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Abstract

The long-existing double-ITCZ problem in Global Climate Models (GCMs) hampers accurate climate simulation. Using a

regional climate model (RCM) over the tropical and sub-tropical Atlantic with a horizontal resolution of 12 km and explicit

convection, we develop a bias-correction downscaling methodology to remove GCM biases. The methodology is adapted from

the pseudo-global warming (PGW) approach, typically used to exert the climate-change signal to a reanalysis-driven RCM

simulation. We show that the double ITCZ problem persists with conventional dynamical downscaling, but with our bias-

corrected downscaling, the double ITCZ problem is removed. Detailed analysis attributes the main cause of the double ITCZ

problem of the selected GCM to the sea surface temperature (SST) bias. Compared to the GCM’s AMIP simulations, RCMs

with higher resolution allow explicit deep convection and enable a better simulation of tropical convection and clouds. The

developed methodology is promising for constraining climate sensitivity by removing double-ITCZ biases.
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Key Points:5

• Downscaling of GCM results with RCMs in the tropics is problematic, as conven-6

tional downscaling replicates the driving model’s ITCZ bias.7

• A bias-corrected downscaling approach is proposed and tested. It enables a cred-8

ible simulation of the ITCZ without the double-ITCZ bias.9

• For the tested GCM, the double-ITCZ bias is mainly attributed to the SST bias.10
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Abstract11

The long-existing double-ITCZ problem in Global Climate Models (GCMs) hampers ac-12

curate climate simulation. Using a regional climate model (RCM) over the tropical and13

sub-tropical Atlantic with a horizontal resolution of 12 km and explicit convection, we14

develop a bias-correction downscaling methodology to remove GCM biases. The method-15

ology is adapted from the pseudo-global warming (PGW) approach, typically used to16

exert the climate-change signal to a reanalysis-driven RCM simulation. We show that17

the double ITCZ problem persists with conventional dynamical downscaling, but with18

our bias-corrected downscaling, the double ITCZ problem is removed. Detailed analy-19

sis attributes the main cause of the double ITCZ problem of the selected GCM to the20

sea surface temperature (SST) bias. Compared to the GCM’s AMIP simulations, RCMs21

with higher resolution allow explicit deep convection and enable a better simulation of22

tropical convection and clouds. The developed methodology is promising for constrain-23

ing climate sensitivity by removing double-ITCZ biases.24

Plain Language Summary25

The Global Climate Models (GCMs) have a problem in simulating the Intertrop-26

ical Convergence Zone (ITCZ), which makes it hard to accurately simulate the climate.27

To tackle this, we developed a method to first remove the large-scale biases in the GCM28

and then conduct downscaling with a regional climate model (RCM). Our results show29

that conventional downscaling carries the double-ITCZ bias from the GCM. But with30

our bias-corrected method, the problem is solved. We found that the main cause of the31

double-ITCZ problem is related to the bias in sea surface temperatures (SST). By us-32

ing the RCM with higher resolution, we were able to get better simulations of tropical33

convection and clouds compared to the GCM. This new method shows promise in im-34

proving the accuracy of climate change projections by addressing the double-ITCZ bi-35

ases in GCMs.36

1 Introduction37

Dynamical downscaling – i.e. the spatial refinement of low-resolution global climate38

models (GCMs) using limited-area regional climate models (RCMs) – is mainstay in climate-39

change impact assessment and in the planning of local adaptation measures (Senior et40

al., 2021). It has successfully been used in the extratropics for many decades. For instance,41

over Europe a large set of simulations is currently available at resolutions from 12 km42

(Jacob et al., 2014; Sørland et al., 2021) to 3 km (Ban et al., 2021; Pichelli et al., 2021).43

Downscaling relies on the consistency between the synoptic-scale fields of the driv-44

ing GCM and the driven RCM (Jones et al., 1995). Large di↵erences in circulations are45

undesirable since they inevitably lead to inconsistencies near the lateral boundaries. It46

then follows that significant large-scale biases of the driving GCM are problematic, since47

in general one would expect the same biases in the RCM. In the tropics, significant bi-48

ases are common, indeed the representation of the Intertropical Convergence Zone (ITCZ)49

is fraught with di�culties. These large-scale biases lead to challenges with downscaling50

methodologies (Nobre et al., 2001; Sun et al., 2005; Tang et al., 2019; de Medeiros et al.,51

2020).52

The Intertropical Convergence Zone (ITCZ), which exists due to the convergence53

of the trade winds, plays an important role in the tropical climate (Waliser & Jiang, 2015).54

The ITCZ locates mainly in the Northern hemisphere throughout the year except for bo-55

real spring. During this period, the ITCZ reaches its southernmost location due to so-56

lar heating, when the observations show a strong precipitation band north of the equa-57

tor and a secondary precipitation band south of the equator in the Western Pacific, and58

a single band straddling the equator over the tropical Atlantic. However, global climate59
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models (GCMs) have di�culty simulating asymmetric precipitation distribution. In bo-60

real spring, they produce too strong precipitation within the secondary band over the61

Pacific and a miss-placed band over Tropical Atlantic, which is too far in the south (G. J. Zhang62

et al., 2019). The annual mean precipitation projected by GCMs thus shows two distinc-63

tive bands on both sides of the equator instead of producing a single northern band in-64

dicated by the observation, which is called the double ITCZ problem.65

The erroneous ITCZ representation in GCMs is not only related to the inaccurate66

simulation of the current climate (Richter & Xie, 2008; Bellucci et al., 2010; Richter et67

al., 2014; Li & Xie, 2014; Shonk et al., 2019), but also a↵ects the climate sensitivity pre-68

dicted by GCMs, in the sense that GCMs with larger double-ITCZ problem tend to pro-69

duce lower values of climate sensitivity (Tian, 2015; Webb & Lock, 2020). Despite the70

e↵orts devoted to reducing the double ITCZ bias, the problem persists from the Cou-71

pled Model Intercomparison Project Phase 3 to Phase 6 (Lin, 2007; de Szoeke & Xie,72

2008; Bellucci et al., 2010; X. Zhang et al., 2015; Adam et al., 2018; Woelfle et al., 2019;73

Tian & Dong, 2020; Boucher et al., 2020).74

The double ITCZ bias is more distinctive among coupled ocean-atmosphere mod-75

els compared with those models forced with observed sea surface temperature (SST) (F. Song76

& Zhang, 2016, 2017). The coupled models typically produce warmer SST in the east77

of the tropical Pacific and Atlantic near the coast and colder SST in the west of the trop-78

ical Atlantic and middle of the Pacific. On the one hand, SST is closely related to the79

convective activity over tropical oceans by a↵ecting the surface flux of heat and mois-80

ture (Hirota et al., 2011). On the other hand, the SST gradients also impacts lower-level81

wind convergence (Back & Bretherton, 2009), thereby a↵ecting the simulation of the ITCZ.82

While the double-ITCZ problem is less severe among GCMs with prescribed sea83

surface temperature, it still exists (Richter & Xie, 2008; Xiang et al., 2017; Zhou et al.,84

2022). Convection and boundary layer parameterization of the GCMs is believed to play85

one of the most important roles in the misrepresentation of the ITCZ (Bellucci et al.,86

2010; Hirota et al., 2011; Landu et al., 2014). Many studies have been working on im-87

proving the convection schemes to alleviate the double ITCZ problem (X. Song & Zhang,88

2009; Möbis & Stevens, 2012; X. Song & Zhang, 2018). Nolan et al. (2016) found that89

aquaplanet simulations with explicit instead of parameterized convection would smooth90

out the double ITCZ structures due to a better representation of squall lines. Therefore,91

using km-scale models with explicit convection can reduce the double ITCZ bias and en-92

able a better representation of the tropical climate and quantification of climate sensi-93

tivity (Tian, 2015).94

As mentioned above, the double-ITCZ bias represents a major challenge to dynam-95

ical downscaling. In this context, Heim et al. (2023) explored the pseudo-global warm-96

ing (PGW, see Brogli et al. (2023)) approach to this challenge. They showed that the97

approach is highly successful and enables a credible representation of the tropical climate98

change without double-ITCZ bias (Heim & Schär, 2023).99

The PGW approach uses a reanalysis-driven control simulation and therefor is un-100

a↵ected by GCM control biases. A potential disadvantage of the PGW approach is the101

neglect of changes in short-term synoptic climatology. Another approach is to adjust the102

bias of the driving fields before conducting the dynamical downscaling (Misra & Kana-103

mitsu, 2004). Previous studies mainly focus on extratropics (Colette et al., 2012; Prein104

et al., 2017; C. Liu et al., 2017; Musselman et al., 2018; Hernández-Dı́az et al., 2019).105

Here we thus try to assess the potential of conventional downscaling approaches over the106

tropics.107

In this study, we use the Consortium for Small-Scale Modeling (COSMO) in cli-108

mate mode with explicit deep convection combined with a bias-correction method to down-109

scale the GCM MPI-ESM1-2-HR model results over tropical Atlantic to investigate whether110
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the double-ITCZ problem could be removed through such kind of downscaling and thus111

provide a possibility for constraining the climate sensitivity.112

2 Materials and Methods113

2.1 Model and Set-Up114

We use the fully compressible non-hydrostatic limited-area COSMO model (Baldauf115

et al., 2011; Rockel et al., 2008) version 6 to conduct the dynamical downscaling. This116

version of COSMO exploits Graphics Processing Units which speeds up the simulation117

and enables experiments with high computational demand (Leutwyler et al., 2016). Rayleigh118

damping is applied for the upper boundary following Durran and Klemp (1983). The com-119

putation of radiative fluxes follows the �-two-stream approach after (Ritter & Geleyn,120

1992). For the computation of subgrid-scale vertical turbulent flux, we employ a 1D TKE-121

based model (Raschendorfer, 2001). The Tiedtke scheme (Tiedtke, 1989) is applied as122

convection parameterization, but in some simulations we switch o↵ this parameteriza-123

tion, or only switch on the shallow convection scheme (Vergara-Temprado et al., 2020;124

Zeman et al., 2021). Over the ocean, the sea-surface temperature is prescribed.125

All simulations are run with 60 vertical levels and a horizontal grid spacing of 12126

km. To determine the parameter settings and the convection parameterization scheme,127

we applied the systematic calibration developed by S. Liu et al. (2022) based on the work128

of Bellprat et al. (2012, 2016). The calibration and downscaling simulations are performed129

over the tropical and sub-tropical Atlantic with a size of 867x658 grid columns (green130

domain in Figure 1). Details about the model calibration can be found in the Support-131

ing Information .132

2.2 Conventional Downscaling133

Dynamical downscaling is applied to the result of the CMIP6 historical simulation134

of the MPI-ESM1-2-HR model (von Storch et al., 2017; Max Planck Institute for Me-135

teorology, 2020), following a recent study (Christoph Heim et al., 2022). The MPI-ESM1-136

2-HR input for the COSMO model has a horizontal resolution of around 100 km and 95137

vertical levels. The boundary condition is updated 6-hourly. 2D surface pressure, skin138

temperature, 3D temperature, wind and specific humidity are included as the lateral-139

boundary conditions. SST is prescribed based on the MPI-ESM1-2-HR result. The GCM140

results are downscaled to 12 km using the calibrated parameters as describled in the Sup-141

porting Information.142

2.3 Bias-Corrected Downscaling143

We use a bias-corrected downscaling methodology, where the GCM data is corrected144

using the European Center for Medium-Range Weather Forecast (ECMWF) Re-Analysis145

(ERA5) data (Hersbach et al., 2020) to make it essentially bias free. To remove the bi-146

ases, we use a methodology that is derived from the pseudo-global warming (PGW) ap-147

proach (Brogli et al., 2023).148

The PGW method is normally used to study regional climate change in response149

to global warming (Schär et al., 1996; Adachi et al., 2012; Brogli et al., 2023). In this150

case, the PGW methodology imposes the large-scale climate-change signal from a GCM151

onto a historical climate simulation by modifying the lateral and lower boundary con-152

ditions (including all atmospheric variables used to drive an RCM, i.e. temperature, geopo-153

tential height, wind, humidity, etc., as well as sea-surface temperature). More specifi-154

cally, the climate change signal is defined as155

� = SCEN �HIST, (1)
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where HIST and SCEN represent historical (control) and scenario climate conditions156

taken from a GCM. Both HIST and SCEN periods must be chosen long enough to re-157

duce the e↵ects of internal variability (e.g. averages of 30 years). The climate deltas � =158

�(x, y, p, tm) represent the set of 2D and 3D fields used to drive an RCM, but here merely159

the mean-seasonal cycle is provided with monthly resolution (i.e., m=1-12). The con-160

trol RCM simulation is driven by some reanalysis (referred to as ERABC where the sub-161

script BC stands for boundary conditions), while the scenario simulation is driven by162

SCENBC = ERABC +�. (2)

Here ERABC has the full temporal resolution, while � is slowly varying (in our case it163

is linearly interpolated from monthly means). The so derived fields must undergo a pres-164

sure adjustment to restore hydrostatic balance (Brogli et al., 2023). This will also en-165

sure that the hydrostatic and thermal wind balance are maintained, as both SCEN and166

HIST , and thus �, approximately maintain the thermal wind balance by design.167

The use of the PGW methodology for bias-corrected downscaling has been pioneered168

by Misra and Kanamitsu (2004) and it has been further applied in some recent studies169

(Colette et al., 2012; Prein et al., 2017; C. Liu et al., 2017; Musselman et al., 2018; Hernández-170

Dı́az et al., 2019). The basic idea is to use171

� = OBS �HIST, (3)

instead of Equation (1). Here OBS denotes observations (in our case the ERA5 reanal-172

ysis). The bias-corrected control simulation is then driven by173

CTRLBC = HIST +�. (4)

By design, the procedure using (3-4) yields monthly-mean fields CTRLBC which are es-174

sentially identical to OBS. This means that the large-scale monthly-mean biases of the175

driving GCM CTRL are removed. However, there will still be some remaining biases.176

In particular, the short-term variations are taken from the GCM, and the statistics of177

synoptic systems may still deviate from reality. In analogy to (4), the scenario simula-178

tion would be driven by179

SCENBC = SCEN +�, (5)

but this will not be used in the current study.180

We first get the 30-year-mean di↵erence (1985-2014) between the ERA5 reanaly-181

sis data and the MPI-ESM1-2-HR historical simulation following (3). Then we use (3-182

4) to remove the climatological bias of the MPI-ESM1-2-HR. The considered fields are183

the same as the study of Christoph Heim et al. (2022), which includes near-surface fields184

such as surface humidity, skin temperature, sea-surface temperature, and surface pres-185

sure, as well as the three-dimensional fields of temperature, humidity, velocity and geopo-186

tential. The bias-corrected MPI-ESM1-2-HR fields are then used to drive the COSMO187

model (named ”bias-corrected downscaling in the following context).188

2.4 SST-Corrected Downscaling189

To see how much the bias originates from the GCM’s SST bias, we will also con-190

duct additional simulations with only the SST bias corrected. The MPI-ESM1-2-HR sim-191

ulation significantly overestimates SST in an area stretching from the African to the Brazil-192

ian coast (Figure 2), especially to the south of the equator and in boreal spring. When193

using SST-corrected fields from the MPI-ESM1-2-HR results for downscaling, this will194

be referred to as ”SST-corrected downscaling”. All downscalings are conducted for 10195

years ranging from 1995 to 2004 with a 6-month spin-up.196
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3 Results197

In the following we compare the representation of the ITCZ in reanalysis data (ERA5),198

satellite observations (GPCP, CERES), GCM simulations (MPI-ESM1-2-HR using cou-199

pled AOGCM and atmospheric AGCM simulations), and limited-area simulations with200

the COSMO model using di↵erent downscaling procedures. Figure 3 shows the merid-201

ional cross section of the 10-year-mean precipitation and vertical mass flux over domain202

analysis D1 (see Figure 1). The ERA5 reanalysis produces quite good results compared203

to the GPCP observation (see red and black curves with the scale to the right of the pan-204

els). However, the coupled MPI-ESM1-2-HR shows a distinct double-ITCZ, which is mainly205

due to a misplaced ITCZ in boreal spring. In comparison, the AMIP simulation of the206

MPI-ESM1-2-HR model, which uses prescribed SST, produces stronger subsidence be-207

tween 20°S and 10°S and much weaker updrafts as seen from the vertical mass flux (Fig-208

ure 3c). The double-ITCZ bias is less severe, indicating that the atmosphere-ocean cou-209

pling enhances the ITCZ biases, as discussed in the introduction.210

With conventional downscaling, one would like to find out whether the ITCZ bias211

is due to the large-scale forcing, or due to fine-scale processes that are better resolved212

in the higher-resolution RCM simulation. Results (Figure 3d) show that with conven-213

tional downscaling there are qualitatively similar results as with the driving GCM (MPI-214

ESM-2-HR). In comparison to the latter, the double-ITCZ bias is somewhat reduced in215

amplitude, but it remains a dominant feature of the response. Minor di↵erences in com-216

parison to the GCM simulation include the somewhat stronger subsidence south of the217

equator, and enhanced updrafts between 10°S to the 0°.218

With the bias-corrected downscaling (Figure 3e), the large-scale biases of the driv-219

ing GCM are removed from the downscaled simulation (see section 2.3 for details of the220

bias correction). In response, the double-ITCZ bias disappears. The di↵erences between221

the bias-corrected and the conventional downscaling simulations mainly happen during222

boreal spring. There is stronger subsidence south of the equator in the bias-corrected223

case. In boreal summer, the vertical mass flux and precipitation in the conventional and224

bias-corrected downscaling simulations are similar.225

To identify the responsible element of the bias, we also present results of SST-corrected226

downscaling. The bias correction is done similarly as in the fully bias-corrected case, but227

only applied to the SST field. Results are similar as in the bias-corrected version, indi-228

cating that the double-ITCZ problem of the conventional downscaling results primar-229

ily originates from the SST bias.230

The time series of precipitation (Figure 4) further confirms this point. The over-231

estimation of precipitation is highly related to the warm SST bias, as seen in the con-232

ventional downscaling case. As the SST warm bias is removed, the precipitation over-233

estimation south of the equator mostly disappears. However, a slightly misplaced ITCZ234

is still present in both the bias-corrected and SST-corrected cases. For example, the bias235

pattern in June-September during the years 1995, 1996 and 2002 indicates an ITCZ po-236

sition too far north, while in the years 1997 and 2004, the ITCZ is too far south. The237

ITCZ bias pattern is highly correlated with the SST bias as shown by the green lines in238

Figure 4. When the SST is colder, the ITCZ moves further north and vice versa.239

An important element of the double-ITCZ bias are the di↵erences in outgoing long-240

wave radiation in particular during the February-April period (OLR, see Figure 5, sec-241

ond row). In comparison to CERES and ERA5, the MPI model has substantially weaker242

OLR over the southern trades (south of the ITCZ), and stronger OLR over the north-243

ern trades. However, it is not clear whether this is a reason for or consequence of the double-244

ITCZ bias. On the one hand, the MPI bias in OLR will weaken subsidence over the south-245

ern trades (and strengthen it over the northern trades), potentially a↵ecting the posi-246

tion of the ITCZ. On the other hand, a too southward position of the ITCZ will lead to247
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changes in high clouds, which can explain the OLR biases. The characteristic OLR bias248

has also been noted in a previous study (Heim et al., 2023).249

Regarding the downscaled COSMO simulations: it is evident that the main OLR250

bias of the MPI model is also present under conventional downscaling (Figure 5e) with251

comparable amplitude. However, both the bias-corrected and the SST-corrected down-252

scaling largely reduce the OLR bias. Results show that the bias-corrected downscaling253

has a smaller bias than the SST-corrected downscaling, suggesting that factors beyond254

the SST bias contribute to the biases seen in the MPI model.255

4 Conclusions256

Motivated by the uncertainties in sub-tropical and tropical clouds and the central257

role of cloud feedbacks for climate-change, there is a large interest to apply high-resolution258

limited-area convection-resolving models to the tropics. One critical challenge is the oc-259

currence of the double-ITCZ bias in GCMs. Such large-scale biases cannot be corrected260

by high-resolution alone, i.e. downscaling current GCMs at high resolution will in gen-261

eral replicate the double-ITCZ bias. Currently there are two approaches to conduct down-262

scaling studies that circumvent these di�culties:263

1. First, one can apply the pseudo-global warming (PGW) approach. Recent stud-264

ies have shown that PGW is a attractive and viable pathway toward climate-change265

downscaling simulations in the tropics (Heim et al., 2023; Heim & Schär, 2023).266

2. Second, one can try to debias the GCM output. The methodology uses the raw267

high-frequency output of a GCM, but corrects the data for large-scale deficien-268

cies occurring in the control climate. The approach has successfully been applied269

in the extratropics (Misra & Kanamitsu, 2004), and was here explored for the first270

time in the tropics.271

In this paper we have explored approach (2). We use a large computational domain272

over the tropical and sub-tropical Atlantic with a spatial resolution (grid spacing) of 12273

km. We used one particular GCM for the experiments (MPI-ESM1-2-HR). The main274

conclusions of the study are:275

• When directly driving the RCM with the raw GCM control output (conventional276

downscaling), the RCM reproduces a double-ITCZ similar as in the driving model.277

The use of high resolution alone is unable to correct for the double-ITCZ bias.278

• When driving the RCM with the bias-corrected GCM fields (bias-corrected down-279

scaling), the RCM credibly reproduces the observed ITCZ, although there are some280

small di↵erences in the position of the ITCZ in the boreal summer period.281

• In order to pinpoint the reasons for the double-ITCZ bias, we have conducted an282

additional simulation where the bias correction is only applied to the SST field283

(SST-corrected downscaling). This simulation yields a qualitative realistic sim-284

ulation of the ITCZ, but analysis of the OLR biases shows that it is not as suc-285

cessful as the fully bias-corrected downscaling. Also, this result pertains only to286

the GCM used, and the role of the SST biases might be smaller in other models.287

There are several limitations of the current study. First of all, we merely tested one288

particular GCM in the downscaling approach. Although the GCM considered has a sub-289

stantial double-ITCZ bias, it is not clear whether the current results will carry over to290

other GCMs. Second, we did not address simulations using future scenario climates, but291

merely worked with control climates. It is not a priori clear whether the beneficial im-292

pacts of bias-corrected downscaling also apply to the full control / scenario climate-change293

approach. Currently we are undertaking related simulations and these will feature in a294

subsequent publication.295
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Nevertheless, in the current study we show that bias-corrected downscaling appears296

to be a promising methodology, not only in the extratropics as previously shown, but297

also in the tropics. We have demonstrated the benefits of the approach for the tropical298

and sub-tropical Atlantic, but we believe that this carries over to other areas. In par-299

ticular, it appears attractive to use this approach for climate-change impact assessment300

studies in the Amazon, West Africa or Indonesia – regions that are plagued by biases301

in the representation of the ITCZ in climate-change assessments.302

5 Open Research303
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Figure 1. Simulation and analysis domains. The green domain (Simulation) is used562

for the COSMO calibration and simulations. The red domain (Analysis1) is used for the563

cross section analysis. The black domain (Analysis2) is used to indicate the SST bias.564

Figure 2.SST bias of the MPI-ESM1-2-HR historical simulation (defined as MPI-565

ESM1-2-HR � ERA5) over a 30 year period (1985-2014) and for the two seasons with566

the most southern- and northernmost position of the ITCZ. The black domain (Anal-567

ysis2) represents the domain with significant SST overestimation; it will be used in some568

of the analyses.569

Figure 3. Meridional cross section of 10-year-mean precipitation and vertical mass570

flux over domain Analysis1. The panels show the result of di↵erent simulations (from571

top to bottom: ERA5, MPI-ESM1-2-HR historical simulation, MPI-ESM1-2-HR AMIP572

results, COSMO conventional downscaling, COSMO bias-corrected downscaling and SST-573

corrected downscaling). The first column shows the annual mean result, the second col-574

umn boreal spring average in February–April and the last column shows boreal summer575

average in July–September. The red and black lines display the zonal mean precipita-576

tion from the data sets and the GPCP satellite observations, respectively (see scale to577

the right). The coupled MPI simulation shows a distinct double-ITCZ. The double-ITCZ578

is also visible in the MPI simulations with prescribed SST, and the conventional down-579

scaling with COSMO based on the native MPI simulations. The bias-corrected down-580

scaling as well as the SST corrected downscaling simulations show no double-ITCZ.581

Figure 4. Time series of the precipitation bias (simulation minus GPCP) in the582

meridional cross section over the domain Analysis1 (contours), and the SST bias aver-583

aged over domain Analysis2 (green line). From top to bottom, the panels show the re-584

sults of conventional downscaling, bias-corrected downscaling, and SST-corrected down-585

scaling. The misplaced ITCZ is correlated with the SST bias. The bias-corrected down-586

scaling as well as the SST-corrected downscaling remove the reoccurring positive pre-587

cipitation bias south of the equator in boreal spring.588

Figure 5. Outgoing longwave radiation for observations and model results. The589

panels show (from left to right): CERES observation, ERA5, MPI-ESM1-2-HR histor-590

ical simulation results, MPI-ESM1-2-HR AMIP results, COSMO conventional downscal-591

ing, COSMO bias-corrected downscaling, and COSMO SST-corrected downscaling. The592

first row shows the annual mean result, the second row shows the boreal spring average593

(February – April) and the last row the boreal summer average (July – September). As594

CERES data is only available since March 2000, the plot is calculated based on data from595

March 2000 to December 2004.596
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Key Points:5

• Downscaling of GCM results with RCMs in the tropics is problematic, as conven-6

tional downscaling replicates the driving model’s ITCZ bias.7

• A bias-corrected downscaling approach is proposed and tested. It enables a cred-8

ible simulation of the ITCZ without the double-ITCZ bias.9

• For the tested GCM, the double-ITCZ bias is mainly attributed to the SST bias.10
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Abstract11

The long-existing double-ITCZ problem in Global Climate Models (GCMs) hampers ac-12

curate climate simulation. Using a regional climate model (RCM) over the tropical and13

sub-tropical Atlantic with a horizontal resolution of 12 km and explicit convection, we14

develop a bias-correction downscaling methodology to remove GCM biases. The method-15

ology is adapted from the pseudo-global warming (PGW) approach, typically used to16

exert the climate-change signal to a reanalysis-driven RCM simulation. We show that17

the double ITCZ problem persists with conventional dynamical downscaling, but with18

our bias-corrected downscaling, the double ITCZ problem is removed. Detailed analy-19

sis attributes the main cause of the double ITCZ problem of the selected GCM to the20

sea surface temperature (SST) bias. Compared to the GCM’s AMIP simulations, RCMs21

with higher resolution allow explicit deep convection and enable a better simulation of22

tropical convection and clouds. The developed methodology is promising for constrain-23

ing climate sensitivity by removing double-ITCZ biases.24

Plain Language Summary25

The Global Climate Models (GCMs) have a problem in simulating the Intertrop-26

ical Convergence Zone (ITCZ), which makes it hard to accurately simulate the climate.27

To tackle this, we developed a method to first remove the large-scale biases in the GCM28

and then conduct downscaling with a regional climate model (RCM). Our results show29

that conventional downscaling carries the double-ITCZ bias from the GCM. But with30

our bias-corrected method, the problem is solved. We found that the main cause of the31

double-ITCZ problem is related to the bias in sea surface temperatures (SST). By us-32

ing the RCM with higher resolution, we were able to get better simulations of tropical33

convection and clouds compared to the GCM. This new method shows promise in im-34

proving the accuracy of climate change projections by addressing the double-ITCZ bi-35

ases in GCMs.36

1 Introduction37

Dynamical downscaling – i.e. the spatial refinement of low-resolution global climate38

models (GCMs) using limited-area regional climate models (RCMs) – is mainstay in climate-39

change impact assessment and in the planning of local adaptation measures (Senior et40

al., 2021). It has successfully been used in the extratropics for many decades. For instance,41

over Europe a large set of simulations is currently available at resolutions from 12 km42

(Jacob et al., 2014; Sørland et al., 2021) to 3 km (Ban et al., 2021; Pichelli et al., 2021).43

Downscaling relies on the consistency between the synoptic-scale fields of the driv-44

ing GCM and the driven RCM (Jones et al., 1995). Large di↵erences in circulations are45

undesirable since they inevitably lead to inconsistencies near the lateral boundaries. It46

then follows that significant large-scale biases of the driving GCM are problematic, since47

in general one would expect the same biases in the RCM. In the tropics, significant bi-48

ases are common, indeed the representation of the Intertropical Convergence Zone (ITCZ)49

is fraught with di�culties. These large-scale biases lead to challenges with downscaling50

methodologies (Nobre et al., 2001; Sun et al., 2005; Tang et al., 2019; de Medeiros et al.,51

2020).52

The Intertropical Convergence Zone (ITCZ), which exists due to the convergence53

of the trade winds, plays an important role in the tropical climate (Waliser & Jiang, 2015).54

The ITCZ locates mainly in the Northern hemisphere throughout the year except for bo-55

real spring. During this period, the ITCZ reaches its southernmost location due to so-56

lar heating, when the observations show a strong precipitation band north of the equa-57

tor and a secondary precipitation band south of the equator in the Western Pacific, and58

a single band straddling the equator over the tropical Atlantic. However, global climate59
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models (GCMs) have di�culty simulating asymmetric precipitation distribution. In bo-60

real spring, they produce too strong precipitation within the secondary band over the61

Pacific and a miss-placed band over Tropical Atlantic, which is too far in the south (G. J. Zhang62

et al., 2019). The annual mean precipitation projected by GCMs thus shows two distinc-63

tive bands on both sides of the equator instead of producing a single northern band in-64

dicated by the observation, which is called the double ITCZ problem.65

The erroneous ITCZ representation in GCMs is not only related to the inaccurate66

simulation of the current climate (Richter & Xie, 2008; Bellucci et al., 2010; Richter et67

al., 2014; Li & Xie, 2014; Shonk et al., 2019), but also a↵ects the climate sensitivity pre-68

dicted by GCMs, in the sense that GCMs with larger double-ITCZ problem tend to pro-69

duce lower values of climate sensitivity (Tian, 2015; Webb & Lock, 2020). Despite the70

e↵orts devoted to reducing the double ITCZ bias, the problem persists from the Cou-71

pled Model Intercomparison Project Phase 3 to Phase 6 (Lin, 2007; de Szoeke & Xie,72

2008; Bellucci et al., 2010; X. Zhang et al., 2015; Adam et al., 2018; Woelfle et al., 2019;73

Tian & Dong, 2020; Boucher et al., 2020).74

The double ITCZ bias is more distinctive among coupled ocean-atmosphere mod-75

els compared with those models forced with observed sea surface temperature (SST) (F. Song76

& Zhang, 2016, 2017). The coupled models typically produce warmer SST in the east77

of the tropical Pacific and Atlantic near the coast and colder SST in the west of the trop-78

ical Atlantic and middle of the Pacific. On the one hand, SST is closely related to the79

convective activity over tropical oceans by a↵ecting the surface flux of heat and mois-80

ture (Hirota et al., 2011). On the other hand, the SST gradients also impacts lower-level81

wind convergence (Back & Bretherton, 2009), thereby a↵ecting the simulation of the ITCZ.82

While the double-ITCZ problem is less severe among GCMs with prescribed sea83

surface temperature, it still exists (Richter & Xie, 2008; Xiang et al., 2017; Zhou et al.,84

2022). Convection and boundary layer parameterization of the GCMs is believed to play85

one of the most important roles in the misrepresentation of the ITCZ (Bellucci et al.,86

2010; Hirota et al., 2011; Landu et al., 2014). Many studies have been working on im-87

proving the convection schemes to alleviate the double ITCZ problem (X. Song & Zhang,88

2009; Möbis & Stevens, 2012; X. Song & Zhang, 2018). Nolan et al. (2016) found that89

aquaplanet simulations with explicit instead of parameterized convection would smooth90

out the double ITCZ structures due to a better representation of squall lines. Therefore,91

using km-scale models with explicit convection can reduce the double ITCZ bias and en-92

able a better representation of the tropical climate and quantification of climate sensi-93

tivity (Tian, 2015).94

As mentioned above, the double-ITCZ bias represents a major challenge to dynam-95

ical downscaling. In this context, Heim et al. (2023) explored the pseudo-global warm-96

ing (PGW, see Brogli et al. (2023)) approach to this challenge. They showed that the97

approach is highly successful and enables a credible representation of the tropical climate98

change without double-ITCZ bias (Heim & Schär, 2023).99

The PGW approach uses a reanalysis-driven control simulation and therefor is un-100

a↵ected by GCM control biases. A potential disadvantage of the PGW approach is the101

neglect of changes in short-term synoptic climatology. Another approach is to adjust the102

bias of the driving fields before conducting the dynamical downscaling (Misra & Kana-103

mitsu, 2004). Previous studies mainly focus on extratropics (Colette et al., 2012; Prein104

et al., 2017; C. Liu et al., 2017; Musselman et al., 2018; Hernández-Dı́az et al., 2019).105

Here we thus try to assess the potential of conventional downscaling approaches over the106

tropics.107

In this study, we use the Consortium for Small-Scale Modeling (COSMO) in cli-108

mate mode with explicit deep convection combined with a bias-correction method to down-109

scale the GCM MPI-ESM1-2-HR model results over tropical Atlantic to investigate whether110
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the double-ITCZ problem could be removed through such kind of downscaling and thus111

provide a possibility for constraining the climate sensitivity.112

2 Materials and Methods113

2.1 Model and Set-Up114

We use the fully compressible non-hydrostatic limited-area COSMO model (Baldauf115

et al., 2011; Rockel et al., 2008) version 6 to conduct the dynamical downscaling. This116

version of COSMO exploits Graphics Processing Units which speeds up the simulation117

and enables experiments with high computational demand (Leutwyler et al., 2016). Rayleigh118

damping is applied for the upper boundary following Durran and Klemp (1983). The com-119

putation of radiative fluxes follows the �-two-stream approach after (Ritter & Geleyn,120

1992). For the computation of subgrid-scale vertical turbulent flux, we employ a 1D TKE-121

based model (Raschendorfer, 2001). The Tiedtke scheme (Tiedtke, 1989) is applied as122

convection parameterization, but in some simulations we switch o↵ this parameteriza-123

tion, or only switch on the shallow convection scheme (Vergara-Temprado et al., 2020;124

Zeman et al., 2021). Over the ocean, the sea-surface temperature is prescribed.125

All simulations are run with 60 vertical levels and a horizontal grid spacing of 12126

km. To determine the parameter settings and the convection parameterization scheme,127

we applied the systematic calibration developed by S. Liu et al. (2022) based on the work128

of Bellprat et al. (2012, 2016). The calibration and downscaling simulations are performed129

over the tropical and sub-tropical Atlantic with a size of 867x658 grid columns (green130

domain in Figure 1). Details about the model calibration can be found in the Support-131

ing Information .132

2.2 Conventional Downscaling133

Dynamical downscaling is applied to the result of the CMIP6 historical simulation134

of the MPI-ESM1-2-HR model (von Storch et al., 2017; Max Planck Institute for Me-135

teorology, 2020), following a recent study (Christoph Heim et al., 2022). The MPI-ESM1-136

2-HR input for the COSMO model has a horizontal resolution of around 100 km and 95137

vertical levels. The boundary condition is updated 6-hourly. 2D surface pressure, skin138

temperature, 3D temperature, wind and specific humidity are included as the lateral-139

boundary conditions. SST is prescribed based on the MPI-ESM1-2-HR result. The GCM140

results are downscaled to 12 km using the calibrated parameters as describled in the Sup-141

porting Information.142

2.3 Bias-Corrected Downscaling143

We use a bias-corrected downscaling methodology, where the GCM data is corrected144

using the European Center for Medium-Range Weather Forecast (ECMWF) Re-Analysis145

(ERA5) data (Hersbach et al., 2020) to make it essentially bias free. To remove the bi-146

ases, we use a methodology that is derived from the pseudo-global warming (PGW) ap-147

proach (Brogli et al., 2023).148

The PGW method is normally used to study regional climate change in response149

to global warming (Schär et al., 1996; Adachi et al., 2012; Brogli et al., 2023). In this150

case, the PGW methodology imposes the large-scale climate-change signal from a GCM151

onto a historical climate simulation by modifying the lateral and lower boundary con-152

ditions (including all atmospheric variables used to drive an RCM, i.e. temperature, geopo-153

tential height, wind, humidity, etc., as well as sea-surface temperature). More specifi-154

cally, the climate change signal is defined as155

� = SCEN �HIST, (1)
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where HIST and SCEN represent historical (control) and scenario climate conditions156

taken from a GCM. Both HIST and SCEN periods must be chosen long enough to re-157

duce the e↵ects of internal variability (e.g. averages of 30 years). The climate deltas � =158

�(x, y, p, tm) represent the set of 2D and 3D fields used to drive an RCM, but here merely159

the mean-seasonal cycle is provided with monthly resolution (i.e., m=1-12). The con-160

trol RCM simulation is driven by some reanalysis (referred to as ERABC where the sub-161

script BC stands for boundary conditions), while the scenario simulation is driven by162

SCENBC = ERABC +�. (2)

Here ERABC has the full temporal resolution, while � is slowly varying (in our case it163

is linearly interpolated from monthly means). The so derived fields must undergo a pres-164

sure adjustment to restore hydrostatic balance (Brogli et al., 2023). This will also en-165

sure that the hydrostatic and thermal wind balance are maintained, as both SCEN and166

HIST , and thus �, approximately maintain the thermal wind balance by design.167

The use of the PGW methodology for bias-corrected downscaling has been pioneered168

by Misra and Kanamitsu (2004) and it has been further applied in some recent studies169

(Colette et al., 2012; Prein et al., 2017; C. Liu et al., 2017; Musselman et al., 2018; Hernández-170

Dı́az et al., 2019). The basic idea is to use171

� = OBS �HIST, (3)

instead of Equation (1). Here OBS denotes observations (in our case the ERA5 reanal-172

ysis). The bias-corrected control simulation is then driven by173

CTRLBC = HIST +�. (4)

By design, the procedure using (3-4) yields monthly-mean fields CTRLBC which are es-174

sentially identical to OBS. This means that the large-scale monthly-mean biases of the175

driving GCM CTRL are removed. However, there will still be some remaining biases.176

In particular, the short-term variations are taken from the GCM, and the statistics of177

synoptic systems may still deviate from reality. In analogy to (4), the scenario simula-178

tion would be driven by179

SCENBC = SCEN +�, (5)

but this will not be used in the current study.180

We first get the 30-year-mean di↵erence (1985-2014) between the ERA5 reanaly-181

sis data and the MPI-ESM1-2-HR historical simulation following (3). Then we use (3-182

4) to remove the climatological bias of the MPI-ESM1-2-HR. The considered fields are183

the same as the study of Christoph Heim et al. (2022), which includes near-surface fields184

such as surface humidity, skin temperature, sea-surface temperature, and surface pres-185

sure, as well as the three-dimensional fields of temperature, humidity, velocity and geopo-186

tential. The bias-corrected MPI-ESM1-2-HR fields are then used to drive the COSMO187

model (named ”bias-corrected downscaling in the following context).188

2.4 SST-Corrected Downscaling189

To see how much the bias originates from the GCM’s SST bias, we will also con-190

duct additional simulations with only the SST bias corrected. The MPI-ESM1-2-HR sim-191

ulation significantly overestimates SST in an area stretching from the African to the Brazil-192

ian coast (Figure 2), especially to the south of the equator and in boreal spring. When193

using SST-corrected fields from the MPI-ESM1-2-HR results for downscaling, this will194

be referred to as ”SST-corrected downscaling”. All downscalings are conducted for 10195

years ranging from 1995 to 2004 with a 6-month spin-up.196
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3 Results197

In the following we compare the representation of the ITCZ in reanalysis data (ERA5),198

satellite observations (GPCP, CERES), GCM simulations (MPI-ESM1-2-HR using cou-199

pled AOGCM and atmospheric AGCM simulations), and limited-area simulations with200

the COSMO model using di↵erent downscaling procedures. Figure 3 shows the merid-201

ional cross section of the 10-year-mean precipitation and vertical mass flux over domain202

analysis D1 (see Figure 1). The ERA5 reanalysis produces quite good results compared203

to the GPCP observation (see red and black curves with the scale to the right of the pan-204

els). However, the coupled MPI-ESM1-2-HR shows a distinct double-ITCZ, which is mainly205

due to a misplaced ITCZ in boreal spring. In comparison, the AMIP simulation of the206

MPI-ESM1-2-HR model, which uses prescribed SST, produces stronger subsidence be-207

tween 20°S and 10°S and much weaker updrafts as seen from the vertical mass flux (Fig-208

ure 3c). The double-ITCZ bias is less severe, indicating that the atmosphere-ocean cou-209

pling enhances the ITCZ biases, as discussed in the introduction.210

With conventional downscaling, one would like to find out whether the ITCZ bias211

is due to the large-scale forcing, or due to fine-scale processes that are better resolved212

in the higher-resolution RCM simulation. Results (Figure 3d) show that with conven-213

tional downscaling there are qualitatively similar results as with the driving GCM (MPI-214

ESM-2-HR). In comparison to the latter, the double-ITCZ bias is somewhat reduced in215

amplitude, but it remains a dominant feature of the response. Minor di↵erences in com-216

parison to the GCM simulation include the somewhat stronger subsidence south of the217

equator, and enhanced updrafts between 10°S to the 0°.218

With the bias-corrected downscaling (Figure 3e), the large-scale biases of the driv-219

ing GCM are removed from the downscaled simulation (see section 2.3 for details of the220

bias correction). In response, the double-ITCZ bias disappears. The di↵erences between221

the bias-corrected and the conventional downscaling simulations mainly happen during222

boreal spring. There is stronger subsidence south of the equator in the bias-corrected223

case. In boreal summer, the vertical mass flux and precipitation in the conventional and224

bias-corrected downscaling simulations are similar.225

To identify the responsible element of the bias, we also present results of SST-corrected226

downscaling. The bias correction is done similarly as in the fully bias-corrected case, but227

only applied to the SST field. Results are similar as in the bias-corrected version, indi-228

cating that the double-ITCZ problem of the conventional downscaling results primar-229

ily originates from the SST bias.230

The time series of precipitation (Figure 4) further confirms this point. The over-231

estimation of precipitation is highly related to the warm SST bias, as seen in the con-232

ventional downscaling case. As the SST warm bias is removed, the precipitation over-233

estimation south of the equator mostly disappears. However, a slightly misplaced ITCZ234

is still present in both the bias-corrected and SST-corrected cases. For example, the bias235

pattern in June-September during the years 1995, 1996 and 2002 indicates an ITCZ po-236

sition too far north, while in the years 1997 and 2004, the ITCZ is too far south. The237

ITCZ bias pattern is highly correlated with the SST bias as shown by the green lines in238

Figure 4. When the SST is colder, the ITCZ moves further north and vice versa.239

An important element of the double-ITCZ bias are the di↵erences in outgoing long-240

wave radiation in particular during the February-April period (OLR, see Figure 5, sec-241

ond row). In comparison to CERES and ERA5, the MPI model has substantially weaker242

OLR over the southern trades (south of the ITCZ), and stronger OLR over the north-243

ern trades. However, it is not clear whether this is a reason for or consequence of the double-244

ITCZ bias. On the one hand, the MPI bias in OLR will weaken subsidence over the south-245

ern trades (and strengthen it over the northern trades), potentially a↵ecting the posi-246

tion of the ITCZ. On the other hand, a too southward position of the ITCZ will lead to247
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changes in high clouds, which can explain the OLR biases. The characteristic OLR bias248

has also been noted in a previous study (Heim et al., 2023).249

Regarding the downscaled COSMO simulations: it is evident that the main OLR250

bias of the MPI model is also present under conventional downscaling (Figure 5e) with251

comparable amplitude. However, both the bias-corrected and the SST-corrected down-252

scaling largely reduce the OLR bias. Results show that the bias-corrected downscaling253

has a smaller bias than the SST-corrected downscaling, suggesting that factors beyond254

the SST bias contribute to the biases seen in the MPI model.255

4 Conclusions256

Motivated by the uncertainties in sub-tropical and tropical clouds and the central257

role of cloud feedbacks for climate-change, there is a large interest to apply high-resolution258

limited-area convection-resolving models to the tropics. One critical challenge is the oc-259

currence of the double-ITCZ bias in GCMs. Such large-scale biases cannot be corrected260

by high-resolution alone, i.e. downscaling current GCMs at high resolution will in gen-261

eral replicate the double-ITCZ bias. Currently there are two approaches to conduct down-262

scaling studies that circumvent these di�culties:263

1. First, one can apply the pseudo-global warming (PGW) approach. Recent stud-264

ies have shown that PGW is a attractive and viable pathway toward climate-change265

downscaling simulations in the tropics (Heim et al., 2023; Heim & Schär, 2023).266

2. Second, one can try to debias the GCM output. The methodology uses the raw267

high-frequency output of a GCM, but corrects the data for large-scale deficien-268

cies occurring in the control climate. The approach has successfully been applied269

in the extratropics (Misra & Kanamitsu, 2004), and was here explored for the first270

time in the tropics.271

In this paper we have explored approach (2). We use a large computational domain272

over the tropical and sub-tropical Atlantic with a spatial resolution (grid spacing) of 12273

km. We used one particular GCM for the experiments (MPI-ESM1-2-HR). The main274

conclusions of the study are:275

• When directly driving the RCM with the raw GCM control output (conventional276

downscaling), the RCM reproduces a double-ITCZ similar as in the driving model.277

The use of high resolution alone is unable to correct for the double-ITCZ bias.278

• When driving the RCM with the bias-corrected GCM fields (bias-corrected down-279

scaling), the RCM credibly reproduces the observed ITCZ, although there are some280

small di↵erences in the position of the ITCZ in the boreal summer period.281

• In order to pinpoint the reasons for the double-ITCZ bias, we have conducted an282

additional simulation where the bias correction is only applied to the SST field283

(SST-corrected downscaling). This simulation yields a qualitative realistic sim-284

ulation of the ITCZ, but analysis of the OLR biases shows that it is not as suc-285

cessful as the fully bias-corrected downscaling. Also, this result pertains only to286

the GCM used, and the role of the SST biases might be smaller in other models.287

There are several limitations of the current study. First of all, we merely tested one288

particular GCM in the downscaling approach. Although the GCM considered has a sub-289

stantial double-ITCZ bias, it is not clear whether the current results will carry over to290

other GCMs. Second, we did not address simulations using future scenario climates, but291

merely worked with control climates. It is not a priori clear whether the beneficial im-292

pacts of bias-corrected downscaling also apply to the full control / scenario climate-change293

approach. Currently we are undertaking related simulations and these will feature in a294

subsequent publication.295
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Nevertheless, in the current study we show that bias-corrected downscaling appears296

to be a promising methodology, not only in the extratropics as previously shown, but297

also in the tropics. We have demonstrated the benefits of the approach for the tropical298

and sub-tropical Atlantic, but we believe that this carries over to other areas. In par-299

ticular, it appears attractive to use this approach for climate-change impact assessment300

studies in the Amazon, West Africa or Indonesia – regions that are plagued by biases301

in the representation of the ITCZ in climate-change assessments.302

5 Open Research303

This work complies with the AGU data Policy, the program for bias-corrected down-304

scaling is available on Github: https://github.com/shucliu/bias correction downscaling.305
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(2020). Numerical simulation of the circulation and tropical teleconnection361

mechanisms of a severe drought event (2012–2016) in Northeastern Brazil.362

Climate Dynamics, 54 (9), 4043–4057. Retrieved from https://doi.org/363

10.1007/s00382-020-05213-6 doi: 10.1007/s00382-020-05213-6364

de Szoeke, S. P., & Xie, S.-P. (2008). The Tropical Eastern Pacific Seasonal365

Cycle: Assessment of Errors and Mechanisms in IPCC AR4 Coupled366

Ocean–Atmosphere General Circulation Models. Journal of Climate, 21 (11),367

2573–2590. Retrieved from https://journals.ametsoc.org/view/journals/368

clim/21/11/2007jcli1975.1.xml doi: 10.1175/2007JCLI1975.1369

Durran, D. R., & Klemp, J. B. (1983). A Compressible Model for the Simula-370

tion of Moist Mountain Waves. Monthly Weather Review , 111 (12), 2341–371

2361. Retrieved from https://journals.ametsoc.org/view/journals/372

mwre/111/12/1520-0493 1983 111 2341 acmfts 2 0 co 2.xml doi:373

https://doi.org/10.1175/1520-0493(1983)111h2341:ACMFTSi2.0.CO;2374

Heim, C., Leutwyler, D., & Schär, C. (2023). Application of the Pseudo-Global375

Warming Approach in a Kilometer-Resolution Climate Simulation of the Trop-376

ics. Journal of Geophysical Research: Atmospheres, 128 (5), e2022JD037958.377

Heim, C., & Schär, C. (2023, 4). Climate Change Response of Tropical At-378

lantic Clouds in a Kilometer-Resolution Model. Submitted to Journal of379

Geophysical Research: Atmospheres . Retrieved from https://doi.org/380

10.22541%2Fessoar.168056820.00045802%2Fv1 doi: 10.22541/essoar381

.168056820.00045802/v1382
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Figure 1. Simulation and analysis domains. The green domain (Simulation) is used562

for the COSMO calibration and simulations. The red domain (Analysis1) is used for the563

cross section analysis. The black domain (Analysis2) is used to indicate the SST bias.564

Figure 2.SST bias of the MPI-ESM1-2-HR historical simulation (defined as MPI-565

ESM1-2-HR � ERA5) over a 30 year period (1985-2014) and for the two seasons with566

the most southern- and northernmost position of the ITCZ. The black domain (Anal-567

ysis2) represents the domain with significant SST overestimation; it will be used in some568

of the analyses.569

Figure 3. Meridional cross section of 10-year-mean precipitation and vertical mass570

flux over domain Analysis1. The panels show the result of di↵erent simulations (from571

top to bottom: ERA5, MPI-ESM1-2-HR historical simulation, MPI-ESM1-2-HR AMIP572

results, COSMO conventional downscaling, COSMO bias-corrected downscaling and SST-573

corrected downscaling). The first column shows the annual mean result, the second col-574

umn boreal spring average in February–April and the last column shows boreal summer575

average in July–September. The red and black lines display the zonal mean precipita-576

tion from the data sets and the GPCP satellite observations, respectively (see scale to577

the right). The coupled MPI simulation shows a distinct double-ITCZ. The double-ITCZ578

is also visible in the MPI simulations with prescribed SST, and the conventional down-579

scaling with COSMO based on the native MPI simulations. The bias-corrected down-580

scaling as well as the SST corrected downscaling simulations show no double-ITCZ.581

Figure 4. Time series of the precipitation bias (simulation minus GPCP) in the582

meridional cross section over the domain Analysis1 (contours), and the SST bias aver-583

aged over domain Analysis2 (green line). From top to bottom, the panels show the re-584

sults of conventional downscaling, bias-corrected downscaling, and SST-corrected down-585

scaling. The misplaced ITCZ is correlated with the SST bias. The bias-corrected down-586

scaling as well as the SST-corrected downscaling remove the reoccurring positive pre-587

cipitation bias south of the equator in boreal spring.588

Figure 5. Outgoing longwave radiation for observations and model results. The589

panels show (from left to right): CERES observation, ERA5, MPI-ESM1-2-HR histor-590

ical simulation results, MPI-ESM1-2-HR AMIP results, COSMO conventional downscal-591

ing, COSMO bias-corrected downscaling, and COSMO SST-corrected downscaling. The592

first row shows the annual mean result, the second row shows the boreal spring average593

(February – April) and the last row the boreal summer average (July – September). As594

CERES data is only available since March 2000, the plot is calculated based on data from595

March 2000 to December 2004.596
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1 Model Calibration5

The calibration of the semi-empirical model parameters is based on the method-6

ology of Bellprat et al. (2012, 2016) The methodology has further been refined and ap-7

plied to the tropics by Liu et al. (2022). It provides an objective calibration of n param-8

eters with an specified plausible parameter range based on expert knowledge. In prac-9

tice, the methodology requires simulations for the corners of the n-dimensional cube spanned10

by the parameters. In the interior of the cube a meta-model is used. The performance11

of the model is optimized using a performance score defined by observational data. In12

our case and following Liu et al. (2022), the observations cover monthly-mean satellite13

data for outgoing longwave radiation (OLR), outgoing shortwave radiation (OSR) (Loeb14

et al., 2018) as well as ERA5 data for surface latent heat flux (LHFL) (Hersbach et al.,15

2020). When calculating the performance score, the calibration domain is divided into16

48 rectangular regions (6 rows and 8 columns with size of 10◦×10◦ each). The calibra-17

tion period covers 4 months (Feb., May, Aug., Nov.) in 2006, each with a 5-day spin-up18

period. The simulations are driven by ERA5 lateral boundary conditions and ERA5 SST.19

The validation of the methodology will be presented for an independent period, i.e. the20

year 2016.21

While deep convection cannot be fully resolved with 12 km grid spacing, treating22

it explicitly even at such a relatively coarse resolution can lead to a more realistic model23

behavior based on previous studies (Vergara-Temprado et al., 2020; Zeman et al., 2021).24

Therefore we conduct the calibration with three different settings to select the convec-25

tion scheme for this study, one is with explicit convection, one is with only shallow con-26

vection parameterized, and one is with shallow and deep convection all parameterized.27

Depending upon the set-up of the convective parameterizations, different param-28

eters are calibrated. For the explicit convection, we calibrate the same 5 parameters as29

in Liu et al. (2022) (see their Table 1). For the shallow convection parameterization, we30

use one additional parameter (rat mb) to control the strength of the parameterized con-31

vection. This parameter is a scaling factor in determining the massflux at cloud base,32

it can range from 0 to 1. A value of 0 means that the shallow convection is switched off,33

while 1 means full strength of the convection scheme. For the deep convection param-34

eterization, thick dc is calibrated, which is the threshold of cloud thickness for precip-35

itating deep convection. It can range from 50 hpa to 450 hpa and has a default values36

of 200 hpa.37

Figure S1 shows the evaluation of the calibration using an independent validation38

period. The figure shows the biases before and after calibration (left and right). The field39

presented are: top-of-atmosphere outgoing longwave radiation (OLR), outgoing short-40

wave radiation (OSR) and surface latent heat flux (LHFL) averaged over 4 months (Feb.,41

May, Aug., Nov.) in the year 2016. Since the default configuration suffers mainly from42

shortwave radiation biases, the calibration method tends to fix that to obtain a higher43

performance score. Therefore an improvement in the performance of the OSR can be seen44

under all three convection scheme choices. It is worth noting that the LHFL has larger45

uncertainty than the radiation fields, and gets correspondingly less weight than the other46

fields when evaluating the performance score.47

Overall, among the three settings with different kinds of convection schemes, the48

one with only shallow convection parameterization performs the best after the calibra-49

tion, which is consistent with the studies of Vergara-Temprado et al. (2020) and Zeman50

et al. (2021). Therefore we choose the corresponding setting for the downscaling simu-51

lations. For completeness, we here list the COSMO model version 6 and the calibrated52

parameter values (rlam heat: 0.26, rat sea: 27.66, rat mb: 0.5306, qi0: 4.4300E-6, tur len:53

155, cloud num: 4.6E7, clc diag: 0.9070).54
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m
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R
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o
in
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n
g
w
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d
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O
S
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u
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o
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g
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e
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n
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d
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a
ce

la
te
n
t
h
ea
t
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x
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H
F
L
).
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s
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d
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b
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u
g
h

so
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e
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sa
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n
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n
d
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t
fi
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d
s
o
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r
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n
p
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u
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r
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th
e
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w
,
w
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e
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s
in

O
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R
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n
d
O
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R

d
ec
re
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se
s
a
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th
e
ex
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en

se
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f
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s
in

th
e
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F
L
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s)
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