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Abstract

The environmental justice literature demonstrates consistently that low-income and minority communities are disproportion-

ately exposed to environmental hazards. In this case study, we examined cumulative multipollutant, multidomain, and multi-

matrix environmental exposures in Milwaukee County, Wisconsin. We identified spatial hot spots in Milwaukee County both

individually and through clusters across a profile of environmental pollutants that span regulatory domains and matrices of

exposure, as well as socioeconomic indicators. The most sensitive cluster within the urban area was largely characterized by

low socioeconomic status (SES) and an overrepresentation of the Non-Hispanic Black (NHB) population relative to the county

as a whole. In this cluster, average pollutant concentrations were equivalent to the 78th percentile in county-level blood lead

levels, 67th percentile in county-level NO2, 79th percentile in county-level CO, and 78th percentile in county-level air toxics

while simultaneously having an average equivalent to the 62nd percentile in county-level unemployment, 70th percentile in

county-level population rate lacking a high school diploma, 73rd percentile in county-level poverty rate, and 28th percentile

in county-level median household income. The spatial patterns of pollutant exposure and SES indicators suggested that these

disparities were not random but were instead structured by socioeconomic and racial factors. Our case study, which combines

environmental pollutant exposures, sociodemographic data, and clustering analysis, provides a roadmap to identify and target

overburdened communities for interventions that reduce environmental exposures and consequently improve public health.
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 16 
Key Points 17 

- We examine cumulative exposures to multiple pollutants and their association with 18 

socioeconomic and racial disparities in Milwaukee County 19 

- We highlight census block groups that are most vulnerable to pollution and low SES, which can 20 

be prioritized for regulatory interventions 21 

- People of color in Milwaukee County are not just exposed to high pollution, they are often 22 

exposed within the context of low SES 23 

 24 

Plain Language Summary 25 

Our study focused on Milwaukee County, Wisconsin, where we examined how people in this region were 26 

exposed to different types of pollutants. We found that areas with the highest levels of pollution (e.g., 27 

lead, nitrogen dioxide) had a higher proportion of Black residents and those residents also experienced 28 

social and economic challenges (e.g., unemployment, poverty, and low education). Our work adds to the 29 

growing evidence that patterns of pollution and economic challenges are not random, but rather, racially 30 

and socially structured. By understanding these patterns, we can develop policies that reduce pollution in 31 

these areas and improve the health for residents in these overburdened communities. 32 

  33 
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Abstract 34 

The environmental justice literature demonstrates consistently that low-income and minority 35 

communities are disproportionately exposed to environmental hazards. In this case study, we examined 36 

cumulative multipollutant, multidomain, and multimatrix environmental exposures in Milwaukee County, 37 

Wisconsin. We identified spatial hot spots in Milwaukee County both individually and through clusters 38 

across a profile of environmental pollutants that span regulatory domains and matrices of exposure, as 39 

well as socioeconomic indicators. The most sensitive cluster within the urban area was largely 40 

characterized by low socioeconomic status (SES) and an overrepresentation of the Non-Hispanic Black 41 

(NHB) population relative to the county as a whole. In this cluster, average pollutant concentrations were 42 

equivalent to the 78th percentile in county-level blood lead levels, 67th percentile in county-level NO2, 79th 43 

percentile in county-level CO, and 78th percentile in county-level air toxics while simultaneously having 44 

an average equivalent to the 62nd percentile in county-level unemployment, 70th percentile in county-level 45 

population rate lacking a high school diploma, 73rd percentile in county-level poverty rate, and 28th 46 

percentile in county-level median household income. The spatial patterns of pollutant exposure and SES 47 

indicators suggested that these disparities were not random but were instead structured by socioeconomic 48 

and racial factors. Our case study, which combines environmental pollutant exposures, sociodemographic 49 

data, and clustering analysis, provides a roadmap to identify and target overburdened communities for 50 

interventions that reduce environmental exposures and consequently improve public health.  51 

 52 

1. Introduction 53 

Previous research has established an association between health risks and exposure to various 54 

anthropogenic environmental pollutants. Ambient air pollution has been consistently associated with an 55 

array of adverse health impacts and is one of the leading risk factors contributing to morbidity and 56 

premature mortality (Dockery et al., 1993; Bell et al., 2004; Miller et al., 2007; Apte et al., 2018). As a 57 

result, the US Environmental Protection Agency (EPA) enforces national ambient air quality standards 58 

(NAAQS) for six common air pollutants (“criteria air pollutants”), which are known to have adverse 59 

health effects (EPA, 2023a). In addition to the criteria air pollutants, the EPA also mandates the reporting 60 

of emissions of hundreds of chemicals with known cancer-causing or chronic/acute health effects (EPA, 61 

2023b). Other exposure matrices are also known to have health risks. Lead exposure, which may occur 62 

through air, water, paint, or soil, has been shown to adversely impact intelligence quotient scores 63 

(Bellinger et al. 1992; Lanphear et al. 2005), school performance (Kordas et al. 2007; Magzamen et al. 64 

2015), prosocial behavior (Wright et al. 2008; Amato et al. 2013), and cardiovascular disease 65 

(Chowdhury et al. 2018; Lamas et al. 2021).  66 
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Current regulations are often based on single pollutant exposures, which do not consider the 67 

possible synergistic effects of cumulative exposures (Mauderly and Samet, 2009; Benka-Coker et al., 68 

2020). Individuals are rarely exposed to single pollutants in isolation (e.g., Molitor et al. (2011)). Instead, 69 

people and communities are commonly exposed to numerous pollutants within a regulatory domain (e.g., 70 

different criteria air pollutants such as, PM2.5 and O3) as well as multiple pollutants across regulatory 71 

domains (for instance, criteria air pollutants and air toxics) (Benka-Coker et al., 2020). Further, 72 

individuals may be exposed to environmental pollutants across multiple exposure matrices (e.g., air and 73 

water). These cumulative multipollutant, multidomain, and multimatrix exposures may lead to complex 74 

health responses not captured by considering single exposure to pollutants. Complicating matters, 75 

interventions are rarely designed to target multidomain and multimatrix exposures. 76 

Environmental epidemiology has increasingly considered exposures within the context of 77 

socioeconomic status (SES) (O’Neill et al., 2003). A wealth of literature has illustrated the relationship 78 

between SES and health (e.g., Adler et al. (1993); Isaacs and Schroeder (2004); Lynch et al. (2004)), as 79 

well as the concept that low SES and negative environmental exposures are interrelated (Magzamen et al., 80 

2008). This association may occur because individuals living in areas of low SES may be exposed to 81 

higher concentrations of environmental pollutants and/or may be more susceptible to environmental 82 

pollutants (O’Neill et al., 2004). In addition to SES, numerous studies have highlighted disparities in 83 

exposure to environmental pollutants across racial and ethnic lines (Morello-Frosch and Jesdale, 2006; 84 

Clark et al., 2014; Jbailey et al., 2022). Furthermore, recent modeling work suggests that Black and 85 

Hispanic populations in the US are exposed to a higher air pollution exposure burden relative to the 86 

expected exposure originating from emissions associated with these population groups (Tessum et al., 87 

2019; Tessum et al., 2021). These racial and ethnic disparities in exposure may contribute to higher rates 88 

of adverse health outcomes among communities of color (Apelberg et al., 2005; Hill et al., 2011).  89 

Communities of color and low SES are exposed to higher concentrations of environmental 90 

pollutants and are more susceptible to the effects of this exposure (Clark et al. 2014; Tessum et al. 2021). 91 

Recently, several methodological approaches have been proposed to address the independent and joint 92 

contribution of environmental exposures and social factors to health outcomes (Martenies et al. 2019; 93 

Martenies et al. 2022a; Martenies et al. 2022b; Martenies et al. 2023). Identification of relevant social or 94 

environmental factors associated with disease outcomes are an important pathway to identify effective 95 

intervention and mediation strategies to improve health. Informed by earlier work (Molitor et al., 2011; 96 

Lalloué et al., 2014; Shrestha et al., 2016), it is necessary to develop indicators that highlight communities 97 

of high risk due to elevated cumulative exposure to environmental pollutants and/or low SES. For 98 

instance, CalEnviroScreen develops an index based on percentile rankings across a set of environmental 99 

and social indicators (Faust et al., 2014). 100 
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Comprehensive interventions that address multidomain and multimatrix exposures and adaptable 101 

to varying demographic and SES contexts are scarce. In this study, we examine associations between 102 

environmental exposures known to have adverse health risks and demographic and SES indicators across 103 

multiple pollutants, domains, and matrices. We focus on the urban/suburban area of Milwaukee County, 104 

Wisconsin. We highlight communities with cumulative exposures to elevated concentrations of 105 

environmental pollutants and indicators of low SES status that can be prioritized for regulatory 106 

interventions. In Section 2, we outline the environmental pollutants, SES indicators, and statistical 107 

methodology used here. In Section 3, we examine geographical distributions across the profile of 108 

environmental pollutants and SES indicators, and the local and global clustering of these risk factors. We 109 

share our conclusions and study limitations in Section 4. 110 

 111 

2. Methods 112 

2.1 Study Area 113 

 Milwaukee County, Wisconsin (shown in the inset in Figure S1) includes the city of Milwaukee 114 

and the suburban area outside it. Milwaukee County is the most racially diverse county in the state of 115 

Wisconsin, with a Black population fraction over twice as high as the national average (US Census 116 

Bureau, 2022). Milwaukee County has a history of poor environmental pollution. It was designated a 117 

NAAQS maintenance area for 24-hr PM2.5 in 2016 (Southeastern Wisconsin Regional Planning 118 

Commission, 2016) and received an ‘F’ grade for O3 from the American Lung Association’s 2016 State 119 

of the Air report (American Lung Association, 2016). In 2014, the city of Milwaukee had the highest 120 

prevalence of lead poisoning in Wisconsin (which rates among the states with the highest incidence of 121 

childhood lead poisoning in the US) (Wisconsin Department of Health Services, 2014).  122 

 123 

2.2 Environmental Pollutants 124 

We examined the cumulative exposure to blood lead levels (BLL), five of the six criteria air 125 

pollutants, and inhalation toxicity-weighted summed concentrations of air toxics. These pollutants 126 

spanned regulatory exposure domains and exposure matrices. We used measurements and estimates of 127 

pollutants in the year 2015 (the most recent year for all data sources) at the census block group (CBG) 128 

resolution (the highest resolution estimates offered for all data sources). The dataset at the individual level 129 

for BLL consisted of samples collected from children who were part of the Healthy Homes and Lead 130 

Poisoning Surveillance system (HHLPSS) overseen by the Wisconsin Department of Health Services, 131 

Division of Public Health Services. The participants were children aged five or below, living in 132 

Milwaukee County between 2015 and 2019. These data, which received ethics approval from the 133 

Wisconsin Division of Public Health data governance board, encompassed information such as the child's 134 
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test ID, test date, test type, age at testing, gender, race, primary address, and BLL. BLL were determined 135 

through venous or capillary testing methods. Some of the BLL values were reported with unknown 136 

sampling methods. Therefore, to avoid duplicating samples, if a child had multiple BLL tests, the highest 137 

BLL obtained from the venous test was retained since the venous test has been reported to give the most 138 

reliable BLL result than the capillary method (Parson et al., 1993; Schlenker et al., 1994; Sargent and 139 

Dalton, 1996; Holtrop et al., 1998; Cantor et al., 2019). When venous tests were absent, the highest value 140 

from capillary tests was retained. If the testing method was unspecified, the result was still included in the 141 

analysis, accounting for less than 2% of the total test data. Following data preprocessing, the BLL of 142 

95,659 children in Milwaukee County were assessed, with 71,162 residing within the city of Milwaukee. 143 

We aggregate measurements to the CBG resolution. We note substantial variability in measurements of 144 

BLL within CBGs (Figure S2).  145 

Estimates of criteria air pollutants (CO, NO2, PM2.5, O3, PM10, and SO2) were taken from the 146 

Center for Air, Climate and Energy Solutions (CACES) land use regression model; for details refer to 147 

Kim et al. (2015). Estimates of air toxics come from the EPA’s Risk-Screening Environmental Indicators 148 

(RSEI) model (EPA, 2023c). RSEI aggregates data collected from the Toxic Release Inventory. We used 149 

the sum of the concentrations of all chemicals in each CBG weighted by toxicity (i.e., the concentration 150 

multiplied by the relative inhalation toxicity weight summed over all chemicals in the CBG). Thus, this 151 

analysis was sensitive to estimates of both concentration of each chemical as well as its toxicity.  152 

 153 

2.3 Demographic and Socioeconomic Data 154 

To examine the association of cumulative environmental exposure with SES and racial/ethnic 155 

disparities, we downloaded data from the 5-year American Community Survey available from the US 156 

Census Bureau (US Census Bureau, 2022). We used estimates of the percent of the population 16 years or 157 

older within the civilian labor force that is unemployed, percent of the population older than 25 years 158 

without a high school diploma, median household income, and percent of the population living below the 159 

poverty line. These risk factors have been used in previous studies as measures of social vulnerability 160 

(Martenies et al. 2019). To examine disparities along racial and ethnic lines, we used the percent of the 161 

population in each CBG identifying as non-Hispanic White (NHW) and non-Hispanic Black (NHB). We 162 

focused on these two groups due to the historical record of racial residential segregation in Wisconsin 163 

between NHW and NHB populations.  164 

 165 

2.4 Statistical Analysis 166 

To investigate the degree of spatial structure in the dataset, we calculated measures of global and 167 

local spatial autocorrelation. We reported Moran’s I as our metric for global spatial autocorrelation 168 
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(Moran, 1948). Moran’s I was normalized to range from -1 to +1 with values closer to +1 indicating a 169 

greater degree of positive spatial autocorrelation. Further, we calculated Local Indicators of Spatial 170 

Association using Local Moran’s I to identify statistically significant hot and cold spots across 171 

environmental pollutants and SES indicators (Anselin, 1995). This measure of local spatial 172 

autocorrelation identifies geographic clusters with high (low) values beyond what we would expect by 173 

random chance. Statistical significance was assessed at the 95th percentile confidence interval. Both local 174 

and global spatial autocorrelation were calculated using queen-adjacent spatial weights matrices. Spatial 175 

statistics were done in Python using the PySAL package (Rey and Anselin, 2010). We quantified 176 

inequality in environmental pollutants and SES indicators using the Gini index. The Gini index ranges 177 

from 0 to 1 with higher values indicating a greater degree of inequality. This index, borrowed from 178 

economic studies (Gini, 1936), has also been used frequently in previous studies investigating disparities 179 

in environmental pollutants (e.g., Levy et al., 2006).  180 

To identify clusters of vulnerable populations across a profile of environmental pollutants and 181 

SES indicators, we used K-means clustering. As input features, we used standardized values for all 182 

environmental pollutants and SES indicators with all features weighted equally. We did not include 183 

demographic or geographic data as inputs to the clustering algorithm to explore the degree to which 184 

spatial and demographic factors are associated with the predicted clusters. The number of predicted 185 

clusters was to some degree subjective. We chose three clusters as this number demonstrated consistent 186 

environmental social profiles across the clusters. In addition, the three predicted clusters occupied a 187 

roughly spatially homogeneous region.  188 

 189 

3. Results 190 

3.1 Geographic Distribution of Environmental Pollutants and Socioeconomic Indicators 191 

Annual (year 2015) mean concentrations of BLL, criteria air pollutants, and air toxics exhibited 192 

substantial spatial structure across Milwaukee, County; though, the spatial patterns differed by pollutant 193 

(Figure 1 and Table 1). The highest concentrations of BLL, CO, NO2, PM2.5, and air toxics occurred 194 

within the city of Milwaukee (Figure 1), while O3 and PM10 had slightly lower concentrations in this area 195 

relative to other parts of the county. For SO2, the highest concentrations were found both inside and 196 

outside the Milwaukee city limits. Pollutants generally exhibited weak (less than 0.4) paired correlations 197 

with the exception of CO and NO2 (0.72), CO and O3 (-0.65), and NO2 and PM2.5 (0.64) (Figure S4). 198 

All pollutants exhibited a high degree of spatial structure (evidenced by Moran’s I measure of 199 

global spatial autocorrelation) across Milwaukee County, as expected based on known differences in 200 

emissions across an urban area (Table 1). Children residing in the census tract in the metropolitan area of 201 

the city of Milwaukee, particularly in older housing stock with a median housing age of 94 years 202 
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(interquartile range = 48 years), exhibited elevated BLLs. These aged residences may contain lead-based 203 

paints in multiple layers of painted surfaces, despite the absence of lead in the topmost paint layer. 204 

Additionally, a significant majority of these residential homes, approximately 90% are equipped with lead 205 

service lines, which are major sources of childhood lead poisoning. Mixing ratios of NO2 exhibited the 206 

highest degree of spatial structure, with elevated concentrations along major roadways. While on-road 207 

sources mostly emit NO, some of this NO is rapidly converted to NO2. Emissions of CO are also likely 208 

associated with traffic and urban sources. In contrast, PM2.5 was spatially heterogeneous, which includes a 209 

mixture of primary (e.g., elemental carbon) and secondary (e.g., ammonium nitrate, ammonium sulfate) 210 

species. Annually-averaged measurements from the EPA’s Chemical Speciation Network in Milwaukee 211 

reported a normalized PM2.5 mass composition of organic carbon (37%, by mass), nitrate (26%), sulfate 212 

(18%), and ammonium (11%) ions, and elemental carbon (8%). PM10 and SO2 could have been higher in 213 

some pockets outside the city due to the presence of specific emissions sources. O3 is a regional pollutant 214 

formed from photochemical reactions and, hence, exhibited less variability across the county. The spatial 215 

pattern of toxicity-weighted concentrations of air toxics was strongly dependent on the location of the 216 

point sources (e.g., factories).  217 

In addition to deleterious environmental exposure, the city of Milwaukee remains one of the most 218 

segregated areas in the United States (Johnston 2022). An analysis of 2000 census data for cities over 1 219 

million residents indicated that Milwaukee was the most segregated city in the United States, where Black 220 

residents are concentrated in the central city (Frey 2018). Further, according to analyses conducted by the 221 

Center for Economic Development at University of Wisconsin-Milwaukee, Milwaukee’s Black 222 

community faces myriad social challenges: median Black household income in Milwaukee is 42% that of 223 

a NHW household, the largest racial disparity in the country. Additionally, Milwaukee has the second-224 

lowest Black homeownership rate among the nation’s largest metropolitan areas at approximately 27.2 225 

percent (Levine 2020). Over 72% of Black schoolchildren in Milwaukee attend hypersegregated schools, 226 

the highest rate in the country, and significantly higher than the percentage 30 years ago (Levine 2020).  227 

To quantify the degree of spatial inequality in environmental pollutants, we calculated the Gini 228 

coefficient for each pollutant for Milwaukee County. A value of the Gini coefficient of 0 indicates perfect 229 

equality with increasing values indicating a higher degree of inequality (with a maximum of 1). We 230 

calculated the Gini coefficient based on the distribution of annual means in the CBGs for each pollutant. 231 

BLL and air toxics had by far the highest degree of inequality across the county, 0.2 and 0.3, respectively. 232 

The criteria air pollutants generally had low Gini coefficients, ranging from 0.006-0.09. O3 had the lowest 233 

measure of inequality (0.006) consistent with the low spatial variability in concentration across the 234 

county.  235 
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Similar to the environmental pollutants, the SES indicators also exhibited a high degree of spatial 236 

structure where indications of low SES were concentrated in the center of the city of Milwaukee (Table 1 237 

and Figure 1). These indicators were moderately correlated (with the absolute value of the paired 238 

correlations ranging from 0.34-0.67) (Figure S4). The Gini coefficient was high for all indicators 239 

considered here, ranging from 0.3 to 0.5, indicating a high degree of spatial inequality across Milwaukee 240 

County. 241 

 242 

3.2 Local Hot and Cold Spots for Environmental Pollutants and SES Indicators 243 

We identified statistically significant geographic hot and cold spots of individual environmental 244 

pollutants and SES indicators. BLL, CO, NO2, and PM2.5 showed a similar geographic distribution, with a 245 

hot spot (a region of elevated values) in the center of the county (and roughly the center of the city of 246 

Milwaukee) and cold spots (low values) around the northern and southern parts of the county (Figure 2). 247 

BLL in the elevated clusters were 49% higher than the county average, indicating an important area of 248 

elevated exposure and associated health risk to this pollutant. In contrast, the average concentrations of 249 

CO, NO2, and PM2.5 in the elevated clusters were only moderately higher than the county average: 8%, 250 

15%, and 6%, respectively. Air toxics, which displayed the greatest variability across the state (Table 1), 251 

were 165% higher in the elevated cluster on average than in the county average. There were 503 CBGs 252 

identified as a hotspot for at least one of BLL, CO, NO2, PM2.5, and air toxics (Figure S5). While the hot 253 

spots for BLL, CO, NO2, PM2.5, and air toxics had roughly similar patterns, only eight CBGs, 254 

representing less than 1% of the county population, were considered a statistically significant hot spot for 255 

all these pollutants. While central Milwakuee clearly showed a risk of cumulative exposure across 256 

environmental pollutants, the individual hot and cold spots were not necessarily overlapping when 257 

considering all pollutants. 258 

The pattern of hot and cold spots for O3, PM10, and SO2 was notably different than for the other 259 

environmental pollutants (Figure 2). O3 displayed the opposite pattern, with a cluster of low 260 

concentrations in the center of the county, likely due to titration by urban NO emissions. The variability 261 

of O3 across the county was much lower than for the other pollutants considered here (Table 1). In 262 

contrast, PM10 and SO2 did not show a homogenous area in central Milwaukee of either high or low 263 

concentrations. This was likely caused by the spatial pattern of emissions for these pollutants. PM10 is 264 

commonly associated with resuspension of mineral dust and may be linked to natural emissions or 265 

agriculture while SO2 is linked to the use of coal and petroleum at electric utilities and industrial facilities.  266 

Similarly, the SES indicators showed regions of low SES in central Milwaukee; though, the 267 

spatial patterns of these hot spots weres varied. The clusters indicating low SES (the hot spots for 268 
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unemployment, lower education, and poverty and the cold spot for median household income) were on 269 

average 110 -160% higher than the county average (and 48% lower for the median household income).  270 

There was a clear difference in the demographics across CBGs in clusters with elevated values 271 

compared to lower values of environmental pollutants. In the local clusters with elevated values for BLL, 272 

CO, NO2, PM2.5, and air toxics the NHB population proportion ranged from 34-62% (the 66th-74th 273 

percentile in the county), while the NHW population proportion in these same CBGs ranged from 11%-274 

42% (23rd-44th percentile across the county). Conversely, in clusters of low values for these pollutants the 275 

NHB population percent ranged from 9%-14% while the NHW population ranged from 71%-75%. 276 

 277 

3.3 Clustering Across the Profile of Environmental Pollutants and SES Indicators 278 

To identify the most vulnerable residential areas, we performed K-means clustering across the 279 

profile of environmental pollutants and SES indicators. While geographic information was not included in 280 

the clustering algorithm, we selected 3 clusters of roughly homogeneous spatial extent. The selection of 281 

the number of clusters was subjective to some degree. We chose this number of clusters as it provided 282 

insight into geographic areas of elevated values across the profile of environmental pollutants and 283 

consistent low SES indicators. We show alternate choices of the number of clusters in Figure S6.  284 

The three clusters chosen showed consistent environmental and social profiles. The first cluster 285 

was located in the center of the county and was characterized by the highest BLL (the average was 286 

equivalent to the 78th percentile in county-level BLL), NO2 (67th percentile), CO (79th percentile), and air 287 

toxics (78th percentile) across the three clusters considered here (Table 2 and Figure 3). The third cluster, 288 

located in the northern/southern parts of the county, had the lowest concentrations of these pollutants 289 

(ranging from the 13th-28th percentile across the pollutants). PM2.5 (46th percentile in county-level 290 

concentrations) and SO2 (48th percentile) also showed elevated concentrations in the first cluster; 291 

however, their concentrations were on average higher in the second cluster, which was geographically 292 

sandwiched between the first and third clusters. Still, concentrations of PM2.5 and SO2 were clearly 293 

elevated in the first and second clusters relative to the third cluster. O3 showed a different trend with the 294 

lowest concentration in the first cluster and highest in the third cluster. This was consistent with the 295 

moderate anticorrelation of O3 with NO2.  296 

Similarly, the first cluster showed a consistent social profile of low SES indicators. This cluster 297 

had the highest rate of unemployment (an average rate equivalent to the 62nd percentile across the county), 298 

highest rate of people without a high school degree (70th percentile), lowest median household income 299 

(28th percentile), and highest rate of poverty (73rd percentile) relative to the other two clusters (Table 2 300 

and Figure 3). Demographic data were not included in fitting the clustering algorithm; however, applying 301 

the predicted labels to this data clearly showed a pattern across racial and ethnic lines (Table 2 and Figure 302 
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3). The first cluster, characterized by elevated BLL, NO2, CO, air toxics, PM2.5 and SO2, had the lowest 303 

population fraction of NHW (30th percentile in the county) and the highest population fraction of NHB 304 

(63rd percentile). Of the total NHB population in Milwaukee County, a plurality resided in the first cluster 305 

(46%) compared to 43% in the second cluster and 11% in the third cluster. On the other hand, only 8% of 306 

the NHW resided in the first cluster.  307 

The CBGs that made up the first cluster experience elevated multipollutant, multidomain, and 308 

multimatrix exposures to environmental pollutants. Moreover, this cluster was characterized by low SES 309 

with an overrepresentation of the NHB population (relative to the rest of the county). The environmental 310 

and social profile of this area indicated the most vulnerable population to exposure to environmental 311 

pollutants.  312 

 313 

4. Discussion 314 

 Across the United States, environmental justice communities, in both urban and rural areas, 315 

contend with multiple environmental pollutants from multiple domains. Residential segregation due to 316 

discriminatory mortgage lending practices (Home Owners Loan Corporation or “redlining”) have resulted 317 

in historically minoritized communities residing in close proximity to industrial sources of pollution, 318 

traffic related air pollution from roadways, and lack of beneficial resources for health, such as green 319 

spaces (Kowalski et al., 2023; Nardone et al., 2021). Yet, within reason, environmental regulatory 320 

strategies in the United States have been developed to focus on interventions within the same regulatory 321 

domain (e.g., air, water). As a result, they are not intentionally designed to address the cumulative and 322 

synergistic effects of exposure to multiple pollutants nor the systemic nature of exposure disparities. 323 

Tools that leverage existing data resources for the identification of localized spatial clusters of high 324 

cumulative exposures lead to better identification of at-risk communities where investments could be 325 

made to address multiple systemic disparities at once through place-based, multi-pronged interventions. 326 

Here, we applied a novel approach to identify vulnerable populations where regulatory interventions 327 

across multiple domains could be braided to reduce exposure to a wider range of environmental pollutants 328 

than would be achieved by a single regulatory domain. The first cluster, characterized by high pollutant 329 

concentrations, low SES, and high representation of NHB residents represents an exemplar output of this 330 

approach to cluster analysis, i.e., a high-risk population in need of interventions across multiple regulatory 331 

domains. If implemented with data resources like existing and emerging federal (e.g., EPA EJ Screen; 332 

https://www.epa.gov/ejscreen) and state (e.g., CalEnviroScreen; https://oehha.ca.gov/calenviroscreen) 333 

environmental screening and mapping tools, the approach presented here may also be useful in other 334 

settings where the spatial structure of environmental exposures, socioeconomic factors, and racial/ethnic 335 

demographics overlaps. Furthermore, this example may be also the most useful for urban areas where 336 
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there is a legacy of lead pollution as well as air pollution from anthropogenic (e.g., transportation, oil and 337 

gas) sources.  338 

We note several limitations in this analysis. First, we weighted all environmental pollutants 339 

equally in this analysis; however, the health risks due to exposure to each in isolation are likely unequal. 340 

Moreover, we note that the association between exposure and health risk also varies by health outcome 341 

being considered (e.g., hospital admissions for asthma compared to stroke). Second, application of this 342 

approach to other cities may not result in clear spatial designations. In our analysis, predicted clusters 343 

tended to be spatially homogeneous, reflecting the underlying distributions of the environmental 344 

pollutants and SES indicators. Third, when determining local individual clusters, the hot and cold spots 345 

were determined relatively and may not necessarily indicate high or low values in a broader context. 346 

Finally, we note that the modeled criteria air pollutants from the CACES land use regression model were 347 

developed and aggregated at the national level (Kim et al. 2015). Quantitative comparisons of this model 348 

at high spatial resolution are limited by lack of high-spatial resolution monitoring data, which highlights a 349 

need for enhanced monitoring of multiple pollutants.  350 

 The study described has several notable strengths as well. First, the study took comprehensive 351 

approach by considering multiple environmental pollutants across different domains and matrices. This 352 

approach was more reflective of real-world conditions where individuals are exposed to a mix of 353 

pollutants rather than a single pollutant. This study went beyond just examining multipollutant exposures 354 

by also considering SES and racial disparities. This allowed for a more nuanced understanding of 355 

environmental health risks and how they intersected with social and ethno-racial factors. Another strength 356 

of this study was the use of spatial analysis techniques, such as Moran's I and Local Indicators of Spatial 357 

Association, which provided a detailed understanding of the geographic distribution of environmental 358 

pollutants and SES indicators. This helped identify hotspots of exposure and vulnerability. Further, the 359 

application of K-means clustering to identify vulnerable populations across a profile of environmental 360 

pollutants and SES indicators was a novel approach. This can help prioritize areas for intervention and 361 

policy action. The use of the Gini coefficient to quantify spatial inequality in environmental pollutant 362 

exposures and SES indicators was a significant strength. Another strength was the use of multiple data 363 

sources in a localized context. The study's focus on Milwaukee County, Wisconsin, allowed for a detailed 364 

examination of environmental, socioeconomic, and racial disparities in a specific geographic context. 365 

This can provide valuable insights for local policymakers and stakeholders. Lastly, the study integrated 366 

data from multiple sources, including measurements and estimates of pollutants, demographic and 367 

socioeconomic data from the US Census Bureau, and data from the Healthy Homes and Lead Poisoning 368 

Surveillance system. This allowed for a more comprehensive analysis of environmental exposures and 369 

their social determinants using publicly available datasets. 370 
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 In conclusion, this study provided valuable insights into the spatial distribution of environmental 371 

pollutant exposure and its association with SES and racial disparities in Milwaukee County. The findings 372 

underscore the need for comprehensive interventions that address multipollutant, multidomain, and 373 

multimatrix exposures, particularly in communities with low SES and high minority populations. Future 374 

research should focus on understanding the health impacts of cumulative exposure to multiple pollutants 375 

and developing effective strategies to reduce these exposures and mitigate their health effects. 376 

 377 

5. Data Availability 378 

 No new data were generated as part of this work. The BLL data were collected as part of the 379 

Healthy Homes and Lead Poisoning Surveillance system (HHLPSS) overseen by the Wisconsin 380 

Department of Health Services. Household BLL data may be made available after careful consultation 381 

with all co-authors, partners, and stakeholders. The criteria air pollutant data were downloaded from 382 

https://www.caces.us/data, the air toxics data were downloaded from https://www.epa.gov/rsei, and 383 

socioeconomic and demographic data were downloaded from https://data.census.gov/cedsci/.  384 

 385 
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Additional information about the study area, demographic distribution, pairwise correlations, and 387 

sensitivity to clustering assumptions. 388 
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Table 1. Summary statistics (annual mean, standard deviation as well as the 5th, 25th, 50th, 75th, and 95th 514 
percentile) in 2015 and global spatial autocorrelation (Moran’s I) for blood lead levels, criteria air 515 
pollutants, air toxins, and socioeconomic indicators across Milwaukee County, Wisconsin.  516 

Pollutant Mean SD 5th 25th 50th 75th 95th  Moran’s I Gini 
BLL [µg dL] 2.99 1.18 1.54 2.13 2.73 3.66 5.17 0.51 0.21 
CO [ppm] 0.29 0.02 0.25 0.28 0.29 0.31 0.32 0.85 0.04 
NO2 [ppb] 10.1 1.74 6.53 9.13 10.7 11.3 11.9 0.93 0.09 
PM2.5 [µg m-3] 9.17 0.48 8.28 8.88 9.25 9.53 9.83 0.82 0.03 
O3 [ppb] 44.1 0.46 43.2 43.8 44.1 44.4 44.7 0.96 0.01 
PM10 [µg m-3] 17.2 1.32 15.2 16.3 17.1 17.9 19.4 0.61 0.04 
SO2 [ppb] 1.01 0.12 0.8 0.93 1.02 1.10 1.20 0.70 0.07 
Air Toxics  
[µg m-3] 

4070 3760 1970 2400 3080 4550 7890 0.56 0.32 

Unemployed 
[%] 

6.29 6.61 0.00 1.65 4.35 8.51 20.29 0.26 0.53 

No HS diploma 
[%] 

17.1 13.9 1.42 6.59 13.6 23.6 48.2 0.69 0.44 

Household 
Income [USD] 

55,000 30,000 20,000 35,000 50,000 68,000 109,000 0.61 0.28 

Poverty [%] 20.3 17.1 1.27 6.19 15.3 32.0 51.9 0.55 0.46 
  517 
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Table 2. The average percentile ranking for blood lead levels, criteria air pollutants, air toxins, 518 
demographic indicators, and socioeconomic indicators across the three predicted clusters.  519 
Variable Cluster 1 Cluster 2 Cluster 3 
BLL 0.78 0.42 0.28 
CO 0.79 0.47 0.17 
NO2 0.67 0.56 0.13 
PM2.5 0.46 0.67 0.17 
O3 0.21 0.59 0.69 
PM10 0.37 0.56 0.54 
SO2 0.48 0.58 0.35 
Air toxics 0.78 0.43 0.27 
% NHW 0.30 0.53 0.72 
% NHB 0.63 0.50 0.33 
% Unemployed 0.62 0.48 0.38 
No high school diploma 0.70 0.46 0.32 
Median Income 0.28 0.54 0.71 
% Below Poverty 0.73 0.45 0.30 
  520 
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 521 

 522 
Figure 1. Annual mean year 2015 values in Milwaukee County, Wisconsin of (a) blood lead levels, (b) 523 
CO, (c) NO2, (d) PM2.5, (e) O3, (f) PM10, (g) SO2, (h) air toxics as well as socioeconomic factors (i) 524 
unemployment rate, (j) percent of the population without a high school diploma, (k) median household 525 
income, (l) percent of the population below the poverty line. The green polygon shows the municipal 526 
boundary of the city of Milwaukee, Wisconsin. 527 
  528 
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 529 
Figure 2. Statistically significant local clusters of high values (red) and low values (blue) for (a) blood 530 
lead levels, (b) CO, (c) NO2, (d) PM2.5, (e) O3, (f) PM10, (g) SO2, (h) air toxics, (i) unemployment rate, (j) 531 
percent of the population without a high school diploma, (k) median household income, (l) percent of the 532 
population below the poverty line in Milwaukee County.  533 
  534 
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 535 
Figure 3. (a) Geographic distribution of K-means cluster predictions and distribution of annual mean 536 
values (expressed as a percentile ranking) across the three predicted clusters for (b) blood lead levels, (c) 537 
CO, (d) NO2, (e) PM2.5, (f) O3, (g) PM10, (h) SO2, (i) air toxics, (j) percent unemployed, (k) percent 538 
without a high school diploma, (l) median household income, (m) percent below the federal poverty line, 539 
(n) percent of the population identifying as non-Hispanic White, (o) percent of the population identifying 540 
as non-Hispanic Black. Environmental pollutants (b-i), SES indicators (j-m), and population racial 541 
groups (n-o) are expressed as percentile rankings. 542 
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 16 
Key Points 17 

- We examine cumulative exposures to multiple pollutants and their association with 18 

socioeconomic and racial disparities in Milwaukee County 19 

- We highlight census block groups that are most vulnerable to pollution and low SES, which can 20 

be prioritized for regulatory interventions 21 

- People of color in Milwaukee County are not just exposed to high pollution, they are often 22 

exposed within the context of low SES 23 

 24 

Plain Language Summary 25 

Our study focused on Milwaukee County, Wisconsin, where we examined how people in this region were 26 

exposed to different types of pollutants. We found that areas with the highest levels of pollution (e.g., 27 

lead, nitrogen dioxide) had a higher proportion of Black residents and those residents also experienced 28 

social and economic challenges (e.g., unemployment, poverty, and low education). Our work adds to the 29 

growing evidence that patterns of pollution and economic challenges are not random, but rather, racially 30 

and socially structured. By understanding these patterns, we can develop policies that reduce pollution in 31 

these areas and improve the health for residents in these overburdened communities. 32 

  33 
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Abstract 34 

The environmental justice literature demonstrates consistently that low-income and minority 35 

communities are disproportionately exposed to environmental hazards. In this case study, we examined 36 

cumulative multipollutant, multidomain, and multimatrix environmental exposures in Milwaukee County, 37 

Wisconsin. We identified spatial hot spots in Milwaukee County both individually and through clusters 38 

across a profile of environmental pollutants that span regulatory domains and matrices of exposure, as 39 

well as socioeconomic indicators. The most sensitive cluster within the urban area was largely 40 

characterized by low socioeconomic status (SES) and an overrepresentation of the Non-Hispanic Black 41 

(NHB) population relative to the county as a whole. In this cluster, average pollutant concentrations were 42 

equivalent to the 78th percentile in county-level blood lead levels, 67th percentile in county-level NO2, 79th 43 

percentile in county-level CO, and 78th percentile in county-level air toxics while simultaneously having 44 

an average equivalent to the 62nd percentile in county-level unemployment, 70th percentile in county-level 45 

population rate lacking a high school diploma, 73rd percentile in county-level poverty rate, and 28th 46 

percentile in county-level median household income. The spatial patterns of pollutant exposure and SES 47 

indicators suggested that these disparities were not random but were instead structured by socioeconomic 48 

and racial factors. Our case study, which combines environmental pollutant exposures, sociodemographic 49 

data, and clustering analysis, provides a roadmap to identify and target overburdened communities for 50 

interventions that reduce environmental exposures and consequently improve public health.  51 

 52 

1. Introduction 53 

Previous research has established an association between health risks and exposure to various 54 

anthropogenic environmental pollutants. Ambient air pollution has been consistently associated with an 55 

array of adverse health impacts and is one of the leading risk factors contributing to morbidity and 56 

premature mortality (Dockery et al., 1993; Bell et al., 2004; Miller et al., 2007; Apte et al., 2018). As a 57 

result, the US Environmental Protection Agency (EPA) enforces national ambient air quality standards 58 

(NAAQS) for six common air pollutants (“criteria air pollutants”), which are known to have adverse 59 

health effects (EPA, 2023a). In addition to the criteria air pollutants, the EPA also mandates the reporting 60 

of emissions of hundreds of chemicals with known cancer-causing or chronic/acute health effects (EPA, 61 

2023b). Other exposure matrices are also known to have health risks. Lead exposure, which may occur 62 

through air, water, paint, or soil, has been shown to adversely impact intelligence quotient scores 63 

(Bellinger et al. 1992; Lanphear et al. 2005), school performance (Kordas et al. 2007; Magzamen et al. 64 

2015), prosocial behavior (Wright et al. 2008; Amato et al. 2013), and cardiovascular disease 65 

(Chowdhury et al. 2018; Lamas et al. 2021).  66 
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Current regulations are often based on single pollutant exposures, which do not consider the 67 

possible synergistic effects of cumulative exposures (Mauderly and Samet, 2009; Benka-Coker et al., 68 

2020). Individuals are rarely exposed to single pollutants in isolation (e.g., Molitor et al. (2011)). Instead, 69 

people and communities are commonly exposed to numerous pollutants within a regulatory domain (e.g., 70 

different criteria air pollutants such as, PM2.5 and O3) as well as multiple pollutants across regulatory 71 

domains (for instance, criteria air pollutants and air toxics) (Benka-Coker et al., 2020). Further, 72 

individuals may be exposed to environmental pollutants across multiple exposure matrices (e.g., air and 73 

water). These cumulative multipollutant, multidomain, and multimatrix exposures may lead to complex 74 

health responses not captured by considering single exposure to pollutants. Complicating matters, 75 

interventions are rarely designed to target multidomain and multimatrix exposures. 76 

Environmental epidemiology has increasingly considered exposures within the context of 77 

socioeconomic status (SES) (O’Neill et al., 2003). A wealth of literature has illustrated the relationship 78 

between SES and health (e.g., Adler et al. (1993); Isaacs and Schroeder (2004); Lynch et al. (2004)), as 79 

well as the concept that low SES and negative environmental exposures are interrelated (Magzamen et al., 80 

2008). This association may occur because individuals living in areas of low SES may be exposed to 81 

higher concentrations of environmental pollutants and/or may be more susceptible to environmental 82 

pollutants (O’Neill et al., 2004). In addition to SES, numerous studies have highlighted disparities in 83 

exposure to environmental pollutants across racial and ethnic lines (Morello-Frosch and Jesdale, 2006; 84 

Clark et al., 2014; Jbailey et al., 2022). Furthermore, recent modeling work suggests that Black and 85 

Hispanic populations in the US are exposed to a higher air pollution exposure burden relative to the 86 

expected exposure originating from emissions associated with these population groups (Tessum et al., 87 

2019; Tessum et al., 2021). These racial and ethnic disparities in exposure may contribute to higher rates 88 

of adverse health outcomes among communities of color (Apelberg et al., 2005; Hill et al., 2011).  89 

Communities of color and low SES are exposed to higher concentrations of environmental 90 

pollutants and are more susceptible to the effects of this exposure (Clark et al. 2014; Tessum et al. 2021). 91 

Recently, several methodological approaches have been proposed to address the independent and joint 92 

contribution of environmental exposures and social factors to health outcomes (Martenies et al. 2019; 93 

Martenies et al. 2022a; Martenies et al. 2022b; Martenies et al. 2023). Identification of relevant social or 94 

environmental factors associated with disease outcomes are an important pathway to identify effective 95 

intervention and mediation strategies to improve health. Informed by earlier work (Molitor et al., 2011; 96 

Lalloué et al., 2014; Shrestha et al., 2016), it is necessary to develop indicators that highlight communities 97 

of high risk due to elevated cumulative exposure to environmental pollutants and/or low SES. For 98 

instance, CalEnviroScreen develops an index based on percentile rankings across a set of environmental 99 

and social indicators (Faust et al., 2014). 100 
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Comprehensive interventions that address multidomain and multimatrix exposures and adaptable 101 

to varying demographic and SES contexts are scarce. In this study, we examine associations between 102 

environmental exposures known to have adverse health risks and demographic and SES indicators across 103 

multiple pollutants, domains, and matrices. We focus on the urban/suburban area of Milwaukee County, 104 

Wisconsin. We highlight communities with cumulative exposures to elevated concentrations of 105 

environmental pollutants and indicators of low SES status that can be prioritized for regulatory 106 

interventions. In Section 2, we outline the environmental pollutants, SES indicators, and statistical 107 

methodology used here. In Section 3, we examine geographical distributions across the profile of 108 

environmental pollutants and SES indicators, and the local and global clustering of these risk factors. We 109 

share our conclusions and study limitations in Section 4. 110 

 111 

2. Methods 112 

2.1 Study Area 113 

 Milwaukee County, Wisconsin (shown in the inset in Figure S1) includes the city of Milwaukee 114 

and the suburban area outside it. Milwaukee County is the most racially diverse county in the state of 115 

Wisconsin, with a Black population fraction over twice as high as the national average (US Census 116 

Bureau, 2022). Milwaukee County has a history of poor environmental pollution. It was designated a 117 

NAAQS maintenance area for 24-hr PM2.5 in 2016 (Southeastern Wisconsin Regional Planning 118 

Commission, 2016) and received an ‘F’ grade for O3 from the American Lung Association’s 2016 State 119 

of the Air report (American Lung Association, 2016). In 2014, the city of Milwaukee had the highest 120 

prevalence of lead poisoning in Wisconsin (which rates among the states with the highest incidence of 121 

childhood lead poisoning in the US) (Wisconsin Department of Health Services, 2014).  122 

 123 

2.2 Environmental Pollutants 124 

We examined the cumulative exposure to blood lead levels (BLL), five of the six criteria air 125 

pollutants, and inhalation toxicity-weighted summed concentrations of air toxics. These pollutants 126 

spanned regulatory exposure domains and exposure matrices. We used measurements and estimates of 127 

pollutants in the year 2015 (the most recent year for all data sources) at the census block group (CBG) 128 

resolution (the highest resolution estimates offered for all data sources). The dataset at the individual level 129 

for BLL consisted of samples collected from children who were part of the Healthy Homes and Lead 130 

Poisoning Surveillance system (HHLPSS) overseen by the Wisconsin Department of Health Services, 131 

Division of Public Health Services. The participants were children aged five or below, living in 132 

Milwaukee County between 2015 and 2019. These data, which received ethics approval from the 133 

Wisconsin Division of Public Health data governance board, encompassed information such as the child's 134 
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test ID, test date, test type, age at testing, gender, race, primary address, and BLL. BLL were determined 135 

through venous or capillary testing methods. Some of the BLL values were reported with unknown 136 

sampling methods. Therefore, to avoid duplicating samples, if a child had multiple BLL tests, the highest 137 

BLL obtained from the venous test was retained since the venous test has been reported to give the most 138 

reliable BLL result than the capillary method (Parson et al., 1993; Schlenker et al., 1994; Sargent and 139 

Dalton, 1996; Holtrop et al., 1998; Cantor et al., 2019). When venous tests were absent, the highest value 140 

from capillary tests was retained. If the testing method was unspecified, the result was still included in the 141 

analysis, accounting for less than 2% of the total test data. Following data preprocessing, the BLL of 142 

95,659 children in Milwaukee County were assessed, with 71,162 residing within the city of Milwaukee. 143 

We aggregate measurements to the CBG resolution. We note substantial variability in measurements of 144 

BLL within CBGs (Figure S2).  145 

Estimates of criteria air pollutants (CO, NO2, PM2.5, O3, PM10, and SO2) were taken from the 146 

Center for Air, Climate and Energy Solutions (CACES) land use regression model; for details refer to 147 

Kim et al. (2015). Estimates of air toxics come from the EPA’s Risk-Screening Environmental Indicators 148 

(RSEI) model (EPA, 2023c). RSEI aggregates data collected from the Toxic Release Inventory. We used 149 

the sum of the concentrations of all chemicals in each CBG weighted by toxicity (i.e., the concentration 150 

multiplied by the relative inhalation toxicity weight summed over all chemicals in the CBG). Thus, this 151 

analysis was sensitive to estimates of both concentration of each chemical as well as its toxicity.  152 

 153 

2.3 Demographic and Socioeconomic Data 154 

To examine the association of cumulative environmental exposure with SES and racial/ethnic 155 

disparities, we downloaded data from the 5-year American Community Survey available from the US 156 

Census Bureau (US Census Bureau, 2022). We used estimates of the percent of the population 16 years or 157 

older within the civilian labor force that is unemployed, percent of the population older than 25 years 158 

without a high school diploma, median household income, and percent of the population living below the 159 

poverty line. These risk factors have been used in previous studies as measures of social vulnerability 160 

(Martenies et al. 2019). To examine disparities along racial and ethnic lines, we used the percent of the 161 

population in each CBG identifying as non-Hispanic White (NHW) and non-Hispanic Black (NHB). We 162 

focused on these two groups due to the historical record of racial residential segregation in Wisconsin 163 

between NHW and NHB populations.  164 

 165 

2.4 Statistical Analysis 166 

To investigate the degree of spatial structure in the dataset, we calculated measures of global and 167 

local spatial autocorrelation. We reported Moran’s I as our metric for global spatial autocorrelation 168 
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(Moran, 1948). Moran’s I was normalized to range from -1 to +1 with values closer to +1 indicating a 169 

greater degree of positive spatial autocorrelation. Further, we calculated Local Indicators of Spatial 170 

Association using Local Moran’s I to identify statistically significant hot and cold spots across 171 

environmental pollutants and SES indicators (Anselin, 1995). This measure of local spatial 172 

autocorrelation identifies geographic clusters with high (low) values beyond what we would expect by 173 

random chance. Statistical significance was assessed at the 95th percentile confidence interval. Both local 174 

and global spatial autocorrelation were calculated using queen-adjacent spatial weights matrices. Spatial 175 

statistics were done in Python using the PySAL package (Rey and Anselin, 2010). We quantified 176 

inequality in environmental pollutants and SES indicators using the Gini index. The Gini index ranges 177 

from 0 to 1 with higher values indicating a greater degree of inequality. This index, borrowed from 178 

economic studies (Gini, 1936), has also been used frequently in previous studies investigating disparities 179 

in environmental pollutants (e.g., Levy et al., 2006).  180 

To identify clusters of vulnerable populations across a profile of environmental pollutants and 181 

SES indicators, we used K-means clustering. As input features, we used standardized values for all 182 

environmental pollutants and SES indicators with all features weighted equally. We did not include 183 

demographic or geographic data as inputs to the clustering algorithm to explore the degree to which 184 

spatial and demographic factors are associated with the predicted clusters. The number of predicted 185 

clusters was to some degree subjective. We chose three clusters as this number demonstrated consistent 186 

environmental social profiles across the clusters. In addition, the three predicted clusters occupied a 187 

roughly spatially homogeneous region.  188 

 189 

3. Results 190 

3.1 Geographic Distribution of Environmental Pollutants and Socioeconomic Indicators 191 

Annual (year 2015) mean concentrations of BLL, criteria air pollutants, and air toxics exhibited 192 

substantial spatial structure across Milwaukee, County; though, the spatial patterns differed by pollutant 193 

(Figure 1 and Table 1). The highest concentrations of BLL, CO, NO2, PM2.5, and air toxics occurred 194 

within the city of Milwaukee (Figure 1), while O3 and PM10 had slightly lower concentrations in this area 195 

relative to other parts of the county. For SO2, the highest concentrations were found both inside and 196 

outside the Milwaukee city limits. Pollutants generally exhibited weak (less than 0.4) paired correlations 197 

with the exception of CO and NO2 (0.72), CO and O3 (-0.65), and NO2 and PM2.5 (0.64) (Figure S4). 198 

All pollutants exhibited a high degree of spatial structure (evidenced by Moran’s I measure of 199 

global spatial autocorrelation) across Milwaukee County, as expected based on known differences in 200 

emissions across an urban area (Table 1). Children residing in the census tract in the metropolitan area of 201 

the city of Milwaukee, particularly in older housing stock with a median housing age of 94 years 202 
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(interquartile range = 48 years), exhibited elevated BLLs. These aged residences may contain lead-based 203 

paints in multiple layers of painted surfaces, despite the absence of lead in the topmost paint layer. 204 

Additionally, a significant majority of these residential homes, approximately 90% are equipped with lead 205 

service lines, which are major sources of childhood lead poisoning. Mixing ratios of NO2 exhibited the 206 

highest degree of spatial structure, with elevated concentrations along major roadways. While on-road 207 

sources mostly emit NO, some of this NO is rapidly converted to NO2. Emissions of CO are also likely 208 

associated with traffic and urban sources. In contrast, PM2.5 was spatially heterogeneous, which includes a 209 

mixture of primary (e.g., elemental carbon) and secondary (e.g., ammonium nitrate, ammonium sulfate) 210 

species. Annually-averaged measurements from the EPA’s Chemical Speciation Network in Milwaukee 211 

reported a normalized PM2.5 mass composition of organic carbon (37%, by mass), nitrate (26%), sulfate 212 

(18%), and ammonium (11%) ions, and elemental carbon (8%). PM10 and SO2 could have been higher in 213 

some pockets outside the city due to the presence of specific emissions sources. O3 is a regional pollutant 214 

formed from photochemical reactions and, hence, exhibited less variability across the county. The spatial 215 

pattern of toxicity-weighted concentrations of air toxics was strongly dependent on the location of the 216 

point sources (e.g., factories).  217 

In addition to deleterious environmental exposure, the city of Milwaukee remains one of the most 218 

segregated areas in the United States (Johnston 2022). An analysis of 2000 census data for cities over 1 219 

million residents indicated that Milwaukee was the most segregated city in the United States, where Black 220 

residents are concentrated in the central city (Frey 2018). Further, according to analyses conducted by the 221 

Center for Economic Development at University of Wisconsin-Milwaukee, Milwaukee’s Black 222 

community faces myriad social challenges: median Black household income in Milwaukee is 42% that of 223 

a NHW household, the largest racial disparity in the country. Additionally, Milwaukee has the second-224 

lowest Black homeownership rate among the nation’s largest metropolitan areas at approximately 27.2 225 

percent (Levine 2020). Over 72% of Black schoolchildren in Milwaukee attend hypersegregated schools, 226 

the highest rate in the country, and significantly higher than the percentage 30 years ago (Levine 2020).  227 

To quantify the degree of spatial inequality in environmental pollutants, we calculated the Gini 228 

coefficient for each pollutant for Milwaukee County. A value of the Gini coefficient of 0 indicates perfect 229 

equality with increasing values indicating a higher degree of inequality (with a maximum of 1). We 230 

calculated the Gini coefficient based on the distribution of annual means in the CBGs for each pollutant. 231 

BLL and air toxics had by far the highest degree of inequality across the county, 0.2 and 0.3, respectively. 232 

The criteria air pollutants generally had low Gini coefficients, ranging from 0.006-0.09. O3 had the lowest 233 

measure of inequality (0.006) consistent with the low spatial variability in concentration across the 234 

county.  235 



8 

Similar to the environmental pollutants, the SES indicators also exhibited a high degree of spatial 236 

structure where indications of low SES were concentrated in the center of the city of Milwaukee (Table 1 237 

and Figure 1). These indicators were moderately correlated (with the absolute value of the paired 238 

correlations ranging from 0.34-0.67) (Figure S4). The Gini coefficient was high for all indicators 239 

considered here, ranging from 0.3 to 0.5, indicating a high degree of spatial inequality across Milwaukee 240 

County. 241 

 242 

3.2 Local Hot and Cold Spots for Environmental Pollutants and SES Indicators 243 

We identified statistically significant geographic hot and cold spots of individual environmental 244 

pollutants and SES indicators. BLL, CO, NO2, and PM2.5 showed a similar geographic distribution, with a 245 

hot spot (a region of elevated values) in the center of the county (and roughly the center of the city of 246 

Milwaukee) and cold spots (low values) around the northern and southern parts of the county (Figure 2). 247 

BLL in the elevated clusters were 49% higher than the county average, indicating an important area of 248 

elevated exposure and associated health risk to this pollutant. In contrast, the average concentrations of 249 

CO, NO2, and PM2.5 in the elevated clusters were only moderately higher than the county average: 8%, 250 

15%, and 6%, respectively. Air toxics, which displayed the greatest variability across the state (Table 1), 251 

were 165% higher in the elevated cluster on average than in the county average. There were 503 CBGs 252 

identified as a hotspot for at least one of BLL, CO, NO2, PM2.5, and air toxics (Figure S5). While the hot 253 

spots for BLL, CO, NO2, PM2.5, and air toxics had roughly similar patterns, only eight CBGs, 254 

representing less than 1% of the county population, were considered a statistically significant hot spot for 255 

all these pollutants. While central Milwakuee clearly showed a risk of cumulative exposure across 256 

environmental pollutants, the individual hot and cold spots were not necessarily overlapping when 257 

considering all pollutants. 258 

The pattern of hot and cold spots for O3, PM10, and SO2 was notably different than for the other 259 

environmental pollutants (Figure 2). O3 displayed the opposite pattern, with a cluster of low 260 

concentrations in the center of the county, likely due to titration by urban NO emissions. The variability 261 

of O3 across the county was much lower than for the other pollutants considered here (Table 1). In 262 

contrast, PM10 and SO2 did not show a homogenous area in central Milwaukee of either high or low 263 

concentrations. This was likely caused by the spatial pattern of emissions for these pollutants. PM10 is 264 

commonly associated with resuspension of mineral dust and may be linked to natural emissions or 265 

agriculture while SO2 is linked to the use of coal and petroleum at electric utilities and industrial facilities.  266 

Similarly, the SES indicators showed regions of low SES in central Milwaukee; though, the 267 

spatial patterns of these hot spots weres varied. The clusters indicating low SES (the hot spots for 268 
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unemployment, lower education, and poverty and the cold spot for median household income) were on 269 

average 110 -160% higher than the county average (and 48% lower for the median household income).  270 

There was a clear difference in the demographics across CBGs in clusters with elevated values 271 

compared to lower values of environmental pollutants. In the local clusters with elevated values for BLL, 272 

CO, NO2, PM2.5, and air toxics the NHB population proportion ranged from 34-62% (the 66th-74th 273 

percentile in the county), while the NHW population proportion in these same CBGs ranged from 11%-274 

42% (23rd-44th percentile across the county). Conversely, in clusters of low values for these pollutants the 275 

NHB population percent ranged from 9%-14% while the NHW population ranged from 71%-75%. 276 

 277 

3.3 Clustering Across the Profile of Environmental Pollutants and SES Indicators 278 

To identify the most vulnerable residential areas, we performed K-means clustering across the 279 

profile of environmental pollutants and SES indicators. While geographic information was not included in 280 

the clustering algorithm, we selected 3 clusters of roughly homogeneous spatial extent. The selection of 281 

the number of clusters was subjective to some degree. We chose this number of clusters as it provided 282 

insight into geographic areas of elevated values across the profile of environmental pollutants and 283 

consistent low SES indicators. We show alternate choices of the number of clusters in Figure S6.  284 

The three clusters chosen showed consistent environmental and social profiles. The first cluster 285 

was located in the center of the county and was characterized by the highest BLL (the average was 286 

equivalent to the 78th percentile in county-level BLL), NO2 (67th percentile), CO (79th percentile), and air 287 

toxics (78th percentile) across the three clusters considered here (Table 2 and Figure 3). The third cluster, 288 

located in the northern/southern parts of the county, had the lowest concentrations of these pollutants 289 

(ranging from the 13th-28th percentile across the pollutants). PM2.5 (46th percentile in county-level 290 

concentrations) and SO2 (48th percentile) also showed elevated concentrations in the first cluster; 291 

however, their concentrations were on average higher in the second cluster, which was geographically 292 

sandwiched between the first and third clusters. Still, concentrations of PM2.5 and SO2 were clearly 293 

elevated in the first and second clusters relative to the third cluster. O3 showed a different trend with the 294 

lowest concentration in the first cluster and highest in the third cluster. This was consistent with the 295 

moderate anticorrelation of O3 with NO2.  296 

Similarly, the first cluster showed a consistent social profile of low SES indicators. This cluster 297 

had the highest rate of unemployment (an average rate equivalent to the 62nd percentile across the county), 298 

highest rate of people without a high school degree (70th percentile), lowest median household income 299 

(28th percentile), and highest rate of poverty (73rd percentile) relative to the other two clusters (Table 2 300 

and Figure 3). Demographic data were not included in fitting the clustering algorithm; however, applying 301 

the predicted labels to this data clearly showed a pattern across racial and ethnic lines (Table 2 and Figure 302 
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3). The first cluster, characterized by elevated BLL, NO2, CO, air toxics, PM2.5 and SO2, had the lowest 303 

population fraction of NHW (30th percentile in the county) and the highest population fraction of NHB 304 

(63rd percentile). Of the total NHB population in Milwaukee County, a plurality resided in the first cluster 305 

(46%) compared to 43% in the second cluster and 11% in the third cluster. On the other hand, only 8% of 306 

the NHW resided in the first cluster.  307 

The CBGs that made up the first cluster experience elevated multipollutant, multidomain, and 308 

multimatrix exposures to environmental pollutants. Moreover, this cluster was characterized by low SES 309 

with an overrepresentation of the NHB population (relative to the rest of the county). The environmental 310 

and social profile of this area indicated the most vulnerable population to exposure to environmental 311 

pollutants.  312 

 313 

4. Discussion 314 

 Across the United States, environmental justice communities, in both urban and rural areas, 315 

contend with multiple environmental pollutants from multiple domains. Residential segregation due to 316 

discriminatory mortgage lending practices (Home Owners Loan Corporation or “redlining”) have resulted 317 

in historically minoritized communities residing in close proximity to industrial sources of pollution, 318 

traffic related air pollution from roadways, and lack of beneficial resources for health, such as green 319 

spaces (Kowalski et al., 2023; Nardone et al., 2021). Yet, within reason, environmental regulatory 320 

strategies in the United States have been developed to focus on interventions within the same regulatory 321 

domain (e.g., air, water). As a result, they are not intentionally designed to address the cumulative and 322 

synergistic effects of exposure to multiple pollutants nor the systemic nature of exposure disparities. 323 

Tools that leverage existing data resources for the identification of localized spatial clusters of high 324 

cumulative exposures lead to better identification of at-risk communities where investments could be 325 

made to address multiple systemic disparities at once through place-based, multi-pronged interventions. 326 

Here, we applied a novel approach to identify vulnerable populations where regulatory interventions 327 

across multiple domains could be braided to reduce exposure to a wider range of environmental pollutants 328 

than would be achieved by a single regulatory domain. The first cluster, characterized by high pollutant 329 

concentrations, low SES, and high representation of NHB residents represents an exemplar output of this 330 

approach to cluster analysis, i.e., a high-risk population in need of interventions across multiple regulatory 331 

domains. If implemented with data resources like existing and emerging federal (e.g., EPA EJ Screen; 332 

https://www.epa.gov/ejscreen) and state (e.g., CalEnviroScreen; https://oehha.ca.gov/calenviroscreen) 333 

environmental screening and mapping tools, the approach presented here may also be useful in other 334 

settings where the spatial structure of environmental exposures, socioeconomic factors, and racial/ethnic 335 

demographics overlaps. Furthermore, this example may be also the most useful for urban areas where 336 
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there is a legacy of lead pollution as well as air pollution from anthropogenic (e.g., transportation, oil and 337 

gas) sources.  338 

We note several limitations in this analysis. First, we weighted all environmental pollutants 339 

equally in this analysis; however, the health risks due to exposure to each in isolation are likely unequal. 340 

Moreover, we note that the association between exposure and health risk also varies by health outcome 341 

being considered (e.g., hospital admissions for asthma compared to stroke). Second, application of this 342 

approach to other cities may not result in clear spatial designations. In our analysis, predicted clusters 343 

tended to be spatially homogeneous, reflecting the underlying distributions of the environmental 344 

pollutants and SES indicators. Third, when determining local individual clusters, the hot and cold spots 345 

were determined relatively and may not necessarily indicate high or low values in a broader context. 346 

Finally, we note that the modeled criteria air pollutants from the CACES land use regression model were 347 

developed and aggregated at the national level (Kim et al. 2015). Quantitative comparisons of this model 348 

at high spatial resolution are limited by lack of high-spatial resolution monitoring data, which highlights a 349 

need for enhanced monitoring of multiple pollutants.  350 

 The study described has several notable strengths as well. First, the study took comprehensive 351 

approach by considering multiple environmental pollutants across different domains and matrices. This 352 

approach was more reflective of real-world conditions where individuals are exposed to a mix of 353 

pollutants rather than a single pollutant. This study went beyond just examining multipollutant exposures 354 

by also considering SES and racial disparities. This allowed for a more nuanced understanding of 355 

environmental health risks and how they intersected with social and ethno-racial factors. Another strength 356 

of this study was the use of spatial analysis techniques, such as Moran's I and Local Indicators of Spatial 357 

Association, which provided a detailed understanding of the geographic distribution of environmental 358 

pollutants and SES indicators. This helped identify hotspots of exposure and vulnerability. Further, the 359 

application of K-means clustering to identify vulnerable populations across a profile of environmental 360 

pollutants and SES indicators was a novel approach. This can help prioritize areas for intervention and 361 

policy action. The use of the Gini coefficient to quantify spatial inequality in environmental pollutant 362 

exposures and SES indicators was a significant strength. Another strength was the use of multiple data 363 

sources in a localized context. The study's focus on Milwaukee County, Wisconsin, allowed for a detailed 364 

examination of environmental, socioeconomic, and racial disparities in a specific geographic context. 365 

This can provide valuable insights for local policymakers and stakeholders. Lastly, the study integrated 366 

data from multiple sources, including measurements and estimates of pollutants, demographic and 367 

socioeconomic data from the US Census Bureau, and data from the Healthy Homes and Lead Poisoning 368 

Surveillance system. This allowed for a more comprehensive analysis of environmental exposures and 369 

their social determinants using publicly available datasets. 370 
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 In conclusion, this study provided valuable insights into the spatial distribution of environmental 371 

pollutant exposure and its association with SES and racial disparities in Milwaukee County. The findings 372 

underscore the need for comprehensive interventions that address multipollutant, multidomain, and 373 

multimatrix exposures, particularly in communities with low SES and high minority populations. Future 374 

research should focus on understanding the health impacts of cumulative exposure to multiple pollutants 375 

and developing effective strategies to reduce these exposures and mitigate their health effects. 376 

 377 

5. Data Availability 378 

 No new data were generated as part of this work. The BLL data were collected as part of the 379 

Healthy Homes and Lead Poisoning Surveillance system (HHLPSS) overseen by the Wisconsin 380 

Department of Health Services. Household BLL data may be made available after careful consultation 381 

with all co-authors, partners, and stakeholders. The criteria air pollutant data were downloaded from 382 

https://www.caces.us/data, the air toxics data were downloaded from https://www.epa.gov/rsei, and 383 

socioeconomic and demographic data were downloaded from https://data.census.gov/cedsci/.  384 
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Table 1. Summary statistics (annual mean, standard deviation as well as the 5th, 25th, 50th, 75th, and 95th 514 
percentile) in 2015 and global spatial autocorrelation (Moran’s I) for blood lead levels, criteria air 515 
pollutants, air toxins, and socioeconomic indicators across Milwaukee County, Wisconsin.  516 

Pollutant Mean SD 5th 25th 50th 75th 95th  Moran’s I Gini 
BLL [µg dL] 2.99 1.18 1.54 2.13 2.73 3.66 5.17 0.51 0.21 
CO [ppm] 0.29 0.02 0.25 0.28 0.29 0.31 0.32 0.85 0.04 
NO2 [ppb] 10.1 1.74 6.53 9.13 10.7 11.3 11.9 0.93 0.09 
PM2.5 [µg m-3] 9.17 0.48 8.28 8.88 9.25 9.53 9.83 0.82 0.03 
O3 [ppb] 44.1 0.46 43.2 43.8 44.1 44.4 44.7 0.96 0.01 
PM10 [µg m-3] 17.2 1.32 15.2 16.3 17.1 17.9 19.4 0.61 0.04 
SO2 [ppb] 1.01 0.12 0.8 0.93 1.02 1.10 1.20 0.70 0.07 
Air Toxics  
[µg m-3] 

4070 3760 1970 2400 3080 4550 7890 0.56 0.32 

Unemployed 
[%] 

6.29 6.61 0.00 1.65 4.35 8.51 20.29 0.26 0.53 

No HS diploma 
[%] 

17.1 13.9 1.42 6.59 13.6 23.6 48.2 0.69 0.44 

Household 
Income [USD] 

55,000 30,000 20,000 35,000 50,000 68,000 109,000 0.61 0.28 

Poverty [%] 20.3 17.1 1.27 6.19 15.3 32.0 51.9 0.55 0.46 
  517 
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Table 2. The average percentile ranking for blood lead levels, criteria air pollutants, air toxins, 518 
demographic indicators, and socioeconomic indicators across the three predicted clusters.  519 
Variable Cluster 1 Cluster 2 Cluster 3 
BLL 0.78 0.42 0.28 
CO 0.79 0.47 0.17 
NO2 0.67 0.56 0.13 
PM2.5 0.46 0.67 0.17 
O3 0.21 0.59 0.69 
PM10 0.37 0.56 0.54 
SO2 0.48 0.58 0.35 
Air toxics 0.78 0.43 0.27 
% NHW 0.30 0.53 0.72 
% NHB 0.63 0.50 0.33 
% Unemployed 0.62 0.48 0.38 
No high school diploma 0.70 0.46 0.32 
Median Income 0.28 0.54 0.71 
% Below Poverty 0.73 0.45 0.30 
  520 
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 521 

 522 
Figure 1. Annual mean year 2015 values in Milwaukee County, Wisconsin of (a) blood lead levels, (b) 523 
CO, (c) NO2, (d) PM2.5, (e) O3, (f) PM10, (g) SO2, (h) air toxics as well as socioeconomic factors (i) 524 
unemployment rate, (j) percent of the population without a high school diploma, (k) median household 525 
income, (l) percent of the population below the poverty line. The green polygon shows the municipal 526 
boundary of the city of Milwaukee, Wisconsin. 527 
  528 



19 

 529 
Figure 2. Statistically significant local clusters of high values (red) and low values (blue) for (a) blood 530 
lead levels, (b) CO, (c) NO2, (d) PM2.5, (e) O3, (f) PM10, (g) SO2, (h) air toxics, (i) unemployment rate, (j) 531 
percent of the population without a high school diploma, (k) median household income, (l) percent of the 532 
population below the poverty line in Milwaukee County.  533 
  534 
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 535 
Figure 3. (a) Geographic distribution of K-means cluster predictions and distribution of annual mean 536 
values (expressed as a percentile ranking) across the three predicted clusters for (b) blood lead levels, (c) 537 
CO, (d) NO2, (e) PM2.5, (f) O3, (g) PM10, (h) SO2, (i) air toxics, (j) percent unemployed, (k) percent 538 
without a high school diploma, (l) median household income, (m) percent below the federal poverty line, 539 
(n) percent of the population identifying as non-Hispanic White, (o) percent of the population identifying 540 
as non-Hispanic Black. Environmental pollutants (b-i), SES indicators (j-m), and population racial 541 
groups (n-o) are expressed as percentile rankings. 542 
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Figure S1. Study area of Milwaukee County in Wisconsin. 
  



Figure S2. The (a) mean, (b) standard deviation, (c) number of measurements of BLL in CBGs based on 
household resolution measurements.    



 
Figure S3. Population density in Milwaukee County, Wisconsin.   



 
 

 

 
Figure S4. Pairwise correlations across the environmental and social risk factors in Milwaukee County, 
Wisconsin. 
  



 
Figure S5. Census block groups identified as hotspots (shown in green) for (a) at least one of BLL, CO, 
NO2, or air toxics and (b) overlapping for BLL, CO, NO2, and air toxics. 
  



 
Figure S6. Alternate numbers of predicted clusters.  


