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Abstract

One of the future NASA space program includes the Farside Seismic Suite (FSS) payload, a single station with two seismometers,
on the far side of the Moon. During FSS operations, the processing of the data will provide us with new insight into the Moon’s
seismic activity. One of Apollo mission finding is the existence of deep moonquakes (DMQ), and the nature of their temporal
occurrence patterns as well as the spatially clustering. It has been shown that DMQs reside in about 300 source regions. In
this paper we tackle how we can associate new events with these source regions using the single station data. We propose a
machine learning model that is trained to differentiate between DMQ nests using only the lunar orbital parameters related to
DMQ time occurrences. We show that ML models perform well (with an accuracy >70%) when they are trained to classify less
than 4 nests.
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Key Points:8

• As a part of the future space mission NASA will deploy a new seismic station to9

Schrödinger Basin on the far side of the Moon.10

• We propose a machine learning model trained to classify deep moonquakes using11

the lunar orbital parameter.12

• The models perform with accuracy greater than 70% when trained to classify com-13

binations of four or fewer nests.14
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Abstract15

One of the future NASA space program includes the Farside Seismic Suite (FSS) pay-16

load, a single station with two seismometers, on the far side of the Moon. During FSS17

operations, the processing of the data will provide us with new insight into the Moon’s18

seismic activity. One of Apollo mission finding is the existence of deep moonquakes (DMQ),19

and the nature of their temporal occurrence patterns as well as the spatially clustering.20

It has been shown that DMQs reside in about 300 source regions. In this paper we tackle21

how we can associate new events with these source regions using the single station data.22

We propose a machine learning model that is trained to differentiate between DMQ nests23

using only the lunar orbital parameters related to DMQ time occurrences. We show that24

ML models perform well (with an accuracy > 70%) when they are trained to classify25

less than 4 nests.26

Plain Language Summary27

The future space missions will provide us with various new lunar data, one of which28

will be ground vibration measurement. The studies of these measurements from the Apollo29

era in 70s, showed that Moon can host various events. The most intriguing ones are deep30

moonquakes (DMQs), which are events associated with the displacement deep within the31

lunar interior. It has been shown that DMQs occur in the specific locations, which are32

called nests, and that their temporal occurrence is related to the monthly motion of the33

Moon around the Earth. In this paper we tackle how we can associate new events from34

only one station located on the far side of the Moon with these known locations of DMQs.35

We propose a machine learning model that is trained to classify DMQ nests, only using36

the information about their temporal occurrences, e.g. time of the event, described in37

terms of different lunar events. We report that models are performing well (with an ac-38

curacy > 70%) when they are trained to classify 4 or fewer nests. This gives us a good39

first approximation about the nest identification.40

1 Introduction41

We are at the beginning of a golden age of lunar exploration as many nations, to-42

gether with private companies, are establishing numerous efforts to obtain new scien-43

tific measurement of the Moon (Weber et al., 2021; Pickrell, 2022; Kawamura et al., 2022).44

In light of this, NASA established the Artemis program which should land a crewed mis-45

sion at the lunar south pole (Witze, 2022). This would be the first attempt of a crewed46

landing after the successful Apollo missions in 1970’s. Before Artemis missions land on47

the Moon, NASA has also established the Commercial Lunar Payload Services (CLPS)48

program to land scientific payloads on the Moon using commercial landers. The Farside49

Seismic Suite (FSS) is one of the selected payloads, and it will deliver two seismometers50

to Schrödinger Basin on the far side of the Moon (Panning et al., 2021; Standley et al.,51

2023; Cutler et al., 2023): one vertical Very BroadBand seismometer, and Short Period52

sensor, both spare or derived from the SEIS experiment sensors (Lognonné et al., 2019,53

2020) from the InSight mission to Mars (Banerdt et al., 2020).54

The Apollo missions showed the importance of deploying sensors on the surface of55

the Moon, since a great deal of our knowledge about the Moon comes from the analy-56

sis of data acquired during the Apollo era (Lognonné & Johnson, 2015). Thus, analyz-57

ing ground motion measurements provided the community with the first constraints on58

the lunar interior and the activity at the surface (Nakamura et al., 1982a, 1982b; Khan59

et al., 2000; Khan & Mosegaard, 2002; Khan et al., 2014; Lognonné et al., 2003; Gagnepain-60

Beyneix et al., 2006; Weber et al., 2010; Garcia et al., 2011; Kawamura et al., 2017; Gar-61

cia et al., 2019; Nunn et al., 2020). It has also revealed that the Moon can host events62

of various origins, such as shallow and deep moonquakes, meteoroid and artificial impacts63

(Toksöz et al., 1974; Dainty et al., 1975; Lammlein, 1977a; Nakamura, 1983, 2003, 2005).64
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Today, we have more than twelve thousands events, out of which the deep moonquakes65

(DMQs) form the most numerous group (Nakamura et al., 1981; Nakamura, 2005).66

DMQs are a distinctive group of seismic events that originate from depths between67

700 and 1200 km, at high pressure and temperature conditions, where little brittle de-68

formation is expected. Due to very high waveform similarity between quakes, the DMQs69

have been clustered into about 300 source regions or nests (Nakamura, 2003). This has70

interpreted to be a consequence of DMQs occurring repeatedly at the fixed nests, which71

are located mostly on the near side of the Moon. It has been shown that time occurrence72

of the DMQs is correlated with the monthly motion of the Moon around the Earth. Thus,73

DMQ occurrences exhibit tidal periodicities and furthermore, the associated high strain74

rates might explain brittle processes (Kawamura et al., 2017). However, the real causes75

of their origins are yet to be discovered. There are two puzzling fact about their origin:76

a) cyclic tidal stresses, caused by the monthly motion of Moon around Earth, are far less77

than the estimated confining pressures where DMQs occurs (Cheng & Toksöz, 1978; Min-78

shull & Goulty, 1988a); b) do we need both, tectonic and ambient tidal stresses, to ex-79

plain their mechanical origin (Frohlich & Nakamura, 2009).80

To better constrain the lunar interior and unravel the cause of DMQs, it is impor-81

tant to locate new events and associate them with the known nest locations from Apollo82

with future lunar missions like FSS. These new observations will add, for each new nest,83

a new differential ts − tp measurement constraining the deep interior with a different84

epicentral distance. However, due to the mission requirements, it is extremely likely that,85

at the beginning, we might have only one lunar station at the disposal. Therefore, in this86

paper we study the problem of DMQ nest identification without using waveform infor-87

mation. This is due to the new location of the recording station, which will not match88

existing Apollo-era waveform templates due to different propagation paths. We propose89

a machine learning (ML) model that is trained to identify nests within the set of nests90

of similar differential travel times. The main features used for the model training are re-91

lated to the fact that different nests respond differently to lunar cycle.92

Very early studies have shown correlation between lunar transient events and po-93

sition of the Moon related to the Earth (Middlehurst, 1967; Cameron & Gilheany, 1967;94

Moore, 1968). This further encouraged observations that some moonquakes occur with95

periods that reflect Earth-Moon-Sun relationship (Ewing et al., 1971). Later, it has been96

shown that the occurrence of DMQs are related to tidal stress cycles, and correlations97

between DMQs occurrence times and lunar monthly tidal cycles have been indicated (Lammlein98

et al., 1974; Toksöz et al., 1977; Lammlein, 1977b; Cheng & Toksöz, 1978; Minshull &99

Goulty, 1988b). The lunar cycle can be explained with three lunar months: synodic, dra-100

conic, anomalistic. Synodic month is the period of lunar phases such as New Moon, First101

Quarter, Full Moon, Last Quarter. Draconic month is the period between two nodes, as-102

cending or descending, where the nodes are points at which the Moon’s orbit plane crosses103

the ecliptic plane towards which it is inclined of about 5.14°. Anomalistic month is the104

period between two extreme points, perigee and apogee, since the Moon’s orbit approx-105

imates an ellipse rather than a circle. Earlier studies counted the number of events per106

day as a function of time and found 0.5 and 1 month signals in the occurrence times re-107

lated to anomalistic and draconic period of 27 days (Lammlein et al., 1974; Lammlein,108

1977b). The same studies also indicated 206-day and 6-year periods, related to the Sun’s109

perturbation on the lunar orbit and the relative precession of the perigee of the Moon’s110

orbit. Subsequently, many recent papers studied and confirmed tidal periodicities of DMQs111

and more (Bulow et al., 2005, 2007; Bills et al., 2008; Frohlich & Nakamura, 2009; We-112

ber et al., 2009, 2010; Turner et al., 2022).113

Based on the previous papers, it is clear that DMQ nests exhibit some clear tem-114

poral patterns in their occurrences, and that these are correlated with Moon-Earth sys-115

tem. Therefore, the open question is whether we can design features which would reflect116

these temporal patterns and to further use those features to study the nest identifica-117
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tion with one lunar station. In this paper we tackle the question of defining optimal fea-118

tures and the machine learning model. The paper is organised as follows: first, we dis-119

cuss data used in the analysis, the existing catalog of DMQ events. Second, we discuss120

the feature design. Third, we introduce a machine learning model. Fourth, we discuss121

successes and pitfalls of the machine learning model for nest identification applied to dif-122

ferent combination of nests. We conclude how this study can offer some first estimates123

of the nest location in the future lunar missions.124

2 Data125

We start with the existing catalog of lunar events (Nakamura et al., 1981), which126

was updated in 2008 and modified in 2018 (Nunn et al., 2020). Catalog contains a list127

of events (shallow and deep moonquakes, meteoroid and artificial impacts) with attributes128

such as date and time of the event occurrence, signal envelope amplitude as measured129

in mm on a standard plot, data availability per station, and the nest (source) classifi-130

cation for DMQs. It is important to note that the source classification is not an exact131

location defined by latitude and longitude, rather a result from the waveform cross-correlation132

and single-link cluster analysis (Nakamura, 2003). This analysis positively clustered around133

7k DMQs into 77 nests, where the largest nest is associated with label A1. This nest con-134

tains 443 quakes and it is placed on the near side of the Moon.135

2.1 Catalog processing: nest sets based on travel time information136

Earlier studies published lunar interior models and location of DMQ nests in terms137

of latitude and longitude by picking P and S travel times on the quake waveforms (Garcia138

et al., 2019, review of these picks). Using lunar interior models and nest locations we can139

define nests that are close by in distance if we consider only the tsp travel time measure-140

ments. To do so we assume that a) our single lunar station is located on the far side in141

Schrödinger Basin (FSS landing site at 71.378◦S, 138.248◦E), b) nests’ latitudes and lon-142

gitudes from (Lognonné et al., 2003), c) calculated P- and S- wave travel times (tp and143

ts, respectively) using lunar velocity model between landing site and locations of DMQ144

nests. By having ts and tp we can calculate tsp = ts−tp for all nests and models shown145

in Figure 1 (see Text S1 and Figure S1 for further explanation). Next, we count for each146

nest how many there are with the similar tsp travel time measurement assuming a pick-147

ing error of 5 seconds as shown in Figure 1A, consistent with the average picking error148

in Lognonné et al. (2003). This count provides us with the different sets Si, shown in149

Figure 1A, that contain nests Nj of similar travel times. In other words, if we are able150

to measure ts and tp of the new lunar event with accuracy within 5 seconds, we are not151

able to differentiate between nests that belong to different sets Si. Therefore, to further152

tackle the nest identification problem we proceed to associate each event with a com-153

bination of lunar orbital measurements.154

2.2 Feature selection based on the lunar orbital information155

It has been shown that the DMQ temporal patterns in time occurrences are related156

to different lunar cycles and that these patterns differ from nest to nest. Three lunar cy-157

cles are synodic, draconic, anomalistic, and they all have similar periods, but are marked158

by different motions, either as the motion between two Full Moons phases, or two nodes,159

or two apsis, respectively. One can list all the events when Moon is in the Full Moon (New160

Moon) phase, passing through ascending (descending) node or perigee (apogee) by sim-161

ply looking at the Moon’s ephemeris (Meeus, 1991). To make sure that we take into ac-162

count the temporal patterns, we design the main three features as a time difference be-163

tween the time of the quake in the nest and the time of the Moon’s Full Moon, ascend-164

ing node and perigee, denoting it as ∆tFullMoon,∆tAscendingNode,∆tPerigee, respectively.165

We can achieve the same effect by taking the other three time axis as referent one (New166
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Figure 1. Location study of the DMQ nests from the perspective of tsp = ts − tp travel

time measurements if we place station in the Schrödinger Basin and consider four different lunar

models. A) Upper panel: tsp travel time measurements for four lunar models from Garcia et al.

(2011) (G11), Garcia et al. (2019) (issi2, issi3), (Khan et al., 2014) (K14) with nest labels; A)

Lower panel: Sets Si which represent nests with similar travel times if we consider a travel time

error of 5 seconds. B) Lunar map with the nests locations where the color indicate the median

tsp for four lunar model.
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Moon, descending node, and apogee). The next feature is related to the Moon position167

within its orbit as in Frohlich and Nakamura (2009). The angle between the direction168

of perigee and the current position of the body, as seen from the main focus of the el-169

lipse, is called the true anomaly, denoted further as γ. Further, as one of the feature we170

also use the interval time between two quakes in the nest, noted as ei+1−ei, as in Weber171

et al. (2010). And the last two features are related to the position of the Moon with re-172

spect to the Earth, and these are the distance, d, itself and the rate of the distance change,173

ḋ, as in Bills et al. (2008).174

The selected features all have different ranges and we refer to them as raw data.175

To train a model that is able to generalise well for a given problem sometimes it is nec-176

essary to transform raw data to a form that is more suitable for training (Langer et al.,177

2019). By applying transformation on the raw data we may obtain a mapping which bet-178

ter reveals patterns in our data. Therefore, we chose to apply trigonometric transforma-179

tion of the true anomaly angle γ, to properly address the jump discontinuities in the fea-180

ture when angle goes from 2π to 0, due to it’s cyclic nature. This is addressed by trans-181

forming true anomaly angle γ to pair of [cos γ, sin γ]. An example of all eight features182

are shown in Figure S2 for nest A1.183

3 Methodology184

When new lunar data arrives, we shall be able to differentiate events in groups based185

on the waveform similarity measurement. And we shall be able to measure their P and186

S travel times, and thus form set of nests from Section 2.1. Final step would be to as-187

sociate these new events with the existing Apollo nests if possible. This nest identifica-188

tion from a single lunar station is a supervised classification problem. The model is trained189

in a predictive way by taking into account nest locations as labels and nest lunar orbital190

parameters as input data. Since we want to predict a class (nest), but we do not have191

statistically large data set (as previously mentioned A1 has 443 quakes), we choose to192

train a Random Forest (RF) Classifier, since RF can perform well with any size of datasets193

and tend not to overfit (Ho, 1995; Breiman, 2001).194

Random Forest (RF) is a machine learning technique that is based on decision trees195

(Breiman et al., 1984; Quinlan, 1986) and bootstrap aggregating (Breiman, 1996), where196

the main output is reached by majority votes among an ensemble of randomised deci-197

sion trees. A main building unit, a decision tree, is a tree-like learning algorithm where198

each internal node tests on attribute, each branch corresponds to attribute value and each199

leaf node represents the final prediction. Usually, during the training phase thresholds,200

order and number of inequality operations within internal nodes are learned. The hy-201

perparameters that define a RF structure, such as the number of trees, and measure which202

maximises diversity between classes, are determined beforehand (see Text S2 and Fig-203

ure S3).204

RF also provides an assessment of the feature or input variable importance which205

might give us an insight of how the model reached its prediction. To assess the feature206

importance, the RF removes one of the features while it keeps the rest constant, and it207

measures, among others, the accuracy decrease (Breiman, 2001). RF models are able to208

solve regression and classification problems, as well as two- and multi-class problems. It209

has been show that RF can perform with high accuracy even though there are only a210

few parameters to tune.211

In our case, during the training phase, the RF model has access to the extracted212

features of the individual quakes and the nest labels. The training is performed on a sub-213

set of the data, while the model performance is evaluated on the test subset, which the214

model has never seen. Evaluation is accomplished by comparing the model’s predicted215

class (nest) with the ground truth one. The statistical performance of the model is pre-216
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sented with confusion matrix and Receiver Operating Characteristic (ROC) curve. We217

expect that in the case of the ideal RF Classifer the diagonal of the confusion matrix is218

equal to 1 (and off-diagonal elements are zero), while ROC curve is passing through the219

left upper corner.220

4 Results and discussion221

4.1 Training and testing on two largest nests222

We first test the hypothesis whether it is possible to differentiate two DMQ nests223

using the lunar orbital parameters (features). For this, we select the two largest nests,224

A1 and A8, with a total size of 768 events and ratio A1:A8=0.57 : 0.43 (see feature dis-225

tributions in Figure S4).226

Training and testing our base RF model (see Text S2) with the normalised and not227

normalised input data, we end up selecting to work with the normalised input data since228

this model performed better (see Figure S5 and S6). The base model trained with the229

normalised input data performed with an accuracy of 89%, while precision, recall and230

f1-score for the A1 nest is 88%, 94%, 91%, respectively, and for A8 is 90%, 80%, 85%,231

respectively (see Figure S6B) with only the occurrence time knowledge. The ROC curve232

is above the random classifier curve, meaning that the base model is not randomly clas-233

sifying A1 and A8 nests (see Figure S6C). Out of eight features, the first five most im-234

portant are cos(γ), ∆tPerigee, d, ∆tAscendingNode, ei+1 − ei (see Figure S6D). We no-235

tice that cos(γ) is the feature with the most important contribution to the model learn-236

ing. This might be because A1 and A8 have reversed distributions for cos(γ) feature (see237

Figure S 4D).238

We proceed into testing learning robustness of our base model in a series of exper-239

iments (see Text S2 and Figures S7-S12), all of which indicate that the model is stable.240

This implies that the base model generalizes well, and not over fit the results. Further,241

if we examine why the base model sometimes mislabels the nests (Figure S13), we no-242

tice that the 2D manifold (see Text S3) of feature space spanned by the input data, cal-243

culated by t-sne method (van der Maaten & Hinton, 2008), is not perfectly separated.244

It seems this segregation might be dominated by a single feature, and that is ∆tAscendingNode245

(see Figure S14 and S15A).246

4.2 Training and testing on three and more nests247

In this section we study how the performance of our base RF model from Section248

4.1 changes by adding more nests. We carry out three tests for the next combinations249

and their ratios: A1-A8-A18 (45%-33%-22%), A1-A8-A18-A6 (38%-28%-18%-15%), A1-250

A8-A18-A6-A14 (33%-25%-16%-13%-12%), where the three added nests are the three251

largest nests besides A1 and A8.252

The analysis shows that by adding more nests, the performance of our base model253

deteriorates since the accuracy drops from 88% to 59% (see Figures S16-S19). By adding254

a 3rd nest, and we notice that A1 and A8 recalls deteriorate slightly, and 50% is A18 events255

are classified either as A1 or A8 (see Figure S16). Yet, the precision of A18 is the high-256

est. Features, ei+1−ei and ḋ, gain importance. Yet, the importance of all features be-257

come more equalized. By adding a 4th nest, A6, the recall of A1 nest improves, recall258

of A8 nest deteriorates even more than before, recall of A18 improves notably, and the259

new added nest A6 has a recall of 46%, by having most of its events misclassified only260

as A1 nest, and not a single event as A18 (see Figure S17). This might implies that A18261

and A6 nests have completely different source mechanisms. Less notably than before,262

the importance of all features is becoming more equalized. Lastly, by adding a 5th nest,263

A14, the recall of A1 and A8 become the highest, and three other nests perform with264
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recall less than 50%, and their most mislabelled data points are associated with A1 nest265

(see Figure S18). The importance between features is almost equalized, yet the inter-266

val time ei+1 − ei is the only feature that stands out.267

These results might imply that by adding more nests, we add more complexity into268

the problem, since we might be adding nests that have similar source mechanisms. Hav-269

ing similar source mechanisms means that sources are triggered by tides is the same way,270

so their lunar orbital features have similar characteristics, and we cannot differentiate271

between nests without having more data. Furthermore, it seems that the only signifi-272

cantly important feature is the interval time, the only feature that does not reflect the273

lunar orbital information.274

Checking the two dimensional representation of the feature space constructed by275

the feature combination of nests A1-A8-A18-A6-A14, we might conclude that for this276

particular set it is to some degree impossible to completely differentiate between nests277

due to the lack of data (see Figure S20).278

4.3 Training and testing on nest sets279

Using the same base RF model from Section 4.1, we proceed to train and test how280

well we can differentiate nests that belong to the same set shown in Figure 1. We an-281

alyze them in three separate groups by the frequency of the nest they contain: A) S1,282

S2, S3, S4, S12, S13, S14, S15; B) S5, S6, S7, S8; C) S9, S10, S11. The results are shown283

in Figure 2A, B, and C, respectively.284

We observe high value of recall for most of the nests, as well as high accuracy for285

most of the sets (see Figure 2). Sets that have <= 4 nests perform better than those with286

more nests, as in sets from group A shown in Figure 2B. When the nest’s recall is very287

low or zero (A11, A30, A41, A42, A50), it signifies a nest with very few events (see ra-288

tio of nests in all sets in Figure S18). If we take an example of nest A20, we notice that289

it has constant recall in many sets (see Figure 2B and C), even though it is not the biggest290

nest in the set (see Figure S21). Thus, not only the size but probably also the unique-291

ness of the features determine the success of identifying the nest.292

The importance of different features is shown in Figure 3 for all three groups. On293

one hand, removing just one nest could change the feature importance, as in the case294

of S2 (where we remove A16) versus S1. On the other hand, we notice that the feature295

importance does not drastically change when comparing results for sets S3 and S4, where296

we add nest A44, even though the nest itself is large in size (see Figure S21). For the sets297

in group B, the feature importance is stable with respect to adding or removing nests.298

It is quite similar for group C, where only one set S8 has different feature importance.299

We notice that sets which contain <= 4 nests (as in group A), there is usually one or300

two important features, while for sets with > 4 nests there is equalisation of the feature301

importance (as in groups B and C). This might imply that a single lunar orbital param-302

eter is enough to explain the occurrence of the nests, which are unique in nature. Mix-303

ing more nests suggests that we might be mixing nests with similar temporal patterns,304

thus learning how to differentiate them is more challenging. Moreover, the feature im-305

portance changes for sets that have unique combinations of nests, which may hint that306

these nests have different source mechanisms.307

If we consider a 2D manifold spanned by the sets from groups A, B, C (see Fig-308

ures S22, S23, S24, respectively), we notice that unique segregation in this space corre-309

lates with the RF model accuracy. Nests that form closely spaced homogenized clusters310

in the 2D manifold tend to be correlated with models that scored high recall for these311

nests.312
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Figure 2. Performance of RF models designed to classify nests within different sets. A) Travel

times tsp for four lunar model from Garcia et al. (2011) (G11), Garcia et al. (2019) (issi2, issi3),

(Khan et al., 2014) (K14) with nest labels. B) Recall for individual nests within each set with

respect to their travel times labeled with sets to which they belong and the scored accuracy of

this set. C) and D) same as B) just for different group of sets.
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Figure 3. Feature importance for Random Forest models associated with different travel time

sets shown in Figure 1.
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5 Conclusion313

In this paper we propose how to tackle DMQ nest identification during future lu-314

nar missions that will likely host only one station on the far side of the Moon. We pro-315

pose constraining their location by using differential time travel measurement tsp and316

parameters related to the temporal patterns of the DMQ occurrence. First, in our anal-317

ysis we assume that we cannot differentiate between nests whose differences in travel time318

are less than 5 seconds. Thus, we form set of nests that have similar travel times. Sec-319

ond, for each event within the nests we calculate features that are used to build a Ran-320

dom Forest model. This model is trained to differentiate between distinct nests. The fea-321

tures used for training are build by associating each event in all nests with the time dif-322

ference between events’ origin time and time of lunar ascending node, Full Moon phase,323

perigee, then position of the Moon in its orbit expressed by true anomaly angle, distance324

of the Moon from the Earth, rate change of this distance, and the time between two suc-325

cessive quakes. We show that by training Random Forest models to differentiate between326

distinct nests within sets, we can obtain models with high accuracy (more than half of327

the models score above 70% accuracy). Yet, the performances of these models depend328

on the number of nests within the set. More nests implies that the problem is more dif-329

ficult to solve, probably because a) nests might have similar source mechanisms, b) the330

number of events within nests is unbalanced, and c) we don’t have enough data. Since331

RF models also arrange features by their importance to make a final classification de-332

cision, we observe that the importance of the features change with different sets. This333

complements the findings of previous papers, since it signifies that nests do correspond334

to different lunar events, which eventually might be connected to the distribution of tidal335

stresses during these events. Finally, our model provides a good first approximation of336

the nest identification. And as the catalog of new events grows, it will be straightforward337

to retrain RF model with the new enlarged dataset.338

Open Research Section339

The deep moonquake catalog used in this study is published in Nakamura et al.340

(1981), and revisited in Nunn et al. (2020). Python package Skyfield used to calculate341

Moon’s orbital parameters based on JPL ephemeris can be found on the website https://342

rhodesmill.org/skyfield/ (Rhodes, 2019, Software). For our implementation of the343

Random Forest algorithm we use Scikit-learn machine learning Python library (Pedregosa344

et al., 2011).345
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1Université Paris Cité, Institut de physique du globe de Paris, CNRS, Paris, France6
2Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA7

Key Points:8

• As a part of the future space mission NASA will deploy a new seismic station to9

Schrödinger Basin on the far side of the Moon.10
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• The models perform with accuracy greater than 70% when trained to classify com-13

binations of four or fewer nests.14
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Abstract15

One of the future NASA space program includes the Farside Seismic Suite (FSS) pay-16

load, a single station with two seismometers, on the far side of the Moon. During FSS17

operations, the processing of the data will provide us with new insight into the Moon’s18

seismic activity. One of Apollo mission finding is the existence of deep moonquakes (DMQ),19

and the nature of their temporal occurrence patterns as well as the spatially clustering.20

It has been shown that DMQs reside in about 300 source regions. In this paper we tackle21

how we can associate new events with these source regions using the single station data.22

We propose a machine learning model that is trained to differentiate between DMQ nests23

using only the lunar orbital parameters related to DMQ time occurrences. We show that24

ML models perform well (with an accuracy > 70%) when they are trained to classify25

less than 4 nests.26

Plain Language Summary27

The future space missions will provide us with various new lunar data, one of which28

will be ground vibration measurement. The studies of these measurements from the Apollo29

era in 70s, showed that Moon can host various events. The most intriguing ones are deep30

moonquakes (DMQs), which are events associated with the displacement deep within the31

lunar interior. It has been shown that DMQs occur in the specific locations, which are32

called nests, and that their temporal occurrence is related to the monthly motion of the33

Moon around the Earth. In this paper we tackle how we can associate new events from34

only one station located on the far side of the Moon with these known locations of DMQs.35

We propose a machine learning model that is trained to classify DMQ nests, only using36

the information about their temporal occurrences, e.g. time of the event, described in37

terms of different lunar events. We report that models are performing well (with an ac-38

curacy > 70%) when they are trained to classify 4 or fewer nests. This gives us a good39

first approximation about the nest identification.40

1 Introduction41

We are at the beginning of a golden age of lunar exploration as many nations, to-42

gether with private companies, are establishing numerous efforts to obtain new scien-43

tific measurement of the Moon (Weber et al., 2021; Pickrell, 2022; Kawamura et al., 2022).44

In light of this, NASA established the Artemis program which should land a crewed mis-45

sion at the lunar south pole (Witze, 2022). This would be the first attempt of a crewed46

landing after the successful Apollo missions in 1970’s. Before Artemis missions land on47

the Moon, NASA has also established the Commercial Lunar Payload Services (CLPS)48

program to land scientific payloads on the Moon using commercial landers. The Farside49

Seismic Suite (FSS) is one of the selected payloads, and it will deliver two seismometers50

to Schrödinger Basin on the far side of the Moon (Panning et al., 2021; Standley et al.,51

2023; Cutler et al., 2023): one vertical Very BroadBand seismometer, and Short Period52

sensor, both spare or derived from the SEIS experiment sensors (Lognonné et al., 2019,53

2020) from the InSight mission to Mars (Banerdt et al., 2020).54

The Apollo missions showed the importance of deploying sensors on the surface of55

the Moon, since a great deal of our knowledge about the Moon comes from the analy-56

sis of data acquired during the Apollo era (Lognonné & Johnson, 2015). Thus, analyz-57

ing ground motion measurements provided the community with the first constraints on58

the lunar interior and the activity at the surface (Nakamura et al., 1982a, 1982b; Khan59

et al., 2000; Khan & Mosegaard, 2002; Khan et al., 2014; Lognonné et al., 2003; Gagnepain-60

Beyneix et al., 2006; Weber et al., 2010; Garcia et al., 2011; Kawamura et al., 2017; Gar-61

cia et al., 2019; Nunn et al., 2020). It has also revealed that the Moon can host events62

of various origins, such as shallow and deep moonquakes, meteoroid and artificial impacts63

(Toksöz et al., 1974; Dainty et al., 1975; Lammlein, 1977a; Nakamura, 1983, 2003, 2005).64
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Today, we have more than twelve thousands events, out of which the deep moonquakes65

(DMQs) form the most numerous group (Nakamura et al., 1981; Nakamura, 2005).66

DMQs are a distinctive group of seismic events that originate from depths between67

700 and 1200 km, at high pressure and temperature conditions, where little brittle de-68

formation is expected. Due to very high waveform similarity between quakes, the DMQs69

have been clustered into about 300 source regions or nests (Nakamura, 2003). This has70

interpreted to be a consequence of DMQs occurring repeatedly at the fixed nests, which71

are located mostly on the near side of the Moon. It has been shown that time occurrence72

of the DMQs is correlated with the monthly motion of the Moon around the Earth. Thus,73

DMQ occurrences exhibit tidal periodicities and furthermore, the associated high strain74

rates might explain brittle processes (Kawamura et al., 2017). However, the real causes75

of their origins are yet to be discovered. There are two puzzling fact about their origin:76

a) cyclic tidal stresses, caused by the monthly motion of Moon around Earth, are far less77

than the estimated confining pressures where DMQs occurs (Cheng & Toksöz, 1978; Min-78

shull & Goulty, 1988a); b) do we need both, tectonic and ambient tidal stresses, to ex-79

plain their mechanical origin (Frohlich & Nakamura, 2009).80

To better constrain the lunar interior and unravel the cause of DMQs, it is impor-81

tant to locate new events and associate them with the known nest locations from Apollo82

with future lunar missions like FSS. These new observations will add, for each new nest,83

a new differential ts − tp measurement constraining the deep interior with a different84

epicentral distance. However, due to the mission requirements, it is extremely likely that,85

at the beginning, we might have only one lunar station at the disposal. Therefore, in this86

paper we study the problem of DMQ nest identification without using waveform infor-87

mation. This is due to the new location of the recording station, which will not match88

existing Apollo-era waveform templates due to different propagation paths. We propose89

a machine learning (ML) model that is trained to identify nests within the set of nests90

of similar differential travel times. The main features used for the model training are re-91

lated to the fact that different nests respond differently to lunar cycle.92

Very early studies have shown correlation between lunar transient events and po-93

sition of the Moon related to the Earth (Middlehurst, 1967; Cameron & Gilheany, 1967;94

Moore, 1968). This further encouraged observations that some moonquakes occur with95

periods that reflect Earth-Moon-Sun relationship (Ewing et al., 1971). Later, it has been96

shown that the occurrence of DMQs are related to tidal stress cycles, and correlations97

between DMQs occurrence times and lunar monthly tidal cycles have been indicated (Lammlein98

et al., 1974; Toksöz et al., 1977; Lammlein, 1977b; Cheng & Toksöz, 1978; Minshull &99

Goulty, 1988b). The lunar cycle can be explained with three lunar months: synodic, dra-100

conic, anomalistic. Synodic month is the period of lunar phases such as New Moon, First101

Quarter, Full Moon, Last Quarter. Draconic month is the period between two nodes, as-102

cending or descending, where the nodes are points at which the Moon’s orbit plane crosses103

the ecliptic plane towards which it is inclined of about 5.14°. Anomalistic month is the104

period between two extreme points, perigee and apogee, since the Moon’s orbit approx-105

imates an ellipse rather than a circle. Earlier studies counted the number of events per106

day as a function of time and found 0.5 and 1 month signals in the occurrence times re-107

lated to anomalistic and draconic period of 27 days (Lammlein et al., 1974; Lammlein,108

1977b). The same studies also indicated 206-day and 6-year periods, related to the Sun’s109

perturbation on the lunar orbit and the relative precession of the perigee of the Moon’s110

orbit. Subsequently, many recent papers studied and confirmed tidal periodicities of DMQs111

and more (Bulow et al., 2005, 2007; Bills et al., 2008; Frohlich & Nakamura, 2009; We-112

ber et al., 2009, 2010; Turner et al., 2022).113

Based on the previous papers, it is clear that DMQ nests exhibit some clear tem-114

poral patterns in their occurrences, and that these are correlated with Moon-Earth sys-115

tem. Therefore, the open question is whether we can design features which would reflect116

these temporal patterns and to further use those features to study the nest identifica-117
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tion with one lunar station. In this paper we tackle the question of defining optimal fea-118

tures and the machine learning model. The paper is organised as follows: first, we dis-119

cuss data used in the analysis, the existing catalog of DMQ events. Second, we discuss120

the feature design. Third, we introduce a machine learning model. Fourth, we discuss121

successes and pitfalls of the machine learning model for nest identification applied to dif-122

ferent combination of nests. We conclude how this study can offer some first estimates123

of the nest location in the future lunar missions.124

2 Data125

We start with the existing catalog of lunar events (Nakamura et al., 1981), which126

was updated in 2008 and modified in 2018 (Nunn et al., 2020). Catalog contains a list127

of events (shallow and deep moonquakes, meteoroid and artificial impacts) with attributes128

such as date and time of the event occurrence, signal envelope amplitude as measured129

in mm on a standard plot, data availability per station, and the nest (source) classifi-130

cation for DMQs. It is important to note that the source classification is not an exact131

location defined by latitude and longitude, rather a result from the waveform cross-correlation132

and single-link cluster analysis (Nakamura, 2003). This analysis positively clustered around133

7k DMQs into 77 nests, where the largest nest is associated with label A1. This nest con-134

tains 443 quakes and it is placed on the near side of the Moon.135

2.1 Catalog processing: nest sets based on travel time information136

Earlier studies published lunar interior models and location of DMQ nests in terms137

of latitude and longitude by picking P and S travel times on the quake waveforms (Garcia138

et al., 2019, review of these picks). Using lunar interior models and nest locations we can139

define nests that are close by in distance if we consider only the tsp travel time measure-140

ments. To do so we assume that a) our single lunar station is located on the far side in141

Schrödinger Basin (FSS landing site at 71.378◦S, 138.248◦E), b) nests’ latitudes and lon-142

gitudes from (Lognonné et al., 2003), c) calculated P- and S- wave travel times (tp and143

ts, respectively) using lunar velocity model between landing site and locations of DMQ144

nests. By having ts and tp we can calculate tsp = ts−tp for all nests and models shown145

in Figure 1 (see Text S1 and Figure S1 for further explanation). Next, we count for each146

nest how many there are with the similar tsp travel time measurement assuming a pick-147

ing error of 5 seconds as shown in Figure 1A, consistent with the average picking error148

in Lognonné et al. (2003). This count provides us with the different sets Si, shown in149

Figure 1A, that contain nests Nj of similar travel times. In other words, if we are able150

to measure ts and tp of the new lunar event with accuracy within 5 seconds, we are not151

able to differentiate between nests that belong to different sets Si. Therefore, to further152

tackle the nest identification problem we proceed to associate each event with a com-153

bination of lunar orbital measurements.154

2.2 Feature selection based on the lunar orbital information155

It has been shown that the DMQ temporal patterns in time occurrences are related156

to different lunar cycles and that these patterns differ from nest to nest. Three lunar cy-157

cles are synodic, draconic, anomalistic, and they all have similar periods, but are marked158

by different motions, either as the motion between two Full Moons phases, or two nodes,159

or two apsis, respectively. One can list all the events when Moon is in the Full Moon (New160

Moon) phase, passing through ascending (descending) node or perigee (apogee) by sim-161

ply looking at the Moon’s ephemeris (Meeus, 1991). To make sure that we take into ac-162

count the temporal patterns, we design the main three features as a time difference be-163

tween the time of the quake in the nest and the time of the Moon’s Full Moon, ascend-164

ing node and perigee, denoting it as ∆tFullMoon,∆tAscendingNode,∆tPerigee, respectively.165

We can achieve the same effect by taking the other three time axis as referent one (New166
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Figure 1. Location study of the DMQ nests from the perspective of tsp = ts − tp travel

time measurements if we place station in the Schrödinger Basin and consider four different lunar

models. A) Upper panel: tsp travel time measurements for four lunar models from Garcia et al.

(2011) (G11), Garcia et al. (2019) (issi2, issi3), (Khan et al., 2014) (K14) with nest labels; A)

Lower panel: Sets Si which represent nests with similar travel times if we consider a travel time

error of 5 seconds. B) Lunar map with the nests locations where the color indicate the median

tsp for four lunar model.
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Moon, descending node, and apogee). The next feature is related to the Moon position167

within its orbit as in Frohlich and Nakamura (2009). The angle between the direction168

of perigee and the current position of the body, as seen from the main focus of the el-169

lipse, is called the true anomaly, denoted further as γ. Further, as one of the feature we170

also use the interval time between two quakes in the nest, noted as ei+1−ei, as in Weber171

et al. (2010). And the last two features are related to the position of the Moon with re-172

spect to the Earth, and these are the distance, d, itself and the rate of the distance change,173

ḋ, as in Bills et al. (2008).174

The selected features all have different ranges and we refer to them as raw data.175

To train a model that is able to generalise well for a given problem sometimes it is nec-176

essary to transform raw data to a form that is more suitable for training (Langer et al.,177

2019). By applying transformation on the raw data we may obtain a mapping which bet-178

ter reveals patterns in our data. Therefore, we chose to apply trigonometric transforma-179

tion of the true anomaly angle γ, to properly address the jump discontinuities in the fea-180

ture when angle goes from 2π to 0, due to it’s cyclic nature. This is addressed by trans-181

forming true anomaly angle γ to pair of [cos γ, sin γ]. An example of all eight features182

are shown in Figure S2 for nest A1.183

3 Methodology184

When new lunar data arrives, we shall be able to differentiate events in groups based185

on the waveform similarity measurement. And we shall be able to measure their P and186

S travel times, and thus form set of nests from Section 2.1. Final step would be to as-187

sociate these new events with the existing Apollo nests if possible. This nest identifica-188

tion from a single lunar station is a supervised classification problem. The model is trained189

in a predictive way by taking into account nest locations as labels and nest lunar orbital190

parameters as input data. Since we want to predict a class (nest), but we do not have191

statistically large data set (as previously mentioned A1 has 443 quakes), we choose to192

train a Random Forest (RF) Classifier, since RF can perform well with any size of datasets193

and tend not to overfit (Ho, 1995; Breiman, 2001).194

Random Forest (RF) is a machine learning technique that is based on decision trees195

(Breiman et al., 1984; Quinlan, 1986) and bootstrap aggregating (Breiman, 1996), where196

the main output is reached by majority votes among an ensemble of randomised deci-197

sion trees. A main building unit, a decision tree, is a tree-like learning algorithm where198

each internal node tests on attribute, each branch corresponds to attribute value and each199

leaf node represents the final prediction. Usually, during the training phase thresholds,200

order and number of inequality operations within internal nodes are learned. The hy-201

perparameters that define a RF structure, such as the number of trees, and measure which202

maximises diversity between classes, are determined beforehand (see Text S2 and Fig-203

ure S3).204

RF also provides an assessment of the feature or input variable importance which205

might give us an insight of how the model reached its prediction. To assess the feature206

importance, the RF removes one of the features while it keeps the rest constant, and it207

measures, among others, the accuracy decrease (Breiman, 2001). RF models are able to208

solve regression and classification problems, as well as two- and multi-class problems. It209

has been show that RF can perform with high accuracy even though there are only a210

few parameters to tune.211

In our case, during the training phase, the RF model has access to the extracted212

features of the individual quakes and the nest labels. The training is performed on a sub-213

set of the data, while the model performance is evaluated on the test subset, which the214

model has never seen. Evaluation is accomplished by comparing the model’s predicted215

class (nest) with the ground truth one. The statistical performance of the model is pre-216
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sented with confusion matrix and Receiver Operating Characteristic (ROC) curve. We217

expect that in the case of the ideal RF Classifer the diagonal of the confusion matrix is218

equal to 1 (and off-diagonal elements are zero), while ROC curve is passing through the219

left upper corner.220

4 Results and discussion221

4.1 Training and testing on two largest nests222

We first test the hypothesis whether it is possible to differentiate two DMQ nests223

using the lunar orbital parameters (features). For this, we select the two largest nests,224

A1 and A8, with a total size of 768 events and ratio A1:A8=0.57 : 0.43 (see feature dis-225

tributions in Figure S4).226

Training and testing our base RF model (see Text S2) with the normalised and not227

normalised input data, we end up selecting to work with the normalised input data since228

this model performed better (see Figure S5 and S6). The base model trained with the229

normalised input data performed with an accuracy of 89%, while precision, recall and230

f1-score for the A1 nest is 88%, 94%, 91%, respectively, and for A8 is 90%, 80%, 85%,231

respectively (see Figure S6B) with only the occurrence time knowledge. The ROC curve232

is above the random classifier curve, meaning that the base model is not randomly clas-233

sifying A1 and A8 nests (see Figure S6C). Out of eight features, the first five most im-234

portant are cos(γ), ∆tPerigee, d, ∆tAscendingNode, ei+1 − ei (see Figure S6D). We no-235

tice that cos(γ) is the feature with the most important contribution to the model learn-236

ing. This might be because A1 and A8 have reversed distributions for cos(γ) feature (see237

Figure S 4D).238

We proceed into testing learning robustness of our base model in a series of exper-239

iments (see Text S2 and Figures S7-S12), all of which indicate that the model is stable.240

This implies that the base model generalizes well, and not over fit the results. Further,241

if we examine why the base model sometimes mislabels the nests (Figure S13), we no-242

tice that the 2D manifold (see Text S3) of feature space spanned by the input data, cal-243

culated by t-sne method (van der Maaten & Hinton, 2008), is not perfectly separated.244

It seems this segregation might be dominated by a single feature, and that is ∆tAscendingNode245

(see Figure S14 and S15A).246

4.2 Training and testing on three and more nests247

In this section we study how the performance of our base RF model from Section248

4.1 changes by adding more nests. We carry out three tests for the next combinations249

and their ratios: A1-A8-A18 (45%-33%-22%), A1-A8-A18-A6 (38%-28%-18%-15%), A1-250

A8-A18-A6-A14 (33%-25%-16%-13%-12%), where the three added nests are the three251

largest nests besides A1 and A8.252

The analysis shows that by adding more nests, the performance of our base model253

deteriorates since the accuracy drops from 88% to 59% (see Figures S16-S19). By adding254

a 3rd nest, and we notice that A1 and A8 recalls deteriorate slightly, and 50% is A18 events255

are classified either as A1 or A8 (see Figure S16). Yet, the precision of A18 is the high-256

est. Features, ei+1−ei and ḋ, gain importance. Yet, the importance of all features be-257

come more equalized. By adding a 4th nest, A6, the recall of A1 nest improves, recall258

of A8 nest deteriorates even more than before, recall of A18 improves notably, and the259

new added nest A6 has a recall of 46%, by having most of its events misclassified only260

as A1 nest, and not a single event as A18 (see Figure S17). This might implies that A18261

and A6 nests have completely different source mechanisms. Less notably than before,262

the importance of all features is becoming more equalized. Lastly, by adding a 5th nest,263

A14, the recall of A1 and A8 become the highest, and three other nests perform with264
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recall less than 50%, and their most mislabelled data points are associated with A1 nest265

(see Figure S18). The importance between features is almost equalized, yet the inter-266

val time ei+1 − ei is the only feature that stands out.267

These results might imply that by adding more nests, we add more complexity into268

the problem, since we might be adding nests that have similar source mechanisms. Hav-269

ing similar source mechanisms means that sources are triggered by tides is the same way,270

so their lunar orbital features have similar characteristics, and we cannot differentiate271

between nests without having more data. Furthermore, it seems that the only signifi-272

cantly important feature is the interval time, the only feature that does not reflect the273

lunar orbital information.274

Checking the two dimensional representation of the feature space constructed by275

the feature combination of nests A1-A8-A18-A6-A14, we might conclude that for this276

particular set it is to some degree impossible to completely differentiate between nests277

due to the lack of data (see Figure S20).278

4.3 Training and testing on nest sets279

Using the same base RF model from Section 4.1, we proceed to train and test how280

well we can differentiate nests that belong to the same set shown in Figure 1. We an-281

alyze them in three separate groups by the frequency of the nest they contain: A) S1,282

S2, S3, S4, S12, S13, S14, S15; B) S5, S6, S7, S8; C) S9, S10, S11. The results are shown283

in Figure 2A, B, and C, respectively.284

We observe high value of recall for most of the nests, as well as high accuracy for285

most of the sets (see Figure 2). Sets that have <= 4 nests perform better than those with286

more nests, as in sets from group A shown in Figure 2B. When the nest’s recall is very287

low or zero (A11, A30, A41, A42, A50), it signifies a nest with very few events (see ra-288

tio of nests in all sets in Figure S18). If we take an example of nest A20, we notice that289

it has constant recall in many sets (see Figure 2B and C), even though it is not the biggest290

nest in the set (see Figure S21). Thus, not only the size but probably also the unique-291

ness of the features determine the success of identifying the nest.292

The importance of different features is shown in Figure 3 for all three groups. On293

one hand, removing just one nest could change the feature importance, as in the case294

of S2 (where we remove A16) versus S1. On the other hand, we notice that the feature295

importance does not drastically change when comparing results for sets S3 and S4, where296

we add nest A44, even though the nest itself is large in size (see Figure S21). For the sets297

in group B, the feature importance is stable with respect to adding or removing nests.298

It is quite similar for group C, where only one set S8 has different feature importance.299

We notice that sets which contain <= 4 nests (as in group A), there is usually one or300

two important features, while for sets with > 4 nests there is equalisation of the feature301

importance (as in groups B and C). This might imply that a single lunar orbital param-302

eter is enough to explain the occurrence of the nests, which are unique in nature. Mix-303

ing more nests suggests that we might be mixing nests with similar temporal patterns,304

thus learning how to differentiate them is more challenging. Moreover, the feature im-305

portance changes for sets that have unique combinations of nests, which may hint that306

these nests have different source mechanisms.307

If we consider a 2D manifold spanned by the sets from groups A, B, C (see Fig-308

ures S22, S23, S24, respectively), we notice that unique segregation in this space corre-309

lates with the RF model accuracy. Nests that form closely spaced homogenized clusters310

in the 2D manifold tend to be correlated with models that scored high recall for these311

nests.312
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Figure 2. Performance of RF models designed to classify nests within different sets. A) Travel

times tsp for four lunar model from Garcia et al. (2011) (G11), Garcia et al. (2019) (issi2, issi3),

(Khan et al., 2014) (K14) with nest labels. B) Recall for individual nests within each set with

respect to their travel times labeled with sets to which they belong and the scored accuracy of

this set. C) and D) same as B) just for different group of sets.
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Figure 3. Feature importance for Random Forest models associated with different travel time

sets shown in Figure 1.
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5 Conclusion313

In this paper we propose how to tackle DMQ nest identification during future lu-314

nar missions that will likely host only one station on the far side of the Moon. We pro-315

pose constraining their location by using differential time travel measurement tsp and316

parameters related to the temporal patterns of the DMQ occurrence. First, in our anal-317

ysis we assume that we cannot differentiate between nests whose differences in travel time318

are less than 5 seconds. Thus, we form set of nests that have similar travel times. Sec-319

ond, for each event within the nests we calculate features that are used to build a Ran-320

dom Forest model. This model is trained to differentiate between distinct nests. The fea-321

tures used for training are build by associating each event in all nests with the time dif-322

ference between events’ origin time and time of lunar ascending node, Full Moon phase,323

perigee, then position of the Moon in its orbit expressed by true anomaly angle, distance324

of the Moon from the Earth, rate change of this distance, and the time between two suc-325

cessive quakes. We show that by training Random Forest models to differentiate between326

distinct nests within sets, we can obtain models with high accuracy (more than half of327

the models score above 70% accuracy). Yet, the performances of these models depend328

on the number of nests within the set. More nests implies that the problem is more dif-329

ficult to solve, probably because a) nests might have similar source mechanisms, b) the330

number of events within nests is unbalanced, and c) we don’t have enough data. Since331

RF models also arrange features by their importance to make a final classification de-332

cision, we observe that the importance of the features change with different sets. This333

complements the findings of previous papers, since it signifies that nests do correspond334

to different lunar events, which eventually might be connected to the distribution of tidal335

stresses during these events. Finally, our model provides a good first approximation of336

the nest identification. And as the catalog of new events grows, it will be straightforward337

to retrain RF model with the new enlarged dataset.338

Open Research Section339

The deep moonquake catalog used in this study is published in Nakamura et al.340

(1981), and revisited in Nunn et al. (2020). Python package Skyfield used to calculate341

Moon’s orbital parameters based on JPL ephemeris can be found on the website https://342

rhodesmill.org/skyfield/ (Rhodes, 2019, Software). For our implementation of the343

Random Forest algorithm we use Scikit-learn machine learning Python library (Pedregosa344

et al., 2011).345
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S4 illustrates distributions of features used to train machine learning model for two nests,

A1 and A8. Supplemental Figure S2 shows features used as an input data for machine

learning model. Supplemental Figures S5 to S13 show statistics of the Random Forest

models on the test dataset that are trained to dissociate between A1 and A8 nest. Sup-

plemental Figure S13 shows prediction values and negatively labelled data points for the

base Random Forest model trained to dissociate between A1 and A8 nests. Supplemen-

tal Figure S14 and S15 illustrate 2-D graphic manifold of the space spanned by the 8-D

feature space of A1 and A8 nests. Supplemental Figures S16 to S19 show statistic of

the Random Forest model trained and tested on combination of nests A1-A8-A18, A1-

A8-A18-A6, A1-A8-A18-A6-A14, A8-A18-A6-A14, respectively. Supplemental Figure S20

illustrates 2D graphic manifold representation of the 8D feature space spanned by five

nests A1-A8-A18-A6-A14. Supplemental Figure S21 show nests ratios for different sets.

Supplemental Figures S22 to S24 illustrates 2-D manifolds of the feature spanned by dif-

ferent sets.

Text S1. Calculation of travel times of seismic waves between sources and station can be

obtained using two programming packages: Python package Obspy and its module ’taup’

and TauP Java package, both based on the paper Crotwell, Owens, Ritsema, et al. (1999).

In our experiment we placed single station on the far side of the Moon in the Schrödinger

Crater, while our sources are located nests from the paper Lognonné, Gagnepain-Beyneix,

and Chenet (2003). Also, we utilize the existing lunar interior models from papers Garcia

et al. (2019) (ISSI 1, ISSI 2, ISSI 3), Garcia, Gagnepain-Beyneix, Chevrot, and Lognonné

(2011), Khan, Connolly, Pommier, and Noir (2014), Matsumoto et al. (2015), Weber, Lin,

Garnero, Williams, and Lognonné (2011). We first calculate epicentral distances between
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nests and station, then travel time of P- and S- seismic waves for the seven models using

Python and Java packages. This leaves us with: t
′
p;i,j, t

′
s;i,j, t

′′
p;i,j, t

′′
s;i,j where i indicates

nest, j indicates lunar model, t
′
and t

′′
travel times calculated using Python and Java,

respectively. Next, we calculate the average over P- and S- wave travel times for two

programming packages, leaving us with tp;i,j = (t
′
p;i,j + t

′′
p;i,j)/2, ts;i,j = (t

′
s;i,j + t

′′
s;i,j)/2.

Further, we calculate the travel time difference, tsp;i,j = ts;i,j − tp;i,j values that we plot

in Figure S1, with i running over the y-axis for all nests and j running over the x-axis

over all lunar models. We can notice that some combination of nests and lunar models

don’t have travel time tsp estimation, and some underestimate or overestimate it, when

compared to the average value per nest. Due to these discrepancies we decide to further

work with only four models: ISSI 2, ISSI 3 Garcia et al. (2019), Garcia PEPI 2011 (Garcia

et al., 2011), Khan JGR 2014 (Khan et al., 2014).

Text S2. As discussed in the main manuscript, Random Forest is a machine learning

algorithm that consist of ensemble of randomised decision trees. A decision tree consists

of decision (internal) nodes, followed by inequality branches, and leaf nodes that hold the

final prediction of individual trees shown in Figure S3. Thus, within each tree the begin-

ning is at root node that doesn’t have incoming branches. Next in line are internal nodes

where based on the available features/attributes and inequality operations, the decision

whether the feature is smaller or larger than some threshold is made. These translate to

leaf nodes, which represent all possible outcomes. The hyperparamters that define a RF

structure and need to be defined before a training process are: the number of decision

trees, the maximum depth of trees, the measure that maximises diversity between classes,

the minimum samples in the internal node, and the minimum number of samples in leaf
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node for it to be considered, the maximum number of features when looking for the best

split, the maximum number of leaf nodes, the maximum samples to be draw from the

main training dataset when training each decision tree. We proceed to test the learning

robustness of our base model that is trained with normalised features (shown in Figure

S6) by carry out several experiments: a) changing the randomness of the bootstrapping

initialization of the samples that are used when building decision trees, the randomness

of the feature sampling when considering for the best split at each internal node, as well

as the randomness of the training and test dataset split (see Figure S7); b) changing the

optimal number of decision trees (see Figure S8); c) equalizing the size of nests within

the dataset by randomly downsampling the largest nest A1 to be the same size as A8 (see

Figure S9); d) reducing the number of input feature data to five most important from the

base model (cos(γ), ∆tPerigee, d, ∆tAscendingNode, ei+1 − ei) (see Figure S10). In all test

beside those in experiment a), we keep the random state fixed. Finally, the results do not

vary between different tests, indicating that in all above configurations models are able

to learn how to classify two nest with the similar performances. Further, we notice that

in experiment c) the statistic for A8 nest improved compared to the base model statistic,

indicating that having a balanced classes while training a ML is important. Moreover, we

observe that the model trained with the fewer features statistically perform worst than

the base model. This might be because all eight features are uncorrelated, thus equally

important for model learning. Next, we cross-validate our base model. A cross-validation

is a technique to assess how the model will generalize to an independent data set by

using the resampling technique. A resampling technique uses different portions of the

training data to train and validate model during several iteration. Usually, the training
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dataset is divided into k equally sized folds, and then k iterations is performed. In each

iteration (k − 1) folds are used for training, and one fold is used for validation. During

the cross-validation, the test set is kept aside. Eventually, the full dataset is divided into

three sets: training (55%), validation (20%), test (25%), where training and validation set

change in each iteration. We calculate cross-validation with k = 5, while keeping the base

model parameters. The choice of k = 5, has been proven to be a good practice (Witten &

James, 2013). This test produces 5 models with the same performance as indicated with

ROC curves (see Figure S11). This implies that the base model generalizes well, and to

not over fit the results. Moreover, we also perform the grid search over several other RF

parameters, besides the number of decision trees. Grid search represents a set of many

models, where each model is build with unique set of parameters, and each is trained

and tested with the same datasets. The tested parameters are: the maximum features

(’auto’,’sqrt’), the maximum depth of the decision trees (10, 20, 30, 40, 50, 60, 70, 80,

90, 100, 110, None), the minimum samples in the internal nodes (2, 5, 10), the minimum

number of samples in leaf node (1, 2, 4), the bootstraping technique on or off. However,

it seems that the model that performed the best during the grid search (the minimum

samples in internal node equal to 10, the minimum samples in leaf node equal to 2, the

maximum features equal to ’auto’, the maximum depth equal to 110, with bootstraping

turned on) does not perform better than our base model (see Figure S12). Even though

our base RF model as a final output predicts a class (A1 or A8), it also associates each

class prediction with the class probability. This value ranges between 0 and 1, where 1

indicated that a model is absolutely certain that a given event belongs to a predicted

class. From our base model the correctly predicated classes score 81% cases higher than
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0.80 for test dataset (see Figure S13A). This suggest that model is confident in its pre-

diction. The mislabelled prediction values show uniform distribution of values between

0.5 to 1 (see Figure S13B). We can further examine these mislabelled events from the

perspective of the feature input data. We choose three features, cos(γ), ∆tPerigee, d, with

high importance value. We could argue that the mislabelled data points from both nests

show characteristics which better suits the opposite class (see Figure S13C-E). Yet, the

decision is not defined using only one feature. To gain an insight how all eight features

contribute into separating two nests, we calculate the 2D manifold of their feature space

using t-sne method (van der Maaten & Hinton, 2008). Visualisation of the feature space

that is color-coded based on two nests, show us that two classes are well but not perfectly

separated (see Figure S14). If we further color 2D manifold space with the values of the

individual features, we notice that ∆tAscendingNode feature might be the most responsible

for imperfect split between nests (see Figure S15).

Text S3. One of the statistical dimensionality reduction algorithm that helps to visual

high-dimensional data is t-distributed Stochastic Neighbor Embedding (t-sne) algorithm

(van der Maaten & Hinton, 2008). It is an unsupervised non-linear reduction technique,

since it allows us to separate data that cannot be separated by any straight line. Once

it is applied on the input data, first, it starts by calculating the probability distribution

of neighbours around each points. The term neighbour stands for the set of points that

are closest to a given point. In the input original high-dimensional space the probabil-

ity is modeled as a Gaussian distribution. Second, the algorithm models the probability

of neighbours around given points in the lower-dimensional space using a Student’s t-

distribution. Third, the algorithm minimizes the divergence, usually Kullback–Leibler
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divergence, between two probabilities using gradient descent. The result is a lower-

dimensional manifold of the data, that still preserves the pairwise similarities between

original data points, optimized to a stable state. This optimisation process generates

clusters and sub-clusters of similar data points that become visually better understand

in the lower-dimensional space by keeping the relationship of the data from the higher-

dimensional space. There are several t-sne hyperparameters that need to be adjusted by

the user, and the most importnat one is perplexity. The preplexity parameter defines the

number of influential neighbours used to calculate the Gaussian probabilities around given

point in the high-dimensional space. Its value range from 5 - 50 (Wattenberg et al., 2016),

and can significantly impact the resulting mapping of the input data. For our implementa-

tion of the t-sne algorithm we use Scikit-learn machine learning Python library (Pedregosa

et al., 2011). After trying some combinations we choose to work with the given set of pa-

rameters: n components=2, perplexity=30, n iter=5000, verbose=1, random state=133,

while keeping the rest of the them as default by the package implementation.

August 7, 2023, 8:23pm
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Figure S1. Travel time tsp = ts − tp calculations, where ts and tp stands for S- and P- waves

travel times, respectively, between the range of nests and the station placed on the far side of

the Moon in the Schrödinger crater. Calculation are done for seven existing lunar model, from

papers Garcia et al. (2019) (ISSI M1, ISSI M2, ISSI M3), Garcia et al. (2011), Khan et al. (2014),

Matsumoto et al. (2015), Weber et al. (2011).
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Figure S2. Time evolution of features during the Apollo mission and their histograms for A1

nest. First three features are time difference between quakes and A) the instance when Moon was

passing through ascending node, B) Full Moon phase, C) instance when Moon was in perigee;

next D) cos γ, E) sin γ where γ is the true anomaly angle, indicating the position of the Moon in

the orbit; F) time difference between two quakes, G) distance between Moon and Earth at the

quake occurrence, H) the rate of distance change from G.
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Figure S3. Schematic representation of a Random Forest algorithm. In this example, the

model is trained with 3 features, it consists of 3 decision trees with a maximum tree depth equal

to 3. A tree consists of decision nodes (circles), followed by inequality branches (dashed lines) ,

and leaf nodes (rectangles). The prediction is taking place in each tree by yes or no questions,

while the final prediction is made upon majority voting considering individual tree predictions.

August 7, 2023, 8:23pm
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Figure S4. Distributions of eight features used for training Random Forest model for dissoci-

ating between nests A1 and A8.
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Figure S5. Statistics performance of the base Random Forest model on the dataset trained to

dissociate between nests A1 and A8 using raw feature data without normalisation: A) confusion

matrix, B) precision, recall, f1-score per nests and accuracy of the model, C) receiver operating

characteristic (ROC) curve, D) feature importance for the model to make decisions.
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Figure S6. Same as Figure S5 but using feature data that are normalised between 0 and 1.
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Figure S7. Statistics performance of the Random Forest models while changing the randomness

of the data split and decision tree initialisation compared to the base model shown in Figure S6.

The models are trained to dissociated between nests A1 and A8. The randomness is changed

from 600 to 1400 from test 1 to test 10 by step of 100. Statistics are: A) confusion matrix, B)

precision, recal, f1-score and accuracy of the model, C) the importance of the feature used by

the models to make a correct classification.
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Figure S8. Same as Figure S7 while keeping the randomness fixed, but changing the number

of trees used to build Random Forest model.
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Figure S9. Same as Figure S6, but using the balanced dataset, thus having the same number

of A1 and A8 events.
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Figure S10. Same as Figure S6, but keeping only five out of eight features: ∆tAscendingNode,

∆tPerigee, cos(γ), ei+1 − ei, d.
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Figure S11. 5-fold cross-validation of the base RF model shown in Figure S6 with the mean

and standard deviation.
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MAJSTOROVIĆ, J. ET. AL.: IDENTIFYING DEEP MOONQUAKES WITH ML X - 21

Figure S12. Same as Figure S6, but for the best performing model from the grid search

analysis.
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Figure S13. Classification results: A) prediction values for positively classified events, B)

prediction values for negatively classified events. Events used for training and events used for

testing but got mislabeled form the perspective of features: C) cos(γ), D) ∆tPerigee, E) d.
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Figure S14. 2-D manifold of the feature space spanned by nests A1 and A8.
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Figure S15. 2-D manifold of the feature space spanned by nests A1 and A8 colored by the

features: A) ∆tAscendingNode, B) ∆tFullMoon, C) ∆tPerigee, D) cos(γ), E) sin(γ), F) ei+1 − ei, G)

d, H) ḋ.

August 7, 2023, 8:23pm
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Figure S16. Same as Figure S6, but classifying three nests A1, A8 and A18.
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Figure S17. Same as Figure S6, but classifying four nests A1, A8, A18, A6.
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Figure S18. Same as Figure S6, but classifying five nests A1, A8, A18, A6, A14.

August 7, 2023, 8:23pm
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Figure S19. Same as Figure S6, but classifying four nests A8, A18, A6, A14.
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Figure S20. 2-D manifold of the feature space spanned by nests A1, A8, A18, A6, A14.
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Figure S21. Pie charts for all sets shown in Figure 1 displaying the composition of the set

and the contribution of each nest within the each set.
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Figure S22. 2-D manifold of the feature space spanned by nests belonging to defined sets Si:

A) S1, B) S2, C) S3, D) S4, E) S12, F) S13, G) S14, H) S15.
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Figure S23. 2-D manifold of the feature space spanned by nests belonging to defined sets Si:

A) S5, B) S6, C) S7, D) S8
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Figure S24. 2-D manifold of the feature space spanned by nests belonging to defined sets Si:

A) S9, B) S10, C) S11.
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