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Abstract

Inferring from the occurrence pattern of slow slip events (SSEs) the probability of triggering a damaging earthquake within

the nearby velocity weakening portion of the plate interface is critical for hazard mitigation. Although robust methods exist to

detect long-term SSEs consistently and efficiently, detecting short-term SSEs remains a challenge. In this study, we propose a

novel statistical approach, called singular spectrum analysis isolate-detect (SSAID), for automatically estimating the start and

end times of short-term SSEs in GPS data. The method recasts the problem of detecting SSEs as that of detecting change-

points in a piecewise signal. This is achieved by obscuring the deviation from piecewise-linearity in the underlying SSE signals

using added noise. We verify its effectiveness on a range of model-generated synthetic SSE data with different noise levels, and

demonstrate its superior performance compared to two existing methods. We illustrate its capability in detecting short-term

SSEs in observed GPS data using 36 GPS stations in southwest Japan via the co-occurrence of non-volcanic tremors, hypothesis

tests and fault estimation.
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Key Points:5

• We develop a change-point detection method for detecting automatically the start6

and end times of short-term SSEs in GPS data.7

• Synthetic tests verified its validity and demonstrated that the new method out-8

performs two existing methods.9

• We illustrate the effectiveness of the method in detecting short-term SSEs in South-10

west Japan.11
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Abstract12

Inferring from the occurrence pattern of slow slip events (SSEs) the probability of trig-13

gering a damaging earthquake within the nearby velocity weakening portion of the plate14

interface is critical for hazard mitigation. Although robust methods exist to detect long-15

term SSEs consistently and efficiently, detecting short-term SSEs remains a challenge.16

In this study, we propose a novel statistical approach, called singular spectrum analy-17

sis isolate-detect (SSAID), for automatically estimating the start and end times of short-18

term SSEs in GPS data. The method recasts the problem of detecting SSEs as that of19

detecting change-points in a piecewise signal. This is achieved by obscuring the devia-20

tion from piecewise-linearity in the underlying SSE signals using added noise. We ver-21

ify its effectiveness on a range of model-generated synthetic SSE data with different noise22

levels, and demonstrate its superior performance compared to two existing methods. We23

illustrate its capability in detecting short-term SSEs in observed GPS data using 36 GPS24

stations in southwest Japan via the co-occurrence of non-volcanic tremors, hypothesis25

tests and fault estimation.26

Plain Language Summary27

[SSEs, a type of slow earthquakes, are thought to play an important role in releas-28

ing strain in subduction zones, and affect the occurrence of large earthquakes, although29

their exact connection remains unclear. Detecting accurately the start and end times of30

SSEs is one prerequisite to illuminate their interactions with large earthquakes. How-31

ever, no robust detection method has been well developed so far. SSEs are widely recorded32

by GPS network, part of the Global Navigation Satellite System (GNSS). Most unde-33

tected SSEs in GPS data are short-term SSEs, i.e. SSEs with short durations ranging34

from days to weeks, since the amplitude changes in the GPS data trend from short-term35

SSEs are somewhat small, close to (or even lower than) the background noise. There-36

fore, more urgent efforts should be devoted to developing a rapid automated method for37

detecting short-term SSEs in GPS data. In this study, we utilize a change-point detec-38

tion method for piecewise signals to detect automatically the start and end times of short-39

term SSEs in GPS data. We demonstrate its effectiveness on both simulated and observed40

GPS data. The results show that the detection performance of our method regarding41

the number of estimated change-points and their locations outperform two existing meth-42

ods.]43

1 Introduction44

Slow slip events (SSEs) are fault slips occurring at the subduction interface between45

tectonic plates. They are roughly categorized into short-term SSEs (in the order of days46

to weeks) and long-term SSEs (in the order of months to years) (Obara, 2020). They con-47

stitute a type of slow earthquakes (Hirose et al., 1999; Mitsui & Hirahara, 2006; Obara48

& Kato, 2016; Obara, 2020). SSEs play a vital role in releasing stress along subduction49

interfaces. The associated episodic stress perturbations on the seismogenic zone have been50

linked to the occurrence of larger natural earthquakes (Segall et al., 2006; Ito et al., 2013;51

Bartlow et al., 2014; Radiguet et al., 2016; Voss et al., 2018; Bletery & Nocquet, 2020).52

SSEs might also prevent the rupture of large earthquakes from propagating further along53

the subduction interface, while large earthquakes can also initiate SSEs in the nearby54

transition zone (Hirose et al., 2012; Yarai & Ozawa, 2013; Nishikawa et al., 2019; Wal-55

lace, 2020; Nishimura, 2021). Here the transition zone refers to the area where SSEs oc-56

cur along the subduction interface. Understanding the process governing SSEs could po-57

tentially help us forecast impending earthquakes, although the underlying geophysical58

mechanism for forming SSEs remains elusive (Mazzotti & Adams, 2004; Jordan & Jones,59

2010; Lohman & Murray, 2013; Beeler et al., 2014; Obara & Kato, 2016; Barbot, 2019;60

Obara, 2020).61
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Detecting SSEs accurately could be the key to determine the mechanism generat-62

ing SSEs and illuminate their interactions with large earthquakes (Ikari et al., 2013; Saf-63

fer & Wallace, 2015; Ozawa et al., 2019; Nishimura, 2021). SSEs are generally recorded64

through geodetic measurements such as Global Navigation Satellite System (GNSS), tilt-65

meters and strainmeters. Among these, the Global Positioning System (GPS; one type66

of GNSS) network is the most popular way of recording ground movements with the in-67

tention of uncovering SSEs, because it is relatively inexpensive, easily accessible and suf-68

ficiently precise (Melbourne et al., 2005; Smith & Gomberg, 2009; Vergnolle et al., 2010;69

Jiang et al., 2012; Cavalié et al., 2013; He et al., 2017). Developing a robust method for70

detecting SSEs in GPS data is crucial, despite the many challenges it presents (Nishimura71

et al., 2013; Nishimura, 2014; Rousset et al., 2017; Takagi et al., 2019; Nishikawa et al.,72

2019; Haines et al., 2019; Nishimura, 2021; Okada et al., 2022). For ease of presentation,73

we refer to GPS data recording SSEs as SSE data thereafter.74

Numerous methods have been proposed to detect the occurrence times of SSEs in75

GPS data (hereafter referred to as SSE detections). The first group of approaches is based76

on Kalman filter of state vector, which model the recorded GPS time series as the sum77

of coherent signals from various sources and estimation errors (Granat et al., 2013; Ji78

& Herring, 2013; Lohman & Murray, 2013; Walwer et al., 2016). These existing approaches79

include Network Inversion Filter (Segall & Matthews, 1997; Segall et al., 2000; Miyazaki80

et al., 2003; McGuire & Segall, 2003), Monte Carlo Mixture Kalman Filter (Fukuda et81

al., 2004, 2008), Network Strain Filter (Ohtani et al., 2010), and further improvements82

on the above Kalman-filter-based methods (Ji & Herring, 2013; Riel et al., 2014; Bed-83

ford & Bevis, 2018). All these methods assume that the underlying model can completely84

extract the pure SSE signal from the noisy GPS data. This assumption is under debate,85

however, because the underlying mechanism that governs SSEs remains unclear (Obara86

& Kato, 2016; Obara, 2020).87

Another group of approaches consists of estimating the time evolution of the slip88

distribution on the fault by inverting the recorded GPS data at different sites, so that89

the occurrence times of SSEs can be simultaneously estimated (McCaffrey, 2009; Bart-90

low et al., 2014; Williams & Wallace, 2015; Wallace et al., 2017, 2018). One commonly91

used tool for such detection is TDEFNODE, which is a nonlinear time-dependent inver-92

sion code (McCaffrey, 2009). This tool utilizes simulated annealing to downhill simplex93

minimization, which has been applied to invert various recorded GPS data for detect-94

ing SSEs. Two free parameters in this method are the occurrence times and the asso-95

ciated amplitude of SSEs (McCaffrey, 2009). TDEFNODE needs a priori information96

on the functional form (e.g. exponential or Gaussian) of the temporal evolution of SSEs97

on the fault. However, the selection of a suitable form remains enigmatic, and is gen-98

erally determined by trial tests (Wallace et al., 2017). In addition, the geometry of the99

subduction zone must be known to use TDEFNODE, thus its application is affected by100

the availability of geometrical knowledge in the observed data.101

Singular Spectrum Analysis (SSA), a univariate time series analysis method (Ghil102

et al., 2002), can remedy this latter shortcoming. SSA is designed to extract informa-103

tion from noisy time series and thus, provides insight into the underlying dynamics (Ghil104

et al., 2002). The key feature of this method is that it does not need any a priori knowl-105

edge of the underlying pure signal, and the trends obtained in this way are not neces-106

sarily linear (Ghil et al., 2002; Chen et al., 2013). SSA typically decomposes the noisy107

data into reconstructed components (RCs). These RCs are sorted in a descending or-108

der according to their corresponding eigenvalues, which denote their proportions of the109

total variance of the original data. Low-order RCs in the queue are regarded as effec-110

tive signals related to the underlying dynamics, while high-order RCs are taken as noise,111

and are typically discarded. This is the common way to extract pure SSEs from noisy112

data by SSA. To determine a threshold between pure signal RCs and noise RCs is rel-113

atively subjective. When the signal-to-noise ratio (SNR) is low, SSA normally fails to114
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distinguish signal from noise. Chen et al. (2013) demonstrated that SSA is a viable and115

complementary tool for extracting modulated oscillations from GPS time series.116

Walwer et al. (2016) introduced a more powerful form of SSA, Multichannel Sin-117

gular Spectrum Analysis (M-SSA), to extract SSEs. M-SSA can simultaneously make118

use of the spatial and temporal correlations to explore the spatiotemporal variability of119

the data set. Although M-SSA was shown to outperform many existing detection meth-120

ods, it still has drawbacks. This method only aims at extracting SSEs without detect-121

ing the occurrence times of SSEs, so a follow-up detection to determine the start and end122

times of SSEs is needed. The size of the lag covariance matrix in M-SSA also grows rapidly123

with the size of the GPS network considered, leading to computational issues for large-124

scale networks. M-SSA cannot operate on a single data basis, which limits its applica-125

bility to cases where the signals lack spatial coherence, for example, when there are not126

enough GPS stations, or the stations are too close to each other. Relative Strength In-127

dex (RSI), a single-station technique from the stock market (Crowell et al., 2016), is able128

to solve all the aforementioned issues, but it only applies to long-term SSEs.129

Compared to long-term SSEs, the duration and recurrence interval of short-term130

SSEs are much smaller, in the order of several days or weeks. The amplitude change in131

the GPS data caused by a short-term SSE is also relatively small. It can be close to, or132

even lower than, the background noise, so most short-term SSEs remain undetected (Nishimura,133

2021; Yano & Kano, 2022). Therefore, more urgent efforts should be devoted to rapid134

automated methods for detecting short-term SSEs (Hirose & Kimura, 2020; Obara, 2020;135

Okada et al., 2022), which is the focus of our current study. Linear regression, combined136

with Akaike’s Information Criterion (AIC), is widely used to detect short-term SSEs for137

large-scale GPS networks (Nishimura et al., 2013; Nishimura, 2014, 2021; Okada et al.,138

2022). This method fits linear functions with and without an offset, and then uses AIC139

to judge which function is a better fit considering a number of free parameters. In this140

method, the length of the designed sliding window and the user-defined detection thresh-141

old determine the detection accuracy. In practice, it is hard to select reasonable values142

for these subjective parameters (Nishimura et al., 2013; Yano & Kano, 2022; Ma et al.,143

2022). A new method developed by Yano and Kano (2022) can overcome this deficiency,144

approximating SSE data as piecewise-linear signals by using l1 trend filtering combined145

with Mallows’ Cp. The knots in the fitted piecewise-linear signal are then taken as the146

occurrence times of SSEs. The applications to both synthetic and observed SSE data demon-147

strated that this method obtained better performance than the linear regression method.148

However, it is not clear that the assumption that SSE data can be regarded as piecewise-149

linear signals with the knots being the occurrence times of SSEs is reasonable, since the150

specific form of the underlying SSE signal remains unknown (Obara & Kato, 2016; Obara,151

2020).152

In this study, we develop a new method, called Singular Spectrum Analysis Isolate-153

Detect (SSAID), to automatically detect the start and end times of short-term SSEs in154

GPS data. This method regards the detection of short-term SSEs in GPS data as a prob-155

lem of detecting change-points in piecewise non-linear signals, in which the start and end156

times of SSEs are change-points to be detected. The prominent advantage of SSAID is157

that it does not require prior knowledge of the exact form of the underlying SSE signal.158

SSAID aims to obscure the differences between the nonlinear SSE signal and a piecewise-159

linear model, so that existing change-point detection methods for piecewise-linear sig-160

nals can be directly applied to detect the start and end times of short-term SSEs. This161

is done by (i) decomposing the noisy SSE data into spectral components through SSA162

(Ghil et al., 2002) and reconstructing these components into new noisy data signals; (ii)163

adding noise to these reconstructed signals, and (iii) conducting the detection by Isolate-164

Detect (ID; Anastasiou & Fryzlewicz, 2021). We conduct a range of simulations to eval-165

uate the detection performance of SSAID using both simulated and observed SSE data.166
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In Section 2, we introduce the observed SSE data in southwest Japan and the as-167

sociated data processing procedures. In Section 3, we introduce the method SSAID along168

with some assumptions. In Section 4, we show results of applying SSAID to a range of169

simulated SSE data and compare the results with two existing detection methods (i.e.170

linear regression with AIC; and l1 trend filtering). In Section 5, we demonstrate its ca-171

pability in detecting short-term SSEs in observed GPS data. Discussions and conclusions172

are in Section 6.173

2 Data and processing174

We use SSE data from the Nankai subduction zone which has a dense geodetic ob-175

servation network. In southwestern Japan, the Amurian plate overriding the Philippine176

Sea plate converges to N50◦W at a rate of about 67 mm/year (Miyazaki & Heki, 2001;177

Nishimura, 2014; Kano & Kato, 2020; Obara, 2020). Both long-term and short-term SSEs178

occur across the Nankai Trough (Obara, 2020) (see Fig. 1 (a)). Short-term SSEs in south-179

west Japan generally exist in the deeper extension of long-term SSEs regions.180

We use SSE data from 36 GPS stations of the GNSS Earth Observation Network181

System (GEONET) operated by the Geospatial Information Authority of Japan (GSI).182

These GPS stations are distributed in the Shikoku region along the Bungo Channel (see183

Fig. 1 (b)). The analysis period for this study is from 1 January 2008 to 30 June 2009.184

The vector of coordinates at each GPS station, containing east, north and upward dis-185

placement, has been transformed to the 2005 International Terrestrial Reference Frame186

(ITRF2005), and can be generally modelled as a sum of different processes (Nikolaidis,187

2002; Davis et al., 2012; He et al., 2017; Bedford & Bevis, 2018), that is188

u(t) = d0 +m0t+

no∑
j=1

bjH(t− tj) +

ns∑
i=1

hi(t− ti) + ξ1(t) + ξ2(t) + ξ3(t) + ϵ(t), (1)189

where t is the time, d0 and m0 refer to vectors describing the position of the reference190

site and the secular velocity, respectively. Here, we refer to the displacement rate of the191

linear process without the occurrence of other fault slips as the secular velocity, which192

represents the secular tectonic motions of two contacting plates of the subduction zone.193

The third term
∑no

j=1 bjH(t−tj) describes the vector of offsets due to non-tectonic changes194

such as antenna or other instrument changes, where n0 is the number of non-tectonic195

changes, tj is the time when the j-th non-tectonic change occurs, and H(t) is the Heav-196

iside step function. The fourth term
∑ns

i=1 hi(t−ti) represents the vector of coseismic197

and postseismic movements from ambient regular earthquakes, where ns is the number198

of ambient regular earthquakes, ti is the time at which the i-th regular earthquake oc-199

curs, and hi refers to the coseismic and postseismic movements from the i-th regular earth-200

quake (Wdowinski et al., 1997; ElGharbawi & Tamura, 2015). The other vectors ξ1(t),201

ξ2(t), ξ3(t) and ϵ(t) describe the movements from seasonal motions, unknown sources,202

SSEs and noise, respectively.203

These SSE data have been pre-processed by Nishimura et al. (2013) to remove known204

effects from non-SSE processes. We now briefly illustrate the data processing procedures205

conducted on the raw GPS data (Nishimura et al., 2013; Nishimura, 2014; Fujita et al.,206

2019; Nishimura, 2021). Firstly, they eliminated the coseismic offsets from six ambient207

large earthquakes (see the detailed catalogue therein), which are estimated by the dif-208

ference in the 10-day averages of the daily coordinates before and after the earthquakes.209

Secondly, the spatial filtering technique of Wdowinski et al. (1997) was applied to sup-210

press the common mode errors for these stations, which are a major type of spatially cor-211

related noise sources in GPS data (Dong et al., 2006). Finally, the offsets from non-tectonic212

changes (i.e. the third term in Eq. (1)) such as antenna maintenance were removed by213

the same method as that used to remove coseismic offsets. Note that the post-seismic214

deformations from nearby large earthquakes were not removed (i.e. the fourth term in215
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Figure 1. (a) The distribution map of earthquakes in the study area of southwest Japan.

The magenta dashed circles and the blue contours denote the source areas of long-term SSEs

and megathrust earthquakes, respectively. The orange dots show the epicenters of tremors. Gray

dashed lines indicate the depth of the subducting Philippine Sea plate. (b) The distribution map

of 36 GPS stations utilized in the current case study (see Section 5). This area is outlined by the

dashed green box in panel (a). Both red and green circles indicate the location of GPS stations,

and the numbers near to circles refer to the GPS station names. Note that we apply SSAID to

detect change-points in SSE data recorded by GPS stations identified as green filled circles in the

case study reported in Section 5.

Eq. (1)), however their impacts are negligible in our current application as no obvious216

large earthquakes were identified in the period analyzed (i.e. from January 1 2008 to June217

30 2009) in the research area (Nishimura et al., 2013).218

We denote the processed daily cumulative displacement vector at each station as219

ū(t) = b̄0t+ ξ̄1(t) + ξ̄2(t) + ξ̄3(t) + ϵ̄(t), (2)220

where b̄0 is the vector of coefficients quantifying the secular movement, and ξ̄1(t), ξ̄2(t),221

ξ̄3(t) and ϵ(t) are vectors of daily cumulative displacements of seasonal motions, unknown222

sources, SSEs and noises, respectively. The daily cumulative displacement ū(t) contains223

three components along different directions (i.e. east, north and upward), which are de-224

noted as ūe, ūn, ūz, respectively. In the following application, we concentrate on the N50◦W225

component of the daily cumulative displacement at each station, denoted by Xt, which226

is parallel to the plate convergence direction of the Nankai Trough (see Fig. 1 (a)). This227

is done by rotating two horizontal components (i.e. east and north) using the following228

equation,229

Xt = ūe sin δ̄0 − ūn cos δ̄0, (3)230

where δ̄0 is the azimuth angle of the plate convergence direction (see the black arrow in231

Fig. 1 (a); δ̄0 ≈ 50◦ in Nankai Trough). In the following applications, we further re-232

move the daily secular motions and outliers from Xt at each station, through linear least233

squares and the four-sigma limit, respectively (Nishimura, 2021). Note that when con-234

ducting hypothesis tests in Section 5.1.2, we do not remove the daily secular motions,235

as they can be used to investigate the sign change of the displacement rate from the sec-236

ular velocity when SSEs arise (Yano & Kano, 2022).237
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3 Method238

We developed a new method to detect change-points in uni-variate time series with239

piecewise continuous structure. Here, change-points refer to the times at which the pat-240

tern of the underlying dynamics (i.e. pure signal) changes from one state to a different241

one. Fig. 2 (a) shows an example of observed SSE data from the Hikurangi subduction242

zone, New Zealand. In periods no SSEs occur, the overall trend of the signal is linear243

and decreasing. The trend is then redirected to a different state (increasing here) when244

an SSE starts. Once the SSE ends, the trend reverses back to its original linear decreas-245

ing state. The start and end times of SSEs can therefore be regarded as change-points246

in GPS data. Our method, called Singular Spectrum Analysis Isolate Detect (SSAID),247

seeks to detect the start and end times of SSEs in noisy GPS data without prior knowl-248

edge of the underlying structure of the signal. A full exposition of SSAID, including ap-249

plications to data from various disciplines, can be found in Ma (2022) and Ma et al. (2022).250

Here, we only summarize its underlying assumptions and main features.251

Figure 2. (a) Observed SSE data recorded by the east component of a GPS station (MAHI),

in the Hikurangi subduction zone, New Zealand; (b) Synthetic SSE data with 10 SSEs in a two-

year period, which are simulated by a deterministic subduction slip model (see the supplement).

Red vertical lines: the start times of SSEs; blue dotted vertical lines: the end times of SSEs.

Let us assume that the deviation of the pure SSE signal from a piecewise-linear func-252

tion can be obscured by noise as long as the noise level is within a suitable range. If sat-253

isfied, an existing change-point detection method for piecewise-linear signals can be di-254

rectly applied to detect change-points in SSE data (Ma, 2022). This assumption was val-255
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idated using numerical tests in Ma (2022), in which various change-point detection meth-256

ods for piecewise-linear signals were shown to successfully detect change points after dif-257

ferent levels of Gaussian noise were added to the signal. Of all the methods considered,258

Isolate-Detect (ID; Anastasiou & Fryzlewicz, 2021) showed the best performance and was259

therefore selected for application to SSE data. The noise level within a suitable range,260

i.e. allowing successful change-point detection, is referred to as a suitable noise level (SNL).261

We further define a successful detection when two conditions are met: (1) the number262

of estimated change-points is exactly the number of true change-points and (2) the root263

mean squared error (RMSE) of the detected change-point times is less than a predefined264

threshold value, here 3 days.265

As the SNL varies with signal types (Ma et al., 2022), it is not possible to prede-266

termine if the raw data has an SNL. By decomposing the raw data and systematically267

adding Gaussian noise, SSAID generates new time series with SNL (referred to as in-SNL268

data), greatly improving the probability of successful change-point detection.269

SSAID contains four main steps: (1) decomposing and reconstructing the signal270

using SSA; (2) adding Gaussian noise with different noise levels to reconstructed signals;271

(3) detecting change-point candidates in SSE data via ID and identifying in-SNL data272

and (4) determining the final change-points to best characterize the start and end times273

of SSEs. Brief descriptions for each step are provided as follows. The reader is referred274

to Ma (2022) and Ma et al. (2022) for a full exposition of the method.275

1. Signal decomposition and reconstruction: We use SSA to decompose the in-276

put data Xt into M components by SSA, and then reconstruct M new data se-277

quences as follows, Y k
t =

∑k
j=1 R

j
t (k = 1, · · · ,M ; t = 1, · · · , T ), where T is278

the length of the input data, and the SSA components Rj
t (j = 1, · · · ,M) are279

sorted in decreasing order according to their correlation with the underlying dy-280

namics. That is, Rj
t with small j values are important components of the under-281

lying signal, while those with large j values mostly contain noise. Therefore, the282

noise level in Y k
t increases with k.283

2. Generation of in-SNL data: We add Gaussian noise with different noise lev-284

els into the reconstructed data Y k
t (k = 1, · · · ,M), that is Zk,s,m

t = Y k
t +asω

m
t285

(k = 1, · · · ,M ; s = 1, · · · , L;m = 1, · · · , Q; t = 1, · · · , T ), where ωm
t are inde-286

pendent, random variables sampled from the standard normal distribution N (0, 1);287

as is the level of added noise; L and Q are the number of realisations and the num-288

ber of noise levels considered, respectively. The aim of this step is to guarantee289

the existence of in-SNL data among these newly created Zk,s,m
t time series. For290

each reconstructed signal k and noise level s, we refer to the set of all realisations291

Gk,s = {Zk,s,1
t , · · · , Zk,s,Q

t } as a group. A group is then called an in-SNL group292

if the noise level of its members is an SNL.293

3. Identification of in-SNL data: This step consists of identifying in-SNL data294

group-by-group among the above Zk,s,m
t by (1) applying ID to estimate the num-295

ber of change-points N̂k,s,m and the location of the change-points in each Zk,s,m
t ;296

(2) calculating three statistical quantities for each group and imposing conditions297

to identify in-SNL groups and then (3) taking all the members in the same group298

as in-SNL data.299

4. Estimation of change-points: We determine the location of the estimated change-300

points in the raw data Xt using the estimated change-points for all the identified301

in-SNL data through a majority voting rule. This is done by (1) calculating the302

mode of the number of estimated change-points for each in-SNL group; (2) tak-303

ing the mode of the distribution of calculated modes as the number of estimated304

change-points in the raw data N̂X ; (3) collecting the estimated change-points of305

all the in-SNL data which have the same number of estimated change-points as306

N̂X into the same matrix D; and then (4) taking the mode of each column in D307

as the location of an estimated change point in the raw data Xt.308
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4 Tests on synthetic data309

We now evaluate the detection performance of our method for a range of simulated310

noisy SSE data Xt, which are generated in the following form,311

Xt = ft + Cwn × ϵt, (t = 1, · · · , T ), (4)312

where T is the length of the noisy data, and ft is the simulated pure SSE data (see Fig.313

2 (b)) from a deterministic subduction slip model (see details in the supplement), which314

is standardised through the Z-score normalisation. The number of true change-points315

in the simulated pure SSE signal is N0 = 20. The second term Cwn×ϵt in Eq. (4) de-316

notes the noise model contained in Xt. We assume that ϵt are independent, Gaussian317

random variables with mean zero and variance one. The noise level Cwn is the standard318

deviation of the noise model, varing from 1 to 100%, with increments of 1%. Fig. 3 (c)319

and (d) show two examples of simulated noisy SSE data with different noise levels. Us-320

ing different seeds, we create 100 data sequences of independent standard Gaussian ran-321

dom variables ϵt (t = 1, 2, . . . , T ). In total, we have 100×100 noisy time series Xt (t =322

1, 2, . . . , T ). The detection performance of SSAID is controlled by three parameters: the323

number of SSA components M , the number of realisations Q, and the highest level of324

added noise levels in percentage L. Based on numerical studies (Ma et al., 2022), we choose325

the default values M = 100, L = 80 and Q = 40 to ensure optimal performance.326

4.1 Detection results327

Fig. 3 (a) shows the error between the number of estimated change-points N̂X by328

SSAID and the number of true change-points N0 for each noisy time series. We can ob-329

serve that SSAID correctly estimates the number of true change-points in over 70% of330

all cases analyzed. In particular, the number of estimated change-points is correct for331

all the cases with noise levels lower than 25% (see green box in Fig. 3 (a)). To quantify332

the detection performance of SSAID, we define333

Rsd =
α

ξ
and R1 =

β

ξ
, (5)334

where ξ is the number of simulations for each noise level (i.e. ξ = 100 here), α is the335

number of successful detections (see the definition of a successful detection in Section 3),336

and β is the number of detections for which the number of estimated change-points, N̂X ,337

is equal to the number of true change-points N0 (i.e. N̂X = N0 = 20 here), but not338

with the RMSE requirements imposed on α.339

Fig. 3 (b) shows that Rsd and R1 are different. They are both 100% when Cwn <340

25%, and then decrease with increasing Cwn values. This implies that the success de-341

tection rate is higher when the GPS data has a smaller noise level, with 100% success342

rate if the noise level is less than 25%. Rsd decreases faster than R1 when Cwn increases,343

indicating that the accuracy of the detected change-point locations fades with increas-344

ing Cwn values. Fig. 3 (c) demonstrates the high accuracy of the change-points detected345

using our method for data with a low noise level. Fig. 3 (d) shows that when the noise346

level is very high (Cwn = 100%), the locations of some detected change-points are not347

as accurate. The effect of the noise level Cwn on the performance of our method comes348

from a deficiency in SSA, which generally fails to distinguish the underlying signal from349

the noise itself when the SNR in the raw data is too low.350

4.2 Comparison with two existing methods351

We now compare the detection performance of SSAID with two existing detection352

methods for short-term SSEs. The first one is linear regression combined with AIC pro-353

posed by Nishimura et al. (2013), which has been widely applied in different areas (Nishimura354

et al., 2013; Nishimura, 2014, 2021; Okada et al., 2022). This method (1) uses a sliding355
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Figure 3. (a) The error between the number of estimated change-points N̂X by SSAID and

the number of true change-points N0 in each simulated noisy data. The error of zero is high-

lighted by a green arrow in the color bar. (b) The percentage R1 and Rsd (see definitions in

Eq. (5)) as a function of white noise level Cwn, calculated from 100 seeds. The locations of the

change-points in two simulation examples with different noise levels are shown in (c) Cwn = 25%;

(d) Cwn = 100%. Blue vertical dotted lines: estimated change-points by SSAID; red vertical

lines: true change-points.
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window with a fixed width; (2) fits a linear model to the data in the window; (3) divides356

the data in the window into equal halves and fits a linear model to each half, and (4) cal-357

culates the AIC difference (i.e. ∆AIC) between the single linear model and the two-line358

model at the middle point of the window. If that midpoint is a change-point, e.g. the359

start- or end-point of an SSE, the two-line model fits the observational data better than360

a single linear model, thus resulting in a negative ∆AIC. As a negative ∆AIC does not361

always correspond to change-points in SSE signals, we must specify an appropriate thresh-362

old, denoted by ζ, in order to detect change-points of SSEs. If ∆AIC is lower than ζ, its363

corresponding time is regarded as a change-point. The detection performance of the lin-364

ear regression approach is mainly controlled by the length of the sliding window and the365

specified threshold ζ, however, and selecting appropriate values for the two parameters366

is subjective (Nishimura et al., 2013; Nishimura, 2021).367

In our comparison tests, we first take a sliding time window of 180 days, which is368

consistent with that of Nishimura et al. (2013), to calculate ∆AIC for each data point369

of the simulated SSE data in Fig. 3 (c) and (d). Fig. 4 (a) and (b) show ∆AIC values370

across the time series with three threshold values for ζ (high, medium and low). We ob-371

serve that the change-points at both ends of the simulated data are blinded regardless372

of the selected thresholds due to the excessive length of the sliding window. This demon-373

strates that a smaller sliding window is needed (Yano & Kano, 2022). We then decrease374

the sliding window to 15 days to calculate ∆AIC for each data point again, and we have375

a much shorter blinded interval of 7 days at both ends of the simulated period. In Fig.376

4 (c) and (d), we also observe that none of the detection thresholds considered succeeds377

in finding all the true change-points accurately. When ζ is too low, only the most sig-378

nificant SSEs can be detected, while for larger ζ, the detection generally overestimates379

the number of change-points. The selection of the threshold value depends on the sig-380

nal itself, making it impossible to detect all the change-points in multiple time series or381

even within a single time series by using a single threshold.382

We then apply the method proposed by Yano and Kano (2022) to the synthetic data383

(see Fig. 3). The method (1) applies l1 trend filtering to the raw data with a range of384

hyperparameters λ; (2) obtains a fitted piecewise-linear signal for each λ; (3) calculates385

the associated Mallows’ Cp for each λ; (4) chooses the one with the minimum Mallows’386

Cp as the best piecewise-linear approximation to characterize the raw data; and (5) takes387

the knots of the chosen piecewise-linear model as the occurrence times of SSEs. This method388

is similar to other change-point detection methods for piecewise-linear signals, for which389

Ma et al. (2022) have demonstrated that they cannot be directly applied to detect SSEs390

in GPS data. Fig. 5 (a) and (b) show that in most cases l1 trend filtering overestimates391

the number of change-points in simulated SSE data and its associated successful ratio392

Rsd for each noise level is much lower than that of SSAID, regardless of the noise level.393

We now compare the performance of the aforementioned methods quantitatively394

by calculating the total number of detected change-points across all considered scenar-395

ios (i.e. all noise levels and all seeds), as well as the counts of correct and false detec-396

tions. A change-point is considered correct if its error is no more than 3 days from any397

true change-point location; otherwise, it is regarded as false. Both the total number of398

detected change-points and the number of correctly detected change-points are expected399

to be 20 × 10, 000. In Fig. 6 (a), we can see that the method SSAID aligns well with400

the expected values, exhibiting a satisfactory total number of detected change-points and401

a considerable number of correct detections, with minimal false detections. However, when402

using the l1 trend filtering method, we observe that the total number of detected change-403

points is about twice the expected value, indicating an equal number of false and cor-404

rect detections. The results obtained with the method of linear regression with ∆AIC405

underscore the significant influence of the chosen threshold on the success of detection.406

Setting the threshold to a low value results in a large number of false detections. Con-407

versely, raising the threshold ζ to a medium value (see −20 in Fig. 6 (a)) can significantly408
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Figure 4. The calculated ∆AIC for different noisy data with different sliding windows. Panel

(a) and (b) are plotted for the noisy data shown in Fig. 3 (c) and (d) with a sliding window of

180 days, respectively. While panel (c) and (d) are the same as (a) and (b) but with a sliding

window of 15 days. Horizontal solid and dotted lines are associated with different thresholds to

identify change-points of SSEs: high threshold (orange); medium threshold (cyan); low threshold

(purple). The intersections between horizontal lines and ∆AIC curve are considered as change-

points. Vertical red lines: start times of SSEs; vertical blue dashed lines: end times of SSEs.

Figure 5. Same as Fig. 3 but using l1 trend filtering to detect change-points in simulated SSE

data.

–12–



manuscript submitted to JGR: Solid Earth

Figure 6. (a) Number of different detected change-points by various methods; (b) detection

frequency of each true change-points by different methods. The expected values for the numbers

of both the total and correct detected change-points are 20 × 10, 000, while the expected value for

the expected detection frequency of each true change-point is 10, 000. These expected values are

highlighted by the blue dotted boxes.

reduce false detections, but leads to a notable overestimation of true change-points. Fur-409

ther increasing the threshold to a higher value causes the majority of detections to miss410

the true change-points.411

We also analyze the count of successful detections for each true change-point in the412

simulated data. The expected detection frequency for each true change-point is 10, 000.413

Fig. 6 (b) shows that the detection results obtained by SSAID exhibit slight oscillations414

around the expected values, indicating greater stability compared to the other methods.415

We conduct further analysis on the histograms of the detected change-points for all the416

simulated noisy SSE data from all the different seeds and noise levels by these detection417

methods (see Fig. S2-S3 in the supplement). The results indicate that most SSAID de-418

tections tend to converge to accurate locations with minimal errors, while the other meth-419

ods, despite exhibiting similar behaviors, either suffer from a higher number of false de-420

tections and larger errors, or miss the majority of true change-points. This further demon-421

strates the superior detection performance of SSAID.422

5 Application to Observed Data423

5.1 SSE detection via hypothesis testing424

We first present the raw results of detected change-points in the SSE data intro-425

duced in Section 2. The change-points at each station, shown in Fig. 7 (a) (see green426

triangles), do not seem to exhibit a consistent pattern at first sight. In contrast to sim-427

ulated SSE data (see Section 4), we do not know a priori when an SSE starts and ends428

to validate the detection. However, we can quantify the confidence that a detected change-429

point corresponds to an SSE by using a hypothesis test, based on the sign change of the430

displacement rate at the start times of SSEs from the secular displacement rate (Yano431

& Kano, 2022). To apply the hypothesis test, we need to know the start and end times432

of a potential SSE, indicating a pair of change-points are needed to define an SSE. There-433
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after, we refer to change-points associated with the start and end times of potential SSEs434

as starting and ending change-points, respectively.435

Figure 7. (a) Detected change-points by SSAID in GPS data recorded by the 36 GPS sta-

tions, shown in Fig. 1 (b). Station names for which the number of detected change-points is even

are highlighted in red. (b) Pre-processed results of detected change-points shown in panel (a).

Red triangles: starting change-points; blue triangles: ending change-points.

5.1.1 Pre-processing436

We first pre-process the detected change-points to associate them with the start437

and end times of an SSE. We refer to N̂j as the number of detected change-points by SSAID438

at the j-th station, where j is the station index (j = 1, · · · , 36), which sequentially co-439

incides with the station names on the y-axis of Fig. 7 (a) from the bottom to the top.440

Although we could expect all N̂j to be even numbers, only 13 of them in Fig. 7 (a) are441
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even (see station names highlighted in red). This implies that SSAID in most stations442

misses some change-points associated with SSEs and/or detects spurious change-points443

not associated with SSEs. We also observe in multiple stations that the time difference444

between two neighbouring detected change-points can be in the order of months (e.g. the445

first and the second change-points in Fig. 8 (a), which shows the GPS data recorded at446

station 970828). Such a long duration is not consistent with past studies in this region,447

which show that potential short-term SSEs during the period analyzed last about 7 days448

(Hirose & Obara, 2010; Obara & Kato, 2016; Obara, 2020). Therefore, two neighbour-449

ing change-points with a large time difference cannot be paired as the start and end times450

of the same SSE. The above observations indicate that many single change-points were451

identified as potential SSEs (e.g., see green lines in Fig. 8 (a)).452

To remedy this pathology, we create a change-point pair for each single change-point.453

The procedure contains the following five steps with details provided in the next few para-454

graphs: (1) we fit a piecewise-linear signal to the noisy SSE data (e.g. the orange line455

in Fig. 8 (a)) using the detected change-points by SSAID shown in Fig. 7 (a); (2) we cal-456

culate the slopes of each segment in the fitted model; (3) based on these slopes, we iden-457

tify change-point pairs and single change-points; (4) we create several change-point pair458

candidates for each single change-point; and (5) we select the best candidate for each sin-459

gle change-point using the Schwarz Information Criterion (SIC) (Yao, 1988; Anastasiou460

& Fryzlewicz, 2021).461

We now illustrate how to pair detected change-points based on the calculated slopes462

of the segments between change-points. We refer to kib and kia as the slope of the seg-463

ment before and after the i-th detected change-point, respectively. We pair two consec-464

utive change-points (i-th and (i+1)-th, say) as the start and end times of a unique SSE,465

if they simultaneously satisfy the following conditions: (1) kib has the same sign as the466

secular displacement rate; (2) the sign of kia is opposite to that of the secular displace-467

ment rate; (3) the time difference between the two neighbouring change-points (i.e. the468

duration of the SSE) is no more than a duration threshold, denoted by Dmax. Here, we469

estimate the sign of the secular displacement rate (i.e positive or negative) at each GPS470

station by taking the slope of a linear model fitted to the whole noisy data. All other471

change-points are taken as single change-points. In the study area considered, the ex-472

pected duration of an SSE is 3−7 days (Obara, 2020). Ma (2022) showed that the de-473

tected change-point location error by SSAID is at most 3 days. In the worst case, an SSE474

with duration 7 days could be detected by a pair of change-points separated by up to475

14 days (assuming maximum error). Therefore, we set Dmax as 14 days.476

We then generate candidates of undetected change-points to pair with each single477

change-point. We first assume that each single change-point is associated with either the478

start or the end time of an SSE, and the duration of SSEs is 3− 7 days. This implies479

that the undetected change-point candidates are located in a window spanning ±(3− 7)480

days around the detected single change-point. To be more specific, if the detected sin-481

gle change-point is the start time of an SSE, denoted by x̄cp, the associated change-point482

candidates for the undetected end time of this SSE include x̄cp+3, x̄cp+4, · · · , x̄cp+483

7; conversely, if it is the end time of an SSE, the candidates for the start time are x̄cp−484

7, x̄cp−6, · · · , x̄cp−3. Based on the slopes of two consecutive segments fitted in Step485

2, we can determine if each single change-point is the start or the end time of an SSE.486

We have three possible situations: (1) if kib and kia have the same and the opposite sign487

as the secular displacement rate, respectively, then we regard the detected single change-488

point as the start time of an SSE; (2) if kib and kia have the opposite and the same sign489

as the secular displacement rate, respectively, then we regard the detected single change-490

point as the end time of an SSE; (3) in other cases, the detected single change-point can491

be the start time or the end time of an SSE.492

Next, we fit different piecewise-linear curves through the GPS data for every com-493

binations of change-point pair candidates. We select the piecewise-linear curve best fit-494
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Figure 8. (a) Observed GPS data recorded by station 970828 (see the black line) and the fit-

ted piecewise-linear signal (see the orange line) using detected change-points by SSAID (see green

lines); (b) New paired change-points of the same station 970828 based on detected change-points

in panel (a). Red lines: starting change-points; blue dotted lines: ending change-points.

ted to the noisy data through SIC, as suggested by numerical studies of Anastasiou and495

Fryzlewicz (2021), which show that the SIC-based approach exhibits better performance496

for piecewise signals with an intermediate number of change-points, compared to other497

information criteria. We then take the associated change-point candidate to pair with498

the single change-point, and obtain new paired change-points as shown in Fig. 7 (b) and499

Fig. 8 (b), in which we have two change-points for the start and end times of each po-500

tential SSE (red and blue, respectively). We denote by N̄ j = 2N̄ j
s the number of change501

points at each station j after pairing the single change-points, where N̄ j
s is the number502

of starting changing-points. In our analysis, almost all the detected change-points were503

identified as single change-points. Note that we also imposed some manual constraints504

on the paired change-points to avoid the overlaps of two neighbouring pairs and discard505

some single change-points with obvious deviations. For example, the first detected change-506

point in the station 031124 was identified as an ending change-point at the second day507

of the analyzed period, while we expected the starting change-point to be 3 − 7 days508

preceding the detected ending change-point, so that we discarded this change-point.509
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5.1.2 Hypothesis test510

As discussed in Section 3, the overall trend of GPS data is a noisy linear process511

if no SSE occurs, while the occurrence of an SSE redirects the original trend in a differ-512

ent direction. Upon completion of the SSE, the trend reverses back to its previous state.513

As shown in Fig. 2, the sign of the displacement rate at the start time of an SSE is op-514

posite to that of the secular displacement rate. The sign change of the displacement rate515

at the start times of SSEs constitutes the basis of the null hypothesis test, therefore the516

following tests are only conducted on the starting change-points. In our tests, the null517

hypothesis is that SSEs do not occur, and the alternative hypothesis is that SSEs oc-518

cur. Following the approach of Yano and Kano (2022), the test statistic for testing if the519

k-th starting change-point at the j-th station is associated with an SSE can be set as520

B̄k
j = sgn

(
vj0

)
Bk

j = sgn
(
vj0

) v̄jk − v̄j0

1

N̄j
s−1

√∑N̄j
s

k=1(v̄
j
k − v̄j0)

2

, (6)521

where sgn refers to the sign function; and v̄jk and v̄j0 refer to the displacement rate at the522

k-th starting change-point and the secular displacement rate of the j-th station, respec-523

tively. We estimate the probability that SSEs do not occur at the k-th starting point of524

the j-th station by525

pkj = P
(
B ≤ B̄k

j

)
= Φ̄

(
B̄k

j

)
, (7)526

where Φ̄ (·) refers to the cumulative distribution function of the standard Gaussian dis-527

tribution. The closer Φ̄
(
B̄k

j

)
is to 0, the more confidently we can reject the null hypoth-528

esis. To reduce Type I errors, we combine p-values of stations neighbouring the j-th sta-529

tion into a new single p-value through the harmonic mean p-value method (Wilson, 2019;530

Yano & Kano, 2022), denoted by p̂kj . Finally, we quantify the confidence of occurrence531

of SSEs by532

p̃kj = 1− p̂kj . (8)533

More details about how to calculate p̃kj can be found in the supplement and in Yano and534

Kano (2022).535

5.1.3 Identifying SSE candidates536

Fig. 9 presents the estimated probability of each detected change-point for the oc-537

currence of an SSE by the null hypothesis test and its associated SSE category. We ob-538

serve that at most stations SSAID can successfully detect SSEs with high confidence.539

At several stations, no such change-points are found, such as stations 021052 and 950449.540

The best detection happened at station 950447, in which all the four detected change-541

points have high confidence value of p̃kj ≥ 0.9.542

Based on the estimated p̃kj values, we categorize the detected change-points into543

probable, possible and non-SSE SSE candidates, if p̃kj ≥ 0.9 and N̂ j
a > 1; 0.6 ≤ p̃kj <544

0.9 or p̃kj ≥ 0.9 with N̂ j
a = 1; and p̃kj < 0.6, respectively. The introduction of N̂ j

a > 1545

in the definition of probable SSE candidates is to guarantee that the detected change-546

points have a high confidence for the occurrence of SSEs at neighbouring stations within547

30 km simultaneously, rather than at a single station (Yano & Kano, 2022). Under the548

current classification rules, we only have a high confidence that detected change-points549

in the first group are associated with SSEs, and we are less confident that the other de-550

tected change-points are associated with SSEs. Fig. 9 (b) indicates that we have iden-551

tified 39 probable SSE candidates (see green circles) and 31 possible SSE candidates (see552
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light green triangles) in total across all the stations. Note that some detected SSEs at553

different stations might be from the same SSE, indicating that the actual number of de-554

tected SSEs is likely less than the number stated above (see details in the subsequent555

discussions). In addition, detected change-points classified as non-SSEs still might be as-556

sociated with SSEs, as other unknown non-tectonic movements or noise could affect the557

displacement field at the observation site so that the sign change does not significantly558

differ from the secular displacement rate (Nishimura et al., 2013). In the remainder of559

this study, we do not discuss these 2 groups further and instead we focus on the detected560

change-points in the first group of probable SSE candidates.561

5.1.4 Comparison and validation562

During the period analyzed in our current study, 8 SSEs were identified in the west-563

ern Shikoku region along the Bungo Channel by Nishimura et al. (2013) (see orange shaded-564

areas in Fig. 10 (a); the associated SSE catalogue obtained from Kano et al., 2018). Not565

only has our new method successfully detected all these 8 SSEs in various stations, but566

SSAID is also able to detect many more previously undetected probable SSE candidates.567

Note that it is not expected that all the SSEs can be recorded at each GPS station, since568

the SNR and ground displacements caused by SSEs might greatly vary at different sta-569

tions. If the SNR is too low or the ground displacement is too small at a certain station,570

the change-points associated with SSEs cannot be detected.571

To further verify the validity of the newly detected probable SSEs, we investigate572

their correlations with the tremor occurrence, since tremors often accompany SSEs (Rogers573

& Dragert, 2003; Obara & Kato, 2016; Wang et al., 2018). An increasing daily number574

of tremors generally indicates that an SSE is probably occurring (Ito et al., 2007). Note575

that the occurrence of SSEs is not always consistent with tremor activity, which means576

that SSEs can also occur when no tremor activity is detected (Wang et al., 2018; Kano577

& Kato, 2020; Yano & Kano, 2022). In addition, not all the observed tremors are asso-578

ciated with the occurrence of SSEs. Based on their recurrence pattern, the tremors in579

the Shikoku region have been categorized into three states: episodic; weak concentra-580

tion and background by Wang et al. (2018), among which only the tremors in the episodic581

state occur during SSEs. Therefore, we count the number of daily tremors in the episodic582

state to investigate its correlation with SSEs. As the 36 GPS stations used in our study583

are concentrated in the western Shikoku region (see Fig. 1 (b)), we only utilize the episodic584

tremors around these GPS stations (i.e. with state index 1-7 and 9-13 as indicated in585

Wang et al., 2018), rather than the whole observed tremor catalogue in the Shikoku re-586

gion. Fig. 10 (a) and (b) show that the identified probable SSEs are well concordant with587

tremor activity in the episodic states. We also notice that at its highest peaks, the num-588

ber of tremors is about 20, much less than that of the identified probable SSEs (i.e. 39)589

during the study period. This is sensible, because the same SSE might be recorded si-590

multaneously by different GPS stations, as expected.591

5.2 Fault estimation592

Potential SSEs are expected to bring up a systematic pattern change in the dis-593

placement field at various stations, however the above hypothesis tests fail to consider594

such changes in the displacement field (Nishimura et al., 2013). This can be done by es-595

timating a fault model to describe the observed displacements (Nishimura et al., 2013;596

Nishimura, 2021; Yano & Kano, 2022). We use a Bayesian inversion method, i.e. the Markov597

chain Monte Carlo (MCMC) method with the Metropolis-Hastings algorithm (Bagnardi598

& Hooper, 2018; Yano & Kano, 2022), to estimate a finite rectangular fault model with599

uniform slip for each detected probable SSE, and systematically investigate its associ-600

ated displacement field. This rectangular fault model is the same as that used in Okada601

(1985). Based on the processed cumulative displacement field as shown in Eq. (3), the602

displacement field for each probable SSE candidate at various GPS stations can be sim-603
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Figure 9. (a) Estimated confidence p̃ of each change-point pair shown in Fig. 7 (b). The left

and the right side of each rectangle refer to the starting and the ending change-point, respec-

tively. The width of each rectangular along the time axis denotes the duration of the associated

potential SSE. (b) Detected SSEs categorised as probable SSEs (green circles), possible SSEs

(light green triangles) and non-SSEs (red diamonds). The location of each marker refers to the

middle time of each SSE candidate.

ply quantified by subtracting the cumulative displacement field at the starting change-604

point from that at the ending change-point. These estimated daily displacement vari-605

ations are used to obtain the fault estimation.606

We formulate the observed displacement field at a single station as607

d = G (m) + ϵ, (9)608
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Figure 10. (a) The distribution of detected probable SSEs by SSAID, which are indicated

by purple boxes. The left and the right sides of each purple box refer to the start and end times

of an identified probable SSE by null hypothesis tests, respectively. Orange dotted lines in the

middle of each shaded area refer to the occurrence times of SSEs identified by Nishimura et al.

(2013). We assume that the start and end times of their identified SSEs are 7 days before and

after the occurrence times, respectively. Purple boxes highlighted by blue circles refer to probable

SSEs identified by the fault estimation (see Section 5.2). (b) The daily number of tremors in the

episodic state. Numbers in circles on the top refer to the index of identified SSEs by Nishimura

et al. (2013) in Shikoku region. SSEs indicated by blue numbers are located within our research

area, while those indicated by red numbers are located in the eastern Shikoku region.

where d = (de, dn, dz) is the data vector containing the displacement components along609

different directions (i.e. east, north and vertical); m = (m1, · · · ,m9) contains the 9 fault610

model parameters to be estimated including length, width, depth, latitude, longitude,611

strike, rake, slip and dip angle; G describes the forward nonlinear model that calculates612

the synthetic displacements (see Okada, 1985); and ϵ describes the error along different613

directions.614
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Under the Bayesian framework, the posterior probability density function to quan-615

tify how well the source model m describes the observed data d can be calculated by616

P (m|d) = P (d|m)P (m)

P (d)
, (10)617

where P (d|m) is the likelihood function to calculate the probability of obtaining the ob-618

served data d given the source model m; P (m) is the prior information on the proba-619

bility density function of the source model; and P (d) is a normalizing constant, which620

is independent of the source model (Amey et al., 2018; Bagnardi & Hooper, 2018). For621

GPS data, although prior information on P (m) is generally not available, it can be es-622

timated by the uninformative Jeffreys prior (Ulrych et al., 2001; Bagnardi & Hooper, 2018).623

Assuming that the errors in the observed data vector obey the Gaussian distribution with624

a mean of zero and covariance matrix Ce, i.e. ϵ ∼ (0,Ce), the likelihood function is625

then estimated by626

P (d|m) = (2π)−N̊/2|Ce|−1/2 exp

(
−1

2
rTCe

−1r

)
, (11)627

where N̊ is the total number of data observations, the notation |·| and the superscript628

T refer to the determinant and the transpose of a matrix, respectively, the superscript629

−1 denotes matrix inversion, and r = d−G (m) is the residual between the synthetic630

data and the observed data. When inverting GPS data, the data vector d is formed from631

multiple data recorded by different stations, i.e. d = {djh|j = 1, · · · , N̂c;h = e, n, z}, where632

N̂c is the number of stations used for the current inversion; j and h are the station in-633

dex and the component index, respectively. For multiple data sets, assuming that they634

are independent from each other, the associated likelihood function is then calculated635

by636

P (d|m) = ΠN̂c
j=1(2π)

−N̊j/2|C(j)
e |−1/2 exp

(
−1

2
rj

TC(j)
e

−1
rj

)
, (12)637

where N̊j is the total number of data observations at the j-th station, and C
(j)
e and rj638

are the covariance matrix and the residual of the data set recorded by the j-th station,639

respectively. Given an initial model m0, the MCMC method will iteratively explore the640

space of model parameters through an automatic step selection until the maximum num-641

ber of iterations is reached, and a set of source parameters with the maximum a poste-642

riori probability solution is then extracted as the optimal model to best characterize the643

observed data (Bagnardi & Hooper, 2018).644

For each identified probable SSE (see purple boxes in Fig. 10 (a)), we only use the645

observed displacement data of neighbouring stations within a designated range as the646

input data of the inversion. Here, the ranges that we utilize along the dip and the strike647

directions are 100 km and 150 km, respectively, from the station where the probable SSE648

was identified (Takagi et al., 2019). We further rule out the data with a high percent-649

age of invalid values (i.e. ≥ 20%) during the period analyzed in our study (Nishimura,650

2021). Our inversion approach is divided into two stages. First, we take the approach651

of Yano and Kano (2022) to fully explore the source parameters while we further assume652

that no tensile component occurs, thus nine source parameters need to be determined,653

i.e. length, width, strike, dip, depth, slip, rake, latitude, longitude. The initial guesses654

for those nine source parameters are set as follows: the latitude and the longitude of the655

estimated fault are set as those of the station where the probable SSE candidate was iden-656

tified; the length and the width are 50 km and 35 km, respectively; the slip amount and657

the rake angle are 10 mm and 110◦, respectively; the initial values for the strike, the dip658

and the depth are obtained by projecting the estimated fault model to the surface of the659

Philippine Sea Plate. To mitigate the effect of the initial model on the final inversion re-660

sults, we further simulate 9 realisations of the initial fault model obtained by randomly661

perturbing the default model described above. In total, we run the MCMC inversion 10662
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times for each detected probable SSE. We then choose the output of these 10 sets with663

the smallest residual as a new set of initial model parameters, and conduct a new inver-664

sion (Bagnardi & Hooper, 2018; Nishimura, 2021).665

In the second stage, we take the output fault models from the first stage as a new666

initial model, but we now follow the approach of Nishimura et al. (2013), which assumes667

that the depth, strike and dip angle of the fault model are dependent on its location to668

fit the surface of the Philippine Sea Plate. This means that we have 6 free parameters669

instead of the previous 9 free parameters. We then estimate a final finite fault model for670

each probable SSE candidate. As the slip direction of the expected SSEs in the Shikoku671

region should be opposite to the plate convergence direction (i.e. N50◦W), we rule out672

probable SSEs candidates, for which slip directions are not between N100◦E and N170◦E673

(Nishimura et al., 2013).674

We obtain 18 potential SSEs in our current research area (see blue circles in Fig.675

10 (a)). Fig. 11 shows representative examples of estimated fault models for four iden-676

tified probable SSEs (see the other results in the supplement). These identified SSEs have677

an opposite slip direction to that of the plate convergence. The locations of some esti-678

mated faults coincide well with the epicenters of the tremors (see Fig. 11 (a) and (b)),679

suggesting the possible occurrence of episodic tremor and slip (ETS). We also notice that680

no tremor activities were observed around the estimated fault model in Fig. 11 (c) and681

(d), even though the estimated location is still close to the locations of known SSEs (see682

Fig. 1 (a)).683

6 Conclusions684

We developed a novel statistical method to automatically detect short-term SSEs685

in GPS data. We demonstrated its effectiveness on a range of noisy simulated SSE data686

and illustrated its superior detection performance compared to two existing detection687

methods, i.e. linear regression with ∆AIC and l1 trend filtering. We then applied SSAID688

to detect short-term SSEs in observed GPS data in the western Shikoku region. The re-689

sults show that SSAID successfully detects multiple change-points in various GPS sta-690

tions. We utilized the null hypothesis test to identify probable SSE candidates from these691

detected change-points, based on the sign of the displacement rate being different from692

that of the secular displacement rate. These SSE candidates include all known SSEs iden-693

tified by Nishimura et al. (2013) during the period analyzed, as well as previously un-694

detected SSEs. We further estimated the parameters of a finite fault model generating695

the observed displacement field for each probable SSE candidate using a Bayesian in-696

version technique. Selecting the SSEs for which the azimuth directions of the slip vec-697

tors of the estimated fault models are opposite to that of the plate convergence, we man-698

aged to identify new SSEs in the western Shikoku region that should be added to the699

existing catalogue. Our results demonstrate the effectiveness of SSAID in detecting SSEs700

in observed GPS data.701

7 Open Research702

Data and Code Availability Statement The simulated SSE data used for nu-703

merical tests in the study and the code of the newly developed method SSAID are avail-704

able at Github via https://github.com/yiming-otago/SSAID, which are provided for705

private study and research purposes and are protected by copyright with all rights re-706

served unless otherwise indicated. The observed GPS data utilized in this study can be707

requested through Geospatial Information Authority of Japan (GSI) at https://www.gsi708

.go.jp/ENGLISH/geonet english.html.709
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Figure 11. Representative examples of the estimated fault model for identified probable SSE

candidates at the different stations: (a) station 970828; (b) station 021049; (c) station 950436;

(d) station 041133. The date in red under the site name refers to the start date of this probable

SSE candidate. The star in the map indicates the location of the station where this SSE can-

didate was identified. The black and the pink arrows in the right-bottom corner are the scale

arrows for the observed displacement and the slip amount of the estimated model, respectively.

The synthetic displacements by the displacement model of Okada (1985) have the same arrow

scale as the observed ones. Orange dots indicate the epicentre of tremors in the episodic state 5

days before and after the date (see the date on the left-upper corner) when this candidate was

found. The blue solid line of the rectangle refers to the top edge of the estimated fault model.
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Abstract12

Inferring from the occurrence pattern of slow slip events (SSEs) the probability of trig-13

gering a damaging earthquake within the nearby velocity weakening portion of the plate14

interface is critical for hazard mitigation. Although robust methods exist to detect long-15

term SSEs consistently and efficiently, detecting short-term SSEs remains a challenge.16

In this study, we propose a novel statistical approach, called singular spectrum analy-17

sis isolate-detect (SSAID), for automatically estimating the start and end times of short-18

term SSEs in GPS data. The method recasts the problem of detecting SSEs as that of19

detecting change-points in a piecewise signal. This is achieved by obscuring the devia-20

tion from piecewise-linearity in the underlying SSE signals using added noise. We ver-21

ify its effectiveness on a range of model-generated synthetic SSE data with different noise22

levels, and demonstrate its superior performance compared to two existing methods. We23

illustrate its capability in detecting short-term SSEs in observed GPS data using 36 GPS24

stations in southwest Japan via the co-occurrence of non-volcanic tremors, hypothesis25

tests and fault estimation.26

Plain Language Summary27

[SSEs, a type of slow earthquakes, are thought to play an important role in releas-28

ing strain in subduction zones, and affect the occurrence of large earthquakes, although29

their exact connection remains unclear. Detecting accurately the start and end times of30

SSEs is one prerequisite to illuminate their interactions with large earthquakes. How-31

ever, no robust detection method has been well developed so far. SSEs are widely recorded32

by GPS network, part of the Global Navigation Satellite System (GNSS). Most unde-33

tected SSEs in GPS data are short-term SSEs, i.e. SSEs with short durations ranging34

from days to weeks, since the amplitude changes in the GPS data trend from short-term35

SSEs are somewhat small, close to (or even lower than) the background noise. There-36

fore, more urgent efforts should be devoted to developing a rapid automated method for37

detecting short-term SSEs in GPS data. In this study, we utilize a change-point detec-38

tion method for piecewise signals to detect automatically the start and end times of short-39

term SSEs in GPS data. We demonstrate its effectiveness on both simulated and observed40

GPS data. The results show that the detection performance of our method regarding41

the number of estimated change-points and their locations outperform two existing meth-42

ods.]43

1 Introduction44

Slow slip events (SSEs) are fault slips occurring at the subduction interface between45

tectonic plates. They are roughly categorized into short-term SSEs (in the order of days46

to weeks) and long-term SSEs (in the order of months to years) (Obara, 2020). They con-47

stitute a type of slow earthquakes (Hirose et al., 1999; Mitsui & Hirahara, 2006; Obara48

& Kato, 2016; Obara, 2020). SSEs play a vital role in releasing stress along subduction49

interfaces. The associated episodic stress perturbations on the seismogenic zone have been50

linked to the occurrence of larger natural earthquakes (Segall et al., 2006; Ito et al., 2013;51

Bartlow et al., 2014; Radiguet et al., 2016; Voss et al., 2018; Bletery & Nocquet, 2020).52

SSEs might also prevent the rupture of large earthquakes from propagating further along53

the subduction interface, while large earthquakes can also initiate SSEs in the nearby54

transition zone (Hirose et al., 2012; Yarai & Ozawa, 2013; Nishikawa et al., 2019; Wal-55

lace, 2020; Nishimura, 2021). Here the transition zone refers to the area where SSEs oc-56

cur along the subduction interface. Understanding the process governing SSEs could po-57

tentially help us forecast impending earthquakes, although the underlying geophysical58

mechanism for forming SSEs remains elusive (Mazzotti & Adams, 2004; Jordan & Jones,59

2010; Lohman & Murray, 2013; Beeler et al., 2014; Obara & Kato, 2016; Barbot, 2019;60

Obara, 2020).61
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Detecting SSEs accurately could be the key to determine the mechanism generat-62

ing SSEs and illuminate their interactions with large earthquakes (Ikari et al., 2013; Saf-63

fer & Wallace, 2015; Ozawa et al., 2019; Nishimura, 2021). SSEs are generally recorded64

through geodetic measurements such as Global Navigation Satellite System (GNSS), tilt-65

meters and strainmeters. Among these, the Global Positioning System (GPS; one type66

of GNSS) network is the most popular way of recording ground movements with the in-67

tention of uncovering SSEs, because it is relatively inexpensive, easily accessible and suf-68

ficiently precise (Melbourne et al., 2005; Smith & Gomberg, 2009; Vergnolle et al., 2010;69

Jiang et al., 2012; Cavalié et al., 2013; He et al., 2017). Developing a robust method for70

detecting SSEs in GPS data is crucial, despite the many challenges it presents (Nishimura71

et al., 2013; Nishimura, 2014; Rousset et al., 2017; Takagi et al., 2019; Nishikawa et al.,72

2019; Haines et al., 2019; Nishimura, 2021; Okada et al., 2022). For ease of presentation,73

we refer to GPS data recording SSEs as SSE data thereafter.74

Numerous methods have been proposed to detect the occurrence times of SSEs in75

GPS data (hereafter referred to as SSE detections). The first group of approaches is based76

on Kalman filter of state vector, which model the recorded GPS time series as the sum77

of coherent signals from various sources and estimation errors (Granat et al., 2013; Ji78

& Herring, 2013; Lohman & Murray, 2013; Walwer et al., 2016). These existing approaches79

include Network Inversion Filter (Segall & Matthews, 1997; Segall et al., 2000; Miyazaki80

et al., 2003; McGuire & Segall, 2003), Monte Carlo Mixture Kalman Filter (Fukuda et81

al., 2004, 2008), Network Strain Filter (Ohtani et al., 2010), and further improvements82

on the above Kalman-filter-based methods (Ji & Herring, 2013; Riel et al., 2014; Bed-83

ford & Bevis, 2018). All these methods assume that the underlying model can completely84

extract the pure SSE signal from the noisy GPS data. This assumption is under debate,85

however, because the underlying mechanism that governs SSEs remains unclear (Obara86

& Kato, 2016; Obara, 2020).87

Another group of approaches consists of estimating the time evolution of the slip88

distribution on the fault by inverting the recorded GPS data at different sites, so that89

the occurrence times of SSEs can be simultaneously estimated (McCaffrey, 2009; Bart-90

low et al., 2014; Williams & Wallace, 2015; Wallace et al., 2017, 2018). One commonly91

used tool for such detection is TDEFNODE, which is a nonlinear time-dependent inver-92

sion code (McCaffrey, 2009). This tool utilizes simulated annealing to downhill simplex93

minimization, which has been applied to invert various recorded GPS data for detect-94

ing SSEs. Two free parameters in this method are the occurrence times and the asso-95

ciated amplitude of SSEs (McCaffrey, 2009). TDEFNODE needs a priori information96

on the functional form (e.g. exponential or Gaussian) of the temporal evolution of SSEs97

on the fault. However, the selection of a suitable form remains enigmatic, and is gen-98

erally determined by trial tests (Wallace et al., 2017). In addition, the geometry of the99

subduction zone must be known to use TDEFNODE, thus its application is affected by100

the availability of geometrical knowledge in the observed data.101

Singular Spectrum Analysis (SSA), a univariate time series analysis method (Ghil102

et al., 2002), can remedy this latter shortcoming. SSA is designed to extract informa-103

tion from noisy time series and thus, provides insight into the underlying dynamics (Ghil104

et al., 2002). The key feature of this method is that it does not need any a priori knowl-105

edge of the underlying pure signal, and the trends obtained in this way are not neces-106

sarily linear (Ghil et al., 2002; Chen et al., 2013). SSA typically decomposes the noisy107

data into reconstructed components (RCs). These RCs are sorted in a descending or-108

der according to their corresponding eigenvalues, which denote their proportions of the109

total variance of the original data. Low-order RCs in the queue are regarded as effec-110

tive signals related to the underlying dynamics, while high-order RCs are taken as noise,111

and are typically discarded. This is the common way to extract pure SSEs from noisy112

data by SSA. To determine a threshold between pure signal RCs and noise RCs is rel-113

atively subjective. When the signal-to-noise ratio (SNR) is low, SSA normally fails to114
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distinguish signal from noise. Chen et al. (2013) demonstrated that SSA is a viable and115

complementary tool for extracting modulated oscillations from GPS time series.116

Walwer et al. (2016) introduced a more powerful form of SSA, Multichannel Sin-117

gular Spectrum Analysis (M-SSA), to extract SSEs. M-SSA can simultaneously make118

use of the spatial and temporal correlations to explore the spatiotemporal variability of119

the data set. Although M-SSA was shown to outperform many existing detection meth-120

ods, it still has drawbacks. This method only aims at extracting SSEs without detect-121

ing the occurrence times of SSEs, so a follow-up detection to determine the start and end122

times of SSEs is needed. The size of the lag covariance matrix in M-SSA also grows rapidly123

with the size of the GPS network considered, leading to computational issues for large-124

scale networks. M-SSA cannot operate on a single data basis, which limits its applica-125

bility to cases where the signals lack spatial coherence, for example, when there are not126

enough GPS stations, or the stations are too close to each other. Relative Strength In-127

dex (RSI), a single-station technique from the stock market (Crowell et al., 2016), is able128

to solve all the aforementioned issues, but it only applies to long-term SSEs.129

Compared to long-term SSEs, the duration and recurrence interval of short-term130

SSEs are much smaller, in the order of several days or weeks. The amplitude change in131

the GPS data caused by a short-term SSE is also relatively small. It can be close to, or132

even lower than, the background noise, so most short-term SSEs remain undetected (Nishimura,133

2021; Yano & Kano, 2022). Therefore, more urgent efforts should be devoted to rapid134

automated methods for detecting short-term SSEs (Hirose & Kimura, 2020; Obara, 2020;135

Okada et al., 2022), which is the focus of our current study. Linear regression, combined136

with Akaike’s Information Criterion (AIC), is widely used to detect short-term SSEs for137

large-scale GPS networks (Nishimura et al., 2013; Nishimura, 2014, 2021; Okada et al.,138

2022). This method fits linear functions with and without an offset, and then uses AIC139

to judge which function is a better fit considering a number of free parameters. In this140

method, the length of the designed sliding window and the user-defined detection thresh-141

old determine the detection accuracy. In practice, it is hard to select reasonable values142

for these subjective parameters (Nishimura et al., 2013; Yano & Kano, 2022; Ma et al.,143

2022). A new method developed by Yano and Kano (2022) can overcome this deficiency,144

approximating SSE data as piecewise-linear signals by using l1 trend filtering combined145

with Mallows’ Cp. The knots in the fitted piecewise-linear signal are then taken as the146

occurrence times of SSEs. The applications to both synthetic and observed SSE data demon-147

strated that this method obtained better performance than the linear regression method.148

However, it is not clear that the assumption that SSE data can be regarded as piecewise-149

linear signals with the knots being the occurrence times of SSEs is reasonable, since the150

specific form of the underlying SSE signal remains unknown (Obara & Kato, 2016; Obara,151

2020).152

In this study, we develop a new method, called Singular Spectrum Analysis Isolate-153

Detect (SSAID), to automatically detect the start and end times of short-term SSEs in154

GPS data. This method regards the detection of short-term SSEs in GPS data as a prob-155

lem of detecting change-points in piecewise non-linear signals, in which the start and end156

times of SSEs are change-points to be detected. The prominent advantage of SSAID is157

that it does not require prior knowledge of the exact form of the underlying SSE signal.158

SSAID aims to obscure the differences between the nonlinear SSE signal and a piecewise-159

linear model, so that existing change-point detection methods for piecewise-linear sig-160

nals can be directly applied to detect the start and end times of short-term SSEs. This161

is done by (i) decomposing the noisy SSE data into spectral components through SSA162

(Ghil et al., 2002) and reconstructing these components into new noisy data signals; (ii)163

adding noise to these reconstructed signals, and (iii) conducting the detection by Isolate-164

Detect (ID; Anastasiou & Fryzlewicz, 2021). We conduct a range of simulations to eval-165

uate the detection performance of SSAID using both simulated and observed SSE data.166
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In Section 2, we introduce the observed SSE data in southwest Japan and the as-167

sociated data processing procedures. In Section 3, we introduce the method SSAID along168

with some assumptions. In Section 4, we show results of applying SSAID to a range of169

simulated SSE data and compare the results with two existing detection methods (i.e.170

linear regression with AIC; and l1 trend filtering). In Section 5, we demonstrate its ca-171

pability in detecting short-term SSEs in observed GPS data. Discussions and conclusions172

are in Section 6.173

2 Data and processing174

We use SSE data from the Nankai subduction zone which has a dense geodetic ob-175

servation network. In southwestern Japan, the Amurian plate overriding the Philippine176

Sea plate converges to N50◦W at a rate of about 67 mm/year (Miyazaki & Heki, 2001;177

Nishimura, 2014; Kano & Kato, 2020; Obara, 2020). Both long-term and short-term SSEs178

occur across the Nankai Trough (Obara, 2020) (see Fig. 1 (a)). Short-term SSEs in south-179

west Japan generally exist in the deeper extension of long-term SSEs regions.180

We use SSE data from 36 GPS stations of the GNSS Earth Observation Network181

System (GEONET) operated by the Geospatial Information Authority of Japan (GSI).182

These GPS stations are distributed in the Shikoku region along the Bungo Channel (see183

Fig. 1 (b)). The analysis period for this study is from 1 January 2008 to 30 June 2009.184

The vector of coordinates at each GPS station, containing east, north and upward dis-185

placement, has been transformed to the 2005 International Terrestrial Reference Frame186

(ITRF2005), and can be generally modelled as a sum of different processes (Nikolaidis,187

2002; Davis et al., 2012; He et al., 2017; Bedford & Bevis, 2018), that is188

u(t) = d0 +m0t+

no∑
j=1

bjH(t− tj) +

ns∑
i=1

hi(t− ti) + ξ1(t) + ξ2(t) + ξ3(t) + ϵ(t), (1)189

where t is the time, d0 and m0 refer to vectors describing the position of the reference190

site and the secular velocity, respectively. Here, we refer to the displacement rate of the191

linear process without the occurrence of other fault slips as the secular velocity, which192

represents the secular tectonic motions of two contacting plates of the subduction zone.193

The third term
∑no

j=1 bjH(t−tj) describes the vector of offsets due to non-tectonic changes194

such as antenna or other instrument changes, where n0 is the number of non-tectonic195

changes, tj is the time when the j-th non-tectonic change occurs, and H(t) is the Heav-196

iside step function. The fourth term
∑ns

i=1 hi(t−ti) represents the vector of coseismic197

and postseismic movements from ambient regular earthquakes, where ns is the number198

of ambient regular earthquakes, ti is the time at which the i-th regular earthquake oc-199

curs, and hi refers to the coseismic and postseismic movements from the i-th regular earth-200

quake (Wdowinski et al., 1997; ElGharbawi & Tamura, 2015). The other vectors ξ1(t),201

ξ2(t), ξ3(t) and ϵ(t) describe the movements from seasonal motions, unknown sources,202

SSEs and noise, respectively.203

These SSE data have been pre-processed by Nishimura et al. (2013) to remove known204

effects from non-SSE processes. We now briefly illustrate the data processing procedures205

conducted on the raw GPS data (Nishimura et al., 2013; Nishimura, 2014; Fujita et al.,206

2019; Nishimura, 2021). Firstly, they eliminated the coseismic offsets from six ambient207

large earthquakes (see the detailed catalogue therein), which are estimated by the dif-208

ference in the 10-day averages of the daily coordinates before and after the earthquakes.209

Secondly, the spatial filtering technique of Wdowinski et al. (1997) was applied to sup-210

press the common mode errors for these stations, which are a major type of spatially cor-211

related noise sources in GPS data (Dong et al., 2006). Finally, the offsets from non-tectonic212

changes (i.e. the third term in Eq. (1)) such as antenna maintenance were removed by213

the same method as that used to remove coseismic offsets. Note that the post-seismic214

deformations from nearby large earthquakes were not removed (i.e. the fourth term in215
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Figure 1. (a) The distribution map of earthquakes in the study area of southwest Japan.

The magenta dashed circles and the blue contours denote the source areas of long-term SSEs

and megathrust earthquakes, respectively. The orange dots show the epicenters of tremors. Gray

dashed lines indicate the depth of the subducting Philippine Sea plate. (b) The distribution map

of 36 GPS stations utilized in the current case study (see Section 5). This area is outlined by the

dashed green box in panel (a). Both red and green circles indicate the location of GPS stations,

and the numbers near to circles refer to the GPS station names. Note that we apply SSAID to

detect change-points in SSE data recorded by GPS stations identified as green filled circles in the

case study reported in Section 5.

Eq. (1)), however their impacts are negligible in our current application as no obvious216

large earthquakes were identified in the period analyzed (i.e. from January 1 2008 to June217

30 2009) in the research area (Nishimura et al., 2013).218

We denote the processed daily cumulative displacement vector at each station as219

ū(t) = b̄0t+ ξ̄1(t) + ξ̄2(t) + ξ̄3(t) + ϵ̄(t), (2)220

where b̄0 is the vector of coefficients quantifying the secular movement, and ξ̄1(t), ξ̄2(t),221

ξ̄3(t) and ϵ(t) are vectors of daily cumulative displacements of seasonal motions, unknown222

sources, SSEs and noises, respectively. The daily cumulative displacement ū(t) contains223

three components along different directions (i.e. east, north and upward), which are de-224

noted as ūe, ūn, ūz, respectively. In the following application, we concentrate on the N50◦W225

component of the daily cumulative displacement at each station, denoted by Xt, which226

is parallel to the plate convergence direction of the Nankai Trough (see Fig. 1 (a)). This227

is done by rotating two horizontal components (i.e. east and north) using the following228

equation,229

Xt = ūe sin δ̄0 − ūn cos δ̄0, (3)230

where δ̄0 is the azimuth angle of the plate convergence direction (see the black arrow in231

Fig. 1 (a); δ̄0 ≈ 50◦ in Nankai Trough). In the following applications, we further re-232

move the daily secular motions and outliers from Xt at each station, through linear least233

squares and the four-sigma limit, respectively (Nishimura, 2021). Note that when con-234

ducting hypothesis tests in Section 5.1.2, we do not remove the daily secular motions,235

as they can be used to investigate the sign change of the displacement rate from the sec-236

ular velocity when SSEs arise (Yano & Kano, 2022).237
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3 Method238

We developed a new method to detect change-points in uni-variate time series with239

piecewise continuous structure. Here, change-points refer to the times at which the pat-240

tern of the underlying dynamics (i.e. pure signal) changes from one state to a different241

one. Fig. 2 (a) shows an example of observed SSE data from the Hikurangi subduction242

zone, New Zealand. In periods no SSEs occur, the overall trend of the signal is linear243

and decreasing. The trend is then redirected to a different state (increasing here) when244

an SSE starts. Once the SSE ends, the trend reverses back to its original linear decreas-245

ing state. The start and end times of SSEs can therefore be regarded as change-points246

in GPS data. Our method, called Singular Spectrum Analysis Isolate Detect (SSAID),247

seeks to detect the start and end times of SSEs in noisy GPS data without prior knowl-248

edge of the underlying structure of the signal. A full exposition of SSAID, including ap-249

plications to data from various disciplines, can be found in Ma (2022) and Ma et al. (2022).250

Here, we only summarize its underlying assumptions and main features.251

Figure 2. (a) Observed SSE data recorded by the east component of a GPS station (MAHI),

in the Hikurangi subduction zone, New Zealand; (b) Synthetic SSE data with 10 SSEs in a two-

year period, which are simulated by a deterministic subduction slip model (see the supplement).

Red vertical lines: the start times of SSEs; blue dotted vertical lines: the end times of SSEs.

Let us assume that the deviation of the pure SSE signal from a piecewise-linear func-252

tion can be obscured by noise as long as the noise level is within a suitable range. If sat-253

isfied, an existing change-point detection method for piecewise-linear signals can be di-254

rectly applied to detect change-points in SSE data (Ma, 2022). This assumption was val-255

–7–



manuscript submitted to JGR: Solid Earth

idated using numerical tests in Ma (2022), in which various change-point detection meth-256

ods for piecewise-linear signals were shown to successfully detect change points after dif-257

ferent levels of Gaussian noise were added to the signal. Of all the methods considered,258

Isolate-Detect (ID; Anastasiou & Fryzlewicz, 2021) showed the best performance and was259

therefore selected for application to SSE data. The noise level within a suitable range,260

i.e. allowing successful change-point detection, is referred to as a suitable noise level (SNL).261

We further define a successful detection when two conditions are met: (1) the number262

of estimated change-points is exactly the number of true change-points and (2) the root263

mean squared error (RMSE) of the detected change-point times is less than a predefined264

threshold value, here 3 days.265

As the SNL varies with signal types (Ma et al., 2022), it is not possible to prede-266

termine if the raw data has an SNL. By decomposing the raw data and systematically267

adding Gaussian noise, SSAID generates new time series with SNL (referred to as in-SNL268

data), greatly improving the probability of successful change-point detection.269

SSAID contains four main steps: (1) decomposing and reconstructing the signal270

using SSA; (2) adding Gaussian noise with different noise levels to reconstructed signals;271

(3) detecting change-point candidates in SSE data via ID and identifying in-SNL data272

and (4) determining the final change-points to best characterize the start and end times273

of SSEs. Brief descriptions for each step are provided as follows. The reader is referred274

to Ma (2022) and Ma et al. (2022) for a full exposition of the method.275

1. Signal decomposition and reconstruction: We use SSA to decompose the in-276

put data Xt into M components by SSA, and then reconstruct M new data se-277

quences as follows, Y k
t =

∑k
j=1 R

j
t (k = 1, · · · ,M ; t = 1, · · · , T ), where T is278

the length of the input data, and the SSA components Rj
t (j = 1, · · · ,M) are279

sorted in decreasing order according to their correlation with the underlying dy-280

namics. That is, Rj
t with small j values are important components of the under-281

lying signal, while those with large j values mostly contain noise. Therefore, the282

noise level in Y k
t increases with k.283

2. Generation of in-SNL data: We add Gaussian noise with different noise lev-284

els into the reconstructed data Y k
t (k = 1, · · · ,M), that is Zk,s,m

t = Y k
t +asω

m
t285

(k = 1, · · · ,M ; s = 1, · · · , L;m = 1, · · · , Q; t = 1, · · · , T ), where ωm
t are inde-286

pendent, random variables sampled from the standard normal distribution N (0, 1);287

as is the level of added noise; L and Q are the number of realisations and the num-288

ber of noise levels considered, respectively. The aim of this step is to guarantee289

the existence of in-SNL data among these newly created Zk,s,m
t time series. For290

each reconstructed signal k and noise level s, we refer to the set of all realisations291

Gk,s = {Zk,s,1
t , · · · , Zk,s,Q

t } as a group. A group is then called an in-SNL group292

if the noise level of its members is an SNL.293

3. Identification of in-SNL data: This step consists of identifying in-SNL data294

group-by-group among the above Zk,s,m
t by (1) applying ID to estimate the num-295

ber of change-points N̂k,s,m and the location of the change-points in each Zk,s,m
t ;296

(2) calculating three statistical quantities for each group and imposing conditions297

to identify in-SNL groups and then (3) taking all the members in the same group298

as in-SNL data.299

4. Estimation of change-points: We determine the location of the estimated change-300

points in the raw data Xt using the estimated change-points for all the identified301

in-SNL data through a majority voting rule. This is done by (1) calculating the302

mode of the number of estimated change-points for each in-SNL group; (2) tak-303

ing the mode of the distribution of calculated modes as the number of estimated304

change-points in the raw data N̂X ; (3) collecting the estimated change-points of305

all the in-SNL data which have the same number of estimated change-points as306

N̂X into the same matrix D; and then (4) taking the mode of each column in D307

as the location of an estimated change point in the raw data Xt.308
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4 Tests on synthetic data309

We now evaluate the detection performance of our method for a range of simulated310

noisy SSE data Xt, which are generated in the following form,311

Xt = ft + Cwn × ϵt, (t = 1, · · · , T ), (4)312

where T is the length of the noisy data, and ft is the simulated pure SSE data (see Fig.313

2 (b)) from a deterministic subduction slip model (see details in the supplement), which314

is standardised through the Z-score normalisation. The number of true change-points315

in the simulated pure SSE signal is N0 = 20. The second term Cwn×ϵt in Eq. (4) de-316

notes the noise model contained in Xt. We assume that ϵt are independent, Gaussian317

random variables with mean zero and variance one. The noise level Cwn is the standard318

deviation of the noise model, varing from 1 to 100%, with increments of 1%. Fig. 3 (c)319

and (d) show two examples of simulated noisy SSE data with different noise levels. Us-320

ing different seeds, we create 100 data sequences of independent standard Gaussian ran-321

dom variables ϵt (t = 1, 2, . . . , T ). In total, we have 100×100 noisy time series Xt (t =322

1, 2, . . . , T ). The detection performance of SSAID is controlled by three parameters: the323

number of SSA components M , the number of realisations Q, and the highest level of324

added noise levels in percentage L. Based on numerical studies (Ma et al., 2022), we choose325

the default values M = 100, L = 80 and Q = 40 to ensure optimal performance.326

4.1 Detection results327

Fig. 3 (a) shows the error between the number of estimated change-points N̂X by328

SSAID and the number of true change-points N0 for each noisy time series. We can ob-329

serve that SSAID correctly estimates the number of true change-points in over 70% of330

all cases analyzed. In particular, the number of estimated change-points is correct for331

all the cases with noise levels lower than 25% (see green box in Fig. 3 (a)). To quantify332

the detection performance of SSAID, we define333

Rsd =
α

ξ
and R1 =

β

ξ
, (5)334

where ξ is the number of simulations for each noise level (i.e. ξ = 100 here), α is the335

number of successful detections (see the definition of a successful detection in Section 3),336

and β is the number of detections for which the number of estimated change-points, N̂X ,337

is equal to the number of true change-points N0 (i.e. N̂X = N0 = 20 here), but not338

with the RMSE requirements imposed on α.339

Fig. 3 (b) shows that Rsd and R1 are different. They are both 100% when Cwn <340

25%, and then decrease with increasing Cwn values. This implies that the success de-341

tection rate is higher when the GPS data has a smaller noise level, with 100% success342

rate if the noise level is less than 25%. Rsd decreases faster than R1 when Cwn increases,343

indicating that the accuracy of the detected change-point locations fades with increas-344

ing Cwn values. Fig. 3 (c) demonstrates the high accuracy of the change-points detected345

using our method for data with a low noise level. Fig. 3 (d) shows that when the noise346

level is very high (Cwn = 100%), the locations of some detected change-points are not347

as accurate. The effect of the noise level Cwn on the performance of our method comes348

from a deficiency in SSA, which generally fails to distinguish the underlying signal from349

the noise itself when the SNR in the raw data is too low.350

4.2 Comparison with two existing methods351

We now compare the detection performance of SSAID with two existing detection352

methods for short-term SSEs. The first one is linear regression combined with AIC pro-353

posed by Nishimura et al. (2013), which has been widely applied in different areas (Nishimura354

et al., 2013; Nishimura, 2014, 2021; Okada et al., 2022). This method (1) uses a sliding355
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Figure 3. (a) The error between the number of estimated change-points N̂X by SSAID and

the number of true change-points N0 in each simulated noisy data. The error of zero is high-

lighted by a green arrow in the color bar. (b) The percentage R1 and Rsd (see definitions in

Eq. (5)) as a function of white noise level Cwn, calculated from 100 seeds. The locations of the

change-points in two simulation examples with different noise levels are shown in (c) Cwn = 25%;

(d) Cwn = 100%. Blue vertical dotted lines: estimated change-points by SSAID; red vertical

lines: true change-points.
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window with a fixed width; (2) fits a linear model to the data in the window; (3) divides356

the data in the window into equal halves and fits a linear model to each half, and (4) cal-357

culates the AIC difference (i.e. ∆AIC) between the single linear model and the two-line358

model at the middle point of the window. If that midpoint is a change-point, e.g. the359

start- or end-point of an SSE, the two-line model fits the observational data better than360

a single linear model, thus resulting in a negative ∆AIC. As a negative ∆AIC does not361

always correspond to change-points in SSE signals, we must specify an appropriate thresh-362

old, denoted by ζ, in order to detect change-points of SSEs. If ∆AIC is lower than ζ, its363

corresponding time is regarded as a change-point. The detection performance of the lin-364

ear regression approach is mainly controlled by the length of the sliding window and the365

specified threshold ζ, however, and selecting appropriate values for the two parameters366

is subjective (Nishimura et al., 2013; Nishimura, 2021).367

In our comparison tests, we first take a sliding time window of 180 days, which is368

consistent with that of Nishimura et al. (2013), to calculate ∆AIC for each data point369

of the simulated SSE data in Fig. 3 (c) and (d). Fig. 4 (a) and (b) show ∆AIC values370

across the time series with three threshold values for ζ (high, medium and low). We ob-371

serve that the change-points at both ends of the simulated data are blinded regardless372

of the selected thresholds due to the excessive length of the sliding window. This demon-373

strates that a smaller sliding window is needed (Yano & Kano, 2022). We then decrease374

the sliding window to 15 days to calculate ∆AIC for each data point again, and we have375

a much shorter blinded interval of 7 days at both ends of the simulated period. In Fig.376

4 (c) and (d), we also observe that none of the detection thresholds considered succeeds377

in finding all the true change-points accurately. When ζ is too low, only the most sig-378

nificant SSEs can be detected, while for larger ζ, the detection generally overestimates379

the number of change-points. The selection of the threshold value depends on the sig-380

nal itself, making it impossible to detect all the change-points in multiple time series or381

even within a single time series by using a single threshold.382

We then apply the method proposed by Yano and Kano (2022) to the synthetic data383

(see Fig. 3). The method (1) applies l1 trend filtering to the raw data with a range of384

hyperparameters λ; (2) obtains a fitted piecewise-linear signal for each λ; (3) calculates385

the associated Mallows’ Cp for each λ; (4) chooses the one with the minimum Mallows’386

Cp as the best piecewise-linear approximation to characterize the raw data; and (5) takes387

the knots of the chosen piecewise-linear model as the occurrence times of SSEs. This method388

is similar to other change-point detection methods for piecewise-linear signals, for which389

Ma et al. (2022) have demonstrated that they cannot be directly applied to detect SSEs390

in GPS data. Fig. 5 (a) and (b) show that in most cases l1 trend filtering overestimates391

the number of change-points in simulated SSE data and its associated successful ratio392

Rsd for each noise level is much lower than that of SSAID, regardless of the noise level.393

We now compare the performance of the aforementioned methods quantitatively394

by calculating the total number of detected change-points across all considered scenar-395

ios (i.e. all noise levels and all seeds), as well as the counts of correct and false detec-396

tions. A change-point is considered correct if its error is no more than 3 days from any397

true change-point location; otherwise, it is regarded as false. Both the total number of398

detected change-points and the number of correctly detected change-points are expected399

to be 20 × 10, 000. In Fig. 6 (a), we can see that the method SSAID aligns well with400

the expected values, exhibiting a satisfactory total number of detected change-points and401

a considerable number of correct detections, with minimal false detections. However, when402

using the l1 trend filtering method, we observe that the total number of detected change-403

points is about twice the expected value, indicating an equal number of false and cor-404

rect detections. The results obtained with the method of linear regression with ∆AIC405

underscore the significant influence of the chosen threshold on the success of detection.406

Setting the threshold to a low value results in a large number of false detections. Con-407

versely, raising the threshold ζ to a medium value (see −20 in Fig. 6 (a)) can significantly408
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Figure 4. The calculated ∆AIC for different noisy data with different sliding windows. Panel

(a) and (b) are plotted for the noisy data shown in Fig. 3 (c) and (d) with a sliding window of

180 days, respectively. While panel (c) and (d) are the same as (a) and (b) but with a sliding

window of 15 days. Horizontal solid and dotted lines are associated with different thresholds to

identify change-points of SSEs: high threshold (orange); medium threshold (cyan); low threshold

(purple). The intersections between horizontal lines and ∆AIC curve are considered as change-

points. Vertical red lines: start times of SSEs; vertical blue dashed lines: end times of SSEs.

Figure 5. Same as Fig. 3 but using l1 trend filtering to detect change-points in simulated SSE

data.
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Figure 6. (a) Number of different detected change-points by various methods; (b) detection

frequency of each true change-points by different methods. The expected values for the numbers

of both the total and correct detected change-points are 20 × 10, 000, while the expected value for

the expected detection frequency of each true change-point is 10, 000. These expected values are

highlighted by the blue dotted boxes.

reduce false detections, but leads to a notable overestimation of true change-points. Fur-409

ther increasing the threshold to a higher value causes the majority of detections to miss410

the true change-points.411

We also analyze the count of successful detections for each true change-point in the412

simulated data. The expected detection frequency for each true change-point is 10, 000.413

Fig. 6 (b) shows that the detection results obtained by SSAID exhibit slight oscillations414

around the expected values, indicating greater stability compared to the other methods.415

We conduct further analysis on the histograms of the detected change-points for all the416

simulated noisy SSE data from all the different seeds and noise levels by these detection417

methods (see Fig. S2-S3 in the supplement). The results indicate that most SSAID de-418

tections tend to converge to accurate locations with minimal errors, while the other meth-419

ods, despite exhibiting similar behaviors, either suffer from a higher number of false de-420

tections and larger errors, or miss the majority of true change-points. This further demon-421

strates the superior detection performance of SSAID.422

5 Application to Observed Data423

5.1 SSE detection via hypothesis testing424

We first present the raw results of detected change-points in the SSE data intro-425

duced in Section 2. The change-points at each station, shown in Fig. 7 (a) (see green426

triangles), do not seem to exhibit a consistent pattern at first sight. In contrast to sim-427

ulated SSE data (see Section 4), we do not know a priori when an SSE starts and ends428

to validate the detection. However, we can quantify the confidence that a detected change-429

point corresponds to an SSE by using a hypothesis test, based on the sign change of the430

displacement rate at the start times of SSEs from the secular displacement rate (Yano431

& Kano, 2022). To apply the hypothesis test, we need to know the start and end times432

of a potential SSE, indicating a pair of change-points are needed to define an SSE. There-433
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after, we refer to change-points associated with the start and end times of potential SSEs434

as starting and ending change-points, respectively.435

Figure 7. (a) Detected change-points by SSAID in GPS data recorded by the 36 GPS sta-

tions, shown in Fig. 1 (b). Station names for which the number of detected change-points is even

are highlighted in red. (b) Pre-processed results of detected change-points shown in panel (a).

Red triangles: starting change-points; blue triangles: ending change-points.

5.1.1 Pre-processing436

We first pre-process the detected change-points to associate them with the start437

and end times of an SSE. We refer to N̂j as the number of detected change-points by SSAID438

at the j-th station, where j is the station index (j = 1, · · · , 36), which sequentially co-439

incides with the station names on the y-axis of Fig. 7 (a) from the bottom to the top.440

Although we could expect all N̂j to be even numbers, only 13 of them in Fig. 7 (a) are441
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even (see station names highlighted in red). This implies that SSAID in most stations442

misses some change-points associated with SSEs and/or detects spurious change-points443

not associated with SSEs. We also observe in multiple stations that the time difference444

between two neighbouring detected change-points can be in the order of months (e.g. the445

first and the second change-points in Fig. 8 (a), which shows the GPS data recorded at446

station 970828). Such a long duration is not consistent with past studies in this region,447

which show that potential short-term SSEs during the period analyzed last about 7 days448

(Hirose & Obara, 2010; Obara & Kato, 2016; Obara, 2020). Therefore, two neighbour-449

ing change-points with a large time difference cannot be paired as the start and end times450

of the same SSE. The above observations indicate that many single change-points were451

identified as potential SSEs (e.g., see green lines in Fig. 8 (a)).452

To remedy this pathology, we create a change-point pair for each single change-point.453

The procedure contains the following five steps with details provided in the next few para-454

graphs: (1) we fit a piecewise-linear signal to the noisy SSE data (e.g. the orange line455

in Fig. 8 (a)) using the detected change-points by SSAID shown in Fig. 7 (a); (2) we cal-456

culate the slopes of each segment in the fitted model; (3) based on these slopes, we iden-457

tify change-point pairs and single change-points; (4) we create several change-point pair458

candidates for each single change-point; and (5) we select the best candidate for each sin-459

gle change-point using the Schwarz Information Criterion (SIC) (Yao, 1988; Anastasiou460

& Fryzlewicz, 2021).461

We now illustrate how to pair detected change-points based on the calculated slopes462

of the segments between change-points. We refer to kib and kia as the slope of the seg-463

ment before and after the i-th detected change-point, respectively. We pair two consec-464

utive change-points (i-th and (i+1)-th, say) as the start and end times of a unique SSE,465

if they simultaneously satisfy the following conditions: (1) kib has the same sign as the466

secular displacement rate; (2) the sign of kia is opposite to that of the secular displace-467

ment rate; (3) the time difference between the two neighbouring change-points (i.e. the468

duration of the SSE) is no more than a duration threshold, denoted by Dmax. Here, we469

estimate the sign of the secular displacement rate (i.e positive or negative) at each GPS470

station by taking the slope of a linear model fitted to the whole noisy data. All other471

change-points are taken as single change-points. In the study area considered, the ex-472

pected duration of an SSE is 3−7 days (Obara, 2020). Ma (2022) showed that the de-473

tected change-point location error by SSAID is at most 3 days. In the worst case, an SSE474

with duration 7 days could be detected by a pair of change-points separated by up to475

14 days (assuming maximum error). Therefore, we set Dmax as 14 days.476

We then generate candidates of undetected change-points to pair with each single477

change-point. We first assume that each single change-point is associated with either the478

start or the end time of an SSE, and the duration of SSEs is 3− 7 days. This implies479

that the undetected change-point candidates are located in a window spanning ±(3− 7)480

days around the detected single change-point. To be more specific, if the detected sin-481

gle change-point is the start time of an SSE, denoted by x̄cp, the associated change-point482

candidates for the undetected end time of this SSE include x̄cp+3, x̄cp+4, · · · , x̄cp+483

7; conversely, if it is the end time of an SSE, the candidates for the start time are x̄cp−484

7, x̄cp−6, · · · , x̄cp−3. Based on the slopes of two consecutive segments fitted in Step485

2, we can determine if each single change-point is the start or the end time of an SSE.486

We have three possible situations: (1) if kib and kia have the same and the opposite sign487

as the secular displacement rate, respectively, then we regard the detected single change-488

point as the start time of an SSE; (2) if kib and kia have the opposite and the same sign489

as the secular displacement rate, respectively, then we regard the detected single change-490

point as the end time of an SSE; (3) in other cases, the detected single change-point can491

be the start time or the end time of an SSE.492

Next, we fit different piecewise-linear curves through the GPS data for every com-493

binations of change-point pair candidates. We select the piecewise-linear curve best fit-494
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Figure 8. (a) Observed GPS data recorded by station 970828 (see the black line) and the fit-

ted piecewise-linear signal (see the orange line) using detected change-points by SSAID (see green

lines); (b) New paired change-points of the same station 970828 based on detected change-points

in panel (a). Red lines: starting change-points; blue dotted lines: ending change-points.

ted to the noisy data through SIC, as suggested by numerical studies of Anastasiou and495

Fryzlewicz (2021), which show that the SIC-based approach exhibits better performance496

for piecewise signals with an intermediate number of change-points, compared to other497

information criteria. We then take the associated change-point candidate to pair with498

the single change-point, and obtain new paired change-points as shown in Fig. 7 (b) and499

Fig. 8 (b), in which we have two change-points for the start and end times of each po-500

tential SSE (red and blue, respectively). We denote by N̄ j = 2N̄ j
s the number of change501

points at each station j after pairing the single change-points, where N̄ j
s is the number502

of starting changing-points. In our analysis, almost all the detected change-points were503

identified as single change-points. Note that we also imposed some manual constraints504

on the paired change-points to avoid the overlaps of two neighbouring pairs and discard505

some single change-points with obvious deviations. For example, the first detected change-506

point in the station 031124 was identified as an ending change-point at the second day507

of the analyzed period, while we expected the starting change-point to be 3 − 7 days508

preceding the detected ending change-point, so that we discarded this change-point.509
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5.1.2 Hypothesis test510

As discussed in Section 3, the overall trend of GPS data is a noisy linear process511

if no SSE occurs, while the occurrence of an SSE redirects the original trend in a differ-512

ent direction. Upon completion of the SSE, the trend reverses back to its previous state.513

As shown in Fig. 2, the sign of the displacement rate at the start time of an SSE is op-514

posite to that of the secular displacement rate. The sign change of the displacement rate515

at the start times of SSEs constitutes the basis of the null hypothesis test, therefore the516

following tests are only conducted on the starting change-points. In our tests, the null517

hypothesis is that SSEs do not occur, and the alternative hypothesis is that SSEs oc-518

cur. Following the approach of Yano and Kano (2022), the test statistic for testing if the519

k-th starting change-point at the j-th station is associated with an SSE can be set as520

B̄k
j = sgn

(
vj0

)
Bk

j = sgn
(
vj0

) v̄jk − v̄j0

1

N̄j
s−1

√∑N̄j
s

k=1(v̄
j
k − v̄j0)

2

, (6)521

where sgn refers to the sign function; and v̄jk and v̄j0 refer to the displacement rate at the522

k-th starting change-point and the secular displacement rate of the j-th station, respec-523

tively. We estimate the probability that SSEs do not occur at the k-th starting point of524

the j-th station by525

pkj = P
(
B ≤ B̄k

j

)
= Φ̄

(
B̄k

j

)
, (7)526

where Φ̄ (·) refers to the cumulative distribution function of the standard Gaussian dis-527

tribution. The closer Φ̄
(
B̄k

j

)
is to 0, the more confidently we can reject the null hypoth-528

esis. To reduce Type I errors, we combine p-values of stations neighbouring the j-th sta-529

tion into a new single p-value through the harmonic mean p-value method (Wilson, 2019;530

Yano & Kano, 2022), denoted by p̂kj . Finally, we quantify the confidence of occurrence531

of SSEs by532

p̃kj = 1− p̂kj . (8)533

More details about how to calculate p̃kj can be found in the supplement and in Yano and534

Kano (2022).535

5.1.3 Identifying SSE candidates536

Fig. 9 presents the estimated probability of each detected change-point for the oc-537

currence of an SSE by the null hypothesis test and its associated SSE category. We ob-538

serve that at most stations SSAID can successfully detect SSEs with high confidence.539

At several stations, no such change-points are found, such as stations 021052 and 950449.540

The best detection happened at station 950447, in which all the four detected change-541

points have high confidence value of p̃kj ≥ 0.9.542

Based on the estimated p̃kj values, we categorize the detected change-points into543

probable, possible and non-SSE SSE candidates, if p̃kj ≥ 0.9 and N̂ j
a > 1; 0.6 ≤ p̃kj <544

0.9 or p̃kj ≥ 0.9 with N̂ j
a = 1; and p̃kj < 0.6, respectively. The introduction of N̂ j

a > 1545

in the definition of probable SSE candidates is to guarantee that the detected change-546

points have a high confidence for the occurrence of SSEs at neighbouring stations within547

30 km simultaneously, rather than at a single station (Yano & Kano, 2022). Under the548

current classification rules, we only have a high confidence that detected change-points549

in the first group are associated with SSEs, and we are less confident that the other de-550

tected change-points are associated with SSEs. Fig. 9 (b) indicates that we have iden-551

tified 39 probable SSE candidates (see green circles) and 31 possible SSE candidates (see552
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light green triangles) in total across all the stations. Note that some detected SSEs at553

different stations might be from the same SSE, indicating that the actual number of de-554

tected SSEs is likely less than the number stated above (see details in the subsequent555

discussions). In addition, detected change-points classified as non-SSEs still might be as-556

sociated with SSEs, as other unknown non-tectonic movements or noise could affect the557

displacement field at the observation site so that the sign change does not significantly558

differ from the secular displacement rate (Nishimura et al., 2013). In the remainder of559

this study, we do not discuss these 2 groups further and instead we focus on the detected560

change-points in the first group of probable SSE candidates.561

5.1.4 Comparison and validation562

During the period analyzed in our current study, 8 SSEs were identified in the west-563

ern Shikoku region along the Bungo Channel by Nishimura et al. (2013) (see orange shaded-564

areas in Fig. 10 (a); the associated SSE catalogue obtained from Kano et al., 2018). Not565

only has our new method successfully detected all these 8 SSEs in various stations, but566

SSAID is also able to detect many more previously undetected probable SSE candidates.567

Note that it is not expected that all the SSEs can be recorded at each GPS station, since568

the SNR and ground displacements caused by SSEs might greatly vary at different sta-569

tions. If the SNR is too low or the ground displacement is too small at a certain station,570

the change-points associated with SSEs cannot be detected.571

To further verify the validity of the newly detected probable SSEs, we investigate572

their correlations with the tremor occurrence, since tremors often accompany SSEs (Rogers573

& Dragert, 2003; Obara & Kato, 2016; Wang et al., 2018). An increasing daily number574

of tremors generally indicates that an SSE is probably occurring (Ito et al., 2007). Note575

that the occurrence of SSEs is not always consistent with tremor activity, which means576

that SSEs can also occur when no tremor activity is detected (Wang et al., 2018; Kano577

& Kato, 2020; Yano & Kano, 2022). In addition, not all the observed tremors are asso-578

ciated with the occurrence of SSEs. Based on their recurrence pattern, the tremors in579

the Shikoku region have been categorized into three states: episodic; weak concentra-580

tion and background by Wang et al. (2018), among which only the tremors in the episodic581

state occur during SSEs. Therefore, we count the number of daily tremors in the episodic582

state to investigate its correlation with SSEs. As the 36 GPS stations used in our study583

are concentrated in the western Shikoku region (see Fig. 1 (b)), we only utilize the episodic584

tremors around these GPS stations (i.e. with state index 1-7 and 9-13 as indicated in585

Wang et al., 2018), rather than the whole observed tremor catalogue in the Shikoku re-586

gion. Fig. 10 (a) and (b) show that the identified probable SSEs are well concordant with587

tremor activity in the episodic states. We also notice that at its highest peaks, the num-588

ber of tremors is about 20, much less than that of the identified probable SSEs (i.e. 39)589

during the study period. This is sensible, because the same SSE might be recorded si-590

multaneously by different GPS stations, as expected.591

5.2 Fault estimation592

Potential SSEs are expected to bring up a systematic pattern change in the dis-593

placement field at various stations, however the above hypothesis tests fail to consider594

such changes in the displacement field (Nishimura et al., 2013). This can be done by es-595

timating a fault model to describe the observed displacements (Nishimura et al., 2013;596

Nishimura, 2021; Yano & Kano, 2022). We use a Bayesian inversion method, i.e. the Markov597

chain Monte Carlo (MCMC) method with the Metropolis-Hastings algorithm (Bagnardi598

& Hooper, 2018; Yano & Kano, 2022), to estimate a finite rectangular fault model with599

uniform slip for each detected probable SSE, and systematically investigate its associ-600

ated displacement field. This rectangular fault model is the same as that used in Okada601

(1985). Based on the processed cumulative displacement field as shown in Eq. (3), the602

displacement field for each probable SSE candidate at various GPS stations can be sim-603
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Figure 9. (a) Estimated confidence p̃ of each change-point pair shown in Fig. 7 (b). The left

and the right side of each rectangle refer to the starting and the ending change-point, respec-

tively. The width of each rectangular along the time axis denotes the duration of the associated

potential SSE. (b) Detected SSEs categorised as probable SSEs (green circles), possible SSEs

(light green triangles) and non-SSEs (red diamonds). The location of each marker refers to the

middle time of each SSE candidate.

ply quantified by subtracting the cumulative displacement field at the starting change-604

point from that at the ending change-point. These estimated daily displacement vari-605

ations are used to obtain the fault estimation.606

We formulate the observed displacement field at a single station as607

d = G (m) + ϵ, (9)608
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Figure 10. (a) The distribution of detected probable SSEs by SSAID, which are indicated

by purple boxes. The left and the right sides of each purple box refer to the start and end times

of an identified probable SSE by null hypothesis tests, respectively. Orange dotted lines in the

middle of each shaded area refer to the occurrence times of SSEs identified by Nishimura et al.

(2013). We assume that the start and end times of their identified SSEs are 7 days before and

after the occurrence times, respectively. Purple boxes highlighted by blue circles refer to probable

SSEs identified by the fault estimation (see Section 5.2). (b) The daily number of tremors in the

episodic state. Numbers in circles on the top refer to the index of identified SSEs by Nishimura

et al. (2013) in Shikoku region. SSEs indicated by blue numbers are located within our research

area, while those indicated by red numbers are located in the eastern Shikoku region.

where d = (de, dn, dz) is the data vector containing the displacement components along609

different directions (i.e. east, north and vertical); m = (m1, · · · ,m9) contains the 9 fault610

model parameters to be estimated including length, width, depth, latitude, longitude,611

strike, rake, slip and dip angle; G describes the forward nonlinear model that calculates612

the synthetic displacements (see Okada, 1985); and ϵ describes the error along different613

directions.614

–20–



manuscript submitted to JGR: Solid Earth

Under the Bayesian framework, the posterior probability density function to quan-615

tify how well the source model m describes the observed data d can be calculated by616

P (m|d) = P (d|m)P (m)

P (d)
, (10)617

where P (d|m) is the likelihood function to calculate the probability of obtaining the ob-618

served data d given the source model m; P (m) is the prior information on the proba-619

bility density function of the source model; and P (d) is a normalizing constant, which620

is independent of the source model (Amey et al., 2018; Bagnardi & Hooper, 2018). For621

GPS data, although prior information on P (m) is generally not available, it can be es-622

timated by the uninformative Jeffreys prior (Ulrych et al., 2001; Bagnardi & Hooper, 2018).623

Assuming that the errors in the observed data vector obey the Gaussian distribution with624

a mean of zero and covariance matrix Ce, i.e. ϵ ∼ (0,Ce), the likelihood function is625

then estimated by626

P (d|m) = (2π)−N̊/2|Ce|−1/2 exp

(
−1

2
rTCe

−1r

)
, (11)627

where N̊ is the total number of data observations, the notation |·| and the superscript628

T refer to the determinant and the transpose of a matrix, respectively, the superscript629

−1 denotes matrix inversion, and r = d−G (m) is the residual between the synthetic630

data and the observed data. When inverting GPS data, the data vector d is formed from631

multiple data recorded by different stations, i.e. d = {djh|j = 1, · · · , N̂c;h = e, n, z}, where632

N̂c is the number of stations used for the current inversion; j and h are the station in-633

dex and the component index, respectively. For multiple data sets, assuming that they634

are independent from each other, the associated likelihood function is then calculated635

by636

P (d|m) = ΠN̂c
j=1(2π)

−N̊j/2|C(j)
e |−1/2 exp

(
−1

2
rj

TC(j)
e

−1
rj

)
, (12)637

where N̊j is the total number of data observations at the j-th station, and C
(j)
e and rj638

are the covariance matrix and the residual of the data set recorded by the j-th station,639

respectively. Given an initial model m0, the MCMC method will iteratively explore the640

space of model parameters through an automatic step selection until the maximum num-641

ber of iterations is reached, and a set of source parameters with the maximum a poste-642

riori probability solution is then extracted as the optimal model to best characterize the643

observed data (Bagnardi & Hooper, 2018).644

For each identified probable SSE (see purple boxes in Fig. 10 (a)), we only use the645

observed displacement data of neighbouring stations within a designated range as the646

input data of the inversion. Here, the ranges that we utilize along the dip and the strike647

directions are 100 km and 150 km, respectively, from the station where the probable SSE648

was identified (Takagi et al., 2019). We further rule out the data with a high percent-649

age of invalid values (i.e. ≥ 20%) during the period analyzed in our study (Nishimura,650

2021). Our inversion approach is divided into two stages. First, we take the approach651

of Yano and Kano (2022) to fully explore the source parameters while we further assume652

that no tensile component occurs, thus nine source parameters need to be determined,653

i.e. length, width, strike, dip, depth, slip, rake, latitude, longitude. The initial guesses654

for those nine source parameters are set as follows: the latitude and the longitude of the655

estimated fault are set as those of the station where the probable SSE candidate was iden-656

tified; the length and the width are 50 km and 35 km, respectively; the slip amount and657

the rake angle are 10 mm and 110◦, respectively; the initial values for the strike, the dip658

and the depth are obtained by projecting the estimated fault model to the surface of the659

Philippine Sea Plate. To mitigate the effect of the initial model on the final inversion re-660

sults, we further simulate 9 realisations of the initial fault model obtained by randomly661

perturbing the default model described above. In total, we run the MCMC inversion 10662

–21–



manuscript submitted to JGR: Solid Earth

times for each detected probable SSE. We then choose the output of these 10 sets with663

the smallest residual as a new set of initial model parameters, and conduct a new inver-664

sion (Bagnardi & Hooper, 2018; Nishimura, 2021).665

In the second stage, we take the output fault models from the first stage as a new666

initial model, but we now follow the approach of Nishimura et al. (2013), which assumes667

that the depth, strike and dip angle of the fault model are dependent on its location to668

fit the surface of the Philippine Sea Plate. This means that we have 6 free parameters669

instead of the previous 9 free parameters. We then estimate a final finite fault model for670

each probable SSE candidate. As the slip direction of the expected SSEs in the Shikoku671

region should be opposite to the plate convergence direction (i.e. N50◦W), we rule out672

probable SSEs candidates, for which slip directions are not between N100◦E and N170◦E673

(Nishimura et al., 2013).674

We obtain 18 potential SSEs in our current research area (see blue circles in Fig.675

10 (a)). Fig. 11 shows representative examples of estimated fault models for four iden-676

tified probable SSEs (see the other results in the supplement). These identified SSEs have677

an opposite slip direction to that of the plate convergence. The locations of some esti-678

mated faults coincide well with the epicenters of the tremors (see Fig. 11 (a) and (b)),679

suggesting the possible occurrence of episodic tremor and slip (ETS). We also notice that680

no tremor activities were observed around the estimated fault model in Fig. 11 (c) and681

(d), even though the estimated location is still close to the locations of known SSEs (see682

Fig. 1 (a)).683

6 Conclusions684

We developed a novel statistical method to automatically detect short-term SSEs685

in GPS data. We demonstrated its effectiveness on a range of noisy simulated SSE data686

and illustrated its superior detection performance compared to two existing detection687

methods, i.e. linear regression with ∆AIC and l1 trend filtering. We then applied SSAID688

to detect short-term SSEs in observed GPS data in the western Shikoku region. The re-689

sults show that SSAID successfully detects multiple change-points in various GPS sta-690

tions. We utilized the null hypothesis test to identify probable SSE candidates from these691

detected change-points, based on the sign of the displacement rate being different from692

that of the secular displacement rate. These SSE candidates include all known SSEs iden-693

tified by Nishimura et al. (2013) during the period analyzed, as well as previously un-694

detected SSEs. We further estimated the parameters of a finite fault model generating695

the observed displacement field for each probable SSE candidate using a Bayesian in-696

version technique. Selecting the SSEs for which the azimuth directions of the slip vec-697

tors of the estimated fault models are opposite to that of the plate convergence, we man-698

aged to identify new SSEs in the western Shikoku region that should be added to the699

existing catalogue. Our results demonstrate the effectiveness of SSAID in detecting SSEs700

in observed GPS data.701

7 Open Research702

Data and Code Availability Statement The simulated SSE data used for nu-703

merical tests in the study and the code of the newly developed method SSAID are avail-704

able at Github via https://github.com/yiming-otago/SSAID, which are provided for705

private study and research purposes and are protected by copyright with all rights re-706

served unless otherwise indicated. The observed GPS data utilized in this study can be707

requested through Geospatial Information Authority of Japan (GSI) at https://www.gsi708

.go.jp/ENGLISH/geonet english.html.709

–22–



manuscript submitted to JGR: Solid Earth

Figure 11. Representative examples of the estimated fault model for identified probable SSE

candidates at the different stations: (a) station 970828; (b) station 021049; (c) station 950436;

(d) station 041133. The date in red under the site name refers to the start date of this probable

SSE candidate. The star in the map indicates the location of the station where this SSE can-

didate was identified. The black and the pink arrows in the right-bottom corner are the scale

arrows for the observed displacement and the slip amount of the estimated model, respectively.

The synthetic displacements by the displacement model of Okada (1985) have the same arrow

scale as the observed ones. Orange dots indicate the epicentre of tremors in the episodic state 5

days before and after the date (see the date on the left-upper corner) when this candidate was

found. The blue solid line of the rectangle refers to the top edge of the estimated fault model.
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Figure S3 shows histograms of detected change-points in all the synthetic data by

the linear regression with ∆AIC using different thresholds.

Figure S4 shows the estimated fault model of an identified probable SSE candi-

date at the station 021049.

Figure S5 shows the estimated fault model of an identified probable SSE candi-

date at the station 950447.

Figure S6 shows the estimated fault model of an identified probable SSE candi-

date at the station 041133.

Figure S7 shows the estimated fault model of an identified probable SSE candi-

date at the station 031118.

Figure S8 shows the the estimated fault model of an identified probable SSE can-

didate at the station 960681.

Figure S9 shows the estimated fault model of an identified probable SSE candi-

date at the station 960681.

Figure S10 shows the estimated fault model of an identified probable SSE candi-

date at the station 021050.

Figure S11 shows the estimated fault model of an identified probable SSE candi-

date at the station 031124.

Figure S12 shows the estimated fault model of an identified probable SSE candi-

date at the station 960680.

Figure S13 shows the estimated fault model of an identified probable SSE candi-

date at the station 950436.

Figure S14 shows the estimated fault model of an identified probable SSE candi-
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date at the station 9041134.

Figure S15 shows the estimated fault model of an identified probable SSE candi-

date at the station 021056.

Figure S16 shows the estimated fault model of an identified probable SSE candi-

date at the station 950443.

Figure S17 shows the estimated fault model of an identified probable SSE candi-

date at the station 021048.

Text S1. The deterministic fault model to simulate SSEs

In this section, we introduce a simplified deterministic fault model, which can sponta-

neously reproduce recurrent SSEs with a short duration of about a week, i.e. short-term

SSEs. As shown in Fig. S1 (a), this model is composed of three sections, assuming that

the velocity-weakening transition zone is embedded into two velocity-strengthening sec-

tions. The distributions of constitutive parameters (i.e. σ, Dc, a and b) in the rate- and

state-dependent friction (RSF) law are shown in Fig. S1 (a) and (b). The length along

the strike direction and the width along the depth direction of the model are 500 km

and 80 km, respectively. The slab angle is 15◦. We take ∆w0 = 0.4/ sin (15◦) as its grid

size and we then have N = 200 subfaults along the dip direction. The slip rate history

of the whole new modified fault model over a period of 10 years (i.e. from the 90-th to

100-th year) is shown in Fig. S1 (c), and a one-year slip rate history of the subfault at

the middle point of the VW transition is presented at Fig. S1 (d). We can see that the

recurrent SSEs with short durations can spontaneously arise in the current model. All

other unmentioned details about the model are the same as Ma, Anastasiou, Wang, and
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Montiel (2022) (see more details therein).

Text S2. Details about hypothesis test

In this section, we elaborate more details about how to calculate p̃kj . We calculate the

displacement rate at the k-th starting change-point, i.e. v̄jk in Eq. (8) of the main context,

by taking the slope of the fitted linear model to the noisy data between the k-th starting

and ending change-points. It takes three steps to estimate v̄j0: (1) we consider the noisy

SSE data as a piecewise-linear signal with 2N̄ j
s knots; (2) we calculate the slope of each

segment in the modelled piecewise-linear signal; and (3) we select the slopes which have

the same sign as the secular linear process, and take their average as the estimated secular

displacement rate.

It is possible that the expected Bk
j values that reject the null hypothesis depend on

the sign of the secular displacement rate. If the secular displacement rate has a positive

sign, at the start time of an SSE, it changes to a negative sign (see Fig. 7(a) of the

main context). This indicates that negative Bk
j values are expected at the start times of

SSEs. If, on the other hand, the secular displacement rate has a negative sign, positive

Bk
j values are expected at the start times of SSEs. Therefore, we introduce the term

of the sign function in Eq. (8) to make both cases have the same expected B̄k
j values

(i.e. negative). Under the null hypothesis, B̄k
j follows the standard Gaussian distribution

(Yano & Kano, 2022). Therefore, we estimate the probability that SSEs do not occur at

the k-th starting point of the j-th station by Eq. (9) shown in the main text.

To reduce Type I errors, we combine p-values of stations neighbouring the j-th

station into a new single p-value through the harmonic mean p-value method (Wilson,
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2019; Yano & Kano, 2022), that is

p̂kj =
1∑N̂j

a

g=1 (1/p̊
k
j,g)

, (1)

where N̂ j
a is the number of stations neighbouring the j-th station, g is the neighbouring

station index, and p̊kj,g refers to the p-value calculated via Eq. (9) of the main text

for the g-th station neighbouring the j-th station, which quantifies the probability that

an SSE does not occur at the k-th starting change-point of the j-th station. Here, we

refer to stations within a designated distance, denoted by Dη, from the j-th station as

neighbouring stations of the j-th station. When selecting Dη, we need to guarantee that

the time differences of the same detected SSE between the stations (i.e. the j-th station

and its neighbouring stations) should be negligible. We have already indicated that SSAID

can bear an error of at most 3 days in Section 4 of the main text, which means that the

time difference should be at most 3 days. Since the average distance between stations in

GEONET is about 20 km (Takagi et al., 2019) and the typical along-strike propagation

velocity of ETS in our research area is 10−20 km/day (Dragert et al., 2001; Obara, 2002,

2020), we take Dη = 30 km in our following hypothesis tests, i.e. the same as that taken

by Yano and Kano (2022).

Calculating p̊kj,g in Eq. (1) requires three steps: (1) we estimate the secular

displacement rate v̄j,g0 at the g-th neighbouring station of station j, by using the same

approach as before; (2) we also take the slope of the fitted linear model to the noisy

data at the g-th neighbouring station of the j-th station to estimate its displacement

rate v̊j,gk at the k-th starting change-point of the j-th station; (3) we utilize Eqs. (8) and

(9) of the main text to quantify p̊kj,g. Note that in the second step, the period used to

calculate v̊j,gk is between the k-th starting and the k-th ending change-point of the j-th
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station, rather than its own change-points. This is because of the assumption that an

SSE should be recorded at the same time by both the j-th station and its neighbouring

stations (see the explanations for choosing Dη in the last paragraph). Since the j-th

station and its neighbouring stations are distributed in a nearby region, they should have

similar p-values. If the k-th starting change-point at the j-th station is associated with

an SSE, it is expected to have a small p̂kj , so that we have high confidence to reject the

null hypothesis. It is clear from Eq. (1) that p̊kj,g cannot be zero. If there exists a p̊kj,g = 0,

we manually set the associated p̂kj as 0 as we have a high probability to reject the null

hypothesis.

Finally, we can obtain the confidence of the occurrence of SSEs p̃kj via Eq. (10) in

the main text.Note that when only one pair of change-points are identified (i.e. N̂ j
s = 1),

we cannot calculate B̄k
j via Eq. (8) in main text and conduct the following hypothesis

test instead. We assume that p̃kj = 0.6 if the sign of the displacement rate at the starting

change-point is opposite to that of the secular displacement rate, otherwise p̃kj = 0. The

selection of these two specific values (i.e. 0.6 and 0) is simply set for ease of discussion,

based on the SSE categories defined in section 5.1.3.

Text S3. The histograms of detected change-points by different methods

In this section, we present the histograms of the detected change-points for all the sim-

ulated noisy SSE data from all the different seeds and noise levels by various detection

methods (see Section 4 of the main context), including SSAID, l1 trend filtering, and the

linear regression with ∆AIC, utilizing different thresholds in Figs. S2 and S3. We can see

that most SSAID detections tend to converge to accurate locations with minimal errors,
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demonstrating its superior detection performance. In contrast, l1 trend filtering, despite

exhibiting similar behaviors, suffers from a higher number of false detections and larger

errors. The results of linear regression with ∆AIC also highlight the significant influence

of the chosen threshold on the detection success. When the threshold is set at a low value,

the majority of detections miss the true locations, although some successful detections

do occur. Conversely, raising the threshold increases the percentage of detections that

correctly identify the true change-points but also introduces a higher number of false de-

tections.

Text S4. The fault estimation results of other identified SSEs

In Section 5.2 of the main context, we indicated that 18 SSEs were identified by the fault

estimation using the probable SSE candidates, while only 4 representative results were

included. In this section, we present the results of the other 14 identified SSEs.
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Figure S1. The spatial distribution of constitutive parameters along the depth direction in

the modified reference model: (a) a and b; (b) Dc and σ. The light-yellow area refers to the

VW transition zone. Slip rate history of (c) all the subfaults of the modified reference model

over a 10-year period; and (d) the subfault at the middle point of the VW transition zone over

a one-year period.
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Figure S2. Histogram of detected change-points in all the synthetic data in Section 4 of the

main context by different methods: (a) SSAID; (b) l1 trend filtering. Vertical red lines: start

times of simulated SSEs; vertical blue dashed lines: end times of simulated SSEs.
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Figure S3. The same histograms as Fig. S2 but for the linear regression with ∆AIC by using

different thresholds: (a) a high threshold (ζ=-10); (d) a medium threshold (ζ=-20); (e) a low

threshold (ζ=-30). The sliding window is 15 days. Vertical red lines: start times of simulated

SSEs; vertical blue dashed lines: end times of simulated SSEs.
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Figure S4. The estimated fault model of an identified probable SSE candidate at the station

021049. The date in red under the site name refers to the start date of this probable SSE

candidate. The star in the map indicates the location of the station where this SSE candidate

was identified. The black and the pink arrows in the right-bottom corner are the scale arrows

for the observed displacement and the slip amount of the estimated model, respectively. The

synthetic displacements by the displacement model of Okada (1985) have the same scale arrow

as the observed ones. Orange dots indicate the epicentre of tremors in the episodic state 5 days

before and after the date (see the date on the left-upper corner) when this candidate was found.

The blue solid line of the rectangle refers to the top edge of the estimated fault model.
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Figure S5. Same as Fig. S4 but for a probable SSE candidate at station 950447.
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Figure S6. Same as Fig. S4 but for a probable SSE candidate at station 041133.
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Figure S7. Same as Fig. S4 but for a probable SSE candidate at station 031118.
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Figure S8. Same as Fig. S4 but for a probable SSE candidate at station 960681.
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Figure S9. Same as Fig. S4 but for a probable SSE candidate at station 960681.
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Figure S10. Same as Fig. S4 but for a probable SSE candidate at station 021050.
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Figure S11. Same as Fig. S4 but for a probable SSE candidate at station 031124.
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Figure S12. Same as Fig. S4 but for a probable SSE candidate at station 960680.
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Figure S13. Same as Fig. S4 but for a probable SSE candidate at station 950436.
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Figure S14. Same as Fig. S4 but for a probable SSE candidate at station 041134.

August 4, 2023, 7:26am



: X - 23

Figure S15. Same as Fig. S4 but for a probable SSE candidate at station 021056.
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Figure S16. Same as Fig. S4 but for a probable SSE candidate at station 950443.
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Figure S17. Same as Fig. S4 but for a probable SSE candidate at station 021048.
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