Time resolved reflectivity measurements of convective clouds

Brenda Dolan¹, Pavlos Kollias², Susan C van den Heever¹, Kristen Rasmussen¹, Mariko Oue², Edward P. Luke³, Katia Lamer⁴, Bernat P Treserras⁵, Ziad S Haddad⁶, Graeme Stephens⁷, and V Chandrasekar⁸

¹Colorado State University
²Stony Brook University
³Brookhaven National Laboratory (DOE)
⁴Brookhaven National Laboratory
⁵McGill University
⁶Jet Propulsion Lab (NASA)
⁷JPL/Caltech
⁸Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA

August 12, 2023

Abstract

NASA's Investigations of Convective Updrafts (INCUS) mission aims to document convective updraft mass flux through changes in the radar reflectivity (ΔZ) in convective cores captured by a constellation of three Ka-band radars sampling the same convective cells over intervals of 30, 90 and 120 s. Here, high spatiotemporal resolution observations of convective cores from surface-based radars that use agile sampling techniques are used to evaluate aspects of the INCUS measurement approach using real observations. Analysis of several convective cells confirms that large coherent ΔZ structure with measurable signal (> 5 dB) can occur in less than 30 s and are correlated with underlying convective motions. The analysis indicates that the INCUS mission radar footprint and along track sampling are adequate to capture most of the desirable ΔZ signals. This unique demonstration of reflectivity time-lapse provides the framework for estimating convective mass flux independent from Doppler techniques with future radar observations.

Hosted file

970174_0_art_file_11237601_ryjlf8.docx available at https://authorea.com/users/650746/ articles/659090-time-resolved-reflectivity-measurements-of-convective-clouds

1	
2	Time resolved reflectivity measurements of convective clouds
3	5
4	
5	
6	
7	Brenda Dolan ¹ , Pavlos Kollias ^{2,3} Susan C. van den Heever ¹ , Kristen L.
8	Rasmussen ¹ , Mariko Oue ² , Edward Luke ³ , Katia Lamer ³ , Bernat P. Treserras ⁴ ,
9	Ziad Haddad ⁵ , Graeme Stephens ⁵ , and V. Chandrasekar ¹
10	
11	
12	¹ Colorado State University, Fort Collins, CO
13	² School of Marine and Atmospheric Sciences, Stony Brook University,
14	Stony Brook, NY
15	³ Brookhaven National Laboratory, Upton, New York
16	⁴ McGill University, Montreal, Quebec, Canada
17	⁵ Jet Propulsion Laboratory, California Institute of Technology, Pasadena CA
18	
19	
20	Manuscript for Geophysical Research Letters
21	
22	
23	Key Points
24 25	Convertive motions can course macaumphic A7 changes in time intervals as short as 20 cas
23 26	Convective motions can cause measurable ΔZ changes in time intervals as short as 50 sec.
20	The reflectivity time-lapse rate technique relates to spatially and temporally coherent structures
28	and the underlying convective motions.
29	
30	The INCUS mission radar sampling characteristics are adequate for capturing most of the ΔZ
31	changes caused by convective motions.
32	

33 Abstract

- 34
- 35 NASA's Investigations of Convective Updrafts (INCUS) mission aims to document convective
- 36 updraft mass flux through changes in the radar reflectivity (ΔZ) in convective cores captured by
- a constellation of three Ka-band radars sampling the same convective cells over intervals of 30,
- 38 90 and 120 s. Here, high spatiotemporal resolution observations of convective cores from
- 39 surface-based radars that use agile sampling techniques are used to evaluate aspects of the
- 40 INCUS measurement approach using real observations. Analysis of several convective cells
- 41 confirms that large coherent ΔZ structure with measurable signal (> 5 dB) can occur in less than
- 42 30 s and are correlated with underlying convective motions. The analysis indicates that the
- 43 INCUS mission radar footprint and along track sampling are adequate to capture most of the
- 44 desirable ΔZ signals. This unique demonstration of reflectivity time-lapse provides the
- 45 framework for estimating convective mass flux independent from Doppler techniques with future 46 radar observations.
- 47

48 Plain Language Summary:

- 49 The vertical transport of water between Earth's surface and the upper troposphere afforded by
- 50 convective storms is a driving factor of weather and climate. However, observing dynamic
- 51 processes at the scales of convection has been a challenge due to the transient and rapidly
- 52 evolving nature of convection, as well as sensor and resource limitations. High-resolution time-
- 53 lapses of radar reflectivity are used to investigate the movement of air and water within deep,
- 54 intense storms. This is a unique approach to understanding how water and air move throughout
- 55 the atmosphere in strong storms. It is shown that large changes in reflectivity are apparent even
- 56 over time scales less than 30 seconds, which are inferred to be due to strong vertical motions. A
- 57 new NASA satellite mission called INCUS (Investigations of Convective Updrafts) seeks to use
- 58 the same methods to estimate the movement of air and water globally across the tropics.
- 59

1. Introduction

62 Convective clouds play a critical role in the Earth's climate system, acting as sinks of total water in the atmospheric column through precipitation, thereby contributing to the atmospheric 63 64 energy balance and water cycle. They also serve as a primary mechanism for the transport of 65 thermal energy, moisture, and momentum through the troposphere, thereby significantly impacting the large-scale atmospheric circulation and local environment, and affecting the 66 67 probability of subsequent cloud formation (e.g., Hartmann et al. 1984; Su et al. 2014; Sherwood 68 et al. 2014). Because convective clouds evolve rapidly, their microphysical and kinematic 69 properties and lifecycles are challenging to resolve in models, and even in observations (e.g., 70 Fridlind et al. 2017; Oue et al., 2019, Marinescu et al. 2020). Noticeably, a knowledge gap on the 71 convective updraft core properties (i.e., intensity, size, depth, lifecycle) and their dependency on 72 environmental factors exists. Such measurements are not only particularly challenging to obtain 73 over the remote tropical oceans but also over land due to the transient and rapidly evolving 74 nature of convection, as well as due to limitations of existing observing systems (e.g., Oue et al., 75 2019).

To methodically advance observation-based understanding of fundamental convective cloud 76 77 processes, new observational approaches are needed. Emerging new technologies such as rapid 78 scanning or phased-array radars (PARs) have the potential to cope with the rapid transient nature 79 of convection (Bluestein et al., 2010, Pazmany et al. 2013, Tanamachi and Heinselman 2015, 80 Bluestein et al., 2019, Palmer et al. 2022, Kollias et al. 2022b), but robust and detailed measurements of the vertical evolution of convection have not been largely explored. At a 81 82 minimum, when available, PARs should be able to provide high spatiotemporal resolution 83 observations of convective cores over land (Kollias et al., 2022b). In addition, the explosive 84 growth of CubeSats (Stephens et al., 2020a, Peral et al., 2019) and new planned satellite missions 85 that all feature Doppler velocity measurements have the potential to provide the first global 86 climatology of convective dynamics. For example, the joint European Space Agency (ESA) and 87 Japanese Aerospace Exploration Agency (JAXA) Earth Clouds, Aerosols, Radiation Explorer (EarthCARE) mission (Illingworth, et al. 2015, Wehr et al. 2023) will send the first W-band 88 89 Doppler cloud profiling radar into space in 2024, with the goal of measuring vertical velocities in 90 the upper part of convective clouds. In addition, National Aeronautics and Space Administration

91 (NASA)'s Atmospheric Observing System (AOS) mission is anticipated to include two Doppler
92 radar systems in two different orbits.

93

94 Of particular interest here is NASA's Earth Venture Mission Investigations of Convective 95 Updrafts (INCUS) that encompasses three narrow-swath Ka-band profiling radar satellites, 96 separated by 30, 90 and 120 s between the first and second, second and third, and first and third 97 satellites, respectively. The INCUS radars will provide three curtain (along track and vertical) 98 views of the radar reflectivity field of the same convective cells (Stephens et al., 2020b; van den 99 Heever, et al. 2023). The INCUS convective mass flux (CMF) measurements are not based on 100 the Doppler principle, but instead on the collection of time lapse measurements of reflectivity of 101 convective cores over very short times (termed "the Δt approach") to measure the mass flux on a 102 global scale across the tropics. Similar Δt concepts have been proposed for constellations of 103 passive microwave radiometers (Brogniez et al., 2022). The INCUS CMF measurement 104 approach is based on the idea that over 30, 90 and 120 s time scales, convective dynamics can 105 have a measurable impact on the convective core radar reflectivity structure. In this case, the 106 time resolved radar reflectivity measurements can be used to retrieve the CMF.

107 Here, for the first time, the feasibility of Δt approach is investigated using real observations 108 from high spatiotemporal vertical radar cross-section of convective cores acquired using the 109 Multisensor Agile Adaptive Sampling (MAAS, Kollias et al., 2020) framework. This framework 110 utilizes a comprehensive dataset in real time to guide ground-based sensors (radars) to track and 111 sample convective cores (Lamer et al., 2023). Using the MAAS framework, a large dataset of 112 high spatiotemporal resolution C-band observations were recently collected (section 2), thus, 113 providing a unique dataset for evaluating the INCUS Δt measurement concept (section 3). A few 114 case studies are used to demonstrate that within the INCUS sampling times (30, 90 and 120 sec), 115 noticeable coherent radar reflectivity changes can be observed. These changes are particularly 116 apparent in the upper levels of convective cells and can be related to underlying convective 117 vertical air motion. In addition, the influence of the observed spatiotemporal variability in convective cells on the INCUS measurement methodology is discussed (section 4). 118

- 119
- 120 **2.** Methodology
- 121

122 A succession of Cloud, Precipitation, Aerosol, and Air Quality Field Experiments in the 123 Coastal Urban Environment of Houston TX took place in the summer of 2022 (Jensen et al., 124 2022). In particular, the US Department of Energy (DOE) Atmospheric Radiation Measurement 125 (ARM) Tracking Aerosol Convection interactions Experiment (TRACER) and the National 126 Science Foundation (NSF) Experiment of Sea Breeze Convection, Aerosols, Precipitation, and 127 Environment (ESCAPE) field campaigns targeted the study of isolated convective cells in the 128 area of Houston, TX using novel radar cell tracking techniques. Documentation of the lifecycle 129 of isolated convective cells with high spatiotemporal resolution was one key measurement 130 requirement for both field campaigns. To address this measurement need, the field campaigns 131 employed the MAAS framework (Kollias et al., 2020; Lamer et al., 2023). MAAS used 132 observations from the ground-based National Weather Service Next Generation Weather Radar (NEXRAD) in the Houston-Galveston area (KHGX, Crum et al., 1998), supplemented by 133 134 observations from the Geostationary Operational Environmental Satellites (GOES-16) 135 Geostationary Lightning Mapper (GLM), and the Advanced Baseline Imager (ABI; Griffith et 136 al., 2017) to provide a real-time description (4D data cubes) of the atmospheric state around the 137 Houston area. These "global" observations were used to identify and nowcast the future location 138 of all convective cells in the Houston area. Using a set of rules, MAAS selected a particular 139 convective cell for tracking and transmitted its current and future coordinates to both the DOE ARM 2nd generation C-band Scanning ARM Precipitation Radar (CSAPR2, Kollias et al., 2020) 140 141 and the CSU C-band Hydrological Instrument for Volumetric Observation (CHIVO). The 142 CSAPR2 sampling strategy was based on sequences of Plain Position Indicator (PPI, constant 143 elevation) sector scans that cover the horizontal extent of convective cells and Range Height 144 Indicator (RHI, constant azimuth) scans that sampled the convective cells from the surface to 145 their cloud top with high spatial resolution. The CSAPR2 RHIs we repeated approximately 146 every 20 s. The CHIVO sampling strategy included only RHI scans with even higher temporal 147 resolution (10 s). Both radars were sampling the same convective cells from different azimuth 148 angles. The width of the CSAPR2 PPI sector scans and the azimuth of the CSAPR2 and CHIVO 149 RHI scans were based on edge computing of key radar parameters such as the azimuth of the 150 maximum reflectivity, the location of the maximum Vertically Integrated Liquid (VIL), 151 maximum low-level convergence, lightning strikes (Lamer et al., 2023). A detailed description of the MAAS implementation in the context of the TRACER and ESCAPE field campaigns can befound in Lamer et al. (2023).

154 Here, sequences of RHI scans collected by either CSAPR2 or CHIVO along the same 155 azimuth $(+/-0.03^{\circ})$ within 120 s of each other are selected to capture the vertical structure of 156 convective cores as depicted by the radar reflectivity (Z) and its temporal evolution. Oue et al., 157 (2019; 2022) demonstrated that collecting observations within 2 min reduces the impact of 158 horizontal advection in multi-Doppler wind retrievals. Each RHI is gridded using the Lidar Radar Open Software Environment (LROSE, Bell et al., 2022) Radx2Grid with a grid rotation 159 160 angle equal to the azimuth of the RHI, essentially reducing the data to a 2-dimensional grid of 161 height and distance from the radar. Storm motion and advection are not specifically accounted 162 for but are both small for the cases presented. To capture the high-resolution aspects of the RHIs, 163 the data were gridded to 100 m in the horizontal (x) and vertical (z) dimension. All reported 164 heights are above ground level (AGL).

165 One of the main objectives of this study is to investigate the impact of the INCUS radar 166 footprint (~3 km) on our ability to measure time resolved reflectivity measurements of 167 convective clouds. Thus, the gridded RHI data are also averaged to 3 km horizontal resolution 168 and 250 m vertical resolution to match the horizontal and range resolution of the INCUS 169 spaceborne radars. Using the gridded radar observations, the change in radar reflectivity, herein called ΔZ , is calculated at each grid point by subtracting the reflectivity in dB scale ($\Delta Z = Z_e - Z_e$) 170 Z_i) between two different radar reflectivity frames collected at two different times ($\Delta t_s = t_e - t_e$) 171 172 t_i), where the subscript *i* denotes the initial time, *e* denotes the time of the second RHI, and s is 173 the elapsed time difference between the two radar frames in seconds. In INCUS, three possible 174 ΔZ views of the same convective cells can be measured at Δt increments of s = 30, 90 and 120 s 175 that correspond to the ΔZ from the first and second, second and third, and first and third 176 spaceborne radar pairs. A first example of INCUS-like radar observations in depicted in Fig. 1 and is generated using a sequence of four CSAPR2 RHI with Δt_e increments of e = 19, 94, and 177 178 113 s relative to the first RHI. This is the so-called Δt approach proposed to be used by INCUS 179 (van den Heever, 2021).

180

184 Fig. 1: Case 1 demonstration of convective evolution of intense isolated deep convection. CSAPR2 RHIS at an azimuth of ~330° on 22 June 2022 at 23:53:28 UTC, and $\Delta t = 19, 94$, and 113 s. Black contours represent the 5-, 35-, and 55-dBZ contours at 23:53:28. For reference the associated radial velocity at t_0 is shown in (b).

3. Results

191 a. Case 1: Assessment of convective storm evolution from an intense deep convective

192 193

core

194 The first case study is a convective core targeted by MAAS with the CSAPR2 radar at 195 23:53:28 UTC on 22 June 2022 (Fig. 1). It is an isolated deep convective cell, fairly 196 representative of the types of afternoon convection often observed in the diurnal cycle in the 197 Houston area (Lamer et al., 2023, Oue et al., 2022). The well-developed convective cells exhibit 198 a maximum radar reflectivity of more than 65 dBZ and echo top heights that reach 15 km (Fig. 199 1). In addition to the series of CSAPR2 RHIs that provide high spatiotemporal resolution view of the convective core vertical structure, two consecutive CSAPR2 PPIs at 3° elevation at 23:53:17 200 201 UTC and 23:54:52 UTC (Δt_{95}) are used to provide the horizontal extent of this isolated 202 convective core (Fig. 2). Despite its intensity and vertical extent, the convective core was less 203 than 10 km wide (Fig. 2). Although some increases in reflectivity at 3.0° elevation are noted over 204 the 95 s (Fig. 2), the overall storm complex has not advected horizontally during the span of the 205 RHIs conducted (Fig. 1).

206 207

Fig. 2: CSAPR2 consecutive PPI sectors (spaced by ~ 90 sec) of Case 1 at 3° in elevation at 208 23:53:01 UTC (left) and 23:54:35 UTC (right). The black contours are the reflectivity from the 209 initial time (23:53:01 UTC) at 5 dB increments. The magenta line represents the CSAPR azimuth 210 of 330.86° corresponding to the RHIs shown in Fig. 1.

211 At $t_0 = 23:53:28$ UTC (Fig. 1a), the C-band radar reflectivity in the convective core exceeded 212 60 dBZ at around 6 km AGL, and the 35 dBZ (0 dBZ) echo top height was 12 km (14.2 km). At 213 Δt_{19} , the ΔZ field indicates an increase in radar reflectivity above 10 km height on the order of +5 dB (0.3 dB s⁻¹), while the rest of the echo changes were very close to 0 dB (Fig. 1c, d). The 35 214 215 dBZ (0 dBZ) echo top height increased by 100 m (300 m) to 12.1 km (14.5 km). While these 216 changes in reflectivity and height are relatively small, they highlight the rapid evolution of 217 convection through changes in reflectivity at very short time scales (19 s), even in non-severe 218 deep convection. A plausible explanation for the increase in the radar reflectivity in the upper 219 part of the convective cell is the lofting of condensate mass through the column by an underlying 220 updraft. The radial Doppler velocity (Fig. 1b) confirm the presence of an updraft (positive away 221 radial winds at the upper part of the cloud) within the 35 dBZ area. The flow divergence and 222 convective mass detrainment at the upper part of convective cell is nicely depicted by the 223 opposite sign radial Doppler velocity values. It is also plausible that the updraft vertical extent 224 reaches lower in the convective cell; however, the strongest changes in ΔZ are easier to detect 225 near the upper part of the cloud suggesting that the relationship between updraft strength and ΔZ 226 depends also on the background signal (Z_i) .

227

228 More significant ΔZ changes throughout the storm are noted 94 s later by the time of the 229 third RHI at Δt_{94} (Fig. 1 e, f). Reflectivity changes in the core aloft (>10 km) are up to +20 dB (0.2 dB s⁻¹), and the 35 dBZ (0 dBZ) echo top height has risen to 13 km (14.8 km), 230 corresponding to a change of 1000 m over 94 s, or an ascent rate of 10.6 m s⁻¹. On the other 231 232 hand, ΔZ in the mid-levels (4-6 km) are dominated by negative changes in reflectivity on the 233 order of -10 dB. Considering the rapid negative change in Z, we speculate that this could be 234 related to precipitation fall out of hail and rain or size sorting, and further studies supported by 235 model simulations will be required to better understand these processes and their relation to ΔZ / 236 Δt . Similarly, almost 2 minutes later, (Δt_{113} Fig. 1 g, h), the increases in reflectivity aloft are > 20 237 dB, and decreases in the mid-levels exceed -20 dB. At lower levels (< 4 km), small decreases in 238 reflectivity are noted in the leading edge of the storm, whereas small positive changes on the 239 order of 3 dB are evident in the core (Fig. 1 g, h). In general, reflectivity changes in the anvil are 240 small (< |5| dB), although the largest changes are on the underside of the anvils which could be 241 indicative of the anvil spreading out as well as stratiform fallout.

b. Case 2: The effect of temporal resolution on assessing convective storm evolution

244

242

245 The higher temporal resolution of the CHIVO radar is used here to investigate time resolved 246 radar reflectivity changes at even finer temporal resolutions than those proposed for the INCUS 247 mission. On 16 September 2022 at 11:44:24 UTC, MAAS targeted a convective cell at 45 km at 248 an azimuth of 132.63° from CHIVO. Case 2 features a much weaker convective core than Case 249 1, with a maximum reflectivity of 54 dBZ and 35 dBZ (0 dBZ) echo top height at t_0 of 10.4 km 250 (13.5 km, Fig. 3a). Local soundings (not shown) indicated significantly dry conditions in the 251 mid-levels that could be responsible for the weaker convective conditions. As in Case 1, the Case 252 2 isolated convective core is narrow, spanning less than 10 km in the horizontal (not shown). At 253 Δt_{17} , and similarly at Δt_{32} changes in reflectivity are small (<+/- 5 dB) throughout the echo depth (Fig. 3 c, d, 0.3 dB s⁻¹). However, some larger positive changes become apparent by Δt_{32} above 254 255 the intense core at 45 km range and at 8 km AGL (Fig. 3 e, f). During these Δt intervals, the 35 256 dBZ and 0 dBZ echo heights rise on the order of 100 m per 15 s to 10.8 km and 13.8 km, respectively, after an interval of 32 s, corresponding to an ascent rate of the 35 dBZ echo top of 257 3.1 m s⁻¹. A more distinct pattern in ΔZ on the order of +/-5 dB is clear by Δt_{48} and Δt_{64} , with 258 259 positive changes to reflectivity above 8 km in the core, and some negative reflectivity changes at 260 farther distances (Fig. 3 g-j). At much longer time intervals (Δt_{115} and Δt_{147}), which are the next 261 available RHIs along this azimuth, the initial patterns of positive and negative ΔZ the same, with 262 larger magnitudes reaching +20 dBZ primarily in the upper levels of the storm, and -10 to -15 263 dBZ in the mid-level storm core and downrange of the convective core (Fig. 3 k-m). By the final 264 time Δt_{147} , the 35 dBZ echo height lowered to 10.1 km, but the 0 dBZ echo top height reached 265 15.2 km (Fig. 3 m, n).

In contrast to the more intense cell analyzed in Case 1, this case of relatively weak convection generally had a reflectivity change less than 5 dB over a Δt of 32 s, while more distinct regions of growth and decay became obvious by Δt_{48} with $\Delta Z > 5$ dB. In both cases, growth of the convective core to higher altitudes was revealed through positive changes in reflectivity, with ascent rates of the 35 dBZ echo top height on the order of 10 m s⁻¹ in the intense case 1 and 3.1 m s⁻¹ in the weaker Case 2. These two high temporal resolution examples

- 272 demonstrate that weak and intense convection exhibit reflectivity changes of ~5 dB on time
- scales of 30 s or less, that growing parts 273

Fig. 3: Case 2 investigation of temporal resolution on observing convective evolution. 276 Timeseries of RHIs from the CHIVO radar on 16 September 2022 beginning at 11:44:24 UTC along the azimuth 123.6°. Reflectivity is shown at each time in the left panels, and reflectivity 277

 $\begin{array}{ll} 278 & \text{differences from } t_0 \ (a) \ are \ shown \ in \ the \ right \ panels. \ For \ reference \ the \ associated \ radial \ velocity \\ 279 & \text{at } t_0 \ is \ shown \ in \ (b). \end{array}$

280

of the storm (inferred from rising 35 dBZ echo heights) are associated with positive changes to reflectivity in the mid- to upper-levels, and that the observed largest changes on these time scales are in the upper portions of the storm where large regions of mass flux are expected as the updraft lofts water and ice higher in the atmosphere.

- 285
- 286
- 287 288

c. Case 3: The effect of spatial resolution on assessing convective storm evolution

289 The previous two cases highlighted that changes in reflectivity at high spatial resolution 290 (100 m) were notable even at time scales of 30 s or less. However, the ΔZ were estimated at high 291 spatiotemporal resolution. The INCUS radar constellation is expected to have Δts like those 292 provided by the surface-based C-band radars, however the spatial resolution of the INCUS radars 293 is much coarser. Here, we investigate the impact of the INCUS radar footprint (~3 km) using an 294 example from CSAPR2 at 23:12:07 UTC on 22 June 2022 (Case 3, Fig. 4). Case 3 features two 295 convective cores, one with a 35 dBZ echo top height around 6.5 km, and a second, narrow 296 convective core, 3km wide, with 35 dBZ extending to 10 km (Fig. 4 a, d, g). The original, high-297 resolution observations are horizontally smoothed using the 3 km long boxcar filter to represent 298 the INCUS antenna weighting function and vertically using a 0.25 km boxcar filter. The 299 smoothed radar reflectivity field is provided in two along track resolution at 1.5 km and 3.0 km 300 (Fig. 4 b,e,h and Fig. 4 c,f,i respectively). The 1.5 km along track integration represents a factor 301 of 2 oversampling sampling (Nyquist sampling, Sy et al., 2022) of the INCUS radar footprint, as 302 selected by the INCUS mission. The 3.0 km along track resolution is shown here for comparison. 303 Longer integration length along track is desirable for increasing the radar sensitivity, however, it 304 comes at the expense of smearing important convective cell features (Kollias et al., 2022a). 305 Overall, both the 1.5 km oversampled satellite (Fig. 4 b, e, h) footprint and the 3.0 km resolution 306 (Fig. 4 c, f, i) capture the general characteristics of these cores. In looking at the changes over 307 Δt_{92} , all resolutions show large increases in reflectivity (>20 dBZ) above 10 km as the convective 308 core at 43 km range grows. Similarly, positive ΔZ values are evident in the mid-levels (6 – 9 km 309 ASL), with a stronger column of positive changes in reflectivity $> \sim 10$ dB notable in the 100 m resolution with the width of ~150 m, which is also evident in the 1.5 km oversampled satellite footprint. However, this same column of positive change is missed by the 3.0 km resolution observations. This suggests that 3.0 km may be too coarse to resolve changes to convection on small spatial scales even over longer temporal intervals. Finally, all resolutions indicate that the shallower convective core at 38 km away from the radar is decaying, with large negative ΔZ or small changes to the reflectivity in the core (<+/- 5 dB).

316

csapr 20220622 23:12:07 UTC Az = 333.1

317Distance (km)Distance (km)318Fig. 4: Case 3 exploration of spatial resolution on observing convective evolution. CSAPR2

RHIs from 22 June 2022 at 23:12:07 UTC along the azimuth of 333.1° (top row) and 94 s later

320 (middle row) and the difference in reflectivity (bottom row) at 100 m resolution (left column),

- 321 1.5 km oversampling and 250 m vertical resolution (middle column) and 3.0 km horizontal and
 322 250 m vertical resolution (right column).
- 323

4. Discussion

326 The implementation of the MAAS framework in the recently conducted TRACER and 327 ESCAPE field campaigns around Houston TX, allowed us to collect high spatiotemporal 328 resolution observations in isolated convective cells, using traditional large-reflector radars. These 329 observations are ideal for a first evaluation of the NASA INCUS novel Δt measurement concept 330 using real observations.

331 The analysis of three isolated convective cells indicated that reflectivity differences on the 332 order of ~5 dB are observed over time scales of 20 s, underpinning the convective dynamics 333 driving the movement of water and air in the atmosphere. Changes of up to ~20 dB were evident 334 at longer timescales of more than one minute in all three cases. This finding suggests that the 335 INCUS mission selected Δt 's are appropriate for capturing small and large ΔZ signals. For 336 example, Case 2, an example of weaker convection illustrated changes of 10 dB were achieved 337 within 60 s and changes larger than 20 dB at time intervals longer than 90 s. Ascent rates of the 35 dBZ reflectivity contour were 10 m s⁻¹ in a rapidly growing convective core (Case 1), and 338 were $\sim 3 \text{ ms}^{-1}$ in weaker isolated convection (Case 2). These results characterize the relationship 339 340 between changes in reflectivity and the underlying updraft which is moving water and air upward 341 in the atmosphere. The resulting ΔZ field contains coherent structures, a plausible indicators of 342 large coherent convective scale updrafts being the possible mechanism for their presence.

343 In addition, the observations verify that the INCUS radar footprint (~ 3 km) is not expected 344 to have a significant impact on determining the CMF and that the overall structure of convective 345 cells as depicted by the radar reflectivity is well computed. This is particularly true when we 346 oversampled by a factor of 2 the INCUS radar footprint, which is what is expected will be done 347 in the INCUS mission. In a nutshell, the INCUS radar sampling strategy is appropriate for 348 temporal and spatial sampling of convective cores. This said, some convective elements that 349 were smaller than the spatial resolution being considered were not resolved, even over longer 350 time scales of 94 s. Herein we have not directly related the observed changes in reflectivity to the 351 updraft strength from independent measurements of vertical velocity (such as from multi-352 Doppler techniques). A separate manuscript that focuses on a more detailed verification of the 353 relationship between the observed ΔZ and the vertical air motion is under preparation.

The results presented here demonstrate the utility of using time differencing to understand the scales of convective dynamics, both temporally and spatially. The findings herein will help to guide future studies of convective dynamics, and our understanding of how best to utilize new and advancing observational platforms with the ability to collect data at high temporal and spatial resolutions. Future work is needed to examine if high resolution cloud resolving models can accurately capture the storm dynamical processes observed using these types of rapidlyscanned data. The role of advection and cloud microphysics in observed changes in reflectivity over short time and horizontal scales also needs to be assessed.

362

364

363 Acknowledgement:

365 This work is supported by INCUS, a NASA Earth Venture Mission, funded by NASA's 366 Science Mission Directorate and managed through the Earth System Science Pathfinder Program 367 Office under contract number 80LARC22DA011. The authors extend appreciation to the entire 368 INCUS team for insightful discussions related to this work. Mariko Oue and Susan C. van den 369 Heever were also supported by Atmospheric System Research (grant no. DESC0021160). 370 Kristen Rasmussen was also supported by Atmospheric System Research (grant no. DE-371 SC0022056). Mariko Oue and Pavlos Kollias were also supported by National Science 372 Foundation grant FAIN-2019932. Edward Luke and Katia Lamer were supported by the U.S. 373 Department of Energy, Atmospheric System Research (contract: DE-SC0012704).

374

378

Open Research

376 377

Data Availability Statement:

The CSAPR2 radar data used in this manuscript are available through the DOE ARM archive (Oue et al., 2023) and the CHVIO radar data are available at the National Center for Atmospheric Research Earth Observations Laboratory ESCAPE data archive ((https://www.eol.ucar.edu/field_projects/escape). Gridding was done with Radx2Grid through LROSE (Bell et al. 2022). Figure 2 and some processing utilized the DOE-PyART software (Helmus and Collis, 2016). Processing code including Radx parameter files and plotting code is available from Dolan (2023).

388 **References:**

- 389
- Bell, M. M, M. Dixon, W.-C. Lee, B. Javornik, J.DeHart, T.-Y. Cha, and A. DesRosiers, 2022:
 nsf-lrose/lrose-topaz: lrose-topaz stable final release 20220222 (lrose-topaz-2022022).
 [Software] Zenodo. https://doi.org/10.5281/zenodo.6909479
- Bluestein, H. B., M. M. French, I. PopStefanija, R. T. Bluth, and J. B. Knorr, 2010: A mobile
 phased-array Doppler radar for the study of severe convective storms. Bull. Amer.
 Meteor. Soc., 91, 579-600. https://doi.org/10.1175/2009BAMS2914.1
- Bluestein, H. B., K. J. Thiem, J. C. Snyder , and J. B. Houser, 2019: Tornadogenesis and early
 tornado evolution in the El Reno, Oklahoma, supercell on 31 May 2013. Mon. Wea.
 Rev., 147, 2045–2066, https://doi.org/10.1175/MWR-D-18-0338.1.
- Brogniez H, Roca R, Auguste F, Chaboureau J-P, Haddad Z, Munchak SJ, Li X, Bouniol D,
 Dépée A, Fiolleau T and Kollias P, 2022: Time-Delayed Tandem Microwave
 Observations of Tropical Deep Convection: Overview of the C²OMODO Mission. *Front. Remote Sens.* 3:854735. Doi: 10.3389/frsen.2022.854735
- 403 Crum, T. D., Saffle, R. E., and Wilson, J. W., 1998: An update on the NEXRAD program and
 404 future WSR-88D support to operations. *Wea. For.*, *13*(2), 253-262.
- 405 Dolan, B., 2023: GRL_dZdT [Software] Zenodo <u>DOI: 10.5281/zenodo.8190935</u>.
- 406 Fridlind, A.M., X. Li, D. Wu, M. van Lier-Walqui, A.S. Ackerman, W.-K. Tao, G.M.
 407 McFarquhar, W. Wu, X. Dong, J. Wang, A. Ryzhkov, P. Zhang, M.R. Poellot, A.
 408 Neumann, and J.M. Tomlinson, 2017: Derivation of aerosol profiles for MC3E
 409 convection studies and use in simulations of the 20 May squall line case. *Atmos. Chem.*410 *Phys.*, 17, 5947-5972, doi:10.5194/acp-17-5947-2017.
- 411 Griffith, P., Gunshor, M. M., Daniels, J. M., Goodman, S. J., and Lebair, W. J., 2017: A closer
 412 look at the ABI on the GOES-R series. *Bull. Amer. Meteor. Soc*, *98*, 681-698.
- Illingworth, A.J., Barker, H.W., Beljaars, A., Ceccaldi, M., Chepfer, H., Clerbaux, N., Cole, J.,
 Delanoë, J., Domenech, C., Donovan, D.P. and Fukuda, S., 2015: The EarthCARE
 satellite: The next step forward in global measurements of clouds, aerosols, precipitation,
 and radiation. *Bull. Amer. Meteor. Soc.*, 96(8), pp.1311-1332.
- Hartmann, D.L., H.H. Hendon and R.A. Houze, Jr., 1984: Some implications of the mesoscale
 circulations in cloud clusters for large-scale dynamics and climate, *J. Atmos. Sci.*, 41,
 113-121, 1984

- 420 Helmus, J.J. and Collis, S.M., 2016. The Python ARM Radar Toolkit (Py-ART), a Library for
- 421 Working with Weather Radar Data in the Python Programming Language. [Software] J.
- 422 *Open Res. Software*, 4(1), p.e25. DOI: http://doi.org/10.5334/jors.119
- Jensen, M., and Coauthors, 2022: A succession of cloud, precipitation, aerosol and air quality
 field experiments in the coastal urban environment. *Bull. Amer. Soc.*, 103, 103-105.
 https://doi.org/10.1175/BAMS-D-21-0104.1.
- Kollias, P., N. Bharadwaj, E. Clothiaux, K. Lamer, M. Oue, J. Hardin, B. Isom, I. Lindenmaier,
 A. Matthews, and E. Luke, 2020: The ARM Radar Network: At the leading edge of cloud
 and precipitation observations, *Bull. Amer. Meteor. Soc.*, 1307 101(5), E588-E607.
- Kollias P, Battaglia A, Lamer K, Treserras BP and Braun SA, 2022a: Mind the Gap Part 3:
 Doppler Velocity Measurements from Space. *Front. Remote Sens.* 3:860284. doi: 10.3389/frsen.2022.860284
- Kollias, P., and Coauthors, 2022b: Science applications of Phased Array radars. *Bull. Amer. Meteor. Soc.*, **103** (10), E2370-E2390. <u>https://doi.org/10.1175/BAMS-D-21-0173.1</u>
- Lamer, K., P. Kollias, E. P. Luke, B. P. Treserras, M. Oue, and B. Dolan, 2023: Multisensor
 Agile Adaptive Sampling (MAAS): a methodology to collect radar observations of
 convective cell life cycle. J. Atmos. Ocean. Technol. Conditionally accepted.
- Marinescu, P. J., P. C. Kennedy, M. M. Bell, A. J. Drager, L. D. Grant, S. W. Freeman, and S. C.
 van den Heever, 2020: Updraft Vertical Velocity Observations and Uncertainties in High
 Plains Supercells Using Radiosondes and Radars. *Mon. Wea. Rev.*, 148, 4435-4452.
 https://doi.org/10.1175/MWR-D-20-0071.1.
- 441 Oue, M., P. Kollias, A. Shapiro, A. Tatarevic, and T. Matsui, 2019: Investigation of
 442 observational error sources in multi-Doppler-radar three-dimensional variational vertical
 443 air motion retrievals, Atmos. Meas. Tech., 12, 1999-2018, https://doi.org/10.5194/amt444 12-1999-2019.
- Oue, M., Saleeby, S. M., Marinescu, P. J., Kollias, P., and van den Heever, S. C., 2022:
 Optimizing radar scan strategies for tracking isolated deep convection using observing
 system simulation experiments, *Atmos. Meas. Tech.*, 15, 4931–4950,
 https://doi.org/10.5194/amt-15-4931-2022.
- Oue, M., Treserras, BP., Luke, E., and Kollias, P., 2023: CSAPR2 cell-tracking data collected
 during TRACER. [Dataset] United States: N. p. Web. doi:10.5439/1969992.

- 451 Palmer, R., and Coauthors, 2022: A primer on phased array radar technology for the atmospheric
 452 sciences. *Bull. Amer. Meteor. Soc.*, 103, E2205–2230, <u>https://doi.org/10.1175/BAMS-D-</u>
 453 <u>21-0172.1</u>.
- 454 Peral, E., and Coauthors, 2019: RainCube: The first ever radar measurements from a CubeSat in
 455 space. J. Appl. Remote Sens., 13, 032504, https://doi.org/10.1117/1.JRS.13.032504.
- Pazmany, A. L., J. B. Mead, H. B. Bluestein, J. C. Snyder, and J. B. Houser, 2013: A mobile,
 rapid-scanning, X-band, polarimetric (RaXPol) Doppler radar system. *J. Atmos. Oceanic Technol.*, **30**, 1398–1413, https://doi.org/10.1175/JTECH-D-12-00166.1.
- 459 Sherwood, S. C., S. Bony and J.-L. Dufresne, 2014: Spread in model climate sensitivity traced to
 460 atmospheric convective mixing. Nature, 505, 37-42. Doi:10.1038/nature12829
- 461 Stephens G., Freeman A., Richard E., Pilewskie P., Larkin P., Chew C., Tanelli S., Brown S.,
 462 Posselt D., Peral E., 2020a: The emerging technological revolution in Earth
 463 observations. Bull. Amer. Meteor. Soc. 101, E274–E285
- 464 Stephens G., and Coauthors, 2020b: A Distributed Small Satellite Approach for Measuring
 465 Convective Transports in the Earth's Atmosphere, *IEEE Trans. Geo. Remote Sens.*, 58
 466 (1), 4-13, doi: 10.1109/TGRS.2019.2918090
- Su, H., Jiang, J. H., Zhai, C., Shen, T. J., Neelin, J. D., Stephens, G. L., & Yung, Y. L., 2014:
 Weakening and strengthening structures in the Hadley Circulation change under global
 warming and implications for cloud response and climate sensitivity. *J. Geophys. Res.: Atmos/.*, *119*(10), 5787-5805.
- 471 Sy. O. O., and Coauthors, 2022: Scientific Products from the First Radar in a CubeSat
 472 (RainCube): Deconvolution, Cross-Validation, and Retrievals. *IEEE Trans. Geo. Remote*473 Sens., 60, 1-20, doi: 10.1109/TGRS.2021.3073990.
- 474 Tanamachi, R. L., and P. L. Heinselman, 2016: Rapid-scan, polarimetric observations of
 475 central Oklahoma severe storms on 31 May 2013. Wea. Forecasting, 31,19–42,
 476 <u>https://doi.org/10.1175/WAF-D-15-0111.1</u>.
- Wehr, T., Kubota, T., Tzeremes, G., Wallace, K., Nakatsuka, H., Ohno, Y., Koopman, R., Rusli,
 S., Kikuchi, M., Eisinger, M. and Tanaka, T., 2023. The EarthCARE Mission–Science
 and System Overview. EGUsphere, pp.1-47.

- 480 van den Heever, 2021: NASA Selects New Mission to Study Storms, Impacts on Climate
- 481 Models, *NASA Earth*. https://www.nasa.gov/press-release/nasa-selects-new-mission-to-
- 482 study-storms-impacts-on-climate-models.