmosphere coupling comparable to observations.  121 

3 Data and Methods 122 

3.1 The Fires 123 

The Bear and Caldor Fires in California’s Sierra Nevada (see Table 1, Fig. 3) provide 124 

ideal test cases to examine WRF-Fire’s ability to simulate fire-atmosphere coupling during high-125 

intensity landscape scale fires. Both fires developed deep convective plumes and strong fire-126 

induced winds in similar terrain and fuels, but under strong (i.e., 30 m/s) and light (i.e., 10 m/s) 127 

wind scenarios, respectively.  Details of the fires are as follows: 128 

The Bear Fire was ignited by lightning on 17 August 2020 in Plumas National Forest in the 129 

northern Sierra Nevada. On 8 September the fire was affected by a strong downslope wind event 130 

with wind gusts up to 30 m s-1 which drove extreme rates of spread, deep pyroCb-topped plumes, 131 

and FGTVs (Lareau et al., 2022a, b). The fire ultimately burned approximately 318,935 acres 132 

(129,068 ha), destroyed 2,455 buildings, and resulted in 16 fatalities.  133 

The Caldor Fire ignited on 14 August 2021 in Eldorado National Forest in the central Sierra 134 

Nevada. On 17 August the fire experienced rapid fire spread and deep pyroCb plumes while 135 

advancing eastward across the Sierra Nevada west slope. The fire ultimately burned 136 

approximately 221,835 acres (89,773 ha) and destroyed 1,003 buildings (USDA Forest Service, 137 

2021 and CalFire Incident Archive, 2021).  138 

Both fires produced pronounced flow reversals downwind of the head fire (e.g., Fig. 1a,b) 139 

and plume echo tops episodically exceeding 10km above mean sea level (MSL) in NEXRAD 140 

radar imagery. These strong fire-generated circulations make these cases well suited for model 141 

sensitivity tests.  142 

 143 
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3.2 WRF-Fire 144 

Our simulations are conducted with WRF-Fire (Mandel et al., 2011; Coen et al., 2013). 145 

The configuration closely follows that of Jimenez et al. (2018) and Shamsaei et al. (2023a, b). 146 

The atmospheric model uses one-way nesting across three domains containing 41 vertical levels 147 

up to 50 hPa. The outermost domain has a horizontal grid spacing of 1 km with inner nests of 148 

333 m and 111 m on the atmospheric mesh, with the innermost domain resolving the fire on a 149 

further refined mesh with spacing of ~28 m, centered over the fire areas (Fig. 3). The terrain in 150 

the inner fire domain is derived from the 30-meter resolution NASA SRTM topographic dataset 151 

(van Zyl, 2001; Farr and Kobrick, 2000). The simulations use the 2011 National Land Coverage 152 

Database (NLCD2011) (Homer et al., 2015) with Noah land-surface (Chen and Dudhia, 2001) 153 

and Revised Monin-Obukhov surface layer (Jimenez et al., 2012) parameterization schemes. The 154 

Dudhia (1989) shortwave radiation, Rapid Radiative Transfer Model (RRTMG) longwave 155 

radiation (Iacono et al., 2008), and Hong and Lim (2006) WRF single-moment 6-class (WSM6) 156 

microphysics schemes are also used. The Mellor-Yamada-Nakanishi-Niino (MYNN; Nakanishi 157 

and Niino, 2006) PBL scheme is used on the two outer domains, with the innermost domain 158 

resolving turbulence using the subgrid-scale model of Lilly (1966a, b) and Deardorff (1980). 159 

Initial and boundary conditions are set using High Resolution Rapid Refresh (HRRR) analysis 160 

data (3 km spatial resolution) that update every hour through completion of the simulation. 161 

Table 1. Two fire cases identified for sensitivity analysis. 

Fire 

Name 

Date of 

Ignition 
Analysis Date(s) Location 

Acres (ha) 

Burned on 

Analysis 

Date(s) 

Total 

Acreage 

(ha) 

Dominant 

SB40 Fuel 

Type 

Bear Fire 
17 August 

2020 

1900 UTC 8 Sep – 0400 

UTC 9 Sep 2020 

Plumas 

National 

Forest 

193,759  

(78,411) 

318,935 

(129,068) 
TU5 (69%) 

Caldor 

Fire 

14 August 

2021 

1500 UTC 17 Aug – 

0000 UTC 18 Aug 2021 

Eldorado 

National 

Forest 

20,939  

(8,474) 

221,835 

(89,773) 
TU5 (73%) 

 

 
Figure 3. Outer (d01), middle (d02), and inner (d03) domain configuration for the (a) Bear Fire 

and (b) Caldor Fire with WRF terrain (shaded). 
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3.3 Fire Spread and Perimeters 162 

In its operational configuration, WRF-Fire uses the Rothermel ROS model (Rothermel, 163 

1972) to propagate fire across a landscape. The Rothermel model uses a semi-empirical 164 

relationship amongst the wind speed at flame height and terrain slope to produce fire spread. The 165 

fire and atmosphere are coupled by fire-generated heat and moisture fluxes which then perturb 166 

the lower atmospheric model layers via an exponential decay function with height (described in 167 

Clark et al., 1996a,b and Coen et al., 2013). The Rothermel model has known limitations in that 168 

it assumes a narrow, linear fire line and neglects key landscape-scale fire components such as 169 

spotting and mass fire (Andrews, 2018). It is hypothesized that these limitations play a role in the 170 

poorly developed plume structure seen in the control simulations (Shamsaei et al., 2023b). To 171 

bypass this deficiency, the Rothermel model is replaced by continuously updated fire perimeters 172 

derived from NEXRAD radar data. This technique is based on locating local maxima in the radar 173 

reflectivity and associated active combustion, and then aggregating these points into an evolving 174 

fire polygon (Lareau et al., 2022b). The process has been validated against infrared observations 175 

for several fires, including the Bear and Caldor fires. These radar perimeters are converted to a 176 

time-of-arrival grid that is passed into WRF-Fire, which controls the time at which a given cell in 177 

the fire mesh ignites. This process is similar to the satellite-based time-of-arrival approach used 178 

by Farguell et al. (2021). This “forced fire” approach maintains consistent fire rate and direction 179 

of spread across all of the sensitivity tests, allowing us to isolate the impact of fuel load on the 180 

heat fluxes and plume development without having to interpret changes in fire ROS, which itself 181 

is a function of fuel load in the Rothermel model.  182 

3.4 Fuel Depiction and Fire Residence Time 183 

The WRF-Fire simulations use the Scott and Burgan 40 (SB40) fuel categories (Scott and 184 

Burgan, 2005) derived from the LANDFIRE 2016 (Rollins, 2009) dataset to represent fuel type 185 

and load in the model domain. The LANDFIRE dataset is widely used among the wildfire 186 

modeling community because of its high resolution (30 x 30 m) coverage of fuel type, fuel load, 187 

fuel bed depth, and surface area to volume ratio across the contiguous United States (DeCastro et 188 

al., 2022). The dominant SB40 fuel category in the central Sierra Nevada is Timber-Understory 5 189 

(TU5), comprising 69% and 73% of the simulated burn area in the Bear and Caldor Fires, 190 

respectively (Fig. 4). The TU5 fuel type is a high-load conifer litter and shrub understory with a 191 

combined 1-, 10-, and 100-hour fuel load of 2.47 kg m-2 (11 t ac-1) and moderate flame length 192 

and spread rate (Scott and Burgan, 2005).  193 

This default fuel load of ~2.5 kg m-2, however, is a drastic underestimate of the fuels 194 

available-for and consumed-in large fires, especially fuels consumed after the passage of the 195 

initial fire front. For example, using pre- and post-fire fuel measurements in in the central Sierra 196 

Nevada, Cansler et al. (2019) found an average fuel consumption of 15.1 kg m-2(151 Mg ha-1) 197 

during the 2013 Rim Fire in Yosemite National Park. Similarly, McCarley et al. (2020) showed 198 

airborne laser scanning estimated fuel consumption in large wildfires exceeding 20 kg m-2 (200 199 

Mg ha-1) over large areal expanses. These observations suggest that, even in the best-case 200 

simulations with WRF-Fire and SB40 fuels, fires may not yield total released heat comparable to 201 

those in real fires, and thus cannot simulate the strong fire-generated circulations (e.g., updrafts  202 
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and inflows) that feedback on fire processes. This deficiency is apparent in Figure 1 when 203 

comparing the preliminary simulation (Fig. 1c,d) to observed flow perturbations (Fig. 1a,b).  204 

To examine the sensitivity of fire-generated circulations to fuel loads we devise three 205 

sensitivity tests all using the same observationally-based prescribed fire spread. Due to the 206 

dominance of TU5 fuels in the study area, and to eliminate further uncertainties in fuel types, 207 

only the TU5 fuel loads are adjusted in this study. We first use a control case with the default 208 

TU5 load of 2.47 kg m-2 (Fuelx1) and two augmented fuel loads of 9.86 kg m-2 (Fuelx4) and 209 

19.73 kg m-2 (Fuelx8) (Table 2). Note that the Fuelx8 cases are similar to observed loads and 210 

consumption of 15-20 kg m-2 described above, and thus a priori we expect these simulations to 211 

best match observations.  212 

In addition to the fuel load, in WRF-Fire each SB40 fuel category has a weighting 213 

parameter controlling the fire’s residence time. This weighting factor is defined as 214 

   

 𝑤 = 0.8514 × 𝑇𝑓 , (1) 

 
Figure 4. SB40 fuel category map for the (a) Bear Fire and (b) Caldor Fire. Dark blue no fuel 

(NF) region shows estimated initial perimeter used to initiate WRF-Fire simulation with final 

fire perimeter shown in black. 

Table 2. Summary of case studies and variables. 

Case Name TU5 Fuel Load (kg m-2) w Fuel Moisture (%) 
Fire Spread 

Method 

BearControl 2.47 900 5 Rothermel 

BearFuelx1 2.47 4080 5 NEXRAD 

BearFuelx4 9.86 4080 5 NEXRAD 

BearFuelx8 19.73 4080 5 NEXRAD 

CaldorControl 2.47 900 5 Rothermel 

CaldorFuelx1 2.47 3825 5 NEXRAD 

CaldorFuelx4 9.86 3825 5 NEXRAD 

CaldorFuelx8 19.73 3825 5 NEXRAD 
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where Tf is the time for the fuel to burn down to 𝑒−1 ≈ 0.3689 of the initial fuel load (Mandel et 215 

al., 2011). The default values for w are derived from approximations of mass-loss curves from 216 

the Albini and Reinhardt (1995) BURNUP algorithm (Clark et al., 2004); however, Mandel et al. 217 

(2011) noted there is significant uncertainty in the default values used in WRF-Fire. Due to the 218 

relationship between fuel load and burnout time, w must proportionally change with fuel loads to 219 

avoid unphysically large heat release rates (i.e. burning the fuel too quickly) under increased fuel 220 

scenarios. The value of w also impacts the breadth of the combusting region: for a given fuel 221 

load a larger w produces a broader combusting region when we force the perimeters to 222 

observations, and thus constrain the rate of spread. We note that, when using the Rothermel 223 

spread model after increasing the fuel load and the weighting parameter, the fire spread 224 

unrealistically decreases, thus highlighting the need for forced fire perimeter approach in the 225 

sensitivity analyses. 226 

Since the values of w used in WRF-Fire are uncertain, we use GOES-17 Fire Radiative 227 

Power (FRP) data to estimate representative values for Tf (burnout time) and thus w using the 228 

relationship shown by Eq. 1 from Mandel et al. (2011). The FRP algorithm uses the 3.9 µm and 229 

11.2 µm brightness temperatures along with a number of temporal and spatial checks to 230 

characterize fire temperature, size, and FRP and is thus a useful metric in identifying regions of 231 

active fire (Schmidt et al., 2012) and how long fire resides within a given pixel (2 km x 2 km). 232 

We estimate this “pixel” residence time by evaluating each GOES-17 pixel during the simulation 233 

timeframe (Table 1) to determine when the pixel reached maximum FRP (Fig. 5). Then, we 234 

evaluated how long each pixel took to cool to 𝑒−1 of its normalized FRP maxima and defined the 235 

value as Tf (interquartile ranges for all pixels depicted with red shading in Fig. 5). Individual 236 

pixel Tf values are shown in the insets of Fig. 5 for both the Bear (Fig. 5a) and Caldor (Fig. 5b) 237 

Fires. We note that the pixel residence time is not purely the physical burndown time of the fuels 238 

since it includes information about both the rate of spread through the pixel and the consumption 239 

of fuel. Nonetheless, it is a useful approach for grounding our simulations in an observational 240 

framework. Tf values for all fire pixels during the timeframe are then averaged (maroon line in 241 

Fig. 5) to produce a representative Tf and w value for each fire. The resulting analysis suggests 242 

values of 4080 and 3825 seconds are appropriate for the Bear (Fig. 5a) and Caldor (Fig. 5b) fires, 243 

respectively, which is about four times larger than the default value in WRF-Fire (900 s). These 244 

w values are not intended to be physical or universal for improving freely evolving WRF-Fire 245 

simulations, but rather an approach at producing realistic breadth of the combusting zone for the 246 

given cases using the forced fire perimeters, described below.   247 

3.5 Radar Observations of Plume Processes 248 

In addition to providing estimated fire perimeters, NEXRAD radar data are also used to 249 

compare simulated fire-generated circulations with observed plume injection heights and fire-250 

generated flows. Specifically, we use radar reflectivity and radial velocity cross sections 251 

extracted from a cartesian gridded version of the NEXRAD observations (see Lareau et al., 252 

2022a) to document plume structure, plume injection height, and radial wind components due to 253 

the ambient and fire-generated winds. These data provide a useful validation approach for 254 

landscape scale fires where in-situ measurements are otherwise unavailable (e.g., Jones et al. 255 

2022). 256 
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Figure 5. Fire-averaged FRP timeseries (maroon line) and interquartile ranges (light red 

shading) of individual pixel FRP normalized by maximum detected FRP in the scene. Pixel Tf 

(inset, shaded) for the (a) Bear Fire and (b) Caldor Fire. Horizontal black dashed line indicates e-

1 of normalized FRP, and vertical dashed black line indicates Tf where average FRP crosses e-1. 

  257 
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Figure 6. Fire generated heat flux for the (a-c) Bear Fire and (e-g) Caldor Fire. Normalized cross 

sections of fire heat flux with fire width indicated by dashed line at e-1 of the peak heat release 

for the Fuelx1 (light blue), Fuelx4 (magenta), and Fuelx8 (maroon) scenarios for the (d) Bear 

and (h) Caldor Fires. 

  258 
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4 Results 259 

4.1 Fireline Width and Intensity 260 

Our simulations show that increasing TU5 fuel loads and burnout timescale (Tf) while 261 

forcing the fire spread increases the areal extent and width of intense (>10 kW m-2) fire-262 

generated sensible heat fluxes for both the Bear and Caldor fires (Fig. 6). To quantify these 263 

changes, we use an e-folding scale (e.g., 0.37) of the peak fire-generated sensible heat flux to 264 

identify the width of the head fire (see dashed lines in Fig. 6d, h) in each simulation, where “fire 265 

front distance” corresponds to the horizontal distance from the normalized maximum heat flux in 266 

the head fire region. 267 

The results show that at 330 UTC the Bear Fire Fuelx1 scenario generates a narrow (~3.2 268 

km, Fig. 6d) head fire with a maximum sensible heat flux of ~9 kW m-2 (Fig. 6a) whereas the 269 

Fuelx4 scenario has a comparatively wider (~6.9 km, Fig. 6d) head fire with a maximum of 34 270 

kW m-2 (Fig. 6b). Finally, the Fuelx8 scenario produces the widest (~7.7 km, Fig. 6d) head fire 271 

with a peak sensible heat flux of 68 kW m-2 (Fig. 6c). Heat fluxes of this magnitude are 272 

consistent with those estimated in recent observational studies of plume rise (e.g., Lareau and 273 

Clements, 2017).  274 

Similar changes in the head fire width and heat fluxes are simulated for the Caldor Fire. 275 

Specifically, at 2300 UTC, the Caldor Fuelx1 scenario produces a relatively narrow (~2.6 km, 276 

Fig. 6h) head fire with a maximum heat flux of ~9 kW m-2 (Fig. 6e), whereas the Fuelx4 scenario 277 

has a head fire width of ~3.6 km (Fig. 6h) with a peak heat flux of ~36 kW m-2 (Fig. 6f), and the 278 

Fuelx8 scenario has the widest fire head (~4 km, Fig. 6h) and highest maximum fire heat flux 279 

(~73 kW m-2, Fig. 6g).  280 

These results show that increasing the fuel load and weighting factor increases the 281 

maximum fire-generated heat flux and the areal extent of the head fire, thus implying a wider 282 

“flaming region” that better agrees with available infrared (e.g., GOES-17) observations (Fig. 7). 283 

For example, Fig. 7 shows down-sampled versions of the WRF-Fire sensible heat fluxes to 284 

mimic the GOES-17 FRP satellite footprint (2x2km). For this comparison the FRP data are 285 

converted to sensible heat fluxes using the assumption that FRP is approximately one tenth the 286 

sensible heat flux (Val Martin et al., 2012). We note that there is uncertainty in these 287 

measurements due to sensor saturation and shading from pyroCb, likely resulting in artificially 288 

low observed intensities. Nonetheless, these comparisons show that both the Bear and Caldor 289 

Fire Fuelx8 (Fig. 7d,h) simulations compare favorably with the observations (Fig. 7a,e), whereas 290 

the Fuelx1 (Fig. 7b,f) and Fuelx4 (Fig. 7c,g) cases insufficiently represent the breadth of intense 291 

combustion.  As we show in the next two sections, only the simulations with wider and higher 292 

intensity combustion zones yield atmospheric response comparable to the observations. 293 

4.2 Fire-Generated Horizontal Flow Perturbations 294 

Commensurate with the changes in fire heat flux and head fire width, our simulations 295 

show improved representation of the fire-generated horizontal flow perturbations with increasing 296 

fuel loads. The horizontal component of the flow is evaluated by comparing “radial velocity” 297 

observations from the NEXRAD radar with the flow component in the simulations that would be 298 

observed with a hypothetical radar in the same location. This is accomplished by computing the 299 

component of the simulated winds that projects onto radials originating from the radar base 300 

locations (KBBX and KDAX for the Bear and Caldor Fires, respectively), and thus provide a  301 
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direct comparison with the wind components observed by the radars. In this framework, all 302 

winds are either “inbound” (shown in blue) or “outbound” (shown in red) relative to the radar 303 

location. 304 

For the Bear Fire, the observed radial velocities from the KBBX NEXRAD on 9 305 

September 2020 at 330 UTC indicate strong downslope winds of ~25 m s-1 towards the radar 306 

(blue shading and white arrows, Fig. 8a, b), with a pronounced region of flow reversal in the lee 307 

of the fire head indicated by outbound radial velocities of 5-10 m s-1 (red shading and black 308 

arrows, Fig. 8a, b). The flow reversal is clear observational evidence for a mesoscale fire-309 

generated wind that produces strong convergence at the fire front and feeds the vigorous fire-310 

generated updrafts.  While all three fuel scenarios depict strong, downslope winds and inbound 311 

radial velocities greater than 20 m s-1 (Fig. 8c-h), they differ in the magnitude and extent of the 312 

fire-generated flow reversal. The Fuelx1 scenario shows no flow reversal, with inbound radial 313 

velocities of 20-25 m s-1 spanning the fire head (Fig. 8c,d) and no evidence of feedback from the 314 

fire (e.g., no flow weakening or reversal to the west of the fire head), which is clearly deficient. 315 

The Fuelx4 scenario has a small region of near-zero to slightly positive radial velocities west of 316 

the fire head (Fig. 8e,f). The Fuelx8 scenario has the greatest extent of outbound radial velocities 317 

in the lee of the head fire and covering a greater areal extent than the Fuelx4 scenario (Fig. 8g, 318 

h). This area of positive (5-8 m s-1) radial velocities is around 2 km MSL with small regions of 319 

stagnant flow extending up to 3 km MSL. Strong negative radial velocities upwind of fire front 320 

indicate a region of strong convergence with the fire-generated wind at the head fire. While the 321 

Fuelx8 scenario is in best agreement with the observations, it still underestimates the strength 322 

and spatial extent of the fire-generated winds apparent in the  323 

 
Figure 7. Observed GOES fire intensity using FRP converted to sensible heat flux for the (a) 

Bear Fire and (e) Caldor Fire. WRF-Fire sensible heat flux for the (b-d) Bear and (f-h) Caldor 

Fires. WRF-Fire sensible heat fluxes are down-sampled to a 2x2 km grid to emulate the GOES 

FRP data resolution. 
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Figure 8. Comparison of observed and simulated fire flows during the Bear Fire. (a) Beale Air 

Force Base (KBBX) NEXRAD radial velocity PPI (shaded) and radar-estimated fire perimeter 

(red contour), (b) radial wind and radar-estimated fire perimeter (red line) cross section along 

black dashed line, WRF-Fire simulated PPI and cross section of in-plume radial velocity and fire 

perimeter for (c-d) Fuelx1, (e-f) Fuelx4, and (g-h) Fuelx8 scenarios, around 0330 UTC 

September 9, 2020. In-plane directional flow vectors annotated in b, d, f, h. 
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Figure 9. Comparison of observed and simulated fire flows during the Caldor Fire. (a) 

Sacramento (KDAX) NEXRAD radial velocity PPI (shaded) and radar-estimated fire 

perimeter (red contour), (b) radial wind and radar-estimated fire perimeter (red line) cross 

section along black dashed line, WRF-Fire simulated PPI and cross section of in-plume radial 

velocity and fire perimeter for (c-d) Fuelx1, (e-f) Fuelx4, and (g-h) Fuelx8 scenarios, around 

2315 UTC August 17, 2021. In-plane directional flow vectors annotated in b, d, f, h. 
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observations, suggesting that the actual fuel consumption, or rate of consumption, during the 324 

Bear Fire may exceed our simulated results.  325 

We find similar sensitivity to fire-generated horizontal winds for the Caldor Fire when 326 

we compare simulated radial velocities with those observed by the Sacramento NEXRAD 327 

(KDAX) on 17 August 2021 around 2315 UTC. To be specific, the observations indicate upslope 328 

flow with generally positive (outbound) background radial velocities of around 10 m s-1 (red 329 

shading in Fig. 9a, b) with a pronounced region of fire induced flow reversal (inbound, blue 330 

shading) radial velocities in the lee of the fire head that extends up to approximately 4 km MSL. 331 

Similar to the Bear Fire, the Caldor Fuelx1 scenario shows no evidence of fire generated flow 332 

reversal, with positive radial velocities of 5-10 m s-1 extending across the fire front, and no 333 

region of flow weakening or reversal near the fire head (Fig. 9c,d). The Fuelx4 scenario shows a 334 

small region of stagnant to negative radial velocities (0-5 m s-1) on the northeast lobe of the fire 335 

head (Fig. 9e). Fig. 9f shows this region of inbound radial velocities extends up to about 3 km 336 

MSL and is slightly displaced downstream of the fire head. The Fuelx8 scenario again shows the 337 

most pronounced flow perturbation by the fire with a larger region of inbound radial velocities in 338 

the lee of the fire front with peak values around 10 m s-1 (Fig. 9g). Fig. 9h shows the maximum 339 

of this flow reversal region is situated immediately downstream of the fire front, with flow 340 

stagnation extending well downstream of the fire head as evidenced by the region of weakly 341 

positive radial velocities.  342 

A clear takeaway from these results is that when models produce too little heat flux, they 343 

also produce deficient fire-generated horizontal winds and thus do not capture critical 344 

components of the feedback between the fire and the atmosphere. In that these fire-generated 345 

winds have been identified as contributors to the onset of extreme events, such as FGTVs 346 

(Lareau et al., 2022a), this data deficiency urgently needs to be resolved. 347 

4.3 Plume Depth and Updraft Strength 348 

Consistent with the increase in horizontal flow perturbations, our simulations also show 349 

increases in vertical velocity, plume verticality, pyroCu/Cb initiation, and smoke injection height 350 

which are proportional to the increase in fuel load and thus heat flux (Fig. 10a-c).  351 

To frame the simulation results, we first examine radar observations of the plume 352 

structure. During the Bear Fire, representative radar cross sections indicate an upright plume core 353 

(e.g., corridor of high reflectivity) rising from the head fire with plume tops near 9 km MSL (Fig. 354 

10d). Further analysis of the plume evolution from 0000-0300 UTC (not shown, see also Lareau 355 

et al., 2022a,b) indicates plume tops ranging from 8 to almost 12 km MSL including 356 

considerable pyroCu/Cb development, with cloud bases near 6 km MSL. While we do not have 357 

updraft observations, it is reasonable to conclude that these deep, nearly vertical plume cores 358 

must possess very strong (e.g., >30 m s-1) updrafts that can compete with the strong cross flow 359 

(25-30 m s-1) to produce an upright plume core.  360 

 Unsurprisingly, these upright plume structures and high vertical velocities are absent 361 

from the Fuelx1 simulations, but present in the high fuel load cases (Fig. 10a-c). To be specific, 362 

at 0200 UTC in the Bear Fire Fuelx1 simulation, maximum updraft velocities are less than 10 m 363 

s-1 and do not penetrate above 3 km MSL (Fig. 10a). The maximum smoke plume depth in this 364 

scenario is less than 4 km MSL. The Fuelx4 simulation has maximum updraft velocities of just 365 

over 20 m s-1 with comparatively wider and deeper updraft cores of ~3 km wide and 5-6 km 366 

MSL deep, respectively (Fig. 10b). The smoke plume depth reaches 6 km MSL in this scenario,  367 
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Figure 10. Bulk cross section normal to the Bear Fire head of fire-generated maximum vertical 

velocity (shaded), in-plane average fire-generated wind vectors, smoke plume extent (gray 

contour), cloud water (navy) and ice (light blue) contours in the (a) Fuelx1, (b) Fuelx4, and (c) 

Fuelx8 simulations, and (d) observed NEXRAD reflectivity (shaded) cross-section. 

and a fire-generated circulation is evident in the lee of the plume with surface inflow, and 368 

outflow at about 3-4 km MSL. The Fuelx8 simulation has the deepest, strongest, and most 369 

upright plume of any scenario with vertical velocities exceeding 40 m s-1 and penetrating to 8-10 370 

km MSL (Fig. 10c). The wide (~5km) updraft base is inducing strong inflow at the surface and 371 

strong outflow at 4-6 km MSL in the lee of the plume. Notably, this scenario produced multiple 372 

instances of pyroCb, with a high-based pyroCb occurring at 0200 UTC between 6 and 10 km 373 

MSL (see blue cloud water contour in Fig. 10c), consistent with NEXRAD and photographic 374 

observations during this period (Fig. 10d, see also Fig. 10 in Lareau et al., 2022a). The strong  375 
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Figure 11. Bulk cross section normal to the Caldor Fire head of fire-generated maximum 

vertical velocity (shaded), in-plane average fire-generated wind vectors, smoke plume extent 

(gray contour), cloud water (navy) and ice (light blue) contours in the (a) Fuelx1, (b) Fuelx4, and 

(c) Fuelx8 simulations, and (d) observed NEXRAD reflectivity (shaded) cross-section. 

simulated updrafts linked to pyroCb are consistent with observations of other extreme wildfires 376 

(Rodriguez et al. 2020).  377 

Whereas the Bear Fire updrafts must compete with very strong ambient winds, the Caldor 378 

Fire’s updrafts experience much weaker background flow yet show similar sensitivity to fuel 379 

load. For example, at 1830 UTC, the Caldor Fire Fuelx1 simulation (Fig. 11a) produces 380 

maximum updrafts of ~10 m s-1 reaching ~4 km MSL with ill-defined updraft cores. The Fuelx4 381 

simulation (Fig. 11b) produces updraft velocities greater than 20 m s-1, penetrating up to ~5 km 382 

MSL and producing shallow pyroCu between 5 and 7 km MSL. This scenario contains a 383 

comparatively wide (~10 km) updraft region containing several narrow updraft cores from the 384 

surface up to 5 km MSL. There is also a weak fire induced circulation in the lee of the plume, 385 
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with weak surface inflow vectors and slightly stronger outflow at about 3-4 km MSL. The 386 

Fuelx8 scenario (Fig. 11c) contains the most coherent updrafts with a ~5 km wide and ~8 km 387 

MSL deep region of vertical velocities just under 40 m s-1. The resulting plume depth in this 388 

scenario neared 10 km, with a 4-5 km deep pyroCu/Cb, well-developed surface inflow region, 389 

and ~4km MSL outflow in the lee of the plume. This simulated plume and pyroCu/Cb structure 390 

compares well with the KDAX NEXRAD data, where plume tops were around 10 km MSL (Fig. 391 

11d) and high reflectivity cores suggest upright and vigorous updrafts.  392 

 The results of both the Bear Fire and Caldor Fire simulations indicate that not only are 393 

fuel characteristics important in generating realistic plumes and fire-generated flows, but they 394 

also have clear implications for simulating deep pyroCb, which can generate additional 395 

feedbacks on the fire environment (e.g., downdrafts, lightning, FGTVs) and may result in 396 

stratospheric smoke injection. 397 

5 Summary and Discussion 398 

Our sensitivity analyses indicate that WRF-Fire run with Scott and Burgen 40 fuel 399 

categories under-represents fuel quantity and its consumption, and thus underrepresents fire-400 

generated heat fluxes, resulting in deficient simulation of the atmospheric response to landscape-401 

scale wildfire processes. Among these deficiencies are shallow plumes with weak updrafts and 402 

little-to-no fire-induced flow perturbations. These deficiencies are also driven by insufficiently 403 

wide areas of combustion behind the fire-front (e.g., “deep flaming” in the model), which is 404 

linked to both the deficient fuel load and the fire’s residence time. For example, neither the Bear 405 

nor Caldor Fire baseline (Fuelx1) simulations produced a broad combustion region with 406 

sufficiently large sensible heat fluxes to produce deep updrafts initiating pyroCu/Cb. This stands 407 

in stark contrast to radar observations of both fires, which reveal deep, upright convective cores 408 

linked to pyroCu/Cb.  In contrast, the Fuelx4 and Fuelx8 scenarios generated wider combustion 409 

zones and greater total heat fluxes resulting in deep (e.g., 10 km MSL) upright plumes with 410 

vigorous updrafts initiating pyroCu/Cb. Since strong inflows, updrafts, and pyroCu/Cb initiation 411 

are all vital mechanisms for the development of extreme fire behavior (e.g., FGTVs, long-range 412 

spotting) this sensitivity to fuel load underscores current shortcomings in the fuel inputs driving 413 

WRF-Fire. Such shortcomings likely apply to other coupled fire-atmosphere models using the 414 

Rothermel spread model combined with LANDFIRE-informed fuel data sets (such as Anderson 415 

13 or SB40), ultimately limiting their capacity to accurately simulate landscape-scale fires.  416 

While some efforts have been made to improve this representation by adjusting fuel 417 

categories via machine learning (DeCastro et al., 2022) and accounting for canopy fuels through 418 

addition of crown fire heat and improved heat release schemes (Shamsaei et al., 2023b), the 419 

foundation of both the Anderson 13 and SB40 fuel data is surface fuels in LANDFIRE which 420 

appears to severely underrepresent real-world fuel loads available for consumption in large fires. 421 

Such fuel availability is directly linked to wildfire energy release (Goodwin et al., 2021). Thus 422 

for accurate, operational simulations of landscape scale fire spread, a methodology that 423 

incorporates both surface and canopy fuel loading (e.g., dead and down debris, standing dead, 424 

etc.) and landscape-scale fire processes (e.g., spotting, mass-fire, post-frontal combustion) must 425 

be incorporated into coupled fire-atmosphere models.  426 

In identifying these shortcomings, a potential path forward involves improved 427 

representation of fuel inputs (e.g., inclusion of canopy and down woody fuel loading in 428 

LANDFIRE) for use in WRF-Fire and other coupled fire-atmosphere models. However, in our 429 
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simulations we bypassed the large uncertainties in fire spread due to fuel loading by forcing the 430 

fire perimeter with observations. This enabled us to change the fuel loads without changing the 431 

rate of spread. In freely evolving simulations this is not possible, and simply increasing the fuel 432 

load will yield, by formulation, slower rate of spread from the Rothermel model. This issue is 433 

compounded in that our forced perimeters include the result of near- and long-range spotting 434 

whereas the Rothermel model does not represent long-range spotting. Thus, to achieve high 435 

fidelity and freely evolving simulations critical for operational forecasting, the community will 436 

need to improve the underlying physical representation of fire spread processes, not just the fuel 437 

and its consumption. In the meantime, a combination of assimilating fire perimeter observations 438 

(e.g., Farguell et al., 2021 and the approach used herein) and adjusting fuel loads based on 439 

machine learning is one approach to bypass uncertainties in the model physics and realize 440 

potentially useful simulations not just of the fire spread but also the attendant atmospheric 441 

circulations. 442 

Acknowledgments 443 

Funding for this work is provided through the National Science Foundation’s Leading 444 

Engineering for America's Prosperity, Health, and Infrastructure (LEAP-HI) program by grant 445 

number CMMI-1953333. We would like to acknowledge high-performance computing support 446 

from Cheyenne (doi:10.5065/D6RX99HX) provided by NCAR's Computational and Information 447 

Systems Laboratory, sponsored by the National Science Foundation. The National Center for 448 

Atmospheric Research is a major facility sponsored by the National Science Foundation under 449 

Cooperative Agreement 1852977. The authors declare no conflicts of interest relevant to this 450 

study. 451 

Data Availability Statement 452 

WRF-Fire output was analyzed using Python 3.8. Model output, processing codes, and fire 453 

perimeter files (https://doi.org/10.7910/DVN/FEHPIH; Roberts and Lareau, 2023) are available 454 

on Harvard Dataverse. Ancillary data used in these analyses are free and publicly available 455 

through AWS. NEXRAD and GOES-17 data are available at https://registry.opendata.aws/noaa-456 

nexrad/ and https://registry.opendata.aws/noaa-goes/. 457 

References 458 

Albini, F., & Reinhardt, E. (1995). Modeling Ignition and Burning Rate of Large Woody Natural 459 

Fuels. International Journal of Wildland Fire, 5(2), 81. 460 

https://doi.org/10.1071/WF9950081 461 

 462 

Andrews, P. L. (2018). The Rothermel surface fire spread model and associated developments: A 463 

comprehensive explanation (No. RMRS-GTR-371) (p. RMRS-GTR-371). Ft. Collins, 464 

CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 465 

https://doi.org/10.2737/RMRS-GTR-371 466 

 467 

CalFire Incident Archive. (2021). Caldor Fire. Retrieved from 468 

https://www.fire.ca.gov/incidents/2021/8/14/caldor-fire 469 

 470 

https://doi.org/10.7910/DVN/FEHPIH
https://registry.opendata.aws/noaa-nexrad/
https://registry.opendata.aws/noaa-nexrad/
https://registry.opendata.aws/noaa-goes/


manuscript submitted to Journal of Advances in Modeling Earth Systems 

 

Chen, F., & Dudhia, J. (2001). Coupling an Advanced Land Surface–Hydrology Model with the 471 

Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and 472 

Sensitivity. Monthly Weather Review, 129(4), 569–585. https://doi.org/10.1175/1520-473 

0493(2001)129<0569:CAALSH>2.0.CO;2 474 

 475 

Clark, T., Jenkins, M., Coen, J., & Packham, D. (1996a). A Coupled Atmosphere-Fire Model: 476 

Role of the Convective Froude Number and Dynamic Fingering at the Fireline. 477 

International Journal of Wildland Fire, 6(4), 177. https://doi.org/10.1071/WF9960177 478 

 479 

Clark, T. L., Jenkins, M. A., Coen, J., & Packham, D. (1996b). A Coupled AtmosphereFire 480 

Model: Convective Feedback on Fire-Line Dynamics. Journal of Applied Meteorology, 481 

35(6), 875–901. https://doi.org/10.1175/1520-0450(1996)035<0875:ACAMCF>2.0.CO;2 482 

 483 

Clark, T. L., Coen, J., & Latham, D. (2004). Description of a coupled atmosphere - fire model. 484 

International Journal of Wildland Fire, 13(1), 49. https://doi.org/10.1071/WF03043 485 

 486 

Coen, J. L., Cameron, M., Michalakes, J., Patton, E. G., Riggan, P. J., & Yedinak, K. M. (2013). 487 

WRF-Fire: Coupled Weather–Wildland Fire Modeling with the Weather Research and 488 

Forecasting Model. Journal of Applied Meteorology and Climatology, 52(1), 16–38. 489 

https://doi.org/10.1175/JAMC-D-12-023.1 490 

 491 

Coen, J. L., Stavros, E. N., & Fites‐Kaufman, J. A. (2018). Deconstructing the King megafire. 492 

Ecological Applications, 28(6), 1565–1580. https://doi.org/10.1002/eap.1752 493 

 494 

Deardorff, J. W. (1980). Stratocumulus-capped mixed layers derived from a three-dimensional 495 

model. Boundary-Layer Meteorology, 18(4), 495–527. 496 

https://doi.org/10.1007/BF00119502 497 

 498 

DeCastro, A. L., Juliano, T. W., Kosović, B., Ebrahimian, H., & Balch, J. K. (2022). A 499 

Computationally Efficient Method for Updating Fuel Inputs for Wildfire Behavior 500 

Models Using Sentinel Imagery and Random Forest Classification. Remote Sensing, 501 

14(6), 1447. https://doi.org/10.3390/rs14061447 502 

 503 

Dowdy, A. J., Ye, H., Pepler, A., Thatcher, M., Osbrough, S. L., Evans, J. P., et al. (2019). 504 

Future changes in extreme weather and pyroconvection risk factors for Australian 505 

wildfires. Scientific Reports, 9(1), 10073. https://doi.org/10.1038/s41598-019-46362-x 506 

 507 

Dudhia, J. (1989). Numerical Study of Convection Observed during the Winter Monsoon 508 

Experiment Using a Mesoscale Two-Dimensional Model. Journal of the Atmospheric 509 

Sciences, 46(20), 3077–3107. https://doi.org/10.1175/1520-510 

0469(1989)046<3077:NSOCOD>2.0.CO;2 511 

 512 

Farguell, A., Mandel, J., Haley, J., Mallia, D. V., Kochanski, A., & Hilburn, K. (2021). Machine 513 

Learning Estimation of Fire Arrival Time from Level-2 Active Fires Satellite Data. 514 

Remote Sensing, 13(11), 2203. https://doi.org/10.3390/rs13112203 515 

 516 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

 

Farr, T. G., & Kobrick, M. (2000). Shuttle radar topography mission produces a wealth of data. 517 

Eos, Transactions American Geophysical Union, 81(48), 583. 518 

https://doi.org/10.1029/EO081i048p00583 519 

 520 

Finney, M. A., & McAllister, S. S. (2011). A Review of Fire Interactions and Mass Fires. 521 

Journal of Combustion, 2011, 1–14. https://doi.org/10.1155/2011/548328 522 

 523 

Goodwin, M. J., Zald, H. S. J., North, M. P., & Hurteau, M. D. (2021). Climate-driven tree 524 

mortality and fuel aridity increase wildfire's potential heat flux. Geophysical Research 525 

Letters, 48, e2021GL094954. https://doi.org/10.1029/2021GL094954 526 

 527 

Helmus, J. J., & Collis, S. M. (2016). The Python ARM Radar Toolkit (Py-ART), a Library for 528 

Working with Weather Radar Data in the Python Programming Language. Journal of 529 

Open Research Software, 4(1), 25. https://doi.org/10.5334/jors.119 530 

 531 

Holden, Z. A., Swanson, A., Luce, C. H., Jolly, W. M., Maneta, M., Oyler, J. W., et al. (2018). 532 

Decreasing fire season precipitation increased recent western US forest wildfire activity. 533 

Proceedings of the National Academy of Sciences, 115(36). 534 

https://doi.org/10.1073/pnas.1802316115 535 

 536 

Homer, C., Dewitz, J., Yang, L., Jin, S., Danielson, P., Xian, G., Coulston, J., et al. (2015). 537 

Completion of the 2011 National Land Cover Database for the conterminous United 538 

States–representing a decade of land cover change information. Photogrammetric 539 

Engineering & Remote Sensing, 81(5), 345-354. 540 

 541 

Hong, S. Y., & Lim, J. O. J. (2006). The WRF single-moment 6-class microphysics scheme 542 

(WSM6). Asia-Pacific Journal of Atmospheric Sciences, 42(2), 129-151. 543 

 544 

Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., & Collins, W. D. 545 

(2008). Radiative forcing by long-lived greenhouse gases: Calculations with the AER 546 

radiative transfer models. Journal of Geophysical Research, 113(D13), D13103. 547 

https://doi.org/10.1029/2008JD009944 548 

 549 

Juliano, T. W., Lareau, N., Frediani, M. E., Shamsaei, K., Eghdami, M., Kosiba, K., et al. (2023). 550 

Toward a Better Understanding of Wildfire Behavior in the Wildland‐Urban Interface: A 551 

Case Study of the 2021 Marshall Fire. Geophysical Research Letters, 50(10), 552 

e2022GL101557. https://doi.org/10.1029/2022GL101557 553 

 554 

Jiménez, P. A., Dudhia, J., González-Rouco, J. F., Navarro, J., Montávez, J. P., & García-555 

Bustamante, E. (2012). A Revised Scheme for the WRF Surface Layer Formulation. 556 

Monthly Weather Review, 140(3), 898–918. https://doi.org/10.1175/MWR-D-11-00056.1 557 

 558 

Jiménez, P., Muñoz-Esparza, D., & Kosović, B. (2018). A High Resolution Coupled Fire–559 

Atmosphere Forecasting System to Minimize the Impacts of Wildland Fires: Applications 560 

to the Chimney Tops II Wildland Event. Atmosphere, 9(5), 197. 561 

https://doi.org/10.3390/atmos9050197 562 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

 

 563 

Jones, T., Ahmadov, R., James, E., Pereira, G., Freitas, S., & Grell, G. (2022). Prototype of a 564 

Warn-on-Forecast System for Smoke (WoFS-Smoke). Weather and Forecasting, 37(7), 565 

1191-1209. 566 

 567 

Kochanski, A. K., Jenkins, M. A., Mandel, J., Beezley, J. D., & Krueger, S. K. (2013). Real time 568 

simulation of 2007 Santa Ana fires. Forest Ecology and Management, 294, 136–149. 569 

https://doi.org/10.1016/j.foreco.2012.12.014 570 

 571 

Lareau, N. P., & Clements, C. B. (2016). Environmental controls on pyrocumulus and 572 

pyrocumulonimbus initiation and development. Atmospheric Chemistry and Physics, 573 

16(6), 4005–4022. https://doi.org/10.5194/acp-16-4005-2016 574 

 575 

Lareau, N. P., & Clements, C. B. (2017). The Mean and Turbulent Properties of a Wildfire 576 

Convective Plume. Journal of Applied Meteorology and Climatology, 56(8), 2289–2299. 577 

https://doi.org/10.1175/JAMC-D-16-0384.1 578 

 579 

Lareau, N. P., Nauslar, N. J., Bentley, E., Roberts, M., Emmerson, S., Brong, B., et al. (2022a). 580 

Fire-Generated Tornadic Vortices. Bulletin of the American Meteorological Society, 581 

103(5), E1296–E1320. https://doi.org/10.1175/BAMS-D-21-0199.1 582 

 583 

Lareau, N. P., Donohoe, A., Roberts, M., & Ebrahimian, H. (2022b). Tracking Wildfires With 584 

Weather Radars. Journal of Geophysical Research: Atmospheres, 127(11). 585 

https://doi.org/10.1029/2021JD036158 586 

 587 

Lilly, D. (1966a). On the application of the eddy viscosity concept in the Inertial sub-range of 588 

turbulence [Application/pdf] (p. 675 KB). UCAR/NCAR. 589 

https://doi.org/10.5065/D67H1GGQ 590 

 591 

Lilly, D. (1966b). The representation of small-scale turbulence in numerical simulation 592 

experiments [Application/pdf] (p. 986 KB). UCAR/NCAR. 593 

https://doi.org/10.5065/D62R3PMM 594 

 595 

Mandel, J., Beezley, J. D., & Kochanski, A. K. (2011). Coupled atmosphere-wildland fire 596 

modeling with WRF 3.3 and SFIRE 2011. Geoscientific Model Development, 4(3), 591–597 

610. https://doi.org/10.5194/gmd-4-591-2011 598 

 599 

McCarley, T. R., Hudak, A. T., Sparks, A. M., Vaillant, N. M., Meddens, A. J. H., Trader, L., et 600 

al. (2020). Estimating wildfire fuel consumption with multitemporal airborne laser 601 

scanning data and demonstrating linkage with MODIS-derived fire radiative energy. 602 

Remote Sensing of Environment, 251, 112114. https://doi.org/10.1016/j.rse.2020.112114 603 

 604 

Nakanishi, M., & Niino, H. (2006). An Improved Mellor–Yamada Level-3 Model: Its Numerical 605 

Stability and Application to a Regional Prediction of Advection Fog. Boundary-Layer 606 

Meteorology, 119(2), 397–407. https://doi.org/10.1007/s10546-005-9030-8 607 

 608 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

 

Parks, S. A., & Abatzoglou, J. T. (2020). Warmer and Drier Fire Seasons Contribute to Increases 609 

in Area Burned at High Severity in Western US Forests From 1985 to 2017. Geophysical 610 

Research Letters, 47(22). https://doi.org/10.1029/2020GL089858 611 

 612 

Peace, M., Charney, J., & Bally, J. (2020). Lessons Learned from Coupled Fire-Atmosphere 613 

Research and Implications for Operational Fire Prediction and Meteorological Products 614 

Provided by the Bureau of Meteorology to Australian Fire Agencies. Atmosphere, 11(12), 615 

1380. https://doi.org/10.3390/atmos11121380 616 

 617 

Roberts, M., & Lareau, N. (2023). Files for "Sensitivity of Simulated Fire-Generated 618 

Circulations to Fuel Load During Large Wildfires". Harvard Dataverse, V1. 619 

https://doi.org/10.7910/DVN/FEHPIH 620 

 621 

Rodriguez, B., Lareau, N. P., Kingsmill, D. E., & Clements, C. B. (2020). Extreme 622 

Pyroconvective Updrafts During a Megafire. Geophysical Research Letters, 47(18). 623 

https://doi.org/10.1029/2020GL089001 624 

 625 

Rollins, M. G. (2009). LANDFIRE: a nationally consistent vegetation, wildland fire, and fuel 626 

assessment. International Journal of Wildland Fire, 18(3), 235. 627 

https://doi.org/10.1071/WF08088 628 

 629 

Rothermel, R. C. (1972). A mathematical model for predicting fire spread in wildland fuels. 630 

Intermountain Forest & Range Experiment Station, Forest Service. 631 

 632 

Scott, J. H., & Burgan, R. E. (2005). Standard fire behavior fuel models: a comprehensive set for 633 

use with Rothermel’s surface fire spread model (No. RMRS-GTR-153) (p. RMRS-GTR-634 

153). Ft. Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain 635 

Research Station. https://doi.org/10.2737/RMRS-GTR-153 636 

 637 

Shamsaei, K., Juliano, T. W., Roberts, M., Ebrahimian, H., Kosovic, B., Lareau, N. P., & 638 

Taciroglu, E. (2023a). Coupled fire-atmosphere simulation of the 2018 Camp Fire using 639 

WRF-Fire. International Journal of Wildland Fire, 32(2), 195–221. 640 

https://doi.org/10.1071/WF22013 641 

 642 

Shamsaei, K., Juliano, T. W., Roberts, M., Ebrahimian, H., Lareau, N. P., Rowell, E., & 643 

Kosovic, B. (2023b). The Role of Fuel Characteristics and Heat Release Formulations in 644 

Coupled Fire-Atmosphere Simulation. Fire, 6(7), 264. 645 

https://doi.org/10.3390/fire6070264 646 

 647 

Schmidt, C. C., Hoffman, J., Prins, E., Lindstrom, S. (2012). GOES-R Advanced Baseline 648 

Imager (ABI) Algorithm Theoretical Basis Document For Fire / Hot Spot 649 

Characterization. NOAA NESDIS Center for Satellite Applications and Research. 650 

 651 

Skamarock, W. C., Klemp, J. B. (2008). A time-split nonhydrostatic atmospheric model for 652 

weather research and forecasting applications. Journal of Computational Physics, 227(7), 653 

3465-3485. https://doi.org/10.1016/j.jcp.2007.01.037 654 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

 

 655 

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., et al. (2019). A 656 

Description of the advanced research WRF version 4 (Technical Report). NCAR Tech. 657 

Note NCAR/TN-556+STR. 658 

 659 

Stephens, S. L., Bernal, A. A., Collins, B. M., Finney, M. A., Lautenberger, C., & Saah, D. 660 

(2022). Mass fire behavior created by extensive tree mortality and high tree density not 661 

predicted by operational fire behavior models in the southern Sierra Nevada. Forest 662 

Ecology and Management, 518, 120258. https://doi.org/10.1016/j.foreco.2022.120258 663 

 664 

USDA Forest Service. (2021). Caldor Fire Burned Area Emergency Response (BAER) 665 

Assessment Report. Retrieved from 666 

https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/fseprd963659.pdf 667 

 668 

Val Martin, M., Kahn, R. A., Logan, J. A., Paugam, R., Wooster, M., and Ichoku, 669 

C. (2012), Space-based observational constraints for 1-D fire smoke plume-rise 670 

models, J. Geophys. Res., 117, D22204, doi:10.1029/2012JD018370. 671 

 672 

Van Zyl, J. J. (2001). The Shuttle Radar Topography Mission (SRTM): a breakthrough in remote 673 

sensing of topography. Acta Astronautica, 48(5–12), 559–565. 674 

https://doi.org/10.1016/S0094-5765(01)00020-0 675 

 676 

Westerling, A. L., Hidalgo, H. G., Cayan, D. R., & Swetnam, T. W. (2006). Warming and Earlier 677 

Spring Increase Western U.S. Forest Wildfire Activity. Science, 313(5789), 940–943. 678 

https://doi.org/10.1126/science.1128834 679 

 680 

Westerling, A. L. (2016). Increasing western US forest wildfire activity: sensitivity to changes in 681 

the timing of spring. Philosophical Transactions of the Royal Society B: Biological 682 

Sciences, 371(1696), 20150178. https://doi.org/10.1098/rstb.2015.0178 683 

 684 

Williams, J. (2013). Exploring the onset of high-impact mega-fires through a forest land 685 

management prism. Forest Ecology and Management, 294, 4–10. 686 

https://doi.org/10.1016/j.foreco.2012.06.030 687 

 688 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

 

Sensitivity of Simulated Fire-Generated Circulations to Fuel Characteristics During 1 

Large Wildfires  2 

Matthew Roberts 1, Neil P. Lareau 1, Timothy W. Juliano 2, Kasra Shamsaei 1, Hamed 3 

Ebrahimian 1, Branko Kosovic 2 4 

1 University of Nevada-Reno, Reno, Nevada, USA 5 

2 National Center for Atmospheric Research, Boulder, Colorado, USA 6 

Corresponding author: Matthew Roberts (matthew.roberts@nevada.unr.edu)  7 

Key Points: 8 

• Coupled fire-atmosphere models struggle to simulate critical fire-generated winds and 9 

plume rise during large wildland fires 10 

• Deficient fire-generated winds are linked to inadequate fuel loads and burnout timescale 11 

in the model 12 

• Adjustment of the fuel characteristics results in more realistic simulated plumes and fire-13 

generated winds  14 

mailto:matthew.roberts@nevada.unr.edu


manuscript submitted to Journal of Advances in Modeling Earth Systems 

 

Abstract 15 

Coupled fire-atmosphere models often struggle to simulate important fire processes like fire 16 

generated flows, deep flaming fronts, extreme updrafts, and stratospheric smoke injection during 17 

large wildfires. This study uses the coupled fire-atmosphere model, WRF-Fire to examine the 18 

sensitivities of some of these phenomena to the modeled surface fuel load. Specifically, the 2020 19 

Bear Fire and 2021 Caldor Fire in California’s Sierra Nevada are simulated using three fuel 20 

loading scenarios (1x, 4x, and 8x LANDFIRE derived surface fuel), while controlling the fire 21 

rate of spread, to isolate the fuel loading needed to produce fire-generated flows and plume rise 22 

comparable to NEXRAD radar observations of these events. Increasing fuel loads and 23 

corresponding fire residence time in WRF-Fire leads to deep plumes in excess of 10 km, strong 24 

vertical velocities of 40-45 m s-1, and combustion fronts several kilometers in width (in the along 25 

wind direction). These results indicate that LANDFIRE-based surface fuel loads in WRF-Fire 26 

likely under-represent fuel loading, having significant implications for simulating landscape-27 

scale wildfire processes, associated impacts on spread, and fire-atmosphere feedbacks. 28 

Plain Language Summary 29 

Coupled fire-atmosphere models poorly depict large-scale fire processes, such as fire generated 30 

winds and deep smoke plumes. In this study, the 2020 Bear Fire and 2021 Caldor Fire in 31 

California are simulated under various fuel scenarios. The simulations show that fuel 32 

characteristics used in the fire-atmosphere model under-represent observed conditions and thus 33 

produce inadequate fire-generated winds and plume characteristics. When the modeled fuels are 34 

augmented to match observed fuel load and burnout time, simulated fire-atmosphere feedbacks 35 

better resemble fire generated winds and deep convective plumes seen in radar observations. The 36 

results of these simulations will help inform future improvements to coupled fire-atmosphere 37 

models to better simulate large wildland fires. 38 

1 Introduction 39 

Fire size and intensity has been increasing in the western United States in recent decades 40 

(Westerling et al., 2006, 2016; Williams, 2013; Holden et al., 2018; Parks and Abatzaglou 2020). 41 

These larger, more intense fires are often characterized by 1000s of acres of simultaneous 42 

combustion (i.e., mass fire, Finney and McAllister, 2011), deep convective columns, 43 

pyrocumulonimbus (pyroCu/Cb) capable of injecting smoke into the stratosphere (Fromm et al., 44 

2006, 2010; Rodriguez et al., 2020; Peterson et al., 2021), and extreme fire-generated winds 45 

including fire-generated tornadic vortices (FGTVs) (Fromm et al., 2006, 2010; Cunningham and 46 

Reeder, 2009; Lareau et al., 2018, 2022a). Given the complex threats posed by landscape fires on 47 

the social, ecological, and built environments and the expected increase in fire frequency and 48 

intensity in a warming climate (Abatzoglou and Williams, 2016; Dowdy et al., 2019), accurate 49 

simulation of fires and their impacts are necessary for improved societal resilience, pre-fire 50 

planning, and active-fire situational awareness.  51 

Uncertainties in combustion processes, fire spread, fuel representation, and atmospheric 52 

feedbacks make simulations of large real-world fires challenging (Peace et al., 2020; Shamsaei et 53 

al., 2023a). For example, current fire spread models used in fire-fighting operations such as 54 

FARSITE (Finney, 1998) and ELMFire (Lautenberger, 2013, 2017) rely on the semi-empirical 55 

Rothermel (1972) rate of spread model but are not coupled to the atmosphere. Thus, these 56 

models cannot simulate turbulent flow fields or the feedbacks between fire and atmospheric 57 
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processes, such as fire-induced updrafts and associated inflow winds that alter the rate and 58 

direction of fire spread. This is problematic in that these fire-induced winds can become the 59 

dominant driver of large wildland fires (Coen et al., 2018). Rather, to simulate these feedbacks, 60 

coupled fire-atmosphere modes are required, wherein an atmospheric model resolves the wind 61 

field that drives fire spread. In turn, the fire’s heat and moisture fluxes are released back into the 62 

atmosphere, thereby perturbing the wind field, which are then passed back to the fire spread code 63 

to represent coupling between the fire and atmosphere (Clark et al., 2004).   64 

WRF-Fire, and the similar WRF-SFIRE, are examples of coupled fire-atmosphere 65 

simulation platforms that link the Weather Research and Forecasting (WRF) atmospheric model 66 

(Skamarock and Klemp, 2008; Skamarock et al., 2019) with the Rothermel rate of spread model 67 

(Rothermel, 1972) to simulate fire spread along with atmospheric responses and feedbacks on the 68 

fire (Clark et al., 2004; Mandel et al., 2011; Coen et al., 2013). While these coupled models show 69 

promise in simulating perimeter changes in landscape scale fires (Kochanski et al., 2013; 70 

Jimenez et al., 2018; DeCastro et al., 2022; Shamsaei et al. 2023a,b; Juliano et al., 2023), 71 

thorough validation of the atmospheric response and feedbacks to the fire are lacking outside of 72 

small-scale grass fire experiments (e.g., FIREFLUX, FIREFLUX II). For example, most studies 73 

validate perimeter changes without providing validation of plume responses or flow 74 

modifications, and thus it is possible that these models sometimes produce the right answer (e.g., 75 

a correct perimeter) for the wrong reason. This can be problematic in simulations of landscape-76 

scale fires, where atmospheric responses and feedbacks become more important in dictating fire 77 

spread and its impacts.  78 

To investigate these model deficiencies, we conduct a sequence of sensitivity tests 79 

designed to isolate the role of fuel loading and consumption on simulated fire-generated 80 

circulations, including the plume rise and inflow winds. We first motivate this work with an 81 

example of the model deficiencies (Section 2), before moving on to our methods, results, and 82 

implications (Sections 3-5). 83 

2 Problem Statement 84 

Shamsaei et al. (2023a, b) showed in two recent simulations of California’s deadliest fire, 85 

the Camp Fire in 2018, that burn area was relatively well depicted by WRF-Fire, however fire 86 

and atmospheric feedbacks were deficient in terms of heat release, fire-generated flows, and 87 

plume depth. With this in mind, a preliminary simulation of another landscape-scale fire (2020 88 

Bear Fire in California’s northern Sierra Nevada; Fig. 1) was conducted using a similar WRF-89 

Fire configuration to that of Shamsaei et al. (2023a, b) based on the operational Colorado Fire 90 

Prediction System (CO-FPS; Jimenez et al., 2018). The details of this simulation, including the 91 

namelist are contained in supplements S1 and S2. In this preliminary simulation, although WRF-92 

Fire depicts a similar fire perimeter (Fig. 1c) to the observed perimeter (Fig. 1a), comparison 93 

with radar observed winds reveals that the simulation lacks both the pronounced region of fire-94 

generated flow reversal and inflow wind opposing the background flow to the west of the head 95 

fire (note red shading in Fig. 1a, b) and the deep plume structure that lofts smoke and ash into the 96 

mid-troposphere (Fig. 1a-d). Thus, while this operational WRF-Fire configuration produces 97 

adequate fire spread, it does not produce the fire-generated winds and plume dynamics that are 98 

critical drivers of the fire behavior. The preliminary simulations are further deficient in that they 99 

inadequately represent the breadth of the combustion, measured in terms of the satellite observed 100 

infrared footprint of the fire (Fig. 2). For example, the broad region of high heat release rates in  101 
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Figure 1. Comparison of observed and simulated fire properties. (a) Beale Air Force Base 

(KBBX) NEXRAD radial velocity PPI (shaded) and radar-estimated fire perimeter (red contour), 

(b) radial wind and radar-estimated fire perimeter cross section (red line) along black dashed line 

in (a), (c) WRF-Fire simulated in-plume radial velocity PPI and fire perimeter, and (d) simulated 

in-plume radial wind and fire perimeter cross section (red line) along black dashed line in (c) 

during a period of pronounced fire atmosphere coupling on the Bear Fire around 0200 UTC 

September 9, 2020. In-plane directional flow vectors annotated in b and d. 

 
Figure 2. Comparison of (a) GOES-17 Fire-Radiative Power (FRP) converted to sensible heat 

flux (FRPx10; from Val Martin et al., 2012) with (b) preliminary WRF-Fire sensible heat flux 

down-sampled to a 2x2 km grid in the Bear Fire. 
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observations (Fig. 2a) is much larger than that of the preliminary WRF-Fire simulation, even 102 

when we resample the WRF output to match the satellite’s spatial resolutions (Fig. 2b). While 103 

previous studies have noted deficiencies with fuel representations in fire models and their impact 104 

on fire perimeter changes (DeCastro et al., 2022; Stephens et al., 2022), the goal of this work is 105 

to isolate how fuel characteristics affect fire-generated winds and plume development using 106 

observations of these processes as a validation metric.  107 

 We hypothesize that exisitng coupled fire-atmosphere models are deficient in producing 108 

the observed fire-atmosphere coupling during landscape-scale fires because they have (1) 109 

insufficient fuel loads and consumption and (2) inadequate representations of how fires move 110 

through the landscape due to inherent limitations of the fire spread model (e.g., lack of mass fire 111 

and spotting).  112 

To test these hypotheses, we use WRF-Fire to simulate two landscape-scale wildfires 113 

(details below) during periods of strong fire-atmosphere coupling and conduct a series of fuel 114 

load sensitivity tests while prescribing the fire’s rate of spread. This is accomplished by turning 115 

off the model’s fire spread code and using a “time-of-arrival” grid (similar to the process 116 

described in Farguell et al., 2021) based on radar observations (methodology described in Lareau 117 

et al., 2022b). We also modify the fire residence time (i.e., the time required for the fuel to burn 118 

down to ~37% of its initial load) to generate broader combusting regions more consistent with 119 

the observations. These permutations allow us to determine the threshold fuel loading for WRF-120 

Fire to generate reasonable fire-atmosphere coupling comparable to observations.  121 

3 Data and Methods 122 

3.1 The Fires 123 

The Bear and Caldor Fires in California’s Sierra Nevada (see Table 1, Fig. 3) provide 124 

ideal test cases to examine WRF-Fire’s ability to simulate fire-atmosphere coupling during high-125 

intensity landscape scale fires. Both fires developed deep convective plumes and strong fire-126 

induced winds in similar terrain and fuels, but under strong (i.e., 30 m/s) and light (i.e., 10 m/s) 127 

wind scenarios, respectively.  Details of the fires are as follows: 128 

The Bear Fire was ignited by lightning on 17 August 2020 in Plumas National Forest in the 129 

northern Sierra Nevada. On 8 September the fire was affected by a strong downslope wind event 130 

with wind gusts up to 30 m s-1 which drove extreme rates of spread, deep pyroCb-topped plumes, 131 

and FGTVs (Lareau et al., 2022a, b). The fire ultimately burned approximately 318,935 acres 132 

(129,068 ha), destroyed 2,455 buildings, and resulted in 16 fatalities.  133 

The Caldor Fire ignited on 14 August 2021 in Eldorado National Forest in the central Sierra 134 

Nevada. On 17 August the fire experienced rapid fire spread and deep pyroCb plumes while 135 

advancing eastward across the Sierra Nevada west slope. The fire ultimately burned 136 

approximately 221,835 acres (89,773 ha) and destroyed 1,003 buildings (USDA Forest Service, 137 

2021 and CalFire Incident Archive, 2021).  138 

Both fires produced pronounced flow reversals downwind of the head fire (e.g., Fig. 1a,b) 139 

and plume echo tops episodically exceeding 10km above mean sea level (MSL) in NEXRAD 140 

radar imagery. These strong fire-generated circulations make these cases well suited for model 141 

sensitivity tests.  142 

 143 
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3.2 WRF-Fire 144 

Our simulations are conducted with WRF-Fire (Mandel et al., 2011; Coen et al., 2013). 145 

The configuration closely follows that of Jimenez et al. (2018) and Shamsaei et al. (2023a, b). 146 

The atmospheric model uses one-way nesting across three domains containing 41 vertical levels 147 

up to 50 hPa. The outermost domain has a horizontal grid spacing of 1 km with inner nests of 148 

333 m and 111 m on the atmospheric mesh, with the innermost domain resolving the fire on a 149 

further refined mesh with spacing of ~28 m, centered over the fire areas (Fig. 3). The terrain in 150 

the inner fire domain is derived from the 30-meter resolution NASA SRTM topographic dataset 151 

(van Zyl, 2001; Farr and Kobrick, 2000). The simulations use the 2011 National Land Coverage 152 

Database (NLCD2011) (Homer et al., 2015) with Noah land-surface (Chen and Dudhia, 2001) 153 

and Revised Monin-Obukhov surface layer (Jimenez et al., 2012) parameterization schemes. The 154 

Dudhia (1989) shortwave radiation, Rapid Radiative Transfer Model (RRTMG) longwave 155 

radiation (Iacono et al., 2008), and Hong and Lim (2006) WRF single-moment 6-class (WSM6) 156 

microphysics schemes are also used. The Mellor-Yamada-Nakanishi-Niino (MYNN; Nakanishi 157 

and Niino, 2006) PBL scheme is used on the two outer domains, with the innermost domain 158 

resolving turbulence using the subgrid-scale model of Lilly (1966a, b) and Deardorff (1980). 159 

Initial and boundary conditions are set using High Resolution Rapid Refresh (HRRR) analysis 160 

data (3 km spatial resolution) that update every hour through completion of the simulation. 161 

Table 1. Two fire cases identified for sensitivity analysis. 

Fire 

Name 

Date of 

Ignition 
Analysis Date(s) Location 

Acres (ha) 

Burned on 

Analysis 

Date(s) 

Total 

Acreage 

(ha) 

Dominant 

SB40 Fuel 

Type 

Bear Fire 
17 August 

2020 

1900 UTC 8 Sep – 0400 

UTC 9 Sep 2020 

Plumas 

National 

Forest 

193,759  

(78,411) 

318,935 

(129,068) 
TU5 (69%) 

Caldor 

Fire 

14 August 

2021 

1500 UTC 17 Aug – 

0000 UTC 18 Aug 2021 

Eldorado 

National 

Forest 

20,939  

(8,474) 

221,835 

(89,773) 
TU5 (73%) 

 

 
Figure 3. Outer (d01), middle (d02), and inner (d03) domain configuration for the (a) Bear Fire 

and (b) Caldor Fire with WRF terrain (shaded). 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

 

3.3 Fire Spread and Perimeters 162 

In its operational configuration, WRF-Fire uses the Rothermel ROS model (Rothermel, 163 

1972) to propagate fire across a landscape. The Rothermel model uses a semi-empirical 164 

relationship amongst the wind speed at flame height and terrain slope to produce fire spread. The 165 

fire and atmosphere are coupled by fire-generated heat and moisture fluxes which then perturb 166 

the lower atmospheric model layers via an exponential decay function with height (described in 167 

Clark et al., 1996a,b and Coen et al., 2013). The Rothermel model has known limitations in that 168 

it assumes a narrow, linear fire line and neglects key landscape-scale fire components such as 169 

spotting and mass fire (Andrews, 2018). It is hypothesized that these limitations play a role in the 170 

poorly developed plume structure seen in the control simulations (Shamsaei et al., 2023b). To 171 

bypass this deficiency, the Rothermel model is replaced by continuously updated fire perimeters 172 

derived from NEXRAD radar data. This technique is based on locating local maxima in the radar 173 

reflectivity and associated active combustion, and then aggregating these points into an evolving 174 

fire polygon (Lareau et al., 2022b). The process has been validated against infrared observations 175 

for several fires, including the Bear and Caldor fires. These radar perimeters are converted to a 176 

time-of-arrival grid that is passed into WRF-Fire, which controls the time at which a given cell in 177 

the fire mesh ignites. This process is similar to the satellite-based time-of-arrival approach used 178 

by Farguell et al. (2021). This “forced fire” approach maintains consistent fire rate and direction 179 

of spread across all of the sensitivity tests, allowing us to isolate the impact of fuel load on the 180 

heat fluxes and plume development without having to interpret changes in fire ROS, which itself 181 

is a function of fuel load in the Rothermel model.  182 

3.4 Fuel Depiction and Fire Residence Time 183 

The WRF-Fire simulations use the Scott and Burgan 40 (SB40) fuel categories (Scott and 184 

Burgan, 2005) derived from the LANDFIRE 2016 (Rollins, 2009) dataset to represent fuel type 185 

and load in the model domain. The LANDFIRE dataset is widely used among the wildfire 186 

modeling community because of its high resolution (30 x 30 m) coverage of fuel type, fuel load, 187 

fuel bed depth, and surface area to volume ratio across the contiguous United States (DeCastro et 188 

al., 2022). The dominant SB40 fuel category in the central Sierra Nevada is Timber-Understory 5 189 

(TU5), comprising 69% and 73% of the simulated burn area in the Bear and Caldor Fires, 190 

respectively (Fig. 4). The TU5 fuel type is a high-load conifer litter and shrub understory with a 191 

combined 1-, 10-, and 100-hour fuel load of 2.47 kg m-2 (11 t ac-1) and moderate flame length 192 

and spread rate (Scott and Burgan, 2005).  193 

This default fuel load of ~2.5 kg m-2, however, is a drastic underestimate of the fuels 194 

available-for and consumed-in large fires, especially fuels consumed after the passage of the 195 

initial fire front. For example, using pre- and post-fire fuel measurements in in the central Sierra 196 

Nevada, Cansler et al. (2019) found an average fuel consumption of 15.1 kg m-2(151 Mg ha-1) 197 

during the 2013 Rim Fire in Yosemite National Park. Similarly, McCarley et al. (2020) showed 198 

airborne laser scanning estimated fuel consumption in large wildfires exceeding 20 kg m-2 (200 199 

Mg ha-1) over large areal expanses. These observations suggest that, even in the best-case 200 

simulations with WRF-Fire and SB40 fuels, fires may not yield total released heat comparable to 201 

those in real fires, and thus cannot simulate the strong fire-generated circulations (e.g., updrafts  202 
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and inflows) that feedback on fire processes. This deficiency is apparent in Figure 1 when 203 

comparing the preliminary simulation (Fig. 1c,d) to observed flow perturbations (Fig. 1a,b).  204 

To examine the sensitivity of fire-generated circulations to fuel loads we devise three 205 

sensitivity tests all using the same observationally-based prescribed fire spread. Due to the 206 

dominance of TU5 fuels in the study area, and to eliminate further uncertainties in fuel types, 207 

only the TU5 fuel loads are adjusted in this study. We first use a control case with the default 208 

TU5 load of 2.47 kg m-2 (Fuelx1) and two augmented fuel loads of 9.86 kg m-2 (Fuelx4) and 209 

19.73 kg m-2 (Fuelx8) (Table 2). Note that the Fuelx8 cases are similar to observed loads and 210 

consumption of 15-20 kg m-2 described above, and thus a priori we expect these simulations to 211 

best match observations.  212 

In addition to the fuel load, in WRF-Fire each SB40 fuel category has a weighting 213 

parameter controlling the fire’s residence time. This weighting factor is defined as 214 

   

 𝑤 = 0.8514 × 𝑇𝑓 , (1) 

 
Figure 4. SB40 fuel category map for the (a) Bear Fire and (b) Caldor Fire. Dark blue no fuel 

(NF) region shows estimated initial perimeter used to initiate WRF-Fire simulation with final 

fire perimeter shown in black. 

Table 2. Summary of case studies and variables. 

Case Name TU5 Fuel Load (kg m-2) w Fuel Moisture (%) 
Fire Spread 

Method 

BearControl 2.47 900 5 Rothermel 

BearFuelx1 2.47 4080 5 NEXRAD 

BearFuelx4 9.86 4080 5 NEXRAD 

BearFuelx8 19.73 4080 5 NEXRAD 

CaldorControl 2.47 900 5 Rothermel 

CaldorFuelx1 2.47 3825 5 NEXRAD 

CaldorFuelx4 9.86 3825 5 NEXRAD 

CaldorFuelx8 19.73 3825 5 NEXRAD 
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where Tf is the time for the fuel to burn down to 𝑒−1 ≈ 0.3689 of the initial fuel load (Mandel et 215 

al., 2011). The default values for w are derived from approximations of mass-loss curves from 216 

the Albini and Reinhardt (1995) BURNUP algorithm (Clark et al., 2004); however, Mandel et al. 217 

(2011) noted there is significant uncertainty in the default values used in WRF-Fire. Due to the 218 

relationship between fuel load and burnout time, w must proportionally change with fuel loads to 219 

avoid unphysically large heat release rates (i.e. burning the fuel too quickly) under increased fuel 220 

scenarios. The value of w also impacts the breadth of the combusting region: for a given fuel 221 

load a larger w produces a broader combusting region when we force the perimeters to 222 

observations, and thus constrain the rate of spread. We note that, when using the Rothermel 223 

spread model after increasing the fuel load and the weighting parameter, the fire spread 224 

unrealistically decreases, thus highlighting the need for forced fire perimeter approach in the 225 

sensitivity analyses. 226 

Since the values of w used in WRF-Fire are uncertain, we use GOES-17 Fire Radiative 227 

Power (FRP) data to estimate representative values for Tf (burnout time) and thus w using the 228 

relationship shown by Eq. 1 from Mandel et al. (2011). The FRP algorithm uses the 3.9 µm and 229 

11.2 µm brightness temperatures along with a number of temporal and spatial checks to 230 

characterize fire temperature, size, and FRP and is thus a useful metric in identifying regions of 231 

active fire (Schmidt et al., 2012) and how long fire resides within a given pixel (2 km x 2 km). 232 

We estimate this “pixel” residence time by evaluating each GOES-17 pixel during the simulation 233 

timeframe (Table 1) to determine when the pixel reached maximum FRP (Fig. 5). Then, we 234 

evaluated how long each pixel took to cool to 𝑒−1 of its normalized FRP maxima and defined the 235 

value as Tf (interquartile ranges for all pixels depicted with red shading in Fig. 5). Individual 236 

pixel Tf values are shown in the insets of Fig. 5 for both the Bear (Fig. 5a) and Caldor (Fig. 5b) 237 

Fires. We note that the pixel residence time is not purely the physical burndown time of the fuels 238 

since it includes information about both the rate of spread through the pixel and the consumption 239 

of fuel. Nonetheless, it is a useful approach for grounding our simulations in an observational 240 

framework. Tf values for all fire pixels during the timeframe are then averaged (maroon line in 241 

Fig. 5) to produce a representative Tf and w value for each fire. The resulting analysis suggests 242 

values of 4080 and 3825 seconds are appropriate for the Bear (Fig. 5a) and Caldor (Fig. 5b) fires, 243 

respectively, which is about four times larger than the default value in WRF-Fire (900 s). These 244 

w values are not intended to be physical or universal for improving freely evolving WRF-Fire 245 

simulations, but rather an approach at producing realistic breadth of the combusting zone for the 246 

given cases using the forced fire perimeters, described below.   247 

3.5 Radar Observations of Plume Processes 248 

In addition to providing estimated fire perimeters, NEXRAD radar data are also used to 249 

compare simulated fire-generated circulations with observed plume injection heights and fire-250 

generated flows. Specifically, we use radar reflectivity and radial velocity cross sections 251 

extracted from a cartesian gridded version of the NEXRAD observations (see Lareau et al., 252 

2022a) to document plume structure, plume injection height, and radial wind components due to 253 

the ambient and fire-generated winds. These data provide a useful validation approach for 254 

landscape scale fires where in-situ measurements are otherwise unavailable (e.g., Jones et al. 255 

2022). 256 
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Figure 5. Fire-averaged FRP timeseries (maroon line) and interquartile ranges (light red 

shading) of individual pixel FRP normalized by maximum detected FRP in the scene. Pixel Tf 

(inset, shaded) for the (a) Bear Fire and (b) Caldor Fire. Horizontal black dashed line indicates e-

1 of normalized FRP, and vertical dashed black line indicates Tf where average FRP crosses e-1. 

  257 
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Figure 6. Fire generated heat flux for the (a-c) Bear Fire and (e-g) Caldor Fire. Normalized cross 

sections of fire heat flux with fire width indicated by dashed line at e-1 of the peak heat release 

for the Fuelx1 (light blue), Fuelx4 (magenta), and Fuelx8 (maroon) scenarios for the (d) Bear 

and (h) Caldor Fires. 

  258 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

 

4 Results 259 

4.1 Fireline Width and Intensity 260 

Our simulations show that increasing TU5 fuel loads and burnout timescale (Tf) while 261 

forcing the fire spread increases the areal extent and width of intense (>10 kW m-2) fire-262 

generated sensible heat fluxes for both the Bear and Caldor fires (Fig. 6). To quantify these 263 

changes, we use an e-folding scale (e.g., 0.37) of the peak fire-generated sensible heat flux to 264 

identify the width of the head fire (see dashed lines in Fig. 6d, h) in each simulation, where “fire 265 

front distance” corresponds to the horizontal distance from the normalized maximum heat flux in 266 

the head fire region. 267 

The results show that at 330 UTC the Bear Fire Fuelx1 scenario generates a narrow (~3.2 268 

km, Fig. 6d) head fire with a maximum sensible heat flux of ~9 kW m-2 (Fig. 6a) whereas the 269 

Fuelx4 scenario has a comparatively wider (~6.9 km, Fig. 6d) head fire with a maximum of 34 270 

kW m-2 (Fig. 6b). Finally, the Fuelx8 scenario produces the widest (~7.7 km, Fig. 6d) head fire 271 

with a peak sensible heat flux of 68 kW m-2 (Fig. 6c). Heat fluxes of this magnitude are 272 

consistent with those estimated in recent observational studies of plume rise (e.g., Lareau and 273 

Clements, 2017).  274 

Similar changes in the head fire width and heat fluxes are simulated for the Caldor Fire. 275 

Specifically, at 2300 UTC, the Caldor Fuelx1 scenario produces a relatively narrow (~2.6 km, 276 

Fig. 6h) head fire with a maximum heat flux of ~9 kW m-2 (Fig. 6e), whereas the Fuelx4 scenario 277 

has a head fire width of ~3.6 km (Fig. 6h) with a peak heat flux of ~36 kW m-2 (Fig. 6f), and the 278 

Fuelx8 scenario has the widest fire head (~4 km, Fig. 6h) and highest maximum fire heat flux 279 

(~73 kW m-2, Fig. 6g).  280 

These results show that increasing the fuel load and weighting factor increases the 281 

maximum fire-generated heat flux and the areal extent of the head fire, thus implying a wider 282 

“flaming region” that better agrees with available infrared (e.g., GOES-17) observations (Fig. 7). 283 

For example, Fig. 7 shows down-sampled versions of the WRF-Fire sensible heat fluxes to 284 

mimic the GOES-17 FRP satellite footprint (2x2km). For this comparison the FRP data are 285 

converted to sensible heat fluxes using the assumption that FRP is approximately one tenth the 286 

sensible heat flux (Val Martin et al., 2012). We note that there is uncertainty in these 287 

measurements due to sensor saturation and shading from pyroCb, likely resulting in artificially 288 

low observed intensities. Nonetheless, these comparisons show that both the Bear and Caldor 289 

Fire Fuelx8 (Fig. 7d,h) simulations compare favorably with the observations (Fig. 7a,e), whereas 290 

the Fuelx1 (Fig. 7b,f) and Fuelx4 (Fig. 7c,g) cases insufficiently represent the breadth of intense 291 

combustion.  As we show in the next two sections, only the simulations with wider and higher 292 

intensity combustion zones yield atmospheric response comparable to the observations. 293 

4.2 Fire-Generated Horizontal Flow Perturbations 294 

Commensurate with the changes in fire heat flux and head fire width, our simulations 295 

show improved representation of the fire-generated horizontal flow perturbations with increasing 296 

fuel loads. The horizontal component of the flow is evaluated by comparing “radial velocity” 297 

observations from the NEXRAD radar with the flow component in the simulations that would be 298 

observed with a hypothetical radar in the same location. This is accomplished by computing the 299 

component of the simulated winds that projects onto radials originating from the radar base 300 

locations (KBBX and KDAX for the Bear and Caldor Fires, respectively), and thus provide a  301 
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direct comparison with the wind components observed by the radars. In this framework, all 302 

winds are either “inbound” (shown in blue) or “outbound” (shown in red) relative to the radar 303 

location. 304 

For the Bear Fire, the observed radial velocities from the KBBX NEXRAD on 9 305 

September 2020 at 330 UTC indicate strong downslope winds of ~25 m s-1 towards the radar 306 

(blue shading and white arrows, Fig. 8a, b), with a pronounced region of flow reversal in the lee 307 

of the fire head indicated by outbound radial velocities of 5-10 m s-1 (red shading and black 308 

arrows, Fig. 8a, b). The flow reversal is clear observational evidence for a mesoscale fire-309 

generated wind that produces strong convergence at the fire front and feeds the vigorous fire-310 

generated updrafts.  While all three fuel scenarios depict strong, downslope winds and inbound 311 

radial velocities greater than 20 m s-1 (Fig. 8c-h), they differ in the magnitude and extent of the 312 

fire-generated flow reversal. The Fuelx1 scenario shows no flow reversal, with inbound radial 313 

velocities of 20-25 m s-1 spanning the fire head (Fig. 8c,d) and no evidence of feedback from the 314 

fire (e.g., no flow weakening or reversal to the west of the fire head), which is clearly deficient. 315 

The Fuelx4 scenario has a small region of near-zero to slightly positive radial velocities west of 316 

the fire head (Fig. 8e,f). The Fuelx8 scenario has the greatest extent of outbound radial velocities 317 

in the lee of the head fire and covering a greater areal extent than the Fuelx4 scenario (Fig. 8g, 318 

h). This area of positive (5-8 m s-1) radial velocities is around 2 km MSL with small regions of 319 

stagnant flow extending up to 3 km MSL. Strong negative radial velocities upwind of fire front 320 

indicate a region of strong convergence with the fire-generated wind at the head fire. While the 321 

Fuelx8 scenario is in best agreement with the observations, it still underestimates the strength 322 

and spatial extent of the fire-generated winds apparent in the  323 

 
Figure 7. Observed GOES fire intensity using FRP converted to sensible heat flux for the (a) 

Bear Fire and (e) Caldor Fire. WRF-Fire sensible heat flux for the (b-d) Bear and (f-h) Caldor 

Fires. WRF-Fire sensible heat fluxes are down-sampled to a 2x2 km grid to emulate the GOES 

FRP data resolution. 
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Figure 8. Comparison of observed and simulated fire flows during the Bear Fire. (a) Beale Air 

Force Base (KBBX) NEXRAD radial velocity PPI (shaded) and radar-estimated fire perimeter 

(red contour), (b) radial wind and radar-estimated fire perimeter (red line) cross section along 

black dashed line, WRF-Fire simulated PPI and cross section of in-plume radial velocity and fire 

perimeter for (c-d) Fuelx1, (e-f) Fuelx4, and (g-h) Fuelx8 scenarios, around 0330 UTC 

September 9, 2020. In-plane directional flow vectors annotated in b, d, f, h. 
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Figure 9. Comparison of observed and simulated fire flows during the Caldor Fire. (a) 

Sacramento (KDAX) NEXRAD radial velocity PPI (shaded) and radar-estimated fire 

perimeter (red contour), (b) radial wind and radar-estimated fire perimeter (red line) cross 

section along black dashed line, WRF-Fire simulated PPI and cross section of in-plume radial 

velocity and fire perimeter for (c-d) Fuelx1, (e-f) Fuelx4, and (g-h) Fuelx8 scenarios, around 

2315 UTC August 17, 2021. In-plane directional flow vectors annotated in b, d, f, h. 
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observations, suggesting that the actual fuel consumption, or rate of consumption, during the 324 

Bear Fire may exceed our simulated results.  325 

We find similar sensitivity to fire-generated horizontal winds for the Caldor Fire when 326 

we compare simulated radial velocities with those observed by the Sacramento NEXRAD 327 

(KDAX) on 17 August 2021 around 2315 UTC. To be specific, the observations indicate upslope 328 

flow with generally positive (outbound) background radial velocities of around 10 m s-1 (red 329 

shading in Fig. 9a, b) with a pronounced region of fire induced flow reversal (inbound, blue 330 

shading) radial velocities in the lee of the fire head that extends up to approximately 4 km MSL. 331 

Similar to the Bear Fire, the Caldor Fuelx1 scenario shows no evidence of fire generated flow 332 

reversal, with positive radial velocities of 5-10 m s-1 extending across the fire front, and no 333 

region of flow weakening or reversal near the fire head (Fig. 9c,d). The Fuelx4 scenario shows a 334 

small region of stagnant to negative radial velocities (0-5 m s-1) on the northeast lobe of the fire 335 

head (Fig. 9e). Fig. 9f shows this region of inbound radial velocities extends up to about 3 km 336 

MSL and is slightly displaced downstream of the fire head. The Fuelx8 scenario again shows the 337 

most pronounced flow perturbation by the fire with a larger region of inbound radial velocities in 338 

the lee of the fire front with peak values around 10 m s-1 (Fig. 9g). Fig. 9h shows the maximum 339 

of this flow reversal region is situated immediately downstream of the fire front, with flow 340 

stagnation extending well downstream of the fire head as evidenced by the region of weakly 341 

positive radial velocities.  342 

A clear takeaway from these results is that when models produce too little heat flux, they 343 

also produce deficient fire-generated horizontal winds and thus do not capture critical 344 

components of the feedback between the fire and the atmosphere. In that these fire-generated 345 

winds have been identified as contributors to the onset of extreme events, such as FGTVs 346 

(Lareau et al., 2022a), this data deficiency urgently needs to be resolved. 347 

4.3 Plume Depth and Updraft Strength 348 

Consistent with the increase in horizontal flow perturbations, our simulations also show 349 

increases in vertical velocity, plume verticality, pyroCu/Cb initiation, and smoke injection height 350 

which are proportional to the increase in fuel load and thus heat flux (Fig. 10a-c).  351 

To frame the simulation results, we first examine radar observations of the plume 352 

structure. During the Bear Fire, representative radar cross sections indicate an upright plume core 353 

(e.g., corridor of high reflectivity) rising from the head fire with plume tops near 9 km MSL (Fig. 354 

10d). Further analysis of the plume evolution from 0000-0300 UTC (not shown, see also Lareau 355 

et al., 2022a,b) indicates plume tops ranging from 8 to almost 12 km MSL including 356 

considerable pyroCu/Cb development, with cloud bases near 6 km MSL. While we do not have 357 

updraft observations, it is reasonable to conclude that these deep, nearly vertical plume cores 358 

must possess very strong (e.g., >30 m s-1) updrafts that can compete with the strong cross flow 359 

(25-30 m s-1) to produce an upright plume core.  360 

 Unsurprisingly, these upright plume structures and high vertical velocities are absent 361 

from the Fuelx1 simulations, but present in the high fuel load cases (Fig. 10a-c). To be specific, 362 

at 0200 UTC in the Bear Fire Fuelx1 simulation, maximum updraft velocities are less than 10 m 363 

s-1 and do not penetrate above 3 km MSL (Fig. 10a). The maximum smoke plume depth in this 364 

scenario is less than 4 km MSL. The Fuelx4 simulation has maximum updraft velocities of just 365 

over 20 m s-1 with comparatively wider and deeper updraft cores of ~3 km wide and 5-6 km 366 

MSL deep, respectively (Fig. 10b). The smoke plume depth reaches 6 km MSL in this scenario,  367 
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Figure 10. Bulk cross section normal to the Bear Fire head of fire-generated maximum vertical 

velocity (shaded), in-plane average fire-generated wind vectors, smoke plume extent (gray 

contour), cloud water (navy) and ice (light blue) contours in the (a) Fuelx1, (b) Fuelx4, and (c) 

Fuelx8 simulations, and (d) observed NEXRAD reflectivity (shaded) cross-section. 

and a fire-generated circulation is evident in the lee of the plume with surface inflow, and 368 

outflow at about 3-4 km MSL. The Fuelx8 simulation has the deepest, strongest, and most 369 

upright plume of any scenario with vertical velocities exceeding 40 m s-1 and penetrating to 8-10 370 

km MSL (Fig. 10c). The wide (~5km) updraft base is inducing strong inflow at the surface and 371 

strong outflow at 4-6 km MSL in the lee of the plume. Notably, this scenario produced multiple 372 

instances of pyroCb, with a high-based pyroCb occurring at 0200 UTC between 6 and 10 km 373 

MSL (see blue cloud water contour in Fig. 10c), consistent with NEXRAD and photographic 374 

observations during this period (Fig. 10d, see also Fig. 10 in Lareau et al., 2022a). The strong  375 
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Figure 11. Bulk cross section normal to the Caldor Fire head of fire-generated maximum 

vertical velocity (shaded), in-plane average fire-generated wind vectors, smoke plume extent 

(gray contour), cloud water (navy) and ice (light blue) contours in the (a) Fuelx1, (b) Fuelx4, and 

(c) Fuelx8 simulations, and (d) observed NEXRAD reflectivity (shaded) cross-section. 

simulated updrafts linked to pyroCb are consistent with observations of other extreme wildfires 376 

(Rodriguez et al. 2020).  377 

Whereas the Bear Fire updrafts must compete with very strong ambient winds, the Caldor 378 

Fire’s updrafts experience much weaker background flow yet show similar sensitivity to fuel 379 

load. For example, at 1830 UTC, the Caldor Fire Fuelx1 simulation (Fig. 11a) produces 380 

maximum updrafts of ~10 m s-1 reaching ~4 km MSL with ill-defined updraft cores. The Fuelx4 381 

simulation (Fig. 11b) produces updraft velocities greater than 20 m s-1, penetrating up to ~5 km 382 

MSL and producing shallow pyroCu between 5 and 7 km MSL. This scenario contains a 383 

comparatively wide (~10 km) updraft region containing several narrow updraft cores from the 384 

surface up to 5 km MSL. There is also a weak fire induced circulation in the lee of the plume, 385 
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with weak surface inflow vectors and slightly stronger outflow at about 3-4 km MSL. The 386 

Fuelx8 scenario (Fig. 11c) contains the most coherent updrafts with a ~5 km wide and ~8 km 387 

MSL deep region of vertical velocities just under 40 m s-1. The resulting plume depth in this 388 

scenario neared 10 km, with a 4-5 km deep pyroCu/Cb, well-developed surface inflow region, 389 

and ~4km MSL outflow in the lee of the plume. This simulated plume and pyroCu/Cb structure 390 

compares well with the KDAX NEXRAD data, where plume tops were around 10 km MSL (Fig. 391 

11d) and high reflectivity cores suggest upright and vigorous updrafts.  392 

 The results of both the Bear Fire and Caldor Fire simulations indicate that not only are 393 

fuel characteristics important in generating realistic plumes and fire-generated flows, but they 394 

also have clear implications for simulating deep pyroCb, which can generate additional 395 

feedbacks on the fire environment (e.g., downdrafts, lightning, FGTVs) and may result in 396 

stratospheric smoke injection. 397 

5 Summary and Discussion 398 

Our sensitivity analyses indicate that WRF-Fire run with Scott and Burgen 40 fuel 399 

categories under-represents fuel quantity and its consumption, and thus underrepresents fire-400 

generated heat fluxes, resulting in deficient simulation of the atmospheric response to landscape-401 

scale wildfire processes. Among these deficiencies are shallow plumes with weak updrafts and 402 

little-to-no fire-induced flow perturbations. These deficiencies are also driven by insufficiently 403 

wide areas of combustion behind the fire-front (e.g., “deep flaming” in the model), which is 404 

linked to both the deficient fuel load and the fire’s residence time. For example, neither the Bear 405 

nor Caldor Fire baseline (Fuelx1) simulations produced a broad combustion region with 406 

sufficiently large sensible heat fluxes to produce deep updrafts initiating pyroCu/Cb. This stands 407 

in stark contrast to radar observations of both fires, which reveal deep, upright convective cores 408 

linked to pyroCu/Cb.  In contrast, the Fuelx4 and Fuelx8 scenarios generated wider combustion 409 

zones and greater total heat fluxes resulting in deep (e.g., 10 km MSL) upright plumes with 410 

vigorous updrafts initiating pyroCu/Cb. Since strong inflows, updrafts, and pyroCu/Cb initiation 411 

are all vital mechanisms for the development of extreme fire behavior (e.g., FGTVs, long-range 412 

spotting) this sensitivity to fuel load underscores current shortcomings in the fuel inputs driving 413 

WRF-Fire. Such shortcomings likely apply to other coupled fire-atmosphere models using the 414 

Rothermel spread model combined with LANDFIRE-informed fuel data sets (such as Anderson 415 

13 or SB40), ultimately limiting their capacity to accurately simulate landscape-scale fires.  416 

While some efforts have been made to improve this representation by adjusting fuel 417 

categories via machine learning (DeCastro et al., 2022) and accounting for canopy fuels through 418 

addition of crown fire heat and improved heat release schemes (Shamsaei et al., 2023b), the 419 

foundation of both the Anderson 13 and SB40 fuel data is surface fuels in LANDFIRE which 420 

appears to severely underrepresent real-world fuel loads available for consumption in large fires. 421 

Such fuel availability is directly linked to wildfire energy release (Goodwin et al., 2021). Thus 422 

for accurate, operational simulations of landscape scale fire spread, a methodology that 423 

incorporates both surface and canopy fuel loading (e.g., dead and down debris, standing dead, 424 

etc.) and landscape-scale fire processes (e.g., spotting, mass-fire, post-frontal combustion) must 425 

be incorporated into coupled fire-atmosphere models.  426 

In identifying these shortcomings, a potential path forward involves improved 427 

representation of fuel inputs (e.g., inclusion of canopy and down woody fuel loading in 428 

LANDFIRE) for use in WRF-Fire and other coupled fire-atmosphere models. However, in our 429 
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simulations we bypassed the large uncertainties in fire spread due to fuel loading by forcing the 430 

fire perimeter with observations. This enabled us to change the fuel loads without changing the 431 

rate of spread. In freely evolving simulations this is not possible, and simply increasing the fuel 432 

load will yield, by formulation, slower rate of spread from the Rothermel model. This issue is 433 

compounded in that our forced perimeters include the result of near- and long-range spotting 434 

whereas the Rothermel model does not represent long-range spotting. Thus, to achieve high 435 

fidelity and freely evolving simulations critical for operational forecasting, the community will 436 

need to improve the underlying physical representation of fire spread processes, not just the fuel 437 

and its consumption. In the meantime, a combination of assimilating fire perimeter observations 438 

(e.g., Farguell et al., 2021 and the approach used herein) and adjusting fuel loads based on 439 

machine learning is one approach to bypass uncertainties in the model physics and realize 440 

potentially useful simulations not just of the fire spread but also the attendant atmospheric 441 

circulations. 442 
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 &time_control
 run_days                            = 0,
 run_hours                           = 9,
 run_minutes                         = 0,
 run_seconds                         = 0,
 start_year                          = 2020, 2020, 2020,
 start_month                         = 09,   09,   09,
 start_day                           = 09,   09,   09,
 start_hour                          = 03,   03,   03,
 start_minute                        = 00,   00,   00,
 start_second                        = 00,   00,   00,
 end_year                            = 2020, 2020, 2020,
 end_month                           = 09,   09,   09,
 end_day                             = 09,   09,   09,
 end_hour                            = 04,   04,   04,
 end_minute                          = 00,   00,   00,
 end_second                          = 00,   00,   00,
 interval_seconds                    = 3600
 input_from_file                     = .true.,.true.,.true.,
 history_interval                    = 999,   999,   15,
 frames_per_outfile                  = 1,     1,     1,
 restart                             = .true.,
 restart_interval                    = 240,
 override_restart_timers             = .true.
 io_form_history                     = 2
 io_form_restart                     = 2
 io_form_input                       = 2
 io_form_boundary                    = 2
 io_form_auxinput1                   = 2
 io_form_auxhist2                    = 2
 debug_level                         = 0
 /

 &domains
 time_step                           = 1,
 time_step_fract_num                 = 0,
 time_step_fract_den                 = 10,
 max_dom                             = 3,
 s_we                                = 1,      1,     1,
 e_we                                = 360,  571,   508,
 s_sn                                = 1,      1,     1,
 e_sn                                = 360,  451,   481,
 s_vert                              = 1,      1,     1,
 e_vert                              = 46,    46,   46,
 eta_levels =                         1.00000, 0.99908, 0.99608, 
0.99216,
                                      0.98817, 0.98405, 0.97971, 
0.97505,
                                      0.96997, 0.96439, 0.95823, 
0.95140,



                                      0.94383, 0.93543, 0.92613, 
0.91584,
                                      0.90445, 0.89188, 0.87802, 
0.86275,
                                      0.84598, 0.82757, 0.80742, 
0.78541,
                                      0.76144, 0.73542, 0.70726, 
0.67689,
                                      0.64429, 0.60946, 0.57243, 
0.53330,
                                      0.49222, 0.44941, 0.40517, 
0.35989,
                                      0.31408, 0.26840, 0.22363, 
0.18069,
                                      0.14056, 0.10407, 0.07178, 
0.04387,
                                      0.02011, 0.00000,
 p_top_requested                     = 5000,
 num_metgrid_levels                  = 41,
 num_metgrid_soil_levels             = 9,
 dx                                  = 1000, 333,  111,
 dy                                  = 1000, 333,  111,
 grid_id                             = 1,     2,     3,
 parent_id                           = 1,     1,     2,
 i_parent_start                      = 1,    80,   220,
 j_parent_start                      = 1,   100,   150,
 parent_grid_ratio                   = 1,     3,     3,
 parent_time_step_ratio              = 1,     3,     3,
 feedback                            = 0,
 smooth_option                       = 0,
 sr_x                                = 1, 1, 4,
 sr_y                                = 1, 1, 4,
 sfcp_to_sfcp                        = .true.,
 dzbot                               = 10.0,
 /

 &physics
 mp_physics                          = 6,     6, 6,
 ra_lw_physics                       = 4,     4, 4,
 ra_sw_physics                       = 1,     1, 1,
 radt                                = 10,    1, 1,
 sf_sfclay_physics                   = 1,     1, 1,
 sf_surface_physics                  = 2,     2, 2,
 bl_pbl_physics                      = 5,     5, 0,
 bl_mynn_tkeadvect                   = .true., .false., .false.,
 bldt                                = 0,     0,    0,
 cu_physics                          = 0,     0,    0,
 cudt                                = 0,     0,    0,
 isfflx                              = 1,
 ifsnow                              = 1,



 icloud                              = 1,
 num_soil_layers                     = 4,
 sf_urban_physics                    = 0,
 maxiens                             = 1,
 maxens                              = 3,
 maxens2                             = 3,
 maxens3                             = 16,
 ensdim                              = 144,
 num_land_cat                        = 40,
 /

 &dynamics
 m_opt                               = 1,
 w_damping                           = 1,
 diff_opt                            = 2, 2, 2,
 km_opt                              = 4, 2, 2,
 diff_6th_opt                        = 2, 2, 2,
 diff_6th_factor                     = 0.25, 0.25, 0.25,
 h_mom_adv_order                     = 5, 3, 3
 h_sca_adv_order                     = 5, 3, 3
 damp_opt                            = 3,
 zdamp                               = 2000., 2000., 2000.,
 dampcoef                            = 0.2,   0.2,  0.2,
 EPSSM                               = 0.5,   0.8,  0.8,
 non_hydrostatic                     = .true., .true., .true.,
 moist_adv_opt                       = 1,      1,   1,
 scalar_adv_opt                      = 1,      1,   1,
 tracer_opt                          = 3,      3,   3,
 /

 &bdy_control
 spec_bdy_width                      = 5,
 spec_zone                           = 1,
 relax_zone                          = 4,
 specified                           = .true., .false., .false.,
 nested                              = .false., .true., .true.,
 /

 &grib2
 /

 &namelist_quilt
 /

 &fire
 ifire                     =     0,    0,   2,
 fire_fuel_read            =    -1,   -1,  -1,
 fire_fmc_read             =     1,    1,   1,
 fire_num_ignitions        =     0,    0,   0,
 fire_ignition_ros1        =   1.0,  1.0, 1.0,



 fire_ignition_start_lat1  =   39.85372,  39.85372,  39.85372,
 fire_ignition_start_lon1  =  -120.95329, -120.95329, -120.95329,
 fire_ignition_end_lat1    =   39.85444,  39.85444,  39.85444,
 fire_ignition_end_lon1    =  -120.93518, -120.93518, -120.93518,
 fire_ignition_radius1     =     100,       100,       100,
 fire_ignition_start_time1 =   10200,      1800,      1800,
 fire_ignition_end_time1   =   10500,      2100,      2100,
 fire_print_msg            =       0,         0,         0,
 fire_print_file           =       0,         0,         0,
 fire_upwinding            =       9,         9,         9,
 fire_lsm_reinit           =  .true.,    .true.,    .true.,
 fire_lsm_reinit_iter      =       1,         1,         1,
 fire_upwinding_reinit     =       4,         4,         4,
 fire_lsm_zcoupling        =  .true.,    .true.,    .true.,
 fire_lsm_zcoupling_ref    =    60.0,      60.0,      60.0,
 fire_is_real_perim        = .false.,   .false.,    .true.,
 fire_wind_height          =     6.5,       6.5,       6.5,

 fire_sfc_flx              =       0,         0,         0,
 fire_update_tsk           =  .true.,    .true.,    .true.,
 fire_grnhfx_thresh        =       1,         1,         1,
 fire_perimeter_time       =   999999,   999999,    0,
 /



&fuel_scalars                      ! scalar fuel constants
cmbcnst  = 17.433e+06,             ! J/kg combustion heat dry fuel
hfgl     = 17.e4 ,                 ! W/m^2 heat flux to ignite canopy
fuelmc_g = 0.05,                   ! ground fuel moisture, set = 0 for 
dry
fuelmc_g_lh = .30,                ! ground live herb fuel moisture, 
set = 0 for dry
fuelmc_c = 1.00,                   ! canopy fuel moisture, set = 0 for 
dry
nfuelcats = 54,                    ! number of fuel categories used
no_fuel_cat = 14                   ! extra category for no fuel
/

&fuel_categories                 
 fuel_name = 
'1: Short grass (1 ft)',
'2: Timber (grass and understory)',
'3: Tall grass (2.5 ft)',
'4: Chaparral (6 ft)',
'5: Brush (2 ft) ',
'6: Dormant brush, hardwood slash',
'7: Southern rough',
'8: Closed timber litter',
'9: Hardwood litter',
'10: Timber (litter + understory)',
'11: Light logging slash',
'12: Medium logging slash',
'13: Heavy logging slash',
'14: no fuel',
'15: Short, Sparse Dry Climate Grass (Dynamic) [GR1 (101)]',
'16: Low Load, Dry Climate Grass (Dynamic) GR2 (102)',
'17: Low Load, Very Coarse, Humid Climate Grass (Dynamic) [GR3 
(103)]',
'18: Moderate Load, Dry Climate Grass (Dynamic) [GR4 (104)]',
'19: Low Load, Humid Climate Grass (Dynamic) [GR5 (105)]',
'20: Moderate Load, Humid Climate Grass (Dynamic) [GR6 (106)]',
'21: High Load, Dry Climate Grass (Dynamic) [GR7 (107)]',
'22: High Load, Very Coarse, Humid Climate Grass (Dynamic) [GR8 
(108)]',
'23: Very High Load, Humid Climate Grass (Dynamic) [GR9 (109)]',
'24: Low Load, Dry Climate Grass-Shrub (Dynamic) [GS1 (121)]',
'25: Moderate Load, Dry Climate Grass-Shrub (Dynamic) [GS2 (122)]',
'26: Moderate Load, Humid Climate Grass-Shrub (Dynamic) [GS3 (123)]',
'27: High Load, Humid Climate Grass-Shrub (Dynamic) [GS4 (124)]',
'28: Low Load Dry Climate Shrub (Dynamic) [SH1 (141)]',
'29: Moderate Load Dry Climate Shrub [SH2 (142)]',
'30: Moderate Load, Humid Climate Shrub [SH3 (143)]',
'31: Low Load, Humid Climate Timber-Shrub [SH4 (144)]',
'32: High Load, Dry Climate Shrub [SH5 (145)]',
'33: Low Load, Humid Climate Shrub [SH6 (146)]',



'34: Very High Load, Dry Climate Shrub [SH7 (147)]',
'35: High Load, Humid Climate Shrub [SH8 (148)]',
'36: Very High Load, Humid Climate Shrub (Dynamic) [SH9 (149)]',
'37: Low Load Dry Climate Timber-Grass-Shrub (Dynamic) [TU1 (161)]',
'38: Moderate Load, Humid Climate Timber-Shrub [TU2 (162)]',
'39: Moderate Load, Humid Climate Timber-Grass-Shrub (Dynamic) [TU3 
(163)]',
'40: Dwarf Conifer With Understory [TU4 (164)]',
'41: Very High Load, Dry Climate Timber-Shrub [TU5 (165)]',
'42: Low Load Compact Conifer Litter [TL1 (181)]',
'43: Low Load Broadleaf Litter [TL2 (182)]',
'44: Moderate Load Conifer Litter [TL3 (183)]',
'45: Small downed logs [TL4 (184)]',
'46: High Load Conifer Litter [TL5 (185)]',
'47: Moderate Load Broadleaf Litter [TL6 (186)]',
'48: Large Downed Logs [TL7 (187)]',
'49: Long-Needle Litter [TL8 (188)]',
'50: Very High Load Broadleaf Litter [TL9 (189)]',
'51: Low Load Activity Fuel [SB1 (201)]',
'52: Moderate Load Activity Fuel or Low Load Blowdown [SB2 (202)]',
'53: High Load Activity Fuel or Moderate Load Blowdown [SB3 (203)]',
'54: High Load Blowdown [SB4 (204)]'
 fgi = 0.1660, 0.8960, 0.6740, 3.5910, 0.7840, 1.3440, 1.0910, 1.1200, 
0.7800, 2.6920, 2.5820, 7.7490, 13.0240, 1.e-7,
       0.0224, 0.0224, 0.1121, 0.0560, 0.0897, 0.0224, 0.2242, 0.3363, 
0.4483,
       0.0448, 0.2242, 0.1233, 0.5156,
       0.1121, 1.0088, 0.7734, 0.4932, 1.2778, 0.9751, 2.4659, 1.4123, 
1.5580,
       0.5828, 0.8967, 0.3363, 1.0088, 2.4659,
       1.5244, 1.3226, 1.2329, 1.3899, 1.8046, 1.0760, 2.1969, 1.8606, 
3.1608,
       3.4746, 2.8582, 2.5219, 3.1384
 fgi_lh = 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
          0.0673, 0.2242, 0.3363, 0.4259, 0.5604, 0.7622, 1.2105, 
1.6364, 2.0175,
          0.1121, 0.1345, 0.3250, 0.7622,
          0.0336, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 
0.0000, 0.3475,
          0.0448, 0.0000, 0.1457, 0.0000, 0.0000,
          0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 
0.0000, 0.0000,
          0.0000, 0.0000, 0.0000, 0.0000
 fueldepthm= 0.3050, 0.3050, 0.7620, 1.8290, 0.6100, 0.7620, 0.7620, 
0.0610, 0.0610, 0.3050, 0.3050, 0.7010, 0.9140, 0.3050,
             0.1219, 0.3048, 0.6096, 0.6096, 0.4572, 0.4572, 0.9144, 
1.2192, 1.5240,
             0.2743, 0.4572, 0.5486, 0.6401,
             0.3048, 0.3048, 0.7315, 0.9144, 1.8288, 0.6096, 1.8288, 



0.9144, 1.3411,
             0.1829, 0.3048, 0.3962, 0.1524, 0.3048,
             0.0610, 0.0610, 0.0914, 0.1219, 0.1829, 0.0914, 0.1219, 
0.0914, 0.1829,
             0.3048, 0.3048, 0.3658, 0.8230
 savr = 3500., 2784., 1500., 1739., 1683., 1564., 1562., 1889., 2484., 
1764., 1182., 1145., 1159., 3500.,
               2200., 2000., 1500., 2000., 1800., 2200., 2000., 1500., 
1800.,
               2000., 2000., 1800., 1800.,
               2000., 2000., 1600., 2000., 750., 750., 750., 750., 
750.,
               2000., 2000., 1800., 2300., 1500.,
               2000., 2000., 2000., 2000., 2000., 2000., 2000., 1800., 
1800.,
               2000., 2000., 2000., 2000.
 fuelmce = 0.12, 0.15, 0.25, 0.20, 0.20, 0.25, 0.40, 0.30, 0.25, 0.25, 
0.15, 0.20, 0.25, 0.12,
           0.15, 0.15, 0.30, 0.15, 0.40, 0.40, 0.15, 0.30, 0.40,
           0.15, 0.15, 0.40, 0.40,
           0.15, 0.15, 0.40, 0.30, 0.15, 0.30, 0.15, 0.40, 0.40,
           0.20, 0.30, 0.30, 0.12, 0.25,
           0.30, 0.25, 0.20, 0.25, 0.25, 0.25, 0.25, 0.35, 0.35,
           0.25, 0.25, 0.25, 0.25
 fueldens = 32., 32., 32., 32., 32., 32., 32., 32., 32., 32., 32., 
32., 32., 32., ! 32 if solid, 19 if rotten
            32., 32., 32., 32., 32., 32., 32., 32., 32.,
            32., 32., 32., 32.,
            32., 32., 32., 32., 32., 32., 32., 32., 32.,
            32., 32., 32., 32., 32.,
            32., 32., 32., 32., 32., 32., 32., 32., 32.,
            32., 32., 32., 32.
 st = 0.0555, 0.0555, 0.0555, 0.0555, 0.0555, 0.0555, 0.0555, 0.0555, 
0.0555, 0.0555, 0.0555, 0.0555, 0.0555, 0.0555,
      0.0555, 0.0555, 0.0555, 0.0555, 0.0555, 0.0555, 0.0555, 0.0555, 
0.0555,
      0.0555, 0.0555, 0.0555, 0.0555,
      0.0555, 0.0555, 0.0555, 0.0555, 0.0555, 0.0555, 0.0555, 0.0555, 
0.0555,
      0.0555, 0.0555, 0.0555, 0.0555, 0.0555,
      0.0555, 0.0555, 0.0555, 0.0555, 0.0555, 0.0555, 0.0555, 0.0555, 
0.0555,
      0.0555, 0.0555, 0.0555, 0.0555
 se = 0.010, 0.010, 0.010, 0.010, 0.010, 0.010, 0.010, 0.010, 0.010, 
0.010, 0.010, 0.010, 0.010, 0.010, 
      0.010, 0.010, 0.010, 0.010, 0.010, 0.010, 0.010, 0.010, 0.010,
      0.010, 0.010, 0.010, 0.010,
      0.010, 0.010, 0.010, 0.010, 0.010, 0.010, 0.010, 0.010, 0.010,
      0.010, 0.010, 0.010, 0.010, 0.010,
      0.010, 0.010, 0.010, 0.010, 0.010, 0.010, 0.010, 0.010, 0.010,



      0.010, 0.010, 0.010, 0.010
 ! ----- Notes on weight: (4) - best fit of Latham data; (5)-(7) could 
be 60-120; (8)-(10) could be 300-1600; (11)-(13) could be 300-1600
 weight = 7., 7., 7., 180., 100., 100., 100., 900., 900., 900., 900., 
900., 900., 7.,
          7., 7., 7., 7., 7., 7., 7., 7., 7.,
          7., 7., 7., 7.,
          100., 100., 100., 100., 180., 100., 180., 100., 100.,
          900., 900., 900., 900., 900.,
          900., 900., 900., 900., 900., 900., 900., 900., 900.,
          900., 900., 900., 900.
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