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Abstract

Quantitative precipitation forecasting in numerical weather prediction (NWP) models rely on physical parameterization schemes.

However, these schemes involve considerable uncertainties due to limited knowledge of the mechanisms involved in the precipi-

tating process, ultimately leading to degraded precipitation forecasting skills. To address this issue, our study proposes using

a Swin-Transformer based deep learning (DL) model to quantitatively map fundamental variables solved by NWP models to

precipitation maps. Our results show that the DL model effectively extracts features over meteorological variables, leading to

improved precipitation skill scores of 21.7%, 60.5%, and 45.5% for light rain, moderate rain, and heavy rain, respectively, on

an hourly basis. We also evaluate two case studies under different driven synoptic conditions and show promising results in

estimating heavy precipitation during strong convective precipitation events. Overall, the proposed DL model can provide a

vital reference for capturing precipitation-triggering mechanisms and enhancing precipitation forecasting skills. Additionally,

we discuss the sensitivities of the fundamental meteorological variables used in this study, training strategies, and performance

limitations.
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Abstract17

Quantitative precipitation forecasting in numerical weather prediction (NWP) models18

rely on physical parameterization schemes. However, these schemes involve considerable19

uncertainties due to limited knowledge of the mechanisms involved in the precipitating20

process, ultimately leading to degraded precipitation forecasting skills. To address this21

issue, our study proposes using a Swin-Transformer based deep learning (DL) model to22

quantitatively map fundamental variables solved by NWP models to precipitation maps.23

Our results show that the DL model effectively extracts features over meteorological vari-24

ables, leading to improved precipitation skill scores of 21.7%, 60.5%, and 45.5% for light25

rain, moderate rain, and heavy rain, respectively, on an hourly basis. We also evaluate26

two case studies under different driven synoptic conditions and show promising results27

in estimating heavy precipitation during strong convective precipitation events. Over-28

all, the proposed DL model can provide a vital reference for capturing precipitation-triggering29

mechanisms and enhancing precipitation forecasting skills. Additionally, we discuss the30

sensitivities of the fundamental meteorological variables used in this study, training strate-31

gies, and performance limitations.32

Plain Language Summary33

Numerical weather prediction (NWP) models depend on certain empirical formu-34

lations known as parameterizations to estimate precipitation. However, these methods35

often fall short due to the intricate dynamics of rainfall, which involves numerous small-36

scale interactions that these models are unable to fully capture. To counteract these lim-37

itations, our study deploys a form of machine learning known as deep learning (DL) to38

predict precipitation. This DL model utilizes fundamental weather variables derived from39

NWP models to make its estimations, serving as a remedy for the inherent weaknesses40

of traditional models caused by the uncertainties in their parameterization schemes. The41

implementation of our deep learning model resulted in a significant enhancement in rain-42

fall prediction accuracy, particularly in the case of extreme precipitation events. This43

suggests that the application of machine learning strategies could be a promising approach44

to improve the reliability of rainfall forecasts, a crucial element for effective weather pre-45

diction and water resource management.46

1 Introduction47

Accurate quantitatively forecasting precipitation is essential for future planning and48

very helpful for minimizing human lives and property damage beforehand of extreme events,49

especially under the current rapidly changing climate. NWP models have been playing50

an increasingly important role in all operational centres and academia for understand-51

ing our earth system. It relies on discretizing a full set of governing equations includ-52

ing the Navier-Stokes equations, ideal gas law and thermodynamics and solving them53

numerically (Kalnay, 2003). With computing these prognostic equation sets over phys-54

ical grids across different scales, the spatiotemporal evolving of the meteorological vari-55

ables such as the temperature, wind speed and direction, air pressure and density are56

represented under the rotating earth coordinates. Building upon the enrichment of sci-57

entific knowledge in fundamental physics, and accelerated with the advances in technol-58

ogy such as computational power and numerous sources of observational data, NWP is59

showing quite a revolution over the past decades (Bauer et al., 2015).60

As a result, the forecasting of fundamental meteorological variables under a so-called61

resolved scale of motion is readily available and more reliable in terms of its accuracy.62

However, many processes under the unresolved scales of motion also enter the equations,63

such as the moist processes involving condensation and evaporation, turbulence, convec-64

tive activities and cloud microphysics, which are tightly related to precipitation forma-65

tion and need to be parameterized to describe their relations with the states in resolved66

–2–



manuscript submitted to Earth and Space Science

scales (Bauer et al., 2015). These parameterization schemes are generally based on the67

simplification and approximation of the physic laws to facilitate the numerical solutions,68

hence carefully chosen and sensitivity tests for the parameterization schemes will con-69

siderably affect the precipitation forecasting skills. Moreover, with an insufficient under-70

standing of the underlying physics and some inherent uncertainties, using parameteri-71

zation schemes will intrinsically bottleneck the further improvements of the performance72

for quantitatively estimating the precipitation (Zhou et al., 2022).73

With the blossoming of artificial intelligence, many researchers have demonstrated74

the great ability of deep learning models in handling geoscience and remote sensing tasks,75

including precipitation estimation and forecasting. Shi et al. (2015) proposed and eval-76

uated a series of spatial-temporal models dealing with precipitation nowcasting problems77

by extrapolating radar echoes and achieved better performance compared to traditional78

optical flow method (Shi et al., 2015, 2017). Ravuri et al. (2021) proposed to use a gen-79

erative model with the stochastic method to extend nowcasting leading time without re-80

sorting to blurring. Sønderby et al. (2020) constructed a deep learning predictive model81

that uses satellite, radar and precipitation data and achieved a forecast leading time of82

8 hours with a high spatiotemporal resolution, and outperforms the High-Resolution Rapid83

Refresh (HRRR) in terms of its accuracy. Other than precipitation nowcasting tasks, ma-84

chine learning tools are also commonly applied to satellite images for precipitation es-85

timation. Tao et al. (2017) proposed a deep learning model to extract features from bis-86

pectral satellite infrared (IR) and water vapour (WV) channels for detecting rain areas.87

Chen et al. (2019) proposed a two-stage hybrid neural network to estimate precipitation88

using ground-based radar and satellite observations. Wang et al. (2021) proposed a trans-89

fer learning based method, which uses data-riched Continental US (CONUS) IR dataset90

from the Geostationary Operational Environment Satellite (GOES) for pre-training of91

the model, and then transferred to China through re-training with multi-band IR sig-92

nals from Chinese Fengyun (FY) satellite. Gao et al. (2022) used a U-Net model com-93

bined with the attention mechanism to directly retrieve precipitation maps using multi-94

band FY satellite images at a near real-time scale.95

Many recent studies attempt to use data-driven models directly perform the NWP96

tasks in favour of their computational efficiencies compared to state-of-the-art NWP mod-97

els. These data-driven models are generally trained on climate model outputs, general98

circulation models (GCM)(Scher & Messori, 2019; Chattopadhyay et al., 2020), or trained99

on reanalysis products such as ECMWF Reanalysis v5 (ERA5) dataset (Rasp et al., 2020;100

Rasp & Thuerey, 2021). Dueben and Bauer (2018) presented a “toy model” to identify101

challenges and fundamental design choices for deep learning based forecasting systems.102

Arcomano et al. (2020) designed a deep learning model and performed a 20-day global103

forecast. Evaluation results indicate that the DL model outperforms the NWP models104

for those state variables most affected by parameterization processes. Other than con-105

volutional based deep learning models, Pathak et al. (2022) built a Fourier operator based106

transformer network to perform weather forecasting at globally 0.25◦ resolution and achieved107

matched accuracy with the state-of-the-art NWP model system the ECMWF Integrated108

Forecasting System (IFS).109

Another prominent application of machine learning and deep learning techniques110

for NWP tasks is post-processing and bias correction. Grönquist et al. (2021) applied111

a convolutional neural network for bias correction of ensemble NWP predicted temper-112

ature field at various pressure levels, and achieved 14% improvement of ensemble fore-113

cast skill (CRPS) with a considerable reduction of computational cost owing to reduce114

the usage of trajectories. Taillardat and Mestre (2020); Li et al. (2022); Hess and Boers115

(2022) used machine learning and deep learning frameworks for post-processing quan-116

titative precipitation forecasting results on the ensemble NWP models and achieved promis-117

ing results on estimating heavy rainfall events located at long tails of the distribution118

curve.119

With many machine learning methods have achieved remarkable results for now-120

casting tasks or forecasting basic meteorological variables mentioned above. Directly map-121
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Figure 1. Left: Study domain and terrain height for input WRF meteorological data.

Right:Input meteorological data simulated by WRF model.

ping basic meteorological variables to precipitation amounts using a machine learning122

model instead of parameterization schemes has been rarely explored. Therefore, in this123

study, we aim to develop a deep learning method for extracting rainfall features, from124

basic meteorological variables including temperature, water vapour, and atmospheric move-125

ments simulated by Weather Research and Forecasting Model (WRF) model at 27-km126

resolution. The basic variables were fed to an attention mechanism based Shift Window127

Vision Transformer (Swin Transformer) neural network (Dosovitskiy et al., 2021; Liu et128

al., 2021), and targeted to reproduce the high-resolution satellite rainfall product, the129

Climate Prediction Center morphing method (CMORPH) data (Xie, Pingping et al., 2019).130

This deep learning method will circumvent uncertainties of the physical parameteriza-131

tion scheme owing to incompletely understood physical processes and capture the non-132

linearity relationship between the predictors and labels.133

2 Methodology134

We consider the task of quantitative precipitation estimation using a deep learn-135

ing model as an optimization problem, which can be formulated as follows:136

Θ = argmin
θ

∫
L(Ψ(X;θ),y)dy (1)

In this formulation, the model takes pairs of input consisting of basic atmospheric137

variables X and precipitation observational data y. The mapping function Ψ is used to138

relate these inputs, and it has trainable parameters θ. The goal is to find the optimal139

parameters Θ by minimizing a set of loss functions L using optimization algorithms.140

2.1 Dataset preparing141

2.1.1 Trainning predictors:142

To generate a dataset for high-resolution precipitation maps, we conducted a long-143

term dynamical simulation of 5 years (2017 − 2021) over the wettest season of south-144

east China, as shown in the left panel in Fig.1. The simulation was performed using the145

Weather Research and Forecasting (WRF) model with driven data from ERA5. The raw146

resolution for ERA5 data is 0.25◦ × 0.25◦, and we used the meteorological fields from147

the WRF domain 1 simulation with 27-km resolution as predictors.148

For the numerical simulation, we used a vertical grid with 38 levels to accurately149

represent the atmospheric system. We selected four model layers of three-dimensional150
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(3D) basic variables, including wind velocity (U, V, W), pressure (P), temperature (T),151

geopotential height (z), and humidity (Q), and stacked them with the corresponding vari-152

able at the surface level. We also included a two-dimensional (2D) diagnostic variable,153

total precipitable water (TPW), in our analysis. The vertical wind speed (W) at a height154

of 10 meters was not available in our model output, so the number of layers for this vari-155

able is limited to four. These variables were combined to form a 34-layer feature map,156

which we will refer to as 34 channels, as shown in the right panel Fig.1.157

In atmospheric modelling, it is common practice to use pressure levels due to the158

decrease in pressure with height in the atmosphere. However, interpolating values from159

the model layers to the pressure levels can sometimes result in missing values of the ba-160

sic variables due to varying terrain heights. To avoid this issue and minimize the mem-161

ory requirements for training a deep learning model, we chose to directly use the values162

from the model layers rather than interpolating to pressure levels. This allowed us to163

accurately represent the atmospheric system while minimizing the computational resources164

needed for the simulation.165

2.1.2 Observational precipitation data:166

To obtain observational precipitation data as the reference for ground truth, we used167

CMORPH (NOAA CPC Morphing Technique), a high-resolution global satellite precip-168

itation product. The data is created by combining passive microwave and infrared wave169

radiance measurements from multiple satellite instruments and adjusted using daily rain170

gauge analysis. The full-resolution CMORPH data used in this study has a high spa-171

tial resolution of 8 km and a frequency of 30 minutes. To align it with the meteorolog-172

ical data from the model used in this study, the CMORPH data was resampled to an173

hourly frequency, and its pixel values were matched to the corresponding grid points in174

the model.175

2.2 Network Architecture176

The architecture of the proposed model shown in Fig.2 A is based on the classi-177

cal encoder-decoder framework, which has been successfully applied to many semantic178

segmentation tasks in the computer vision field. The model is inspired by the original179

UNet model (Ronneberger et al., 2015). The gridded meteorological data generated by180

the WRF model are first divided into 4×4 non-overlapping patches by using a 2D con-181

volutional layer with a stride and kernel size equal to the patch size. The patches are182

then transformed into sequence embeddings and fed into the encoder.183

In the encoder, we replace the CNN backbone network in the original UNet model184

with the Swin-transformer (Liu et al., 2021). Each encoder block consists of a patch merg-185

ing layer and four Swin-transformer blocks. The patch merging layer performs downsam-186

pling, similar to the pooling operation in CNN-based models, while the Swin-transformer187

block extracts features, similar to a convolutional operation. The input data passed through188

the patch partition layer has a size of H
4 ×

W
4 with C embedding channels, where H and189

W are the height and width of the input data. With each pass through an encoder block,190

the height and width are halved and the number of channels doubles.191

In the decoder block, the patch-expanding layer performs upsampling using bilin-192

ear interpolation to restore the feature map to its original resolution, doubling the size193

of the feature map and reducing the feature dimension to half of its original dimension.194

To maintain the information lost during downsampling in the encoder, the expanded fea-195

ture maps are fused with the downsampled features through a skip connection structure.196

This allows the Swin-transformer blocks in the decoder to receive inputs with the same197

size as the corresponding level of the encoder, but with features crossing multiple dimen-198

sions.199
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Figure 2. Architechture of the Swin-Transformer-Unet model (A), and the basic computa-

tional principle for a Swin Transformer block (B).

The bottom levels of the encoder and decoder are connected by a bottleneck, which200

has the same structure as the encoder but only with two Swin-transformer blocks. This201

hierarchical architecture design is rooted in the principle of enhancing the network’s abil-202

ity to learn features at multiple scales, which is particularly important for meteorolog-203

ical data due to its multi-scale nature.204

The computation route of the Swin-transformer block, as depicted in Fig.2 B, is205

designed to reduce the computational cost compared to traditional multi-head self-attention206

(MSA) modules through the implementation of a sliding window mechanism. The Swin-207

transformer structure (Liu et al., 2021), accomplishes this reduction by composing a Swin-208

transformer block of two consecutive attention modules. Each attention module is com-209

posed of two LayerNorm (LN) layers, a multi-head self-attention module, a residual con-210

nection shortcut, and a 2-layer multilayer perceptron (MLP) with Gaussian Error Lin-211

ear Units (GELU) nonlinearity.212

Before the MSA module and the MLP module, the LayerNorm (LN) is applied, and213

the two attention modules differ in the type of multi-head self-attention employed. The214

first MSA layer uses a regular Window-Based MSA (W-MSA), while the second MSA215

layer adopts a Shifted Window-Based MSA (SW-MSA) module. The calculation of the216

Swin-transformer block is described by the following equations:217

ẑl = W -MSA
(
LN

(
zl−1

))
+ zl−1 (2)

zl = MLP
(
LN

(
ẑl
))

+ ẑl (3)

ẑl+1 = SW -MSA
(
LN

(
zl
))

+ zl (4)

zl+1 = W -MSA
(
LN

(
ẑl+1

))
+ ẑl+1 (5)
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where ẑl is the output features of the (S)W-MSA module, zl is the output features of218

the MLP module, and l represents the number of blocks.219

2.3 Experiment details220

2.3.1 Loss functions:221

In meteorology, most variables, such as temperature and wind speed, are typically
represented as continuous values over the model grids. These variables are usually smooth
and evenly distributed unless there are significant changes in terrain or extreme weather
conditions. Precipitation data, however, is often underestimated during extreme precip-
itation events due to its imbalanced distribution, making it a challenging problem to ac-
curately predict from an engineering perspective. To address this issue, we propose the
use of the Tversky (Salehi et al., 2017) loss function in our model. The Tversky loss func-
tion is defined as:

LTversky = 1−
∑N

i pigi∑N
i pigi + α

∑N
i pi(1− gi) + β

∑N
i (1− pi)gi

(6)

where pi and gi are the predicted and ground truth values at pixel i, respectively, and
α and β are the weighting factors for the false positive and false negative terms. It can
be viewed as a generalization version of the Dice similarity coefficient, which is widely
used in image segmentation tasks. The advantage of using the Tversky loss function is
that it provides better control over the trade-off between precision and recall by allow-
ing for the adjustment of the false positive and false negative weighting factors. This is
particularly useful in our situations where the precipitation data is extremely imbalanced,
with the background pixels represented by 0 indicating no rainfall. To encourage the model
to better predict extreme precipitation, the Tversky loss function has been adjusted to
assign higher penalties to false negative predictions. This is achieved by setting β to a
higher value than α in our experiments, making the model more inclined to accurately
predict extreme precipitation values. In addition to the Tversky loss function, we also
use the mean squared error (MSE) loss function, which is a commonly used loss func-
tion for regression problems, as our precipitation prediction task can also be viewed as
a pixel-wise regression problem. The combined loss function can be expressed as:

L(y, ŷ) = 0.5LTversky(y, ŷ) + 0.5LMSE(y, ŷ) (7)

2.3.2 Data transform:222

To enhance the network’s convergence, we introduce data transformations to the223

original input data. Initially, a center-cropping operation is executed on the meteoro-224

logical data to mitigate boundary errors. This step is crucial as the WRF model, being225

a regional weather forecasting model, necessitates input from the global background field226

from ERA5. This requirement can potentially introduce errors at the lateral boundaries227

of the study domain. Next, we apply mean-std normalization to the input data to scale228

each predictor. This helps to bring the data into a similar range and prevent one pre-229

dictor from dominating the other. Finally, we take a log transformation of the observa-230

tional label data, the precipitation map, to reduce the skewness of its distribution. With231

the log transformation, the distribution of data is better represented and improves the232

convergence in the training as well as the accuracy while inferencing.233

2.3.3 Evaluation metrics:234

To evaluate the performance of the model, various metrics are calculated includ-
ing the probability of detection (POD), threat score (TS), equitable threat score (ETS),
false alarm ratio (FAR), and BIAS. These metrics are defined as follows:

POD =
h

h+miss
(8)

–7–



manuscript submitted to Earth and Space Science

TS =
h

h+miss+ f
(9)

ETS =
h− hrandom

h+miss+ f − hrandom
(10)

BIAS =
h+ f

h+miss
(11)

FAR =
f

h+ f
(12)

The POD primarily focuses on the number of hits, while the TS, FAR, and BIAS eval-235

uate the combined impact of hits and false alarms. The ETS takes into account the pos-236

sibility of a hit by chance by calculating hrandom = h+f
h+m+f+cn , where cn is the num-237

ber of correct negatives. A higher POD, TS, and ETS, and a lower FAR or a BIAS closer238

to 1 are considered an indicator of a more accurate prediction.239

3 Analysis of experiment results240

3.1 Overall performance241

In our study, we utilized a neural network that was trained using 6 years of WRF242

simulation data, and the WRF simulation was driven by the ERA5 reanalysis data, which243

is the foundation of our deep-learning model. Therefore, the performance of our deep-244

learning model is ultimately dependent on the original ERA5 background and our WRF245

simulation. Despite the advancements in weather forecasting, it remains challenging to246

reproduce the heavy precipitation events that are generated by intense convective sys-247

tems. By utilizing the Swin-transformer Unet to process fundamental meteorological vari-248

ables, we observed significant improvements in the prediction of heavy precipitation events249

on the tail, both in terms of accuracy in rainfall quantities and the location of the rain-250

fall. The overall evaluation scores calculated from July to December 2021, with all lead-251

ing times from 0 to 72 hours, are listed in Table 1.252

(1) Our deep learning model for the prediction of drizzles with a rainfall intensity253

greater than 1mmh−1 has been shown to enhance POD, TS, and ETS, while simulta-254

neously reducing the FAR. Additionally, the FBIAS is closer to 1 when compared with255

the results obtained from a pure WRF simulation. The improvement in the TS score is256

particularly significant, reaching as high as 21.7%.257

(2) In the prediction of moderate rainfall with an hourly intensity of 3mmh−1 and258

5mmh−1, the POD has increased from 0.145 to 0.218 and from 0.088 to 0.161 respec-259

tively, while the FAR has slightly decreased. As a result, the TS and ETS scores have260

also seen considerable increases, with the TS score increasing from 0.117 to 0.164 for the261

3mmh−1 threshold and from 0.076 to 0.122 for the 5mmh−1 threshold. The ETS score262

has increased from 0.106 to 0.151 for the 3mmh−1 threshold and from 0.071 to 0.114 for263

the 5mmh−1 threshold. The relative improvement ratio for both the TS and ETS scores264

is as high as 60.5% for the 5mmh−1 threshold.265

(3) For the heavy rainfall events with an hourly precipitation intensity exceeding266

10mm, our model has demonstrated the ability to significantly enhance the POD, TS,267

and ETS scores. However, in detecting heavy rainfall, there is a trade-off of introduc-268

ing higher FAR. This indicates that the meteorological background data may not fully269

match the observational precipitation data, causing some intensive weather systems sim-270

ulated by the WRF model with possibilities of heavy precipitation to be mistakenly placed.271

The improvement in POD for heavy rainfall, with the addition of both 10mm and 20mm272

intensities, is around 50%, increasing from 0.06 to 0.12. Similarly, the improvement in273

the TS and ETS scores ranges from 0.055 to 0.08, with an improvement rate of 45.5%.274

The pure WRF simulation has a BIAS of around 0.1 for heavy rainfall, which suggests275

that the detected rainfall area is sub-optimally small. Our deep-learning model improved276

–8–
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Table 1. The evaluation results for the WRF simulation and WRF + Swin-transformer Unet

for the hourly rainfall intensity with forecasting leading time of 0 − 72h, the evaluation period is

July to December 2021. Evaluation metrics including POD (probability of detection), FAR (false

alarm ratio), TS (threat score), ETS (equitable threat score), and BIAS ratio are listed.

Precipitation (mmh−1) POD FAR TS ETS FBIAS

0.1 0.508 0.568 0.295 0.213 1.263
1.0 0.326 0.611 0.209 0.172 0.902

WRF 3.0 0.145 0.610 0.117 0.106 0.378
5.0 0.088 0.605 0.076 0.071 0.223
10.0 0.045 0.563 0.040 0.039 0.123
20.0 0.016 0.337 0.014 0.014 0.073

0.1 0.525 0.475 0.359 0.289 1.013
1.0 0.346 0.523 0.254 0.222 0.726

WRF + AI 3.0 0.218 0.611 0.164 0.151 0.551
5.0 0.161 0.667 0.122 0.114 0.462
10.0 0.086 0.755 0.063 0.061 0.391
20.0 0.030 0.695 0.021 0.020 0.356

this score to nearly 0.4, demonstrating a better ability to detect heavy rainfall. Improv-277

ing the accuracy of heavy rainfall detection and reducing the FAR is an important area278

for further research.279

Figure 3. Spatial distribution of Threat Score (TS) for the baseline WRF, WRF + AI frame-

work, and its relative improvements over the evaluation dataset.

(4) In terms of spatial distribution, our deep learning framework exhibits a sub-280

stantial enhancement in forecast skill, as quantified by the cumulative TS score across281

all precipitation intensity thresholds. Notably, this improvement is observed in areas prone282

to heavy precipitation events, such as potential tropical cyclone pathways and associ-283

ated rainbands, in addition to Mei-Yu frontal systems during monsoon seasons. The rel-284

ative advancements in these regions amount to several-fold increases, while minor degra-285

dation is detected in an insignificant fraction of pixels, ensuring overall model performance286

remains robust mesoscale application.287

3.2 Quantile distribution288

Quantile distribution stands as a pivotal measure for evaluating the predictive pro-289

ficiency of heavy rainfall events. Fig. 4 demonstrates a monotonic decline in model per-290
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Figure 4. Threat Score (TS) for precipitation events above the percentile thresholds for

WRF and WRF + AI framework (left), and hourly precipitation intensity for WRF, WRF + AI,

CMORPH observation at each corresponding percentiles.

formance across varying quantile thresholds, signifying the escalating challenge of accu-291

rately predicting more extreme events.292

When examining lower percentiles, our baseline WRF simulation, which employs293

the Kain-Fritsch (KF) cumulus parameterization scheme (Kain & Fritsch, 1993; Kain,294

2004), displays performance characteristics akin to our deep learning framework in terms295

of its TS, albeit with a slight overestimation of light rainfall between the 70th and 90th296

percentile with an hourly rainfall intensity less than 1mm. This is primarily due to the297

fact that the KF scheme is well-suited to accommodate light precipitation events, which298

are less intricate to predict. This finding is consistent with several dynamic downscal-299

ing studies (Ma & Tan, 2009; Otieno et al., 2020) that have indicated a tendency of the300

KF scheme to produce a wet bias during light rainfall while demonstrating limited pre-301

dictability for heavier rainfall events.302

When we examine more intense rainfall events that surpass the 95th percentile thresh-303

old, our proposed deep learning framework begins to exhibit superiority in its capacity304

to replicate these extreme events and align the distribution more closely with observed305

ground truth. Within this percentile range, the TS score for the deep learning frame-306

work is approximately double that of the baseline WRF model, and the estimated rain-307

fall intensity is closely tracks the CMORPH observation until the 99.5th extreme per-308

centile is reached. At this point, the largest bias is about 20%, whereas the baseline WRF309

model can only capture less than 50% of the intensity. This result underscores the en-310

hanced performance of this deep learning framework in the accurate prediction and rep-311

resentation of intense rainfall events.312

In addition to the above, we present the meridional and zonal averages of hourly313

precipitation intensity at the 95th percentile in Fig. 5, as well as its spatial distribution314

in Fig. 6. The application of our deep learning framework enables us to refine the es-315

timated rainfall intensity at the 95th percentile, resulting in a significantly improved align-316

ment with the CMORPH observation, both spatially and in terms of its zonal and merid-317

ional mean. The spread property, represented by the shadowed area, also aligns more318

closely with the observations.319

–10–



manuscript submitted to Earth and Space Science

Figure 5. Meridionally (left) and Zonally (right) averaged precipitation intensity at 95th per-

centile.

The highest relative improvements are evident in the eastern part and southwest320

quadrant of our experimental domain, with the maximum relative improvement exceed-321

ing 100%. Some minor fluctuations and degradation are noticeable around 100◦−110◦322

Longitude and approximately 25◦ Latitude, the mountainous southwest part of China.323

This suggests that our deep learning framework may demonstrate lower confidence when324

dealing with orographic precipitation. Similar observations can be made from the spa-

WRF WRF+SwinUnet CMORPH OBS

Figure 6. Spatial distribution of 95th hourly precipitation intensity for the baseline WRF

(left), WRF + AI (mid) and CMORPH observation (right).

325

tial distribution plot in Fig. 6. The largest improvements are seen over potential trop-326

ical cyclone initiation areas in the western Pacific Ocean, the eastern China region in-327

fluenced by the Mei-Yu frontal rain belts around the middle and lower reaches of the Yangtze328

River, the southern part of Japan and the Korean Peninsula, as well as the Southeast329

Asia region around the Bay of Bengal. Other regions also show varying degrees of im-330

provement in terms of spatial distribution, indicating that our deep learning framework331

more accurately represents extreme precipitation patterns compared to the baseline WRF332

simulation, which exhibits limited predictability over these heavily precipitating areas333

during the wet season.334

3.3 Case study335

In this section, we present two case studies of heavy precipitation recorded in the336

study domain, as shown in Fig. 8 and Fig. 10. The precipitation maps depict the ac-337
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Figure 7. Equivalent Threat Score (ETS) of 6-hour accumulated precipitation for the case

study on June 3rd, 2021 at 06:00 UTC, 12:00 UTC, 18:00 UTC, and 24:00 UTC

cumulated intervals of 6 hours and cover a period of one day for each case. The first case338

study occurred on June 3rd, 2021, while the second case study occurred on August 20th,339

2021.340

3.3.1 2021-06-03:341

On June 3rd, 2021, a frontal rain band was observed to be moving southeastward.342

In our default WRF simulation, results are generally indicating weak signals for several343

precipitation hot spots over both the continent and the ocean side.344

To improve the accuracy of our predictions, we utilized the Swin-Transformer-Unet345

model in conjunction with the basic meteorological variables predicted by WRF. As a346

result, the overall precipitation patterns observed are exhibiting more consistency with347

the CMORPH observational dataset for all four intervals during this case.348

The frontal rain band were initialized around the centre of the study domain (Lat-349

itude 27◦N Longitude 110◦E) before 06 UTC (Fig.8) and started moving southeastward350

driven by the low-pressure centre located on the northeast corner of the study area, the351

movement and the structure of the rain band is well preserved in the prediction results352

at 12 UTC by our deep learning model. In the following sequences of time, this frontal353

rain band further extended in length and almost covered the whole south and southeast354

part of China while approaching the coast.355

Based on the quantitative evaluation shown in Fig.7, the performance of the de-356

fault WRF model and the deep learning model were compared in terms of predicting driz-357

zle and light rainfall with thresholds less than 10mm and heavier rainfall areas with thresh-358

olds exceeding 20mm or even 50mm.359
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WRF WRF+SwinUnet CMORPH OBS

Figure 8. 6-h accumulated precipitation predicted by WRF, WRF + Swin-Transformer Unet,

and observational data from CMORPH datasets on 2021-06-03.

–13–



manuscript submitted to Earth and Space Science

Figure 9. Equivalent Threat Score (ETS) of 6-hour accumulated precipitation for the case

study on Aug 20th, 2021 at 06:00 UTC, 12:00 UTC, 18:00 UTC, and 24:00 UTC

For predicting drizzle and light rainfall with thresholds less than 10mm within a360

6 hours interval, the ETS scores of both models were relatively close, except for the first361

time interval 06 UTC at 0.1mm thresholds, where the ETS score increased by nearly 40%362

from 0.34 to 0.5 in the deep learning model.363

On the other hand, for heavier rainfall areas with thresholds exceeding 20mm or364

even 50mm, the deep learning model outperformed the default WRF model by doubling365

or even trebling the ETS score, as indicated by the results at 06 UTC and 12 UTC. More-366

over, the decrease of ETS for the deep learning enhanced prediction was less steep, which367

indicates a more stable performance in estimating precipitation for all ranges compared368

to the default WRF model.369

It is worth noting that NWP models like the WRF model generally suffer from sharp370

degradation in performance when moving from the synoptic scale to the convective scale.371

Therefore, the superior performance of the deep learning model in estimating precipi-372

tation for heavier rainfall areas suggests its potential for improving the prediction ac-373

curacy of convective precipitation in NWP models.374

3.3.2 2021-08-20:375

On August 20th, 2021, Central and Northeast China experienced extreme precip-376

itation, accompanied by thunderstorms and strong convective weather. Heavy rainfall377

of over 100mm was initially observed before 12:00 UTC (Fig.10) in the Central China378

region (located at Latitude 33◦N and Longitude 115◦E). Subsequently, later in the day,379

extreme was observed in the Yellow Sea, Northeast China, and the Korean Peninsula.380

As shown in the precipitation map in Fig.10, our baseline WRF simulation cap-381

tures only a limited signal of the strong convective rainfall due to the coarse domain grid382
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WRF WRF+SwinUnet CMORPH OBS

Figure 10. 6-h accumulated precipitation predicted by WRF, WRF + Swin-Transformer

Unet, and observational data from CMORPH datasets on 2021-08-20.
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size and the limitations of the parameterization scheme for cumulus and cloud micro-383

physics. However, by enhancing the estimation of precipitation with our deep learning384

model, we were able to bridge the gap between the WRF simulation and the observa-385

tions, caused by intrinsic limitations rooted in the parameterization schemes. This con-386

siderably reduces the negative bias and facilitates the estimation of extreme precipita-387

tion, both in its maximum precipitation amount and in reducing errors in its spatial dis-388

tribution.389

Fig.9 presents statistical evidence demonstrating the effectiveness of our deep learn-390

ing framework. The results indicate that the most significant improvement over the base-391

line WRF simulation occurs at 20th 06 UTC and 21st 00 UTC, where the ETS score in-392

creases by an average of 30% for events with light to moderate rainfall (precipitation amount393

less than 10mm). Additionally, the baseline WRF simulation’s performance degrades rapidly394

as the precipitation threshold increases, failing to detect precipitation exceeding 50mm395

in a 6-hour interval. In contrast, our deep learning model enhances the estimation re-396

sults, maintaining a relatively good performance with an ETS score above 0.25 for all397

thresholds at 06 UTC and 00 UTC, while the baseline WRF model’s performance drops398

to less than 0.1. These results indicate that our deep learning framework provides a sig-399

nificant improvement over the baseline WRF model, even though the grid size and pa-400

rameterization schemes are not ideally suited for capturing strong convective precipita-401

tion during the monsoon season.402

4 Conclusion and discussion403

Regional numerical weather prediction (NWP) models like the WRF model are known404

to be sensitive to domain grid size (Jee & Kim, 2017) and parameterization schemes (Hasan405

& Islam, 2018), particularly when it comes to predicting precipitation. To address this406

challenge, a deep learning model for semantic segmentation using a Swin-Transformer407

backbone and a hierarchical Unet structure is proposed in this study. This model lever-408

ages basic meteorological variables such as air temperature, pressure, wind speed, and409

humidity to significantly improve the performance of the baseline WRF model in sim-410

ulating precipitation, particularly for extreme events induced by strong convection. The411

overall effectiveness of this deep learning post-processing framework is demonstrated through412

a comprehensive performance evaluation, including an analysis of its spatial and quan-413

tile distributions, and a detailed discussion of two case studies.414

To evaluate the model’s performance, we assessed hourly precipitation amounts across415

intensity thresholds ranging from 0.1mm to 20mm during the period of June 2021 to Septem-416

ber 2021. The results demonstrated that our deep learning model outperformed the base-417

line WRF simulation for all precipitation intensities. Specifically, the model improved418

the baseline WRF simulation by 21.7% for light rainfall and drizzle (precipitation amount419

less than 1mmh−1), and by 60% for moderate rainfall events with precipitation thresh-420

olds of 3mmh−1 and 5mmh−1. For heavy rainfall events with hourly precipitation in-421

tensity exceeding 10mm, the improvements reflected by the TS and ETS scores reached422

as high as 50% compared to the baseline WRF. The overall quantile distribution of base-423

line WRF and the proposed deep learning framework are also compared, with results show-424

ing that the prediction of rainfall intensity across all the quantiles received various de-425

grees of improvement. Additionally, the spatial distribution of the 95th percentile rain-426

fall intensity and its zonal and meridional averages were also revealing a significantly bet-427

ter alignment with observational data. However, minor challenges were noted in regions428

with possible orographic precipitation trigger mechanisms, particularly in the mountain-429

ous southwest part of China. Future exploratory efforts could be directed towards am-430

plifying the model’s proficiency in recognizing and integrating finer-scale terrain and land431

surface effects. Such advancements could potentially elevate the forecast skill in these432

currently less confident areas.433

–16–



manuscript submitted to Earth and Space Science

In addition to the overall evaluation, we presented two case studies of precipita-434

tion events triggered by different synoptic conditions to demonstrate the model’s abil-435

ity to capture complex weather phenomena. For both events, we investigated the 6-hourly436

accumulated rainfall of four intervals and showed how our deep learning model can pro-437

vide more accurate precipitation forecasts by learning from meteorological datasets and438

extracting relevant features.439

The first precipitation event is caused by the large-scale movement of frontal rain440

bands, while the second event is induced by strong convection during the monsoon sea-441

son. In both cases, we observed rapid degradation of model performance as precipita-442

tion thresholds increased in the baseline WRF model. On the contrary, our deep learn-443

ing model was able to compensate for the insufficient predictability of the baseline WRF444

model simulation and achieve improved ETS scores over each temporal interval at var-445

ious precipitation thresholds. Notably, our model demonstrated particular success in cap-446

turing extreme precipitation amounts exceeding 30mm or 50mm, which are often diffi-447

cult to predict using traditional modelling approaches. These findings demonstrate the448

effectiveness of our deep learning model in capturing precipitation characteristics from449

basic meteorological variables and further quantitively estimating precipitation based on450

extracted features.451

As we are feeding the WRF model simulated meteorological fields into our deep452

learning model, the quality of the precipitation estimation results is ultimately depen-453

dent on the quality of our baseline WRF simulation, correspondingly, it should also be454

related to the initial forcing data used to drive the WRF simulation. Therefore, the re-455

sults presented in this study is showing substantial relative improvements against the456

baseline WRF simulation, demonstrating the ability of this neural network in captur-457

ing triggering processes which are not currently described in the existing precipitation458

parameterizations of the WRF model. Moreover, due to the model abstraction, the model459

grid states may not fully match the CMORPH precipitation observations used as labels460

for training, making it challenging to accurately estimate precipitation amounts in terms461

of intensity and location. As a consequence, this spatial and temporal inconsistency of462

prediction and observation was reflected in the increased false alarm rate (FAR) at higher463

thresholds. Similar results were also noted by Hess and Boers (2022), they attributed464

this issue to the localized intermittent nature of the heavy rainfall events. We believe465

that this limitation can be mitigated by accumulating hourly prediction results over sev-466

eral hours, or by adjusting the hyperparameter α and β in the Tversky loss which con-467

trols the trade-off between precision and recall.468

Compared to solely optimizing the model with a global MSEloss, several studies469

have attempted to manage the extremely skewed precipitation data by performing log-470

transformation scaling (Shi et al., 2017; Pathak et al., 2022), modifying traditional re-471

gression loss functions such as MAE loss and MSE loss by binning precipitation data and472

assigning different weights to each category (Shi et al., 2017; Franch et al., 2020), or com-473

bining structural similarity measure (SSIM) loss function during optimization (Tran &474

Song, 2019; Hess & Boers, 2022). The usage of the Tversky loss function has also demon-475

strated its superior ability in dealing with strongly imbalanced distributed precipitation476

data in our study. The current optimization process involves pixel-wise optimization of477

the Tversky loss function, followed by using MSE loss for global refinement. Exploring478

custom loss functions that can focus on local features and the overall distribution might479

be beneficial for further improving the temporal and spatial accuracy of the deep learn-480

ing model.481

Additionally, the data augmentation technique is also worth exploring. The exist-482

ing permutation study by Li et al. (2022) has shown that the moisture-related predic-483

tor dominates the precipitation estimation in this deep learning framework. By using484

feature patch masking, mixing, and shuffling techniques, it may be possible to further485

improve the model’s generalizing ability by increasing the difficulty of the original task486
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and enriching the dataset’s diversity. This approach can help reduce the model’s reliance487

on specific predictors, leading to more robust and accurate predictions.488

5 Open Research489

The experiments are conducted using Pytorch software v2.0 (https://pytorch.org/).490

The precipitation data used for training as references are from CMORPH (https://www491

.ncei.noaa.gov/products/climate-data-records/precipitation-cmorph). The me-492

teorological feature map used for training is generated from the WRF model (https://493

github.com/wrf-model/WRF), while due to the large size of the training dataset (∼300494

G), it is currently archived in HKUST ENVF database (http://envf.uswt.hk/itf-si/),495

which can be provided upon request. The source code for preprocessing WRF data, train-496

ing the Swin-Transformer-Unet model and post-processing to generate plots are avail-497

able at (https://doi.org/10.5281/zenodo.8210356).498
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