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Abstract

The Atlantic Multidecadal Oscillation (AMO), Arctic Oscillation (AO), and related North Atlantic Oscillation (NAO) have been

linked to multidecadal, decadal, and/or interannual sea-ice variability in the arctic, but their relative influences are still under

evaluation. While instrumental AMO and reliable AO records are available since the mid-1800s and 1958, respectively, satellite

sea-ice concentration datasets start only in 1979, limiting the shared timespan to study their interplay. Growth increments of

the coralline algae, Clathromorphum compactum, can provide sea-ice proxy information for years prior to 1979. We present

a seasonal 210-year algal record from Lancaster Sound in the Canadian Arctic Archipelago capturing low frequency AMO

variability and high frequency interannual AO/NAO prior to 2000. We suggest that sea-ice variability here is strongly coupled

to these large-scale climate processes, and that sea-ice cover was greater and the AO more negative in the early and late 19th

century compared to the 20th.
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Key Points: 14 

• Algal growth increments correlate most strongly with Atlantic Multidecadal Oscillation 15 
(AMO) but also with Arctic Oscillation (AO) trends. 16 

• The algal record points to sea-ice reduction leading a positive AMO phase in the early to 17 
mid-1800s and Early Twentieth Century Warming. 18 

• The algal proxy record from Lancaster Sound captures +AO-related sea-ice export into 19 
the Canadian Arctic Archipelago. 20 
  21 
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Abstract 22 

The Atlantic Multidecadal Oscillation (AMO), Arctic Oscillation (AO), and related North 23 
Atlantic Oscillation (NAO) have been linked to multidecadal, decadal, and/or interannual sea-ice 24 
variability in the arctic, but their relative influences are still under evaluation. While instrumental 25 
AMO and reliable AO records are available since the mid-1800s and 1958, respectively, satellite 26 
sea-ice concentration datasets start only in 1979, limiting the shared timespan to study their 27 
interplay. Growth increments of the coralline algae, Clathromorphum compactum, can provide 28 
sea-ice proxy information for years prior to 1979. We present a seasonal 210-year algal record 29 
from Lancaster Sound in the Canadian Arctic Archipelago capturing low frequency AMO 30 
variability and high frequency interannual AO/NAO prior to 2000. We suggest that sea-ice 31 
variability here is strongly coupled to these large-scale climate processes, and that sea-ice cover 32 
was greater and the AO more negative in the early and late 19th century compared to the 20th.  33 

Plain Language Summary 34 

Arctic sea-ice variability is dually related to air/ocean temperatures and dynamic forces (wind 35 
patterns and ocean currents). While long-term basin-averaged temperature trends (i.e., Atlantic 36 
Multidecadal Oscillation) tend to influence variability over decades, cyclical wind patterns (e.g., 37 
Arctic Oscillation), may instead influence it seasonally and interannually. When the Atlantic 38 
Multidecadal and/or Arctic Oscillation (AMO/AO) are in a positive phase, warmer air and winds 39 
tend to export sea-ice out of the Arctic, and vice-versa during negative phases. Unfortunately, the 40 
span of the satellite sea-ice cover record is too short to study long-term sea-ice variability driven 41 
by these patterns. Therefore, proxy records are required to fill this gap. The tree-ring-like growth 42 
bands of an Arctic coralline red algae have produced multi-centennial proxy sea-ice cover 43 
records. We present a 210-year algal sea-ice proxy record, showing a relationship with 44 
instrumental AMO (1861 – present) and AO records (1958 – 2000). It also suggests that the AO 45 
was more negative and sea-ice cover was greater during the 19th century in comparison to the 46 
20th century. Due to sea-ice’s role in global climate at different timescales, this record can be 47 
utilized to tweak climate models or constrain the relative influence of internal forcing on sea-ice 48 
behaviour.  49 
  50 
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1 Introduction 51 

Since the late 1970s, satellite imagery has made it possible to observe the rapid decline of arctic 52 
sea-ice, especially noticeable in the summer (perennial extent: (Nghiem et al., 2006); thickness: 53 
(Kwok & Rothrock, 2009); duration (Galley et al., 2016)). Warming caused by greenhouse gases 54 
(GHG) and other aerosol emissions, such as black carbon, are often cited as significant 55 
anthropogenic contributors to sea-ice decline (GHG: (Zhang & Walsh, 2006); aerosols  Willis et 56 
al., 2018); black carbon: (Kim et al.,, 2005; Shindell & Faluvegi, 2009). Feedback mechanisms 57 
have also contributed to the warming trend, such as the ice-albedo feedback (Meier et al., 2014; 58 
Perovich et al., 2007), and the increasingly ice-free ocean surface promoting higher spring cloud 59 
coverage, trapping longwave radiation causing more ice melt (Francis & Hunter, 2006). Further, 60 
the respective natural variability of basin-wide oceanic temperatures and large-scale atmospheric 61 
patterns like the Atlantic Multidecadal Oscillation (AMO; a.k.a. Atlantic Multidecadal 62 
Variability), and the Arctic Oscillation (AO; a.k.a., Northern Annular Mode), and the related 63 
North Atlantic Oscillation (NAO), have also been shown to influence sea-ice variability (Divine 64 
& Dick, 2006; Miles et al., 2014; Rigor et al., 2002) and the recently observed decline in sea-ice 65 
conditions (Gillett et al., 2002; Rigor & Wallace, 2004; Rigor et al., 2002; Thompson & Wallace, 66 
1998). Evidently, many factors control arctic sea-ice variability, yet the relative roles that natural 67 
and anthropogenetic forces play are still uncertain (Delworth et al., 2016). Further, reliable 68 
satellite sea-ice records are only available since the late 1970s and AO records prior to 1958 have 69 
many associated inconsistencies, challenging the ability to resolve how long-term natural climate 70 
patterns drive sea-ice variability.  71 
 72 
In the absence of long instrumental records, tree-ring- or coral-based proxy records (Gray et al., 73 
2004; Saenger et al., 2009), multi-proxy (terrestrial, ice core, lacustrine or coral archives: Mann 74 
et al., 1995) and modelled (Delworth & Mann, 2000) AMO records have attempted to clarify the 75 
periodicity of the AMO. Other studies have used historical and proxy records to study the 76 
interplay between AMO and sea-ice (Divine & Dick, 2006; Frankcombe et al., 2010; Macias-77 
Fauria et al., 2010). Similar work has been accomplished with AO reconstructions which have 78 
also used the previously discussed archives (D’Arrigo et al., 2003; Rimbu et al., 2001; Rimbu et 79 
al., 2003; Sicre et al., 2014; Young et al., 2012), and deep-sea sediment cores (Darby, Ortiz, 80 
Grosch, & Lund, 2012). Important limitations of sediment cores are that they typically provide 81 
lower-temporal resolution records than tree-ring, coral, ice-core, and lake varve records, while 82 
the latter archives have been unable to directly capture oceanic or regional variability north of 83 
the tree line.  84 
 85 
Alternatively, the annually-banded skeleton of the calcified coralline red algae species 86 
Clathromorphum compactum has been used to build direct oceanic proxy timeseries for arctic 87 
sea-ice changes and other environmental parameters (sea-ice: Halfar et al., 2013; Hetzinger et al., 88 
2019; Leclerc et al., 2021, 2022; temperature variability: (Gamboa et al., 2010; Halfar et al., 89 
2011; Halfar et al., 2008; Hetzinger et al., 2018; Hou et al., 2018; Williams et al., 2018, 2019); 90 
Suess effect: Hou et al., 2018; productivity: (Chan et al., 2017); runoff: (Hetzinger et al., 2021). 91 
This alga has a multi-century lifespan and inhabits shallow (typically <20 m depth) benthic 92 
niches with rocky substrate (Adey, 1966). C. compactum can archive variability of summer sea-93 
ice cover since annual algal growth increment widths are heavily influenced by summer sunlight 94 
access for photosynthesis, which is diminished by overlying sea-ice cover (Williams et al., 95 
2018). To date, several coralline-algal-sea-ice-proxy (CASIP) records have been produced from 96 
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C. compactum samples collected in the Arctic (Halfar et al., 2013; Hetzinger et al., 2019; Leclerc 97 
et al., 2022). In this study, we show that C. compactum growth increment records from Lancaster 98 
Sound in the Canadian Arctic Archipelago indicate a long-term relationship between sea-ice 99 
variability and summer AMO, AO and NAO indices.  100 
 101 

 102 
Figure 1. Representation of negative phase of Arctic Oscillation (AO) in the Arctic Ocean. 103 
Beaufort High (BH; orange); Icelandic Low (IL; light blue); Queen Elizabeth Islands (QEI: 104 
green); M’Clure Strait (purple); Beechey Island algal collection site (yellow dot); Lancaster 105 
Sound (yellow region). Negative AO phases promote a clockwise circulation of the Beaufort 106 
Gyre and are marked by a stronger BH sea level pressure that promotes a counter-clockwise gyre 107 
circulation and ice convergence. The opposite holds true for positive phases. Ocean circulation 108 
shown as red arrows (based on Fig. 3.29 in AMAP, 1998) and length of the ice-on season as 109 
white to dark blue gradient (1979-2015 mean days with >15% SIC: sourced from NSIDC (Meier 110 
et al., 2017).  111 
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2 Algal Data Preparation & Analysis Methods 112 

Individual Clathromorphum compactum buildups were collected at 18-20 metre depths near 113 
Beechey Island, northwestern Lancaster Sound, Nunavut, Canada, via SCUBA in 2016 114 
(74°42'54.46"N, 91°47'29.35"W; Fig. 1). Crusts were prepared into thick sections with an Isomet 115 
Precision Saw, ground and polished with a Struers Labopol polishing disk in 9 μm, 3 μm and 1 116 
μm steps, with ultrasonic bath immersion between steps. Thick sections were then imaged with 117 
an Olympus VS-BX reflected light microscope paired to an automated stage. Images were 118 
stitched together with Geo.TS software and the 3 highest quality specimens (IDs: 2, 15 and 41) 119 
were selected for geochemical analysis (Fig. 2).  120 
 121 

 122 
 123 
Figure 2. Overview (left) and magnified (right) images of C. compactum crusts from Beechey 124 
Island, Lancaster Sound. Laser ablation paths used along axis of growth indicated in red. Sample 125 
IDs shown in upper left corner, respectively. 126 
 127 
Geochemical data were obtained at the University of Toronto's Earth Science Center with a 128 
NWR 193 UC laser ablation inductively coupled mass spectrometry (LA-ICP-MS) system linked 129 
to an Agilent 7900 quadrupole mass spectrometer. Line scans were ablated at a speed of 5 130 
μm/second along the growth axis, using an aperture size of 10 × 70 μm, and a 10 Hz laser pulse 131 
rate (see details in Hetzinger et al., 2011). By comparing growth increments visible on 132 
microscope images with the widths of annual Mg/Ca cycles calculated from LA-ICP-MS data, 133 
age models and growth increment width timeseries were built and crossdated between 2 transects 134 
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for intra-sample replicability and between 3 samples to ensure adequate inter-specimen 135 
coherence (for detailed procedures see Leclerc et al., 2022). Prior to 1880, only sample 41 (3 136 
crossdated transects), which provided the longest continuous chronology, was used to extend the 137 
record back to 1805. All data was normalized and averaged across crossdated measurements to 138 
form a master chronology.  139 

3 Instrumental Data & Statistics 140 

Correlation analysis (linear regression) was used to determine the relationship between the algal 141 
record and instrumental indices. Monthly AO index values based on instrumental sea level 142 
pressure (SLP: Poleward of 20°N calculated by projecting the AO pattern on SLP anomalies) 143 
computed through the National Centers for Environmental Prediction–National Center for 144 
Atmospheric Research (NCEP/NCAR) reanalysis (Wallace & Thompson, 2000). Monthly 145 
Hurrell North Atlantic Oscillation (NAO) index values are based on principal component 146 
analysis of SLP over the Atlantic. While the instrumental AO index goes as far back as 1899, 147 
early data issues include different SLP sources for different time periods, with discontinuities 148 
identified between data source transitions (Trenberth & Paolino, 1980). Therefore, only later 149 
instrumental AO index values (1958-2015) were used in this study due to confidence issues with 150 
early data points. Further, the NAO record was shortened to match the length of the AO record 151 
for even comparison to the algal record in Table 1. The correlation between the CASIP record 152 
and the full length NAO record is reported and plotted in Figure 4. Monthly AMO index values 153 
are the 10-year running mean values smoothed from the Kaplan SST V2 timeseries. Seasonal 154 
means were calculated by averaging summer months (May-Oct). Spatial correlation analysis and 155 
linear regression to monthly NSIDC sea-ice concentration dataset see procedure in (Leclerc et 156 
al., 2021) was computed using Matlab and m_map mapping toolbox. The software kSpectra is an 157 
implementation of techniques described in Ghil et al. (2002) and was used to run multi-taper and 158 
singular spectral analyses (SSA) on instrumental and proxy datasets to determine if the algal 159 
record shared AO, NAO and AMO frequency signatures. 160 

4 Results & Discussion 161 

Since higher sea-ice cover, in typically colder years, limits growth, we expected a negative 162 
correlation between regional sea-ice cover and annual growth, and positive correlations with AO, 163 
NAO, and AMO. Accordingly, spatial correlation analysis shows strongly significant negative 164 
correlations (p<0.001) between Beechey Island growth increment chronology and regional 165 
satellite sea-ice concentrations (Fig. 3). Highly significant spatial relationships also centered 166 
along the northern coast of the Canadian Arctic Archipelago, the Beaufort Sea and the Laptev 167 
Sea (Fig. 3a). At a more localized scale, the algal growth increment timeseries correlates 168 
significantly (R = -0.71; p<0.001) with satellite sea-ice concentrations (Leclerc et al., 2022) (Fig. 169 
3b). The confirmation of the local sea-ice–algal growth relationship suggests that if AMO, AO or 170 
NAO and sea-ice are related in Lancaster Sound, the algal timeseries should record their signal. 171 
Indeed, correlation analysis demonstrated that the master Beechey Island chronology 172 
significantly (p<0.001) captured the decadally-smoothed AMO index (Tab. 1). The AO was also 173 
significantly correlated at annual (p<0.01) and decadal (p<0.05) resolutions, and the NAO 174 
correlation was markedly strong at a decadal resolution (p<0.001), however only until 2000. 175 
 176 
The lack of correlation between AO and sea-ice cover in recent decades has previously been 177 
documented (Feldstein, 2002; Overland & Wang, 2005; Overland & Wang, 2010; Stroeve et al., 178 
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2011) and this coralline algal record supports it as well. Its manifestation in the Canadian Arctic 179 
Archipelago (CAA) may also be related to recent shifts in the duration of ice bridges, landfast ice 180 
between landmasses which form in winter and block sea-ice export until summer collapse. When 181 
ice bridges at M’Clure Strait or the Queen Elizabeth Islands (QEI) (Fig. 1) collapse, sea-ice from 182 
the Arctic Ocean is free to be imported into the CAA, especially during positive AO phases 183 
(Howell et al., 2013). Contrary to the +AO-stimulated ice breakup/export acceleration, +AO-184 
stimulated sea-ice import after ice bridge collapse may limit algal light access and mute the AO 185 
signal. In fact, since 2005 there has been an increase of ice inflow into the CAA through the 186 
Queen Elizabeth Islands, which tends to flow south towards Lancaster Sound (Howell et al., 187 
2013). Other data from the Nares Strait suggest that ice volume export through the Strait has 188 
increased recently in comparison to the 1997-2009 mean, linked to the trend of shorter duration 189 
of ice bridges (Moore et al., 2021). This may be responsible for the masked AO signal in the 190 
Beechey Island CASIP record since the turn of the millennium (Supplentary Figure 1; Tab. 1).  191 
 192 

 193 
Figure 3. A) Spatial correlation analysis between gridded Arctic SIC and Beechey Island growth 194 
increment chronology. Right plot shows Beechey Island region enlarged.  B) Plotted algal 195 
growth increment timeseries (black: anomalies = (annual value – average) / standard deviation) 196 
and NSIDC sea-ice concentrations (blue: 75 km2 around Beechey Island site) (see Leclerc et al., 197 
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2022 for original figure of subplot B). Note that growth anomalies are plotted inversely. R-value 198 
indicates strength of correlation. 199 
 200 
Periods with larger growth increments coincide with a strongly positive AMO period and the 201 
Early Twentieth Century Warming (ETCW: 1920s-1950s) period (Fig. 4). The ETCW has been 202 
shown to be associated with sea-ice retreat in the Barents Sea caused by stronger westerly winds 203 
between Spitsbergen and Norway (Bengtsson et al., 2004), and has also been recorded by C. 204 
compactum Ba/Ca and growth-Mg/Ca anomaly timeseries from Spitsbergen (Hetzinger et al., 205 
2021, 2019). Day et al. (2012) suggested the recent positive phase of AMO could explain 5-30% 206 
of satellite summer sea-ice loss and Miles et al. (2014) suggested AMO was a major driver of 207 
sea-ice variability from the past 800 years to the 1990s. Similarly, our data showed that the AMO 208 
and ETCW affected ice decline in Lancaster Sound in the mid-20th century. Multi-taper spectral 209 
analysis results showed multidecadal variability in the algal chronology (significant at 99% level, 210 
60-77-year signal, CASIP: 1805–2015; Supplementary Figure S1), comparable to the posited 211 
periodicity of AMO (60–80 years) (Kerr, 2000; Schlesinger & Ramankutty, 1994). Significant 212 
(95% level) interannual signals (at 2 and 3 years) were also found, closely matching AO 213 
signatures (Supplementary Figure S1) previously shown to affect sea-ice circulation in the Baltic 214 
Sea (Jevrejeva et al., 2003). However, the CASIP multi-taper results did not capture AO’s 215 
decadal variability as reported elsewhere (Ramos da Silva & Avissar, 2005). However, singular 216 
spectrum analysis (SSA) of the shortened CASIP record (1960-2000) identified significant 217 
variability at 7.6–10.3 years responsible for more than 60% of variance (Suplementary Figure 218 
S1). In the AOSUMMER record (1960-2000), most of the variability is interannual (2.5-5.1 years; 219 
details in Supplementary Text S1), a decadal signal (10.6-year) is explaining only 16.9% of total 220 
variance. In summary, multi-taper and SSA did not fully identify the 8 – 10-year AO signals 221 
previously identified through wavelet power spectrum analysis (Ramos da Silva & Avissar, 222 
2005). This further suggests that the shared variability at the approximately 2–3-year periodicity 223 
level is what the sea-ice-AO and sea-ice-CASIP relationships are recording in the CAA.  224 
 225 
The part of the algal record that extends earlier than the instrumental NAO record (i.e., prior to 226 
1899), suggests colder and heavier ice conditions in the 19th century in comparison to the 20th 227 
century similar to the findings of indirect (temperature) sea-ice proxy tree ring records (D’Arrigo 228 
et al., 2003; Young et al., 2012). The algal chronology also suggests a period of less ice in the 229 
mid-1800s possibly due to more positive AO/NAO or AMO, or both (Fig. 4). While, many have 230 
suggested that the Little Ice Age and colder conditions persisted until the late 1800s, this slightly 231 
warmer period in the mid-1800s is supported by multiple Arctic proxy records that find episodic 232 
warming at this time (Jennings & Weiner, 1996; Massé et al., 2008: records synthecized in Miles 233 
et al., 2020). This warming period is also corroborated by ice cap stratigraphy from nearby 234 
Devon Island, Greenland ice sheets and marine cores from the Labrador Sea, which suggested 235 
early warming in 1860s and a more intense warming trend beginning around 1890 (Keigwin et 236 
al., 2003; Koerner, 1977; Trusel et al., 2018). The mid-1800s mild warming period found in our 237 
record predates those found in other AMO proxy records from terrestrial archives (e.g., Gray et 238 
al., 2004), which shows a later warming period later in the 1800s, and cooler 1830s-1840s (Fig. 239 
4). While, some suggest some uncertainty in terrestrial AMO records (e.g., Miles et al., 2020), it 240 
is notable that sea-ice and NAO trends have been shown to lead AMO variability in some 241 
regions, and that the timing in AMO peaks and troughs are regionally variable (Alexander et al., 242 
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2014; Peterson et al., 2015). As the NAO and AO are highly correlated (Rigor et al., 2002), this 243 
could also apply to AO precursers to AMO.  244 

 245 
 246 
Figure 4. Relationship between crossdated Beechey Island growth increment (i.e., CASIP) 247 
detrended chronology and detrended AO (orange), NAO (purple) and AMO (dark green) climate 248 
indices for summer months (May-October). Individual algal samples (light grey); average of all 249 
algal samples (dark grey); 10-yr running mean of average growth, AO and NAO (black, dark 250 
orange, and dark purple lines, respectively). Tree ring-based proxy AMO timeseries (light green) 251 
from Gray et al. (2004). AMO is 10-year averaged index (no 10-yr running mean). Early 252 
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Twentieth Century Warming (ETCW: 1920-1960) and loss of correlation in 2000s periods (grey 253 
bars), and major El Niño event (arrow: 1939-1942).  254 
 255 
Algal-sea-ice-proxy (CASIP) records are indicators of a combination of sea-ice variables 256 
affecting light penetration to the benthos: present/absent ice cover (related to melt/freeze up and 257 
wind and current dynamics), seasonal duration of cover, thickness and snow cover. Together, the 258 
AMO, AO, and NAO have the capacity of affecting all these variables. Samelson et al. (2006) 259 
suggested that the formation of land-fast ice in the CAA is controlled by both winds and air 260 
temperature, both are parameters influenced by these large atmospheric and ocean temperature 261 
patterns. Furthermore, Peterson et al. (2012) found that monthly longshore wind anomalies in the 262 
Beaufort Sea, which are heavily influenced by AO, stimulated 43% of Lancaster Sound’s volume 263 
transport anomaly variance. This is supported by the significant relationship between the 264 
Beechey Island CASIP record and gridded sea-ice concentrations on the exterior CAA coast 265 
bordering the Beaufort Sea (Fig. 2a). The linked variability and coupling of the AO/NAO and  266 
AMO are posited to stem in part from interannual and long-term sea-ice cover trends and/or 267 
stimulation of Atlantic Meriodinal Overturning Circulation (AMOC) (Medhaug et al., 2012; 268 
Peterson et al., 2015; Polyakov et al., 2010; Polyakov et al., 2005; Yang et al., 2016). Our results 269 
seem to support the assertion of arctic sea-ice’s important role in AMO variability. 270 

Table 1. Linear regression (R- and p-values) correlations of Beechey Island algal growth record 271 
to climate indices at seasonal (summer) and decadal (10-year running means of summer values) 272 
resolutions. Highlighted grey boxes are significant positive correlations (p<0.5; darkest shades 273 
indicate p<0.01). 274 
AO (May-Oct: 1958 -) NAO (May-Oct: 1958 -) AMO (Annual: 1861 -) 

Seasonal  Decadal Seasonal  Decadal Decadal 

Anomalies (- 2015) 

0.23 
p=0.08 

-0.11 
p=0.4 

0.05 
p=0.7 

-0.49 
p<0.001 

0.31 
p= 0.001 

Anomalies (- 2000) 

0.41 
p<0.01 

0.41 
p<0.01 

0.33 
p=0.03 

0.53 
p<0.001 

0.21 
p= 0.01 

Detrended (- 2015) 

0.17 
p=0.2 

-0.37 
p<0.01 

0.08 
p=0.55 

-0.4 
p<0.01 

0.39 
p<0.001 

Detrended (- 2000) 

0.4 
p<0.01 

0.31 
p<0.05 

0.34 
p<0.05 

0.64 
p<0.001 

0.38 
p<0.001 

Note. All negative correlations are considered insignificant.  
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5 Summary & Conclusion 275 

The C. compactum growth increment chronology from Beechey Island recorded: 1) lower sea-ice 276 
cover during the 1800s in comparison to the 1900s; 2) slightly lighter sea-ice years in the mid-277 
1800s; 3) the Earth Twentieth Century Warming period; 4) significant sea-ice response to AMO 278 
throughout the record; 5) significant sea-ice responses to AO/NAO from 1960-2000, and; 6) lack 279 
of sea-ice response to AO/NAO from 2000-2015 possibly due to external factors such as the 280 
greenhouse gas (GHG) effect and ice-albedo feedbacks. The development of longer high-281 
resolution proxy records such as CASIP timeseries is critical to understanding the role of 282 
cryospheric-atmospheric feedbacks in the many intertwined components in the global climate 283 
system (Gao et al., 2015). The Canadian Arctic Archipelago, which tends to trap multi-year ice 284 
(Howell et al., 2008; Kwok, 2015), makes up a significant part of the Last Ice Area, predicted to 285 
be the last arctic region to experience summer ice cover (Moore et al., 2019). As this area will 286 
become increasingly crucial in the coming years, and potentially more hazardous to naval travel 287 
(Howell et al., 2022), C. compactum CASIP records can provide important historical and pre-288 
industrial baselines. While it is reasonably well understood that atmospheric patterns have an 289 
effect on sea-ice extent, the interplay between coastal sea-ice cover and atmospheric patterns, 290 
especially in the CAA is still not well understood. Here we find strong links between internal 291 
variability and sea-ice trends. However, we note that these links are muted in recent decades 292 
(especially after 2000) due to anthropogenic forcing and possibly enhancement of ice penetration 293 
through QEI gates in the Canadian Arctic Archipelago (Howell et al., 2023).   294 
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(http://www.psl.noaa.gov/data/timeseries/AMO/). Spatial correlation analysis and linear 312 
regression to monthly NSIDC sea-ice concentration dataset (Version 3: 313 
https://nsidc.org/data/g02202; Peng et al., 2013; Meier et al., 2017; see procedure in (Leclerc et 314 
al., 2021) was computed using Matlab and m_map mapping toolbox. The software kSpectra 315 
described in Ghil et al. (2002) was used to run multi-taper and singular spectral analyses.  316 
 317 
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Key Points: 14 

• Algal growth increments correlate most strongly with Atlantic Multidecadal Oscillation 15 
(AMO) but also with Arctic Oscillation (AO) trends. 16 

• The algal record points to sea-ice reduction leading a positive AMO phase in the early to 17 
mid-1800s and Early Twentieth Century Warming. 18 

• The algal proxy record from Lancaster Sound captures +AO-related sea-ice export into 19 
the Canadian Arctic Archipelago. 20 
  21 
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Abstract 22 

The Atlantic Multidecadal Oscillation (AMO), Arctic Oscillation (AO), and related North 23 
Atlantic Oscillation (NAO) have been linked to multidecadal, decadal, and/or interannual sea-ice 24 
variability in the arctic, but their relative influences are still under evaluation. While instrumental 25 
AMO and reliable AO records are available since the mid-1800s and 1958, respectively, satellite 26 
sea-ice concentration datasets start only in 1979, limiting the shared timespan to study their 27 
interplay. Growth increments of the coralline algae, Clathromorphum compactum, can provide 28 
sea-ice proxy information for years prior to 1979. We present a seasonal 210-year algal record 29 
from Lancaster Sound in the Canadian Arctic Archipelago capturing low frequency AMO 30 
variability and high frequency interannual AO/NAO prior to 2000. We suggest that sea-ice 31 
variability here is strongly coupled to these large-scale climate processes, and that sea-ice cover 32 
was greater and the AO more negative in the early and late 19th century compared to the 20th.  33 

Plain Language Summary 34 

Arctic sea-ice variability is dually related to air/ocean temperatures and dynamic forces (wind 35 
patterns and ocean currents). While long-term basin-averaged temperature trends (i.e., Atlantic 36 
Multidecadal Oscillation) tend to influence variability over decades, cyclical wind patterns (e.g., 37 
Arctic Oscillation), may instead influence it seasonally and interannually. When the Atlantic 38 
Multidecadal and/or Arctic Oscillation (AMO/AO) are in a positive phase, warmer air and winds 39 
tend to export sea-ice out of the Arctic, and vice-versa during negative phases. Unfortunately, the 40 
span of the satellite sea-ice cover record is too short to study long-term sea-ice variability driven 41 
by these patterns. Therefore, proxy records are required to fill this gap. The tree-ring-like growth 42 
bands of an Arctic coralline red algae have produced multi-centennial proxy sea-ice cover 43 
records. We present a 210-year algal sea-ice proxy record, showing a relationship with 44 
instrumental AMO (1861 – present) and AO records (1958 – 2000). It also suggests that the AO 45 
was more negative and sea-ice cover was greater during the 19th century in comparison to the 46 
20th century. Due to sea-ice’s role in global climate at different timescales, this record can be 47 
utilized to tweak climate models or constrain the relative influence of internal forcing on sea-ice 48 
behaviour.  49 
  50 
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1 Introduction 51 

Since the late 1970s, satellite imagery has made it possible to observe the rapid decline of arctic 52 
sea-ice, especially noticeable in the summer (perennial extent: (Nghiem et al., 2006); thickness: 53 
(Kwok & Rothrock, 2009); duration (Galley et al., 2016)). Warming caused by greenhouse gases 54 
(GHG) and other aerosol emissions, such as black carbon, are often cited as significant 55 
anthropogenic contributors to sea-ice decline (GHG: (Zhang & Walsh, 2006); aerosols  Willis et 56 
al., 2018); black carbon: (Kim et al.,, 2005; Shindell & Faluvegi, 2009). Feedback mechanisms 57 
have also contributed to the warming trend, such as the ice-albedo feedback (Meier et al., 2014; 58 
Perovich et al., 2007), and the increasingly ice-free ocean surface promoting higher spring cloud 59 
coverage, trapping longwave radiation causing more ice melt (Francis & Hunter, 2006). Further, 60 
the respective natural variability of basin-wide oceanic temperatures and large-scale atmospheric 61 
patterns like the Atlantic Multidecadal Oscillation (AMO; a.k.a. Atlantic Multidecadal 62 
Variability), and the Arctic Oscillation (AO; a.k.a., Northern Annular Mode), and the related 63 
North Atlantic Oscillation (NAO), have also been shown to influence sea-ice variability (Divine 64 
& Dick, 2006; Miles et al., 2014; Rigor et al., 2002) and the recently observed decline in sea-ice 65 
conditions (Gillett et al., 2002; Rigor & Wallace, 2004; Rigor et al., 2002; Thompson & Wallace, 66 
1998). Evidently, many factors control arctic sea-ice variability, yet the relative roles that natural 67 
and anthropogenetic forces play are still uncertain (Delworth et al., 2016). Further, reliable 68 
satellite sea-ice records are only available since the late 1970s and AO records prior to 1958 have 69 
many associated inconsistencies, challenging the ability to resolve how long-term natural climate 70 
patterns drive sea-ice variability.  71 
 72 
In the absence of long instrumental records, tree-ring- or coral-based proxy records (Gray et al., 73 
2004; Saenger et al., 2009), multi-proxy (terrestrial, ice core, lacustrine or coral archives: Mann 74 
et al., 1995) and modelled (Delworth & Mann, 2000) AMO records have attempted to clarify the 75 
periodicity of the AMO. Other studies have used historical and proxy records to study the 76 
interplay between AMO and sea-ice (Divine & Dick, 2006; Frankcombe et al., 2010; Macias-77 
Fauria et al., 2010). Similar work has been accomplished with AO reconstructions which have 78 
also used the previously discussed archives (D’Arrigo et al., 2003; Rimbu et al., 2001; Rimbu et 79 
al., 2003; Sicre et al., 2014; Young et al., 2012), and deep-sea sediment cores (Darby, Ortiz, 80 
Grosch, & Lund, 2012). Important limitations of sediment cores are that they typically provide 81 
lower-temporal resolution records than tree-ring, coral, ice-core, and lake varve records, while 82 
the latter archives have been unable to directly capture oceanic or regional variability north of 83 
the tree line.  84 
 85 
Alternatively, the annually-banded skeleton of the calcified coralline red algae species 86 
Clathromorphum compactum has been used to build direct oceanic proxy timeseries for arctic 87 
sea-ice changes and other environmental parameters (sea-ice: Halfar et al., 2013; Hetzinger et al., 88 
2019; Leclerc et al., 2021, 2022; temperature variability: (Gamboa et al., 2010; Halfar et al., 89 
2011; Halfar et al., 2008; Hetzinger et al., 2018; Hou et al., 2018; Williams et al., 2018, 2019); 90 
Suess effect: Hou et al., 2018; productivity: (Chan et al., 2017); runoff: (Hetzinger et al., 2021). 91 
This alga has a multi-century lifespan and inhabits shallow (typically <20 m depth) benthic 92 
niches with rocky substrate (Adey, 1966). C. compactum can archive variability of summer sea-93 
ice cover since annual algal growth increment widths are heavily influenced by summer sunlight 94 
access for photosynthesis, which is diminished by overlying sea-ice cover (Williams et al., 95 
2018). To date, several coralline-algal-sea-ice-proxy (CASIP) records have been produced from 96 



Geophysical Research Letters 

 4 

C. compactum samples collected in the Arctic (Halfar et al., 2013; Hetzinger et al., 2019; Leclerc 97 
et al., 2022). In this study, we show that C. compactum growth increment records from Lancaster 98 
Sound in the Canadian Arctic Archipelago indicate a long-term relationship between sea-ice 99 
variability and summer AMO, AO and NAO indices.  100 
 101 

 102 
Figure 1. Representation of negative phase of Arctic Oscillation (AO) in the Arctic Ocean. 103 
Beaufort High (BH; orange); Icelandic Low (IL; light blue); Queen Elizabeth Islands (QEI: 104 
green); M’Clure Strait (purple); Beechey Island algal collection site (yellow dot); Lancaster 105 
Sound (yellow region). Negative AO phases promote a clockwise circulation of the Beaufort 106 
Gyre and are marked by a stronger BH sea level pressure that promotes a counter-clockwise gyre 107 
circulation and ice convergence. The opposite holds true for positive phases. Ocean circulation 108 
shown as red arrows (based on Fig. 3.29 in AMAP, 1998) and length of the ice-on season as 109 
white to dark blue gradient (1979-2015 mean days with >15% SIC: sourced from NSIDC (Meier 110 
et al., 2017).  111 
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2 Algal Data Preparation & Analysis Methods 112 

Individual Clathromorphum compactum buildups were collected at 18-20 metre depths near 113 
Beechey Island, northwestern Lancaster Sound, Nunavut, Canada, via SCUBA in 2016 114 
(74°42'54.46"N, 91°47'29.35"W; Fig. 1). Crusts were prepared into thick sections with an Isomet 115 
Precision Saw, ground and polished with a Struers Labopol polishing disk in 9 μm, 3 μm and 1 116 
μm steps, with ultrasonic bath immersion between steps. Thick sections were then imaged with 117 
an Olympus VS-BX reflected light microscope paired to an automated stage. Images were 118 
stitched together with Geo.TS software and the 3 highest quality specimens (IDs: 2, 15 and 41) 119 
were selected for geochemical analysis (Fig. 2).  120 
 121 

 122 
 123 
Figure 2. Overview (left) and magnified (right) images of C. compactum crusts from Beechey 124 
Island, Lancaster Sound. Laser ablation paths used along axis of growth indicated in red. Sample 125 
IDs shown in upper left corner, respectively. 126 
 127 
Geochemical data were obtained at the University of Toronto's Earth Science Center with a 128 
NWR 193 UC laser ablation inductively coupled mass spectrometry (LA-ICP-MS) system linked 129 
to an Agilent 7900 quadrupole mass spectrometer. Line scans were ablated at a speed of 5 130 
μm/second along the growth axis, using an aperture size of 10 × 70 μm, and a 10 Hz laser pulse 131 
rate (see details in Hetzinger et al., 2011). By comparing growth increments visible on 132 
microscope images with the widths of annual Mg/Ca cycles calculated from LA-ICP-MS data, 133 
age models and growth increment width timeseries were built and crossdated between 2 transects 134 
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for intra-sample replicability and between 3 samples to ensure adequate inter-specimen 135 
coherence (for detailed procedures see Leclerc et al., 2022). Prior to 1880, only sample 41 (3 136 
crossdated transects), which provided the longest continuous chronology, was used to extend the 137 
record back to 1805. All data was normalized and averaged across crossdated measurements to 138 
form a master chronology.  139 

3 Instrumental Data & Statistics 140 

Correlation analysis (linear regression) was used to determine the relationship between the algal 141 
record and instrumental indices. Monthly AO index values based on instrumental sea level 142 
pressure (SLP: Poleward of 20°N calculated by projecting the AO pattern on SLP anomalies) 143 
computed through the National Centers for Environmental Prediction–National Center for 144 
Atmospheric Research (NCEP/NCAR) reanalysis (Wallace & Thompson, 2000). Monthly 145 
Hurrell North Atlantic Oscillation (NAO) index values are based on principal component 146 
analysis of SLP over the Atlantic. While the instrumental AO index goes as far back as 1899, 147 
early data issues include different SLP sources for different time periods, with discontinuities 148 
identified between data source transitions (Trenberth & Paolino, 1980). Therefore, only later 149 
instrumental AO index values (1958-2015) were used in this study due to confidence issues with 150 
early data points. Further, the NAO record was shortened to match the length of the AO record 151 
for even comparison to the algal record in Table 1. The correlation between the CASIP record 152 
and the full length NAO record is reported and plotted in Figure 4. Monthly AMO index values 153 
are the 10-year running mean values smoothed from the Kaplan SST V2 timeseries. Seasonal 154 
means were calculated by averaging summer months (May-Oct). Spatial correlation analysis and 155 
linear regression to monthly NSIDC sea-ice concentration dataset see procedure in (Leclerc et 156 
al., 2021) was computed using Matlab and m_map mapping toolbox. The software kSpectra is an 157 
implementation of techniques described in Ghil et al. (2002) and was used to run multi-taper and 158 
singular spectral analyses (SSA) on instrumental and proxy datasets to determine if the algal 159 
record shared AO, NAO and AMO frequency signatures. 160 

4 Results & Discussion 161 

Since higher sea-ice cover, in typically colder years, limits growth, we expected a negative 162 
correlation between regional sea-ice cover and annual growth, and positive correlations with AO, 163 
NAO, and AMO. Accordingly, spatial correlation analysis shows strongly significant negative 164 
correlations (p<0.001) between Beechey Island growth increment chronology and regional 165 
satellite sea-ice concentrations (Fig. 3). Highly significant spatial relationships also centered 166 
along the northern coast of the Canadian Arctic Archipelago, the Beaufort Sea and the Laptev 167 
Sea (Fig. 3a). At a more localized scale, the algal growth increment timeseries correlates 168 
significantly (R = -0.71; p<0.001) with satellite sea-ice concentrations (Leclerc et al., 2022) (Fig. 169 
3b). The confirmation of the local sea-ice–algal growth relationship suggests that if AMO, AO or 170 
NAO and sea-ice are related in Lancaster Sound, the algal timeseries should record their signal. 171 
Indeed, correlation analysis demonstrated that the master Beechey Island chronology 172 
significantly (p<0.001) captured the decadally-smoothed AMO index (Tab. 1). The AO was also 173 
significantly correlated at annual (p<0.01) and decadal (p<0.05) resolutions, and the NAO 174 
correlation was markedly strong at a decadal resolution (p<0.001), however only until 2000. 175 
 176 
The lack of correlation between AO and sea-ice cover in recent decades has previously been 177 
documented (Feldstein, 2002; Overland & Wang, 2005; Overland & Wang, 2010; Stroeve et al., 178 
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2011) and this coralline algal record supports it as well. Its manifestation in the Canadian Arctic 179 
Archipelago (CAA) may also be related to recent shifts in the duration of ice bridges, landfast ice 180 
between landmasses which form in winter and block sea-ice export until summer collapse. When 181 
ice bridges at M’Clure Strait or the Queen Elizabeth Islands (QEI) (Fig. 1) collapse, sea-ice from 182 
the Arctic Ocean is free to be imported into the CAA, especially during positive AO phases 183 
(Howell et al., 2013). Contrary to the +AO-stimulated ice breakup/export acceleration, +AO-184 
stimulated sea-ice import after ice bridge collapse may limit algal light access and mute the AO 185 
signal. In fact, since 2005 there has been an increase of ice inflow into the CAA through the 186 
Queen Elizabeth Islands, which tends to flow south towards Lancaster Sound (Howell et al., 187 
2013). Other data from the Nares Strait suggest that ice volume export through the Strait has 188 
increased recently in comparison to the 1997-2009 mean, linked to the trend of shorter duration 189 
of ice bridges (Moore et al., 2021). This may be responsible for the masked AO signal in the 190 
Beechey Island CASIP record since the turn of the millennium (Supplentary Figure 1; Tab. 1).  191 
 192 

 193 
Figure 3. A) Spatial correlation analysis between gridded Arctic SIC and Beechey Island growth 194 
increment chronology. Right plot shows Beechey Island region enlarged.  B) Plotted algal 195 
growth increment timeseries (black: anomalies = (annual value – average) / standard deviation) 196 
and NSIDC sea-ice concentrations (blue: 75 km2 around Beechey Island site) (see Leclerc et al., 197 
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2022 for original figure of subplot B). Note that growth anomalies are plotted inversely. R-value 198 
indicates strength of correlation. 199 
 200 
Periods with larger growth increments coincide with a strongly positive AMO period and the 201 
Early Twentieth Century Warming (ETCW: 1920s-1950s) period (Fig. 4). The ETCW has been 202 
shown to be associated with sea-ice retreat in the Barents Sea caused by stronger westerly winds 203 
between Spitsbergen and Norway (Bengtsson et al., 2004), and has also been recorded by C. 204 
compactum Ba/Ca and growth-Mg/Ca anomaly timeseries from Spitsbergen (Hetzinger et al., 205 
2021, 2019). Day et al. (2012) suggested the recent positive phase of AMO could explain 5-30% 206 
of satellite summer sea-ice loss and Miles et al. (2014) suggested AMO was a major driver of 207 
sea-ice variability from the past 800 years to the 1990s. Similarly, our data showed that the AMO 208 
and ETCW affected ice decline in Lancaster Sound in the mid-20th century. Multi-taper spectral 209 
analysis results showed multidecadal variability in the algal chronology (significant at 99% level, 210 
60-77-year signal, CASIP: 1805–2015; Supplementary Figure S1), comparable to the posited 211 
periodicity of AMO (60–80 years) (Kerr, 2000; Schlesinger & Ramankutty, 1994). Significant 212 
(95% level) interannual signals (at 2 and 3 years) were also found, closely matching AO 213 
signatures (Supplementary Figure S1) previously shown to affect sea-ice circulation in the Baltic 214 
Sea (Jevrejeva et al., 2003). However, the CASIP multi-taper results did not capture AO’s 215 
decadal variability as reported elsewhere (Ramos da Silva & Avissar, 2005). However, singular 216 
spectrum analysis (SSA) of the shortened CASIP record (1960-2000) identified significant 217 
variability at 7.6–10.3 years responsible for more than 60% of variance (Suplementary Figure 218 
S1). In the AOSUMMER record (1960-2000), most of the variability is interannual (2.5-5.1 years; 219 
details in Supplementary Text S1), a decadal signal (10.6-year) is explaining only 16.9% of total 220 
variance. In summary, multi-taper and SSA did not fully identify the 8 – 10-year AO signals 221 
previously identified through wavelet power spectrum analysis (Ramos da Silva & Avissar, 222 
2005). This further suggests that the shared variability at the approximately 2–3-year periodicity 223 
level is what the sea-ice-AO and sea-ice-CASIP relationships are recording in the CAA.  224 
 225 
The part of the algal record that extends earlier than the instrumental NAO record (i.e., prior to 226 
1899), suggests colder and heavier ice conditions in the 19th century in comparison to the 20th 227 
century similar to the findings of indirect (temperature) sea-ice proxy tree ring records (D’Arrigo 228 
et al., 2003; Young et al., 2012). The algal chronology also suggests a period of less ice in the 229 
mid-1800s possibly due to more positive AO/NAO or AMO, or both (Fig. 4). While, many have 230 
suggested that the Little Ice Age and colder conditions persisted until the late 1800s, this slightly 231 
warmer period in the mid-1800s is supported by multiple Arctic proxy records that find episodic 232 
warming at this time (Jennings & Weiner, 1996; Massé et al., 2008: records synthecized in Miles 233 
et al., 2020). This warming period is also corroborated by ice cap stratigraphy from nearby 234 
Devon Island, Greenland ice sheets and marine cores from the Labrador Sea, which suggested 235 
early warming in 1860s and a more intense warming trend beginning around 1890 (Keigwin et 236 
al., 2003; Koerner, 1977; Trusel et al., 2018). The mid-1800s mild warming period found in our 237 
record predates those found in other AMO proxy records from terrestrial archives (e.g., Gray et 238 
al., 2004), which shows a later warming period later in the 1800s, and cooler 1830s-1840s (Fig. 239 
4). While, some suggest some uncertainty in terrestrial AMO records (e.g., Miles et al., 2020), it 240 
is notable that sea-ice and NAO trends have been shown to lead AMO variability in some 241 
regions, and that the timing in AMO peaks and troughs are regionally variable (Alexander et al., 242 
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2014; Peterson et al., 2015). As the NAO and AO are highly correlated (Rigor et al., 2002), this 243 
could also apply to AO precursers to AMO.  244 

 245 
 246 
Figure 4. Relationship between crossdated Beechey Island growth increment (i.e., CASIP) 247 
detrended chronology and detrended AO (orange), NAO (purple) and AMO (dark green) climate 248 
indices for summer months (May-October). Individual algal samples (light grey); average of all 249 
algal samples (dark grey); 10-yr running mean of average growth, AO and NAO (black, dark 250 
orange, and dark purple lines, respectively). Tree ring-based proxy AMO timeseries (light green) 251 
from Gray et al. (2004). AMO is 10-year averaged index (no 10-yr running mean). Early 252 
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Twentieth Century Warming (ETCW: 1920-1960) and loss of correlation in 2000s periods (grey 253 
bars), and major El Niño event (arrow: 1939-1942).  254 
 255 
Algal-sea-ice-proxy (CASIP) records are indicators of a combination of sea-ice variables 256 
affecting light penetration to the benthos: present/absent ice cover (related to melt/freeze up and 257 
wind and current dynamics), seasonal duration of cover, thickness and snow cover. Together, the 258 
AMO, AO, and NAO have the capacity of affecting all these variables. Samelson et al. (2006) 259 
suggested that the formation of land-fast ice in the CAA is controlled by both winds and air 260 
temperature, both are parameters influenced by these large atmospheric and ocean temperature 261 
patterns. Furthermore, Peterson et al. (2012) found that monthly longshore wind anomalies in the 262 
Beaufort Sea, which are heavily influenced by AO, stimulated 43% of Lancaster Sound’s volume 263 
transport anomaly variance. This is supported by the significant relationship between the 264 
Beechey Island CASIP record and gridded sea-ice concentrations on the exterior CAA coast 265 
bordering the Beaufort Sea (Fig. 2a). The linked variability and coupling of the AO/NAO and  266 
AMO are posited to stem in part from interannual and long-term sea-ice cover trends and/or 267 
stimulation of Atlantic Meriodinal Overturning Circulation (AMOC) (Medhaug et al., 2012; 268 
Peterson et al., 2015; Polyakov et al., 2010; Polyakov et al., 2005; Yang et al., 2016). Our results 269 
seem to support the assertion of arctic sea-ice’s important role in AMO variability. 270 

Table 1. Linear regression (R- and p-values) correlations of Beechey Island algal growth record 271 
to climate indices at seasonal (summer) and decadal (10-year running means of summer values) 272 
resolutions. Highlighted grey boxes are significant positive correlations (p<0.5; darkest shades 273 
indicate p<0.01). 274 
AO (May-Oct: 1958 -) NAO (May-Oct: 1958 -) AMO (Annual: 1861 -) 

Seasonal  Decadal Seasonal  Decadal Decadal 

Anomalies (- 2015) 

0.23 
p=0.08 

-0.11 
p=0.4 

0.05 
p=0.7 

-0.49 
p<0.001 

0.31 
p= 0.001 

Anomalies (- 2000) 

0.41 
p<0.01 

0.41 
p<0.01 

0.33 
p=0.03 

0.53 
p<0.001 

0.21 
p= 0.01 

Detrended (- 2015) 

0.17 
p=0.2 

-0.37 
p<0.01 

0.08 
p=0.55 

-0.4 
p<0.01 

0.39 
p<0.001 

Detrended (- 2000) 

0.4 
p<0.01 

0.31 
p<0.05 

0.34 
p<0.05 

0.64 
p<0.001 

0.38 
p<0.001 

Note. All negative correlations are considered insignificant.  
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5 Summary & Conclusion 275 

The C. compactum growth increment chronology from Beechey Island recorded: 1) lower sea-ice 276 
cover during the 1800s in comparison to the 1900s; 2) slightly lighter sea-ice years in the mid-277 
1800s; 3) the Earth Twentieth Century Warming period; 4) significant sea-ice response to AMO 278 
throughout the record; 5) significant sea-ice responses to AO/NAO from 1960-2000, and; 6) lack 279 
of sea-ice response to AO/NAO from 2000-2015 possibly due to external factors such as the 280 
greenhouse gas (GHG) effect and ice-albedo feedbacks. The development of longer high-281 
resolution proxy records such as CASIP timeseries is critical to understanding the role of 282 
cryospheric-atmospheric feedbacks in the many intertwined components in the global climate 283 
system (Gao et al., 2015). The Canadian Arctic Archipelago, which tends to trap multi-year ice 284 
(Howell et al., 2008; Kwok, 2015), makes up a significant part of the Last Ice Area, predicted to 285 
be the last arctic region to experience summer ice cover (Moore et al., 2019). As this area will 286 
become increasingly crucial in the coming years, and potentially more hazardous to naval travel 287 
(Howell et al., 2022), C. compactum CASIP records can provide important historical and pre-288 
industrial baselines. While it is reasonably well understood that atmospheric patterns have an 289 
effect on sea-ice extent, the interplay between coastal sea-ice cover and atmospheric patterns, 290 
especially in the CAA is still not well understood. Here we find strong links between internal 291 
variability and sea-ice trends. However, we note that these links are muted in recent decades 292 
(especially after 2000) due to anthropogenic forcing and possibly enhancement of ice penetration 293 
through QEI gates in the Canadian Arctic Archipelago (Howell et al., 2023).   294 
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Introduction  20 

The contents of this supplement relate to our study which showed a sea-ice response to 21 
Atlantic Multidecadal Oscillation (AMO) and Arctic Oscillation (AO) in Lancaster Sound located 22 
in the Canadian Arctic Archipelago. These findings were based on growth increment-based 23 
timeseries from coralline red algae, Clathromorphum compactum, stated in the study as the 24 
coralline-algal-sea-ice-proxy (CASIP) record. The supplement provides comprehensive spectral 25 
analysis results (extracted the kSpectra software: methods and techniques described in Ghil et 26 
al., 2002) including comprehensive explanation of both multi-taper and single spectrum 27 
analysis (Text S1) and visual representation of multi-taper results (Figure S1) showing shared 28 
signal frequencies between CASIP and AMO/AO. Periods of time investigated relate to those of 29 
relevance to either the availability of reliable instrumental datasets (i.e., AO), the length of the 30 
entire CASIP record (1805-2015), or may be cut-off at 2000 due to documented loss of 31 
correlation between AO and sea ice cover. To specify, spectral analysis on AO was only 32 
conducted on summer index values (average of May to October).  33 
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Text S1. 34 
Multi-taper spectral analysis identifies oscillation signals in the algal and instrumental 35 
chronologies by maximizing signal resolutions through a number of tapers, with statistical 36 
significance being independent of signal amplitude (Ghil et al., 2002). Multi-taper results 37 
showed a highly significant (99% level) 60-77-year signal in the algal chronology (ASIP: 1805–38 
2015) (Figure S1d), comparable to the posited periodicity of AMO (60–80 years) (Kerr, 2000; 39 
Schlesinger & Ramankutty, 1994). Significant (95% level) signals at 2.3 and 3 years were also 40 
found (Figure SId), closely matching AO (Figure S1a) signatures also previously shown to affect 41 
sea ice circulation in the Baltic Sea (Jevrejeva et al., 2003).  42 

 43 
A previous study on instrumental AO periodicity found an 8–10-year signal present since 44 
1960s through wavelet power spectrum analysis (Ramos da Silva & Avissar, 2005). Multi-taper 45 
spectral analysis of the algal timeseries since 1960, however, only showed a significant multi-46 
taper signal of 2–2.7-year in the ASIP record (1960-2015 and 1960-2000) and a 2.9-year signal 47 
in the AOSUMMER record (1960-2015) (Figures S1a, S1b and S1c). This shared signal of 48 
approximately 2–3 years in algal and AOSUMMER timeseries supports their AO and ASIP co-49 
variability, however, surprisingly did not show the 8–10 year signal of the AO as previously 50 
reported (Ramos da Silva & Avissar, 2005).  51 

 52 
Unlike multi-taper spectral analysis that reduces the variance of spectral estimates, singular 53 
spectrum analysis calculates total variance and estimates the amount of co-variability of 54 
signals through lagging techniques, and was specifically designed for short and noisy 55 
timeseries (Ghil et al., 2002). Accordingly, singular spectrum analysis of the shortened ASIP 56 
record (1960-2000) identified at the 95% confidence level a 10.3-year signal responsible for 57 
34.9% variance, a 7.6-year signal for 27.8%, a 3.4-year signal for 19.1%, and 2.6-year for 18.3%. 58 
This suggests that 7.6 – 10.3-year signals were responsible for more than 60% of ASIP variance. 59 
In the AOSUMMER record (1960-2000), most of the variability is captured in signals of 5.1-years, 60 
3.4-years and 2.5-years (responsible for 22.8%, 28.2% and 32.1% variance, respectively), with a 61 
10.6-year signal responsible for only 16.9% of total variance. In addition, results of singular 62 
spectrum analysis for the 1805–2015 period pointed to a 33-55-year signal in the algal record 63 
responsible for 29.3 % of variance, a 3–6-year signal for 13.1 % of variance and 10–17-year 64 
signal for 17.2 % of variance, quite similar to sea ice-AO responses in the Baltic Sea (2.2–3.5, 65 
5.7–7.8, and 12–20-year signals: Jevrejeva et al., 2003) (Figure S1d). Multi-taper and singular 66 
spectral analyses did not fully identify the 8 – 10-year AO signals previously identified through 67 
wavelet power spectrum analysis (Ramos da Silva & Avissar, 2005). This further suggests that 68 
the shared variability at the approximately 2–3-year periodicity level is what sea ice-AO and 69 
sea ice-ASIP are recording. 70 
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Figure S1. Multi-taper spectral analysis for the Beechey Island algal growth increment 73 
timeseries (CASIP) and AOSUMMER for time periods discussed in text. Red lines indicate 99% and 74 
95% level of significance. 75 
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