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Abstract

Astronomical cycles recorded in stratigraphic sequences offer a powerful data source to estimate Earth’s axial precession fre-

quency k, as well as the frequency of rotation of the planetary perihelia (gi) and of the ascending nodes of their orbital planes

(si). Together, these frequencies control the insolation cycles (eccentricity, obliquity and climatic precession) that affect climate

and sedimentation, providing a geologic record of ancient Solar system behavior spanning billions of years. Here we introduce

two Bayesian methods that harness stratigraphic data to quantitatively estimate ancient astronomical frequencies and their

uncertainties. The first method (TimeOptB) calculates the posterior probability density function (PDF) of the axial precession

frequency k and of the sedimentation rate u for a given cyclostratigraphic data set, while setting the Solar system frequencies

gi and si to fixed values. The second method (TimeOptBMCMC) applies an adaptive Markov chain Monte Carlo algorithm to

efficiently sample the posterior PDF of all the parameters that affect astronomical cycles recorded in stratigraphy: five gi, five

si, k, and u. We also include an approach to assess the significance of detecting astronomical cycles in cyclostratigraphic records.

The methods provide an extension of current approaches that is computationally efficient and well suited to recover the history

of astronomical cycles, Earth-Moon history, and the evolution of the Solar system from geological records. As case studies, data

from the Xiamaling Formation (N. China, 1.4 Ga) and ODP Site 1262 (S. Atlantic, 55 Ma) are evaluated, providing updated

estimates of astronomical frequencies, Earth-Moon history, and secular resonance terms.
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Key Points: 9 

• We present two updated methods for Bayesian astrochronology: TimeOptB and 10 
TimeOptBMCMC 11 

• TimeOptB simultaneously estimates the Earth’s axial precession frequency and the 12 
sedimentation rate from cyclostratigraphic data 13 

• In addition, TimeOptBMCMC simultaneously estimates Solar system g-frequencies and 14 
s-frequencies from cyclostratigraphic data 15 
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Abstract 18 

Astronomical cycles recorded in stratigraphic sequences offer a powerful data source to estimate 19 
Earth’s axial precession frequency k, as well as the frequency of rotation of the planetary 20 
perihelia (gi) and of the ascending nodes of their orbital planes (si). Together, these frequencies 21 
control the insolation cycles (eccentricity, obliquity and climatic precession) that affect climate 22 
and sedimentation, providing a geologic record of ancient Solar system behavior spanning 23 
billions of years. Here we introduce two Bayesian methods that harness stratigraphic data to 24 
quantitatively estimate ancient astronomical frequencies and their uncertainties. The first method 25 
(TimeOptB) calculates the posterior probability density function (PDF) of the axial precession 26 
frequency k and of the sedimentation rate u for a given cyclostratigraphic data set, while setting 27 
the Solar system frequencies gi and si to fixed values. The second method (TimeOptBMCMC) 28 
applies an adaptive Markov chain Monte Carlo algorithm to efficiently sample the posterior PDF 29 
of all the parameters that affect astronomical cycles recorded in stratigraphy: five gi, five si, k, 30 
and u.  We also include an approach to assess the significance of detecting astronomical cycles in 31 
cyclostratigraphic records. The methods provide an extension of current approaches that is 32 
computationally efficient and well suited to recover the history of astronomical cycles, Earth-33 
Moon history, and the evolution of the Solar system from geological records. As case studies, 34 
data from the Xiamaling Formation (N. China, 1.4 Ga) and ODP Site 1262 (S. Atlantic, 55 Ma) 35 
are evaluated, providing updated estimates of astronomical frequencies, Earth-Moon history, and 36 
secular resonance terms. 37 

 38 

Plain Language Summary 39 

Earth’s transit through our Solar system is ever evolving, and so are such seemingly unwavering 40 
planetary characteristics as the number of hours in a day.  For example, it is well known that the 41 
length of the day generally increases with time as Earth’s rotation rate decreases from tidal 42 
interactions with our orbiting moon. But the ability to chart out this evolution over the history of 43 
the Solar system has been hampered by limitations of both data and theoretical models. This 44 
study presents a computational approach to map out the history of Solar system motions and the 45 
history of the Earth-Moon system, including the length of a day, by leveraging geological data 46 
and astronomical theory within a statistical framework that fully accounts for uncertainties. As 47 
such, the approach provides a means to use the geological archive as an astronomical 48 
observatory, allowing us to explore Solar system and Earth-Moon dynamics throughout their 49 
long history. 50 

 51 

1 Introduction 52 

Quasiperiodic variations in Earth’s orbit and axis of rotation influence the amount of 53 
solar radiation received at the Earth’s surface, causing climate variations and corresponding 54 
changes in sediment deposition, and resulting in cyclic sediment sequences that provide a 55 
geologic archive of the astronomical rhythms.  Following the groundbreaking discovery that 56 
astronomical cycles, or “Milankovitch cycles” (Milanković, 1941), pace the Pleistocene ice ages 57 
(Hays et al., 1976), there has been growing interest in the use of astrochronology to date 58 
stratigraphic sequences and constrain the geological time scale, as well as their use to evaluate 59 
Earth System and Solar System evolution (Hinnov, 2013; Ma et al., 2017; Meyers, 2019; Meyers 60 
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& Malinverno, 2018; Olsen et al., 2019; Pälike et al., 2004).  This study presents a Bayesian 61 
inversion approach to quantitatively reconstruct ancient astronomical cycles by linking 62 
astronomical theory with geologic observation, building on the framework of Meyers (2015; 63 
M15 hereafter) and Meyers and Malinverno (2018; MM18 hereafter). 64 

The periods of the most prominent Milankovitch cycles (eccentricity, obliquity and 65 
climatic precession) are controlled by fundamental Solar system secular frequencies that describe 66 
the frequency of rotation of the planetary orbital perihelia (gi) and the frequency of rotation of 67 
the ascending nodes of their ecliptic planes (si), combined with the precession frequency of the 68 
Earth’s spin axis (k). The periods of eccentricity cycles in the Earth’s orbit are determined by 69 
differences gi – gj, while those of the obliquity of the Earth’s axis by sums si + k, and those of 70 
climatic precession (precession modulated by eccentricity) by sums gi + k. We list in Table 1 the 71 
most important cycles used in the present study. The frequencies gi and si are mostly controlled 72 
by the corresponding planet (i = 1 for Mercury, 2 for Venus, etc.). The eccentricity and climatic 73 
precession cycles in Table 1 depend on the gi for the five innermost planets, and the obliquity 74 
frequencies are a function of the si for the four innermost planets and Saturn (i = 6); s5 for Jupiter 75 
is zero as a consequence of angular momentum conservation (Fitzpatrick, 2012, p. 180). 76 

In principle, ancient sediment records that record Milankovitch cycles can be used to 77 
estimate past variations in climatic precession, obliquity and eccentricity, as well as the 78 
fundamental frequencies (gi, si) and the axial precession frequency (k) from which they derive. 79 
This provides a powerful means to peer into the early history of the Solar System and Earth-80 
Moon system, analogous to a telescope imaging distant stars and galaxies to reconstruct the 81 
history of the universe (Meyers & Peters, 2022). 82 

It has long been known that tidal friction results in a torque that progressively slows 83 
down the Earth rotation and accelerates the Moon, sending it into a higher orbit (e.g., Darwin, 84 
1898). In turn, the slowing of the Earth’s spin and increasing lunar distance result in an increase 85 
in the period of the precession of the Earth’s axis and a decrease in the axial precession 86 
frequency k. This is a large effect over geologic time scales: models and data indicate that k 87 
decreased from ~86 arcsec/yr at 1.4 Ga to a present value of ~50.5 arcsec/yr (MM18; Farhat, 88 
Auclair-Desrotour, et al., 2022). In contrast to k, long-term Solar system calculations show that 89 
the fundamental frequencies gi and si did not vary greatly over geologic time (Hoang et al., 90 
2021). The value of k can therefore be estimated from sedimentary records by comparing 91 
eccentricity frequencies, which do not depend on k, with climatic precession or obliquity 92 
frequencies, which depend on k (see Table 1; MM18; Lantink et al., 2022). Estimates of past 93 
values of k can constrain the past history of the Earth’s length of day (LOD) and lunar distance, 94 
informing models for the evolution of tidal dissipation over geological time scales (e.g., Farhat, 95 
Auclair-Desrotour, et al., 2022), and better defining the past values of climatic precession and 96 
obliquity frequencies for astronomical timescale development. 97 

Sediment records can also give information on past values of the fundamental Solar 98 
system frequencies gi and si. For example, Olsen et al. (2019) used a long Newark basin Triassic 99 
record (~210 Ma) to estimate a period of 1.75 Myr for the g4 – g3 cycle, compared to its present 100 
period of ~2.4 Myr. Zeebe and Lourens (2019) calculated a Solar system solution that best fitted 101 
the Walvis Ridge Site 1262 record, and noted that their solution contains a shift in the g4 – g3 102 
cycle from a period of ~1.5 Myr before 50 Ma to ~2.4 Myr (near the present value) afterwards. A 103 
similar shift of the g4 – g3 cycle was observed by MM18, through the analysis of a segment of 104 
the Walvis Ridge Site 1262 cyclostratigraphic record around 55 Ma. Because of chaotic 105 
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dynamics, Solar system solutions calculated starting from the present state diverge considerably 106 
at ages beyond ~50 Ma (Laskar, 2020), and at earlier ages the period of g4 – g3 in these model 107 
results fluctuates in a broad range of 1.5-2.6 Myr (Figure 7 of Olsen et al., 2019). Astronomical 108 
cycles recorded in sediments can constrain the value of this long-term periodicity and identify 109 
which computed solutions are consistent with the past Solar system history. 110 
 111 
Table 1. Fundamental frequencies of the Solar system (gi and si), axial precession frequency (k), and 112 
astronomical cycle frequencies (eccentricity, obliquity and climatic precession) used in this study and 113 
their present day values. Present day values of gi and si after Hoang et al. (2021); present day value of k 114 
after Farhat, Auclair-Desrotour, et al. (2022). 115 
 116 

Astronomical frequencies 
 Frequency 

(arcsec/yr) 
Frequency 

(cycles/kyr) 
Period 
(kyr) 

g1 5.759 0.0044 225.0 
g2 7.448 0.0057 174.0 
g3 17.269 0.0133 75.0 
g4 17.896 0.0138 72.4 
g5 4.257 0.0033 304.4 
s1 –5.652 –0.0044 229.3 
s2 –6.709 –0.0052 193.2 
s3 –18.773 –0.0145 69.0 
s4 –17.707 –0.0137 73.2 
s6 –26.348 –0.0203 49.2 
k 50.468 0.0389 25.7 

Eccentricity 
 Frequency 

(arcsec/yr) 
Frequency 

(cycles/kyr) 
Period 
(kyr) 

g2 – g5 3.191 0.0025 406.2 
g3 – g2 9.821 0.0076 132.0 
g4 – g2 10.448 0.0081 124.0 
g3 – g5 13.012 0.0100 99.6 
g4 – g5 13.639 0.0105 95.0 

Obliquity 
 Frequency 

(arcsec/yr) 
Frequency 

(cycles/kyr) 
Period 
(kyr) 

s6 + k 24.120 0.0186 53.7 
s3 + k 31.695 0.0245 40.9 
s4 + k 32.761 0.0253 39.6 
s2 + k 43.759 0.0338 29.6 
s1 + k 44.816 0.0346 28.9 

Climatic precession 
 Frequency 

(arcsec/yr) 
Frequency 

(cycles/kyr) 
Period 
(kyr) 

g5 + k 54.725 0.0422 23.7 
g1 + k 56.227 0.0434 23.0 
g2 + k 57.916 0.0447 22.4 
g3 + k 67.737 0.0523 19.1 
g4 + k 68.364 0.0527 19.0 
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 117 

Astronomical signals recorded by sediment sequences are superimposed on a sizable 118 
background of other variability, due to fluctuations in sediment characteristics that are not related 119 
to astronomically-driven climatic cycles (e.g., tectonic, geochemical, or ocean circulation 120 
changes that influence sedimentation, diagenetic processes). Unrecognized variations in 121 
sedimentation rate and hiatuses in sedimentation will also distort the astronomical signals. Many 122 
approaches have been developed by the cyclostratigraphic community to recognize astronomical 123 
signals, from visual correlation to elaborate quantitative analyses (for an overview, see Sinnesael 124 
et al., 2019). The method we present here focuses on 1) simultaneously quantifying uncertainties 125 
in the estimated sedimentation rate and astronomical frequencies, and 2) providing a measure of 126 
significance of the results to avoid the false detection of astronomical signals in records that do 127 
not contain them (Type I errors; Meyers, 2019; Weedon, 2022). 128 

In our previous work, M15 established the TimeOpt method, based on how closely 129 
stratigraphic data matched Milankovitch periodicities and the expected eccentricity modulation 130 
of climatic precession. The method determined a best-fit value for sedimentation rate for 131 
prescribed values of five eccentricity frequencies and three climatic precession frequencies 132 
(Table 1 of M15). TimeOpt also assessed the statistical significance of the results by comparing 133 
the fit obtained for the stratigraphic data to that calculated for random time series of similar 134 
statistical characteristics.  135 

To extend the methodology and determine from cyclostratigraphic data past values and 136 
uncertainties of the astronomical frequencies, MM18 then developed TimeOptMCMC, a Markov 137 
chain Monte Carlo method that performs a random walk in the space of the parameters of interest 138 
and samples a posterior probability density function (PDF) of sedimentation rate u, of five Solar 139 
system frequencies gi, and of the axial precession frequency k. The posterior PDF combines a 140 
prior PDF of the parameters (from information other than that provided by stratigraphic data) and 141 
a likelihood function that quantifies how closely data predicted by the parameters fit the 142 
stratigraphic data. However, a drawback of TimeOptMCMC is that it typically requires a 143 
computationally expensive initial experimentation phase to set up a proposal distribution for the 144 
random walk steps that appropriately samples the posterior PDF of the parameters. Once the 145 
proposal PDF is properly ‘tuned’, the method is still computationally expensive in its original 146 
implementation, typically requiring days to weeks of simulation for each cyclostratigraphic data 147 
set. 148 

In the present study, we introduce two modified methods that offer significant 149 
improvements over the original M15 and MM18 approaches. TimeOptB (‘B’ for Bayesian) 150 
extends the TimeOpt methodology of M15 to calculate the posterior PDFs of both sedimentation 151 
rate and axial precession frequency, keeping the Solar system fundamental frequencies fixed to 152 
characteristic prior values. The statistical significance (‘p-value’) of the fit of astronomical 153 
cycles to the data is also evaluated. TimeOptBMCMC provides a more complete solution by 154 
sampling the posterior PDF of sedimentation rate and of all the astronomical parameters of 155 
interest: ten Solar system fundamental frequencies (five gi and five si) and the axial precession 156 
frequency k. Compared to the previous version, TimeOptBMCMC implements an adaptive 157 
sampling strategy that requires no preliminary set up and is orders of magnitude faster in 158 
obtaining a useful sample of the posterior PDF. Both methods also account for the possible 159 
presence of obliquity cycles (which were not considered in M15 and MM18; however, see 160 
Meyers (2019) for TimeOpt applications that include obliquity), implement updated Bayesian 161 
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priors for the Solar system fundamental frequencies and the axial precession frequency based on 162 
astronomical calculations (Farhat, Auclair-Desrotour, et al., 2022; Hoang et al., 2021), and 163 
include improvements in the approach used for likelihood estimation. 164 

The main goal of this paper is to present in detail the TimeOptB and TimeOptBMCMC 165 
methods, applying them to a synthetic data set and to the two data sets previously studied in 166 
MM18 for example demonstrations. The focus of this contribution is on the methodology used to 167 
estimate sedimentation rate and astronomical frequencies, not on the implications of the results 168 
for the history of tidal dissipation and for improvements in astrochronology. Applications of the 169 
methods to the the analysis of a number of records throughout geologic time are currently in 170 
development and will be published in the near future (Ajibade et al., 2023; Wu et al., 2023) 171 

In the rest of this paper, we first describe the Bayesian formulation to compute the value 172 
of the posterior PDF for any value of the astronomical parameters of interest. We then explain in 173 
detail the two new methods, compare their results for the two data sets examined by MM18 174 
(Xiamaling Formation, N. China, 1.4 Ga and ODP Site 1262, S. Atlantic, 55 Ma), and describe 175 
how to obtain estimates of lunar distance and length of day and their uncertainties from the 176 
posterior PDF of the axial precession frequency. We conclude by discussing strengths and 177 
limitations of our approach and future improvements. 178 

2 Bayesian Formulation 179 

The vector m of the parameters of interest consists of the sedimentation rate u, five 180 
values of gi, five values of si, and the precession frequency k as in  181 

 𝐦	 = 	 [𝑔!, 𝑔", 𝑔#, 𝑔$, 𝑔%, 𝑠!, 𝑠", 𝑠#, 𝑠$, 𝑠&, 𝑘, 𝑢]. (1) 182 

The posterior PDF of m is defined from Bayes rule as 183 

 𝑝(m|d) 	= 	 '(m)	'(d|m)
'(d)

, (2) 184 

where the vector d consists of N sediment property values (e.g., sedimentologic or geochemical 185 
proxy data) measured at constant increments of stratigraphic depth. The two key terms in 186 
Equation (2) are the prior PDF p(m) and the likelihood function p(d|m). (The denominator p(d) 187 
does not depend on m and is a normalizing constant that is not relevant for the methods 188 
presented here.) The symbols and acronyms used in this paper are listed in Table 2. 189 

2.1 The Prior PDF 190 

The role of the prior PDF is to limit the space of possible parameters to values that agree 191 
with information other than that provided by the stratigraphic data in d. As there is no 192 
information on prior correlations between the parameters they are taken as independent, so the 193 
prior PDF of m is simply the product of the prior PDFs of each parameter as in 194 

 𝑝(𝐦) 	= 	𝑝(𝑔!)	𝑝(𝑔")	. . . 𝑝(𝑔%)	𝑝(𝑠!)	. . . 𝑝(𝑠&)	𝑝(𝑘)	𝑝(𝑢). 195 

The prior PDF of sedimentation rate u is defined as a uniform distribution between a 196 
minimum and maximum value. These bounds on a realistic value of u can be based on 197 
independent chronostratigraphic information (e.g., radioisotopic dating, bio- or 198 
magnetostratigraphy) or on the environment of deposition (e.g., from the range of sedimentation 199 
rates determined in similar modern and ancient depositional settings). 200 
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The prior PDFs for the fundamental Solar system frequencies gi and si are the 201 
distributions obtained by Hoang et al. (2021), determined by running a large number of long-202 
term astronomical solutions starting from slightly different initial conditions. The PDFs of gi and 203 
si are skew Gaussians with some secondary modes, and their parameters are listed in Table 2 of 204 
Hoang et al. (2021) as a function of geologic time. The parameters of the prior PDFs were 205 
obtained from frequencies obtained over intervals of 20 Myr (inner planets, Mercury to Mars) or 206 
50 Myr (outer planets). The prior PDFs of the frequencies gi and si are illustrated in Figure 1 for 207 
ages between the present and 3.3 Ga, a time interval that includes most stratigraphic records 208 
available for astronomical cycle analysis. 209 
 210 
 211 
Table 2. Symbols and acronyms used in this study. 212 
 213 

Symbols 
a Semi-major axis of lunar orbit 

Ce Covariance matrix of residuals e 
d Vector of measured sediment property data 

dpred Vector of data predicted by parameters in m 
e Vector of residuals d – dpred 
gi Fundamental Solar system frequencies for the rotation of the planetary 

perihelia 
k Earth’s axial precession frequency 
m Vector of parameters (gi, si, k, u) 
N Number of data points in vector d 

Neff Effective number of independent observations in vector d 
Nsim Number of simulated random data sets in significance testing 
R2 Squared correlation coefficient 
Re Correlation matrix of residuals e 
ri Autocorrelation coefficient of residuals e at lag i 
si Fundamental Solar system frequencies for the rotation of the 

ascending nodes of the orbital planes 
u Sedimentation rate 

σe
2 Variance of residuals e 

τ Lag where the autocorrelation of e reaches zero 
𝜙i Coefficient of an AR(P) process 
𝜔	 Earth’s spin rate 

Acronyms 
AR(P) Autoregressive process of order P 
ETP Eccentricity, tilt, and precession 
LOD Length of day 
M15 Meyers (2015) 

MM18 Meyers and Malinverno (2018) 
MAP Maximum a posteriori 

MCMC Markov chain Monte Carlo 
PDF Probability density function 

 214 
 215 

The changes in the mean value of the prior PDF and uncertainties of the fundamental 216 
Solar system frequencies in the past are relatively small, a few percent at most. The frequencies 217 
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associated with the outer planets (g5 and s6) vary the least, followed by g2. For example, the 218 
Earth eccentricity frequency g2 – g5 (period ~405 ka) has remained nearly constant through 219 
geologic time and has been proposed as a stable anchoring cycle in astrochronology (e.g., 220 
Hinnov, 2013; Laskar, 2020; Laskar et al., 2004; Olsen et al., 2019). 221 

In contrast, the Earth precession frequency k decreased systematically through time due 222 
to tidal energy dissipation. The general trend of k in time can be estimated by modeling tidal 223 
effects and/or by interpolating past geological estimates of k (e.g., Berger & Loutre, 1994; 224 
Laskar et al., 2004). The most recent study is by Farhat, Auclair-Desrotour, et al. (2022), who 225 
calculate past precession frequency from a tidal dissipation model that accounts for changes in 226 
the overall continental distribution and Earth spin rate. The actual history of tidal dissipation, 227 
however, is not accurately known, and estimated past values of k have large uncertainties (e.g., 228 
Waltham, 2015). 229 

We set the prior PDF of k to a normal distribution with a time-dependent mean μk(t) and 230 
standard deviation σk(t). The prior mean is from a polynomial fit to the past variation of k 231 
calculated by Farhat, Auclair-Desrotour, et al. (2022; see their Figure 6) for ages 0-3.3 Ga, which 232 
is 233 

 μk(t) = 50.4677 + 23.1305 t + 13.0658 t2 − 11.2346 t3 + 2.4322 t4, 234 

where age t is in Ga. This polynomial accounts for the long-term expected variation of k in the 235 
past, excluding some shorter-term fluctuations at ages < 600 Ma; these shorter-term variations 236 
should be confirmed (or not) by cyclostratigraphic data and not imposed a priori. The tidal 237 
dissipation model of Farhat, Auclair-Desrotour, et al. (2022, p. 4) was deliberately not fitted to 238 
geological data, and it is appropriate to use the trend they computed as the prior mean of k. 239 

Farhat, Auclair-Desrotour, et al. (2022) also calculate an uncertainty of the value of k 240 
obtained from their tidal dissipation model, and these uncertainties are small compared to the 241 
uncertainties of k estimated from cyclostratigraphy (see their Figure 6). Our goal is to estimate k 242 
from cyclostratigraphy in a way that is generally consistent with the effects of tidal dissipation, 243 
but the prior standard deviation should be large enough so that the posterior PDF of k we obtain 244 
is not unduly influenced by and provides a test of the tidal modeling results. We therefore set the 245 
prior standard deviation of k using the large uncertainties in the past precession period given in 246 
Waltham (2015), allowing the opportunity for deviations from the Farhat, Auclair-Desrotour, et 247 
al. (2022) tidal model. These uncertainties are a conservative estimate based on substantially 248 
different assumptions about the past history of tidal dissipation, and we assume that they 249 
correspond to ± two standard deviations. By fitting a polynomial to the fractional uncertainty 250 
(uncertainty divided by the mean) of the precession period given by the JavaScript calculator of 251 
Waltham (2015) between the present and 3.3 Ga, we obtained an expression for the prior 252 
standard deviation of k: 253 

 σk(t) = (0.0962 t − 0.0262 t2+ 0.0030 t3) μk(t). 254 

The resulting prior PDF of k is shown in Figure 1. 255 

2.2 The Likelihood Function 256 

The likelihood function quantifies how probable it is to observe the measured 257 
stratigraphic data d when the parameters have the values in m, and depends on the difference 258 
between d and a vector dpred of data predicted by m. We define an error or residual vector that is 259 
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 e =  d – dpred. (3) 260 

The value of the likelihood function depends on the overall size of the residuals e; the 261 
likelihood of having observed the data d if the model parameters equal the values in m will be 262 
greater if the residuals are smaller. Following general practice, the residual vector is assumed to 263 
have a normal distribution and the likelihood is the multivariate normal PDF of the vector of 264 
residuals e with a mean of zero and a N × N covariance matrix Ce. We consider here the general 265 
case where the residuals can be assumed to be second-order stationary, so that their covariance 266 
does not change with position (in our case, stratigraphic depth) and the covariance matrix can be 267 
written as 268 

 𝐂+ = 𝜎+"𝐑+, 269 

 270 

 271 

 272 
 273 
Figure 1. Prior PDFs of astronomical frequencies shown as gray scale images as a function of age (0-3.3 274 
Ga; see the text for details). The blue continuous line shows the prior mean and the black vertical bars 275 
display the scale of the overall variations as a percentage of the present value. The Solar system 276 
fundamental frequencies g1 to g5, s1 to s4, and s6 display a much lower variability compared to the 277 
systematic decrease with time of the axial precession frequency k.  278 
 279 

where Re is a symmetric Toeplitz matrix of correlation coefficients with a unit diagonal and 280 
constant off-diagonal entries as in 281 
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and ri is the autocorrelation function of of e at lag i (–1 < ri < 1). If the residuals were 283 
uncorrelated, Re would equal the identity matrix. 284 

TimeOptB and TimeOptBMCMC use two likelihood functions that measure the fit to two 285 
kinds of predicted data. The first (“spectral fit” of M15 and MM18) is based on predicted data 286 
dpred obtained by fitting to the observed stratigraphic data cycles of eccentricity, obliquity, and 287 
climatic precession given by the astronomical frequencies and sedimentation rate in m. The 288 
second (“envelope fit” of M15 and MM18) is based on predicting the envelope of a bandpass-289 
filtered climatic precession signal by fitting a combination of cosine and sine functions with the 290 
eccentricity frequencies derived from m. For both the “spectral” and “envelope” evaluation, 291 
fitting cosine and sine terms at each astronomical frequency allows estimation of their 292 
amplitudes and phases, as in a standard Fourier transform.  Details on the calculation of the 293 
predicted data in the spectral and envelope fit are in the Supporting Information. 294 

In both the spectral and envelope fit, the residuals in e are positively correlated. For 295 
example, it is well known that stratigraphic data have a “red noise” character and can be modeled 296 
as autoregressive processes with positive correlations of nearby values (e.g., Mann & Lees, 297 
1996). It is important to account for these correlations in the likelihood function because they 298 
affect the posterior uncertainties of the parameters. Consider a simple case where the parameter 299 
of interest is the mean of the observations, estimated from a sample mean μ as in 300 

 𝜇 = !
,
∑ 𝑑.,
.	/	! . 301 

If the residuals e = d − μ have a variance σe2 and are uncorrelated, the likelihood function 302 
of the sample mean would have a variance equal to σe2/N. However, if the residuals are positively 303 
correlated there are fewer than N independent observations. For example, if the autocorrelation 304 
function of the residuals e decreased from unity at zero lag to a value near zero at a lag τ, the 305 
effective number of independent observations would approximately be 306 

 Neff ≈ N/τ 307 

(e.g., Neal, 1993; Priestley, 1981; Zięba, 2010; Zięba & Ramza, 2011). As Neff < N, the sample 308 
mean would have a variance σe2/Neff that is greater than in the case where the residuals were 309 
uncorrelated. If correlations in the data residuals were ignored, the likelihood function would be 310 
artificially concentrated around its mode, causing an underestimation of the uncertainties in the 311 
parameters. This could be a substantial bias; in the example of the sample mean, if the data were 312 
correlated up to a lag τ = 9, ignoring these correlations would underestimate the posterior 313 
uncertainty by a factor of three (measured from the standard deviation). 314 

Moreover, when the likelihoods for several data fits are combined, it is important to 315 
account for differences in the correlations of the residuals. In our application, the residuals in the 316 
spectral fit are clearly less correlated than the much smoother residuals in the envelope fit. 317 
Ignoring this difference in the correlations would not properly weigh the importance of each data 318 
fit in constraining the parameters. 319 
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An outstanding problem in defining the likelihood function in Bayesian inference is that 320 
the variance and autocorrelation of the residuals e are typically unknown and cannot be 321 
confidently set a priori. On the other hand, the data may be informative about the statistical 322 
properties of the residuals. For example, fitting a few harmonic components as in the spectral fit 323 
will always result in non-zero residuals, and the statistics of these residuals may be used to infer 324 
the residual variance and autocorrelation.  325 

One way to extract this information is to follow a hierarchical Bayes strategy (Gelman et 326 
al., 2004; Malinverno & Briggs, 2004) by adding σe2 and parameters that define the correlation 327 
matrix Re to the unknowns of the problem as “hyperparameters.” The original TimeOptMCMC 328 
of MM18 implemented this strategy by adding to the parameter vector two hyperparameters for 329 
each of the spectral and envelope fit: the variance of the data residuals σe2 and the coefficient 𝜙1 330 
of an autoregressive process of order 1 that defined their autocorrelation. These four 331 
hyperparameters were then sampled by MCMC, and the sampled values were used to define the 332 
covariance matrix Ce when calculating the likelihood at each iteration. The final histogram of the 333 
sampled σe2 and 𝜙1 described their posterior PDFs (Fig. S4, S7, and S10 of MM18). 334 

In the updated methodology presented here, we apply an empirical Bayes strategy, where 335 
values of the hyperparameters are estimated from the data, e.g., by choosing their maximum 336 
likelihood value (Carlin & Louis, 2000; Casella, 1985). While hierarchical Bayes fully accounts 337 
for the posterior uncertainty of the hyperparameters, empirical Bayes simplifies the calculations, 338 
speeds up the inversion, and can return a posterior PDF for the parameters in m that is close to 339 
that obtained by hierarchical Bayes (see the discussion of Figure 9 in Malinverno & Briggs, 340 
2004). 341 

The rest of this section describes the form of the likelihood function for the spectral and 342 
envelope fits. Assuming that there are no correlations between the residuals obtained in the two 343 
fits, the total likelihood is simply the product of the spectral and envelope likelihoods. 344 

2.2.1 Likelihood for the Spectral Fit 345 

The spectral fit likelihood is based on modeling the residuals e in Equation 3 as an 346 
autoregressive process of order 2, or AR(2), as in 347 

 ei = 𝜙1 ei – 1 + 𝜙2 ei – 1 + wi, (4) 348 

where the vector w is white noise, a sequence of uncorrelated normally distributed values that 349 
have zero mean and a variance σw2. The AR process exploits the correlations in the vector e to 350 
predict the i-th value ei with a linear combination of nearby values, while the driving noise term 351 
wi accounts for unpredictable random effects. If the time series in e is adequately modeled by an 352 
AR(2) process, the resulting w (which can be obtained by solving Equation 4 for wi) should be 353 
white noise. This can be verified by computing the sample autocorrelation of the estimated w and 354 
checking that the autocorrelation values are not significantly different from zero for nonzero 355 
lags. Whereas cyclostratigraphic analyses often assume that stratigraphic records can be modeled 356 
as an AR(1) process (e.g., MM18; Mann & Lees, 1996), we found that in several cases an AR(2) 357 
process is necessary to produce a vector w that is close to white noise. A general description of 358 
AR processes can be found in treatments of time series analysis (Chatfield, 1989; Cox & Miller, 359 
1965; Priestley, 1981). 360 
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Dettmer at al. (2012) proposed a way to simplify the evaluation of a multivariate normal 361 
likelihood if the residuals e can be modeled as an AR process. In the AR(2) process (Equation 4), 362 
values ei	can be predicted by ei – 1 and ei – 2 plus a driving noise wi that is uncorrelated. Therefore, 363 
the residuals e contain a predictable component and a random component w; if we subtract the 364 
predictable component of e, the likelihood function can then be written as the PDF of the 365 
uncorrelated driving noise w. This simplifies considerably the calculation of the likelihood 366 
because the covariance matrix of w is diagonal. To complete the calculation of the spectral fit 367 
likelihood, we apply an empirical Bayes strategy and estimate the AR(2) coefficients 𝜙1 and 𝜙2 368 
and the variance σw2 of the driving noise w from the residuals e (Andersen, 1974; Burg, 1967; 369 
Ulrych & Bishop, 1975). Details on the estimation of 𝜙1, 𝜙2, and σw2 and on the equation for the 370 
spectral fit likelihood are in the Supporting Information. 371 

2.2.2 Likelihood for the Envelope Fit 372 

It seems reasonable to apply the same methodology to the evaluation of the likelihood of 373 
the envelope fit. However, an AR(P) model is not a good representation of the residuals of the 374 
envelope fit, even if the order P is high. The reason is that these residuals e are the difference of 375 
two low-frequency band-limited signals: the envelope of a filtered climatic precession signal in 376 
the data (d in Equation 3) minus the sum of harmonic components with the periods of 377 
eccentricity (dpred). Therefore, the residuals in the envelope fit are very smooth and cannot be 378 
well reproduced by an autoregressive process driven by uncorrelated noise. 379 

The likelihood of the envelope fit instead uses an effective number of independent 380 
observations Neff = N/τ < N, based on an estimate of the lag τ where the autocorrelation of the 381 
envelope fit residuals reaches zero (Zięba, 2010; Zięba & Ramza, 2011). Details on the bandpass 382 
filtering to extract the climatic precession signal in the data (Zeeden et al., 2018), on the 383 
calculation of the predicted precession envelope, on the estimation of the lag τ, and on the 384 
equation for the envelope fit likelihood are in the Supporting Information. 385 

3 TimeOptB Methodology 386 

As the Solar system frequencies gi and si do not vary greatly throughout geologic time 387 
(Figure 1), in TimeOptB we fix these frequencies to their prior mean value at the time of 388 
sediment deposition, so that the only variable parameters in m are the sedimentation rate u and 389 
the axial precession frequency k. The value of the likelihood, prior PDF, and posterior PDF can 390 
then be calculated over a 2-D grid of u and k. The boundaries of this grid can be initially set to 391 
span the range of the prior PDF and can then be narrowed to resolve details of the posterior PDF. 392 

Compared to the original TimeOpt of M15, the major enhancements in TimeOptB are 393 
that 1) the axial precession frequency k is not fixed but is a variable that is estimated from the 394 
data and 2) that the Bayesian formulation provides a measure of uncertainty in the values of u 395 
and k consistent with the data. 396 

The significance of astronomical cycles inferred from noisy stratigraphic data is an 397 
outstanding issue, and it has been claimed that false detection of such cycles is likely widespread 398 
in existing studies (Smith, 2023; Weedon, 2022). As done in TimeOpt, we implemented in 399 
TimeOptB a simple Monte Carlo procedure to investigate the statistical significance of the 400 
detected astronomical cycles. The procedure is based on generating a large sample of Nsim 401 
random simulated data series that are AR(2) processes with coefficients 𝜙1 and 𝜙2 equal to those 402 
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estimated from the observed data for the maximum a posteriori value (MAP) values of u and k. 403 
In each of these Nsim data sets, we repeat the TimeOptB procedure for the spectral fit over the 404 
range of u and k explored with the measured data and retain the maximum value of the Pearson 405 
R2 correlation coefficient (the ratio of the variances of the data predicted by fitting astronomical 406 
cycles over the total variance). We then compare the maximum spectral fit R2 values obtained in 407 
each of the Nsim simulated data sets to the R2 obtained for the actual data at the MAP values of u 408 
and k. (It should be noted that in each of the simulated data series the maximum R2 will be 409 
obtained for values of u and k that are different than the MAP values in the measured data.) 410 

Following the general philosophy of significance testing (Hacking, 2001) we define a p-411 
value as the fraction of Nsim cases where the R2 of the simulated data sets is as large or larger 412 
than the R2 in the measured data. If the data contain significant astronomical cycles, a 413 
comparable fit should only occur rarely in the random simulated data sets and the p-value should 414 
be small. To further investigate astronomical cycle significance, we also repeat the same Monte 415 
Carlo procedure separately for cycles of eccentricity, obliquity, and climatic precession. Whereas 416 
the critical significance test is for all the astronomical cycles, the results of the Monte Carlo 417 
experiment when only one set of cycles is considered will highlight which cycles are most 418 
informative in a particular cyclostratigraphic data set. 419 

The accuracy of the p-value estimated in this Monte Carlo procedure will obviously 420 
improve as Nsim grows; we suggest Nsim ≥ 1,000. Even if Nsim is large, the estimated p-value is 421 
not assured to be the same in different runs of Nsim Monte Carlo simulations. In practice, it may 422 
be the case that no simulated data set reaches the fit level observed for the measured data; in that 423 
case, all that can be concluded from the Monte Carlo experiment is that the p-value is < 1/ Nsim. 424 

4 TimeOptB example results 425 

4.1 ETP curve (45 Ma) 426 

To evaluate the efficacy of the TimeOptB approach, we test it against a synthetic data set 427 
that consists of known astronomical signals plus random noise. An ETP astronomical signal is 428 
constructed as the sum of eccentricity, obliquity (tilt), and climatic precession from the solution 429 
of Laskar et al. (2004). The synthetic record consists of 1000 data points spanning a 1 Myr 430 
interval centered on an age of 45 Ma and was converted to depth assuming a sedimentation rate 431 
of 1 cm/kyr. Each of the three astronomical signals was normalized to zero mean and unit 432 
variance before their summation. A time series of AR(1) correlated noise (𝜙1 = 0.8) was added to 433 
the astronomical signals to obtain the final synthetic data set. The noise variance was adjusted so 434 
that the variance of the astronomical signals was 0.44 times the total variance (a value of R2 = 435 
0.44 is close to that obtained for the stratigraphic data sets that will be shown later).  436 

Images of the log-posterior and posterior PDFs as a function of sedimentation rate u and 437 
axial precession frequency k are shown in Figure 2. The posterior PDF images display a strong 438 
positive correlation between u and k, which is intrinsic to the estimation of astronomical periods 439 
from stratigraphic data. If the stratigraphic data contain a cycle with a distinct spatial wavelength 440 
attributed to an astronomical cycle, the temporal frequency of that cycle will be a function of the 441 
sedimentation rate; if the sedimentation rate were higher, the frequency of the astronomical cycle 442 
will increase correspondingly (see also the discussion). 443 

The marginal posterior PDFs of u and k in Figure 2 are obtained by integrating the 444 
images in the vertical and horizontal directions, respectively. The posterior means of u and k 445 
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(0.995 cm/kyr and 51.367 arcsec/yr) are very close to the sedimentation rate used in the synthetic 446 
example and to the axial precession frequency at 45 Ma in the Laskar et al. (2004) calculations 447 
(which is 51.707 arcsec/yr, from their Equation 40). Notably, if the sedimentation rate were 448 
increased by 0.5% to the exact value of 1 cm/yr, the posterior mean axial precession would 449 
increase by the same amount to 51.624 arcsec/yr, getting even closer to the value expected in the 450 
ETP signal. 451 

The fit to the data and to the precession envelope for the maximum a posteriori (MAP) 452 
value of u and k is shown in Figure 3. The R2 for the data fit is 0.61, which is greater than the 453 
0.44 value used to construct the synthetic data set. This is due to a small amount of variance in 454 
the added noise being attributed to astronomical cycles. The periodogram of the ETP data 455 
(Figure 3c) shows a close correspondence with the spectral lines of the astronomical cycles.  456 
 457 

 458 
 459 
Figure 2. Posterior PDFs of sedimentation rate u and axial precession frequency k obtained by TimeOptB 460 
from the synthetic ETP test data set. In the PDF images, the log-posterior PDF is normalized to a MAP 461 
value of zero and the posterior PDF to a MAP value of 1. The horizontal dashed line in the posterior PDF 462 
image shows the present value of k. The parameters used to construct the synthetic ETP data set were u = 463 
1 cm/yr and k = 51.707 arcsec/yr. 464 
 465 

To check the significance of the estimated astronomical signals, we generated Nsim = 466 
1,000 AR(2) time series with coefficients 𝜙1 = 0.84 and 𝜙2 = –0.07, equal to those estimated for 467 
the MAP value of u and k. The value of these coefficients are close to those of the AR noise that 468 
was added to the data (𝜙1 = 0.8, 𝜙2 = 0). Figure 4 shows that the fit to all the astronomical cycles 469 
and to each individual set of cycles (climatic precession, obliquity, or eccentricity) is highly 470 
significant. Finally, the fit of an AR(2) spectrum to the periodogram of the ETP data, and the 471 
sample autocorrelation of the driving noise of the AR(2) process in the residuals e of the spectral 472 
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fit, are shown in Figure S1. The sample autocorrelation of the driving noise is close to that of 473 
white noise, as expected. In conclusion, TimeOptB is successful in recovering the sedimentation 474 
rate and axial precession frequency in a synthetic data set contaminated by a realistic amount of 475 
correlated noise. 476 

 477 

 478 
 479 
Figure 3. Fit to the synthetic ETP test stratigraphic data for the TimeOptB-derived MAP value of 480 
sedimentation rate u (0.994 cm/kyr) and axial precession frequency k (51.357 arcsec/yr). (a) Fit between 481 
measured and predicted stratigraphic data (spectral fit). (b) Fit between the envelope of the bandpassed 482 
climatic precession signal and the envelope predicted by the eccentricity frequencies (envelope fit). (c) 483 
Data periodogram (black continuous line) and frequencies of astronomical cycles (dotted vertical lines). 484 
The gray shaded area shows the frequency response of the filter used to compute the bandpassed climatic 485 
precession signal in the data (gray curve in (b)). 486 
 487 
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 488 
 489 
Figure 4. TimeOptB Monte Carlo significance testing for the synthetic ETP data set. The gray histograms 490 
show the distribution of TimeOptB R2 values in Nsim = 1000 random AR(2) time series. The R2 in the 491 
random time series matches or exceeds the value obtained for the synthetic ETP data set (red dotted line) 492 
at most two times out of 1000 when evaluating climatic precession alone, and does not exceed any of the 493 
simulated R2 values when evaluating obliquity only, eccentricity only, or all of the astronomical cycles 494 
together. 495 
 496 
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4.2 Xiamaling Formation (1.4 Ga) 497 

We apply the TimeOptB methodology to a published Cu/Al record from the 1.4 Ga 498 
Mesoproterozoic Xiamaling Formation, North China craton (Zhang et al., 2015), one of the data 499 
sets studied by MM18. The data interval is 2 m-thick and spans about 570 kyr (for the posterior 500 
mean sedimentation rate determined below). 501 

 502 
 503 

 504 
 505 
Figure 5. Posterior PDFs of sedimentation rate u and axial precession frequency k obtained by TimeOptB 506 
from the Xiamaling formation data set. In the PDF images, the log-posterior PDF is normalized to a MAP 507 
value of zero and the posterior PDF to a MAP value of 1. 508 
 509 

The posterior PDFs of sedimentation rate u and axial precession frequency k are shown in 510 
Figure 5. The prior PDF of k is very broad, reflecting a large uncertainty about k at 1.4 Ga, but 511 
the data are informative and result in a much narrower posterior PDF. The MAP value of u and k 512 
predict data that match closely the precession-modulated climatic precession cycles in the 513 
measured Cu/Al data, and prominent peaks in the data periodogram are near the predicted 514 
frequencies of eccentricity and climatic precession (Figure 6). The Monte Carlo significance 515 
experiments in Figure 7 support the presence of astronomical cycles, with low p-values of 0.001 516 
when all the astronomical cycles are considered or when only climatic precession is tested. The 517 
fit of an AR(2) process to the Xiamaling data is illustrated in Figure S2, and it confirms that the 518 
driving noise of the AR(2) process is nearly white noise.  519 

Posterior PDF of u and k for Xiamaling (1400 Ma)
Log-posterior PDF

0.3 0.32 0.34 0.36 0.38 0.4
Sedimentation rate u (cm/kyr)

82

84

86

88

90

92

94

Pr
ec

es
si

on
 fr

eq
. k

 (a
rc

se
c/

yr
)

-35

-30

-25

-20

-15

-10

-5

0
Posterior PDF

0.3 0.32 0.34 0.36 0.38 0.4
Sedimentation rate u (cm/kyr)

82

84

86

88

90

92

94
MAP u and k

0.2

0.4

0.6

0.8

1

Marginal posterior PDF of u

0.34 0.35 0.36 0.37
Sedimentation rate u (cm/kyr)

Posterior PDF
MAP value
Posterior mean
Prior PDF

Marginal posterior PDF of k

84 86 88 90 92
Precession frequency k (arcsec/yr)



Manuscript submitted to Geochemistry, Geophysics, Geosystems 

 18 

 520 
 521 
Figure 6. Fit to the Xiamaling formation Cu/Al data obtained by TimeOptB for the MAP value of 522 
sedimentation rate u and axial precession frequency k (see Table 3). (a) Fit between measured and 523 
predicted stratigraphic data (spectral fit). (b) Fit between the envelope of the bandpassed climatic 524 
precession signal and the envelope predicted by the eccentricity frequencies (envelope fit). (c) Data 525 
periodogram (black continuous line) and frequencies of astronomical cycles (dotted vertical lines). The 526 
gray shaded area shows the frequency response of the filter used to compute the bandpassed climatic 527 
precession signal in the data (gray curve in (b)). 528 
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 530 
 531 
Figure 7. TimeOptB Monte Carlo significance testing for the Xiamaling formation data set. The gray 532 
histograms show the distribution of TimeOptB R2 values in Nsim = 1000 random AR(2) time series. The R2 533 
values in the random time series are all clearly lower than the value obtained for the measured data (red 534 
dotted line) when considering all the astronomical cycles or the climatic precession cycles only.  535 
 536 
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Table 3. Results of TimeOptB and TimeOptBMCMC for the Xiamaling Formation Cu/Al and Walvis 538 
Ridge a* data. MAP = Maximum a posteriori, value of the parameter at the mode of the posterior PDF. 539 
 540 

Xiamaling Formation (1.4 Ga) 
 MAP 

value 
Posterior 

mean 
Posterior 

𝜎 
95% credible 

interval 
Method 

Sedimentation rate u 
(cm/kyr) 

0.351 0.353 0.00540 0.343-0.365 TimeOptB 
0.353 0.352 0.00541 0.343-0.364 TimeOptBMCMC 

Axial precession frequency k 
(arcsec/yr) 

87.34 87.74 1.38 85.37-90.81 TimeOptB 
87.82 87.49 1.38 85.21-90.61 TimeOptBMCMC 

Semi-major axis of lunar 
orbit a (Earth radii) 

 53.08 0.25  Based on TimeOptB 
posterior mean and 𝜎 

LOD (hrs)  18.47 0.22  
Walvis Ridge (55 Ma) 

 MAP 
value 

Posterior 
mean 

Posterior 
𝜎 

95% credible 
interval 

Method 

Sedimentation rate u 
(cm/kyr) 

1.308 1.309 0.00605 1.297-1.320 TimeOptB 
1.311 1.310 0.00620 1.299-1.322 TimeOptBMCMC 

Axial precession frequency k 
(arcsec/yr) 

51.15 51.25 0.29 50.70-51.81 TimeOptB 
51.31 51.29 0.29 50.75-51.85 TimeOptBMCMC 

Semi-major axis of lunar 
orbit a (Earth radii) 

 60.07 0.12  Based on TimeOptB 
posterior mean and 𝜎 

LOD (hrs)  23.75 0.11  
 541 
 542 

4.3 Walvis Ridge ODP Site 1262 (55 Ma) 543 

Another case study for the TimeOptB methodology uses a record of reflectivity data (a*, 544 
red/green) measured on Eocene-age sediments cored at ODP Site 1262, Walvis Ridge, South 545 
Atlantic (Zachos et al., 2004), which was also studied by MM18. We refer to that study and 546 
Zachos et al. (2004) for details about the a* data set. The data interval is 21 m-thick and spans 547 
about 1.6 Myr (for the posterior mean sedimentation rate determined below). 548 

The posterior PDFs of sedimentation rate u and axial precession frequency k are 549 
illustrated in Figure 8. At 55 Ma, the prior PDF of k is much narrower than in the 550 
Mesoproterozoic example; the Walvis Ridge data point to values of k that are somewhat lower 551 
than those in the prior PDF. As in the previous example, the MAP values of u and k result in 552 
predicted data that closely reproduce the observed precession-modulated climatic precession 553 
cycles, and the predicted frequencies of eccentricity and climatic precession coincide with the 554 
highest peaks in the data periodogram (Figure 9). The periodogram of the Walvis record shows 555 
very little power at the expected frequencies of obliquity, and the Monte Carlo significance 556 
experiments show high significance for all astronomical cycles, for eccentricity only, and for 557 
climatic precession only (Figure 10).  In contrast, the power of cycles at the obliquity frequencies 558 
in the random simulated data is always greater than in the measured data; the reason is that the 559 
obliquity frequency band (0.019-0.035 cycles/kyr) of the periodogram of the Walvis data has 560 
markedly lower power than that of the fitted AR(2) process (Figure S3a). Figure S3b shows that 561 
the driving noise of the fitted AR(2) process is nearly white noise. 562 

 563 
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 564 
 565 

 566 
 567 
Figure 8. Posterior PDFs of sedimentation rate u and axial precession frequency k obtained by TimeOptB 568 
from the Walvis Ridge a* data set. In the PDF images, the log-posterior PDF is normalized to a MAP 569 
value of zero and the posterior PDF to a MAP value of 1. The horizontal dashed line in the posterior PDF 570 
image shows the present value of k.  571 
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 573 
 574 
Figure 9. Fit to the Walvis Ridge a* data obtained by TimeOptB for the MAP value of sedimentation rate 575 
u and axial precession frequency k (see Table 3). (a) Fit between measured and predicted stratigraphic 576 
data (spectral fit). (b) Fit between the envelope of the bandpassed climatic precession signal and the 577 
envelope predicted by the eccentricity frequencies (envelope fit). (c) Data periodogram (black continuous 578 
line) and frequencies of astronomical cycles (dotted vertical lines). The gray shaded area shows the 579 
frequency response of the filter used to compute the bandpassed climatic precession signal in the data 580 
(gray curve in (b)). 581 
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 584 
 585 
Figure 10. TimeOptB Monte Carlo significance testing for the Walvis Ridge data set. The gray 586 
histograms show the distribution of TimeOptB R2 values in Nsim = 1000 random AR(2) time series. The R2 587 
values in the random time series are clearly lower than the value obtained for the measured data (red 588 
dotted line) when considering all the astronomical cycles, the eccentricity cycles only, or the climatic 589 
precession cycles only. 590 
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5 TimeOptBMCMC methodology 593 

In the TimeOptB method, the only variable parameters are the sedimentation rate u and 594 
axial precession frequency k, while the fundamental Solar system frequencies gi and si are kept 595 
fixed at their prior mean values. As noted in the Introduction, however, we also aim to use 596 
stratigraphic records to constrain the history of variation in the frequencies gi and si and in long-597 
term astronomical periodicities such as the g4 – g3 cycle. The method we present here is an 598 
offshoot of the TimeOptMCMC procedure of MM18, which sampled the posterior PDF of five 599 
fundamental Solar system frequencies gi, axial precession frequency k, and sedimentation rate u 600 
(plus some hyperparameters, discussed below). In TimeOptBMCMC we add the five Solar 601 
system frequencies si to determine the posterior PDF of the full twelve-parameter vector in 602 
Equation 1.  603 

Whereas in TimeOptB the value of the posterior PDF was calculated systematically over 604 
a grid of two parameters (u and k), the same strategy cannot be used for twelve parameters. 605 
Evaluating the PDF over a grid of M points for each parameter (say, M = 100) would require M12 606 
calculations, which is entirely impractical. In contrast, MCMC algorithms perform a random 607 
walk that concentrates on the high-posterior probability region of the parameter space and are 608 
designed to return a sample distributed as in the posterior PDF. General treatments of MCMC in 609 
the statistical literature can be found in Gilks et al. (1996) and Brooks et al. (2011); examples of 610 
applications to geophysical inverse problems are in Malinverno (2002), Sambridge & Mosegaard 611 
(2002), Piana Agostinetti & Malinverno (2010), and Sen & Stoffa (2013). 612 

TimeOptBMCMC uses a Metropolis-within-Gibbs algorithm (originally described by 613 
Metropolis et al., 1953): in each step of the random walk, a candidate parameter vector is 614 
obtained by adding to one of the parameters a random value chosen from a proposal PDF (e.g., a 615 
zero-mean normal PDF). The candidate is then accepted with a probability that depends on the 616 
ratio of the posterior PDFs of the candidate and the current parameter vector. This simple 617 
strategy will asymptotically return a sample of parameter vectors distributed as in the posterior 618 
PDF. 619 

An outstanding issue in implementing a Metropolis algorithm is how to choose the scale 620 
parameter of the proposal PDF (e.g., the standard deviation of a normal PDF). If this scale is set 621 
too large, most candidates will not be accepted; if too small, the probability of acceptance will be 622 
large but the random walker will diffuse too slowly through the parameter space. In both cases, it 623 
will take a long time to explore the high-posterior probability region. In TimeOptBMCMC, we 624 
apply an adaptive Metropolis-within-Gibbs algorithm (Haario et al., 2001; Roberts & Rosenthal, 625 
2009), where parameters are changed one at a time and the standard deviation of the normal 626 
proposal PDF of each parameter is progressively adjusted from a starting value to maintain a 627 
target rate of acceptance of 0.44, which has been shown to be optimal in this case (Roberts & 628 
Rosenthal, 2001). This is a significant improvement over TimeOptMCMC (MM18), which 629 
required a laborious initial experimentation, running a number of MCMC sampling chains to 630 
adjust the scale parameters of the proposal PDFs, often resulting in acceptance rates that were 631 
not ideal, which increased the computation time. 632 

Another key difference is that TimeOptBMCMC applies an empirical Bayes approach to 633 
estimate directly from the data a best value of the hyperparameters that control the form of the 634 
covariance matrix of the residuals in the likelihood function for the spectral fit (two AR process 635 
coefficients and the residual variance; see the Supporting Information). TimeOptMCMC instead 636 
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characterized the residuals with an AR(1) process, which is not always appropriate (e.g., the 637 
spectral fit residuals in the Walvis Ridge data required a nonzero coefficient 𝜙2; see Figure S3), 638 
and included the AR process coefficient and the variance of the residuals as variable 639 
hyperparameters in the inversion, which adds to the computational cost of the MM18 procedure. 640 

6 TimeOptBMCMC example results 641 

6.1 Xiamaling Formation (1.4 Ga) 642 

The progress of TimeOptBMCMC in sampling the posterior PDF of all the parameters 643 
for the Xiamaling Cu/Al data is illustrated in Figure 11. The chain is started from the prior mean 644 
value of the Solar system frequencies gi and si, axial precession frequency k, and sedimentation 645 
rate u (whose prior PDF is a uniform distribution between 0.3 and 0.4 cm/kyr) and proceeds for 646 
50,000 iterations. The value of the posterior PDF rises very quickly at the start of the MCMC 647 
sampling chain and then fluctuates within the high-probability region (Figure 11a). The initial 648 
values of the standard deviation of each proposal PDF are set to the prior standard deviation of 649 
the astronomical frequencies (with an upper limit for the proposal standard deviation of k, where 650 
the prior standard deviation can be very large) and to a small fraction of the prior mean of u. The 651 
progressive adjustment of the proposal PDF standard deviations (Figure 11b-d) and the 652 
corresponding change in the frequency of acceptance (Figure 11e-g) show that after about 5,000 653 
iterations the proposal standard deviations and the frequency of acceptance for each parameter 654 
fluctuate around a constant value, with an average frequency of acceptance around the optimal 655 
value of 0.44. 656 

Figure 12 compares the prior PDFs of each parameter to the histograms of the values 657 
sampled by TimeOptBMCMC, which approximate each posterior PDF. The prior and posterior 658 
PDFs of the gi and si frequencies are very similar, whereas the data clearly constrain the posterior 659 
values of k and u to a much narrower interval than in the prior PDF. Figure 12 also shows the 660 
posterior histogram of the period corresponding to the g4 – g3 frequency, which has a sizable 661 
posterior uncertainty (the central 95% interval of the posterior PDF is 1.47-3.78 Myr). The 662 
g4 – g3 frequency has a large uncertainty because it is estimated from a relatively short record 663 
that only spans a ~570 kyr interval. The present day value of the g4 – g3 period (2.4 Myr) is 664 
within the range consistent with the Xiamaling data at 1.4 Ga. 665 

The posterior correlations between the parameters are generally small, with the exception 666 
of a strong positive correlation between u and k (Figure S4), which is the same positive 667 
correlation obtained in the TimeOptB results for the Xiamaling formation Cu/Al data (Figure 5). 668 
In contrast, the gi and si frequencies are not correlated a posteriori with the sedimentation rate u 669 
because their prior variances are much smaller than that of k (Figure 1) so that they cannot vary 670 
over an interval large enough to relate to differences in u. In fact, the sedimentation rate is 671 
mostly constrained by eccentricity frequencies gi – gj in the spectral and envelope fit, which have 672 
a small prior variability. The marginal posterior PDFs of u and k obtained by TimeOptB (gi and 673 
si fixed to their prior mean values) and TimeOptBMCMC (gi and si variable) are also very 674 
similar (compare Figures 5 and 12 and the posterior PDF statistics in Table 3). Finally, the MAP 675 
value of the parameters sampled by TimeOptBMCMC results in predicted data that are 676 
essentially the same as those obtained by TimeOptB (compare Figures 6 and S5). 677 



Manuscript submitted to Geochemistry, Geophysics, Geosystems 

 26 

 678 
 679 
Figure 11. Progress of TimeOptBMCMC sampling for the Xiamaling formation Cu/Al data set over 680 
50,000 iterations. (a) Value of the log-posterior PDF for the sampled model parameter vectors. The black 681 
cross is the starting value and the red cross the MAP. (b, c, d) Standard deviation of the proposal PDF (as 682 
a ratio over the starting value) for each model parameter. (e, f, g) Frequency of acceptance of the 683 
proposed steps in the MCMC random walk. The adaptive Metropolis algorithm used in TimeOptBMCMC 684 
adjusts the standard deviations of the proposal PDF to keep the frequency of acceptance around the 685 
optimal value of 0.44 for all model parameters (white horizontal dotted line). 686 
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 688 
 689 
Figure 12. Histograms of posterior model parameter values sampled by TimeOptBMCMC for the 690 
Xiamaling formation Cu/Al data set over 50,000 iterations (light red) compared to the prior PDFs (blue 691 
curves). The bottom panel shows the posterior distribution of sampled g4 – g3 periods compared to the 692 
present day value of 2.4 Myr (vertical dotted black line).  693 
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6.2 Walvis Ridge ODP Site 1262 (55 Ma) 696 

The progress of TimeOptBMCMC in sampling the posterior PDF for the Walvis Ridge 697 
a* data (Figure S6) is very similar to that seen for the Xiamaling formation Cu/Al data (Figure 698 
11). The prior and posterior PDFs of gi and si are also similar, with the exception of g4, whose 699 
posterior PDF is shifted towards higher frequencies (Figure 13). As a result, the posterior PDF of 700 
the g4 – g3 period is shifted toward shorter periods, and the present day value of 2.4 Myr is in the 701 
tail of the posterior PDF (the central 95% interval of the posterior PDF is 1.69-2.38 Myr).  702 

As seen for the Xiamaling formation Cu/Al data set, the posterior correlations in the 703 
Walvis Ridge a* results are generally small, except for the strong positive correlation between u 704 
and k (Figure S7) that was also seen in the TimeOptB results (Figure 8). Again, the marginal 705 
posterior PDFs of u and k obtained by TimeOptB (gi and si fixed) and TimeOptBMCMC (gi and 706 
si variable) are very similar (compare Figures 8 and 13 and posterior statistics in Table 3). The 707 
data predicted by the MAP value obtained by TimeOptB and TimeOptBMCMC are also 708 
essentially identical (compare Figures 9 and S8). 709 
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 710 
 711 
Figure 13. Histograms of posterior model parameter values sampled by TimeOptBMCMC for the Walvis 712 
Ridge formation a* data set over 50,000 iterations (light red) compared to the prior PDFs (blue curves). 713 
The bottom panel shows the posterior distribution of sampled g4 – g3 periods compared to the present day 714 
value of 2.4 Myr (vertical dotted black line).  715 
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7 Lunar distance and LOD from an estimate of axial precession frequency k 717 

The axial precession frequency k depends on both the lunar distance a (semi-major axis 718 
of the Moon orbit) and the Earth spin rate 𝜔 (or equivalently, LOD); e.g., see Equation 7 of 719 
Berger & Loutre (1994) or Equation 4.14 of Laskar (2020). Therefore, obtaining values of lunar 720 
distance and LOD from an estimate of k requires an additional constraint, which is usually 721 
provided by the conservation of angular momentum in the Earth-Moon system (e.g., MM18; 722 
Lantink et al., 2022). 723 

To estimate lunar distance and LOD from k, we apply two equations derived from 724 
Equations 6 and 7 of Walker & Zahnle (1986). The first equation gives the relationship between 725 
the axial precession frequency k, lunar distance a, and Earth spin rate 𝜔 as 726 

 0(1)
0(2)

= 3(1)
3(2)

45!

456!(#)!(%)7
&' , (5) 727 

where k(t)/k(0), a(t)/a(0), and 𝜔(t)/𝜔(0) are ratios between values at age t and present day values, 728 
and K is a dimensionless constant. Equation 5 can be derived from the fundamental equation for 729 
the precession frequency k (e.g., Equation 7 of Berger & Loutre, 1994) for circular, coplanar 730 
orbits and a constant obliquity 𝜀. The precession frequency equation also contains the dynamic 731 
ellipticity H = (C – A)/C, where C and A are the Earth’s moments of inertia about polar and 732 
equatorial axes, respectively. H will change as the Earth changes its shape due to variations in 733 
spin rate 𝜔, and Equation 5 is derived assuming that over long time scales the Earth deforms as a 734 
fluid in hydrostatic equilibrium so that H is proportional to the square of 𝜔 (Equation 5.3.2 of 735 
Munk & MacDonald, 1960). The dynamic ellipticity H can also change with changes in mass 736 
distribution within the Earth, e.g., because of the effects of glaciations or mantle convection. The 737 
resulting changes in H, however, are relatively small; they do not exceed about ̆0.25% for 738 
glaciation effects in the last 47 Ma (Figure 3 of Farhat, Laskar, et al., 2022) or for mantle 739 
convection in the last 50 Ma (Figure 1A of Ghelichkhan et al., 2021). In contrast, the progressive 740 
decrease in the Earth spin rate due to tidal dissipation had much greater effects on H over 741 
geologic time scales. For example, a simple calculation of the effect of tidal dissipation 742 
(Equation 4.19 of Laskar, 2020) gives a 𝜔2 that was 3.2% greater than the present at 50 Ma, 743 
6.6% greater at 100 Ma, and 22.5% greater at 300 Ma. This substantial systematic change 744 
justifies assuming that over time scales of tens of Myr the dynamic ellipticity H is primarily 745 
controlled by the progressive slowing down of the Earth spin rate.  746 

The second equation is the relationship between lunar distance and LOD that conserves 747 
angular momentum in the Earth-Moon system: 748 

 0(1)
0(2)

= 1 + 𝐴 − 𝐴 F8(1)
8(2)

G
! "⁄

. (6) 749 

The values of the dimensionless constants in Equations 5 and 6 were originally given by Walker 750 
& Zahnle (1986) as K = 0.465 and A = 4.87. Here we adjust the values of these dimensionless 751 
constants to account for effects that were originally neglected in Walker & Zahnle (1986): the 752 
systematic increase of obliquity 𝜀 during geologic time and the effect of solar ocean tides on the 753 
slowdown of the Earth spin rate. These adjustments were done by comparing the predictions of 754 
Equations 5 and 6 with the values of a, 𝜔, and k calculated over the last 3.3 Ga by Farhat, 755 
Auclair-Desrotour, et al. (2022). The updated values of the constants are K = 0.358 and A = 4.81; 756 
details are in the Supporting Information. 757 
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The two relationships above define two curves of 𝜔(t)/𝜔(0) as a function of a(t)/a(0): a 758 
“K-curve” that corresponds to a given value of k(t)/k(0) (Equation 5) and an “AM-curve” that 759 
conserves angular momentum (Equation 6). The intersection of these two curves, illustrated in 760 
Figure 14a, gives the values of past lunar distance a, Earth spin rate 𝜔, and LOD. The 761 
Supporting Information describes a simple way to obtain the intersection from a polynomial fit. 762 

An uncertainty in the estimates of a and LOD can be calculated on the basis of the 763 
uncertainties in the K-curve and AM-curve and of the uncertainty in the value of k estimated 764 
from cyclostratigraphic data; see Figure 14b for an illustration and the Supporting Information 765 
for details of the calculation. The approach outlined above provides an accurate and quick means 766 
to obtain a, LOD, and their uncertainties from an estimate of k, and the results for the examples 767 
evaluated here are listed in Table 3.   768 

 769 

 770 
 771 
Figure 14. Ratio 𝜔(t)/𝜔(0) between the Earth’s spin rate at age t and the present day value as a function 772 
of the ratio of the lunar distances a(t)/a(0). (a) The blue curve (K-curve; Equation 5) shows the 773 
relationship for the axial precession frequency k(t) estimated from the Xiamaling formation Cu/Al data set 774 
(t = 1.4 Ga) and the green curve (AM-curve; Equation 6) the relationship that conserves the Earth-Moon 775 
angular momentum. The red dot at the intersection of the two curves gives the values of a(t)/a(0) and 776 
𝜔(t)/𝜔(0) at age t. (b) Thin blue and green lines are the 95% contours of normal distributions that describe 777 
the uncertainties of the K-curve and AM-curve, respectively, and the red ellipse is the 95% contour that 778 
defines the uncertainty of the intersection (see the Supporting Information for details). 779 
 780 

8 Discussion 781 

8.1 Estimating axial precession frequency k 782 

The case studies evaluated here show that TimeOptB and TimeOptBMCMC are effective 783 
in estimating a value for the precession frequency k from stratigraphic data. The key requirement 784 
is that the data should display clear eccentricity cycles (which do not depend on k) and clear 785 
climatic precession and/or obliquity cycles (which depend on k). The difference in the observed 786 
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Thus, to estimate k it is important that sizable astronomical cycles are observed in the 788 
periodogram plots for eccentricity and either precession or obliquity (Figures 3, 6, and 9). The 789 
TimeOptB significance test should also weed out cases where stratigraphic sequences do not 790 
contain significant astronomical cycles (Figures 4, 7, and 10). It should be noted that the methods 791 
presented here will not work appropriately if sedimentation rate is not relatively constant within 792 
the analyzed stratigraphic interval, which requires careful selection of cyclostratigraphic data sets 793 
or portions thereof (more on the sedimentation rate assumption below). Considering these 794 
limitations, there should be many stratigraphic data sets that can return valid estimates of the past 795 
axial precession frequency. In addition  to providing valuable information on the evolution of 796 
lunar distance, LOD, and tidal dissipation, past estimates of k will improve the accuracy of 797 
astrochronologies based on climatic precession and obliquity cycles in data. 798 

The results in Table 3 supersede those obtained for the Xiamaling formation and Walvis 799 
Ridge in MM18. The differences are minor, and in both cases the posterior PDFs of k and u in 800 
this study overlap with those in MM18. The posterior PDFs of k in the Xiamaling formation are 801 
not identical with MM18 because TimeOptB and TimeOptBMCMC include the fit to obliquity 802 
components, which results in a small increase in k (the posterior mean changes from 85.79 803 
arcsec/yr in MM18 to 87.74 arcsec/yr in Table 3). The posterior PDF of k in the Walvis Ridge 804 
data is very close to that in MM18 even though the prior PDF was different between the studies. 805 

The posterior PDFs of u and k obtained by TimeOptB and TimeOptBMCMC are similar 806 
in both the Xiamaling Formation Cu/Al and Walvis Ridge a* data sets (Figures 5, 8, 12, 13, and 807 
Table 3). Thus, in these two case studies, letting the gi and si frequencies be variable parameters 808 
does not lead to different estimates of u and k or to a substantially improved fit of the results 809 
(Figures 6, 9, S5, S8). 810 

8.2 Estimating Solar system fundamental frequencies gi and si 811 

The posterior PDFs of the gi and si frequencies sampled by TimeOptBMCMC are 812 
generally close to the respective priors, with the exception of g4 in the Walvis Ridge a* data set. 813 
When astronomical cycles are well expressed in the data, this result shows that 814 
TimeOptBMCMC can constrain the values of Solar system fundamental frequencies. The past 815 
Solar system frequencies inferred from stratigraphic data will have inherent uncertainties. In 816 
practice, long-period cycles such as g4 – g3 will not be reconstructed with high accuracy from 817 
stratigraphic records of relatively short duration, but nonetheless the range of their possible 818 
values can be estimated by TimeOptBMCMC. For example, although the posterior PDF of the 819 
g4 – g3 period in the Walvis Ridge record (55 Ma) spans a broad interval, the results in Figure 13 820 
suggest a g4 – g3 period that is shorter than the present 2.4 Myr. For comparison, Zeebe & 821 
Lourens (2019) also found that the Solar system solution that best fit the Walvis Ridge data 822 
displayed a decrease in the g4 – g3 period to ~1.5 Myr at ages older than 50 Ma (though 1.5 Myr 823 
is at the very low end of the posterior PDF of the g4 – g3 period in Figure 13).  824 

A suggested practical procedure is to run TimeOptB first on a data set, including the 825 
Monte Carlo significance experiments to support the presence of astronomical cycles in the data. 826 
If there is evidence for astronomical cycles in the data, a TimeOptBMCMC run can show 827 
whether the sampled values of the Solar system fundamental frequencies are distributed as in the 828 
prior PDF, meaning that the data are not informative (as in the case of the Xiamaling formation 829 
Cu/Al data set) or whether there are differences from the prior that highlight past variations (as 830 
for g4 and g4 – g3 in the Walvis Ridge a* data set). 831 
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8.3 Assumption: constant sedimentation rate 832 

A key assumption in TimeOptB and TimeOptBMCMC is that the sedimentation rate was 833 
constant in the studied stratigraphic interval. A preliminary moving window power spectral 834 
analysis or wavelet-based analysis can indicate whether prominent cycles have nearly constant 835 
spatial frequencies as predicted by a constant sedimentation rate. This means that suitable data 836 
sets will likely span a relatively short time interval, and there will be a tradeoff between the need 837 
to have a long enough record of eccentricity cycles and the requirement of a constant 838 
sedimentation rate. Also, the strategy presented here will not be reliable if astronomical signals 839 
are distorted by large cyclic changes in sedimentation rate driven by the effects of particular 840 
astronomical cycles (e.g., Herbert, 1994). 841 

Even when sedimentation rate is nearly constant over the interval studied, the examples 842 
presented here show that any error in estimating sedimentation rate u will result in the same error 843 
in axial precession frequency k: a sedimentation rate overestimated by 1% means k will be 844 
overestimated by 1% (see the discussion of the ETP data set results in Figure 2). There is no way 845 
to know k within a small fraction of its value unless the sedimentation rate, or more generally the 846 
time-stratigraphic depth relationship, is also known within that same small fraction.  As 847 
stratigraphic data invariably contain variations unrelated to astronomical forcing (“geological 848 
noise;” Meyers, 2019), the time-depth relationship can be determined only approximately. This 849 
is a fundamental issue at the root of cyclostratigraphy and astrochronology applications, and it 850 
cannot be solved by methodological improvements. On the other hand, methods such as those 851 
presented here can quantify the resulting uncertainty and highlight the value and the limitations 852 
of conclusions drawn from the analysis of astronomical cycles in stratigraphic records. 853 

8.4 Assumption: constant Earth-Moon angular momentum 854 

As noted earlier, the axial precession frequency k depends on both lunar distance a and 855 
LOD. Estimating both a and LOD on the basis of k therefore requires an additional constraint, 856 
which we impose by using the common assumption that the Earth-Moon angular momentum 857 
remained constant throughout Earth’s history (with a correction due to the small effect of Solar 858 
ocean tides in slowing down the Earth’s rotation). 859 

In contrast, Zahnle & Walker (1987) and Bartlett & Stevenson (2016) proposed that when 860 
LOD decreased to ~21 hrs in the Proterozoic, a solar atmospheric tide became resonant with the 861 
Earth’s spin rate and counteracted the effect of the lunar ocean tide, maintaining a constant Earth 862 
spin rate for a prolonged duration (between ~2 Ga and ~1 Ga; Bartlett & Stevenson, 2016). 863 
During this interval, the lunar ocean tide would still have resulted in a torque that moved the 864 
Moon to a higher orbit, so that the total angular momentum of the Earth-Moon system would 865 
have increased through time by as much as 10-20%, extracting angular momentum from the 866 
Earth’s orbit around the Sun (Zahnle & Walker, 1987). Our results give some information on the 867 
possible size of the change in the Earth-Moon angular momentum if this were the case: taking 868 
the value of k(t) estimated from the Xiamaling formation Cu/Al record and assuming that LOD 869 
was 21 hours rather than keeping the Earth-Moon angular momentum to its present value, 870 
Equation 5 gives a ratio a(t)/a(0) = 0.834. If the Earth was spinning with a LOD of 21 hrs and the 871 
lunar distance was 83.4% of the present value, the Earth-Moon angular momentum at 1.4 Ga 872 
would have been approximately 95% of the present value.  873 
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By themselves, estimates of the past axial precession frequency from cyclostratigraphy 874 
will only constrain a combination of lunar distance and LOD, and an additional independent 875 
constraint is needed to determine both parameters. In particular, estimates of LOD from 876 
cyclostratigraphy (e.g., as used by Mitchell & Kirscher, 2023) assume conservation of the 877 
present Earth-Moon angular momentum and cannot provide a test of the hypothesis of a constant 878 
LOD in the Proterozoic, because if LOD remained constant during an extended period the Earth-879 
Moon angular momentum had to increase with time. 880 

9 Conclusions 881 

We presented here two methods, TimeOptB and TimeOptBMCMC, to determine the 882 
frequencies of astronomical cycles in the geologic past recorded by stratigraphic sequences. The 883 
results show a decrease in the Earth’s axial precession frequency from about 88.2 arcsec/year (a 884 
period of 14.7 kyr) in the Mesoproterozoic (1.4 Ga) to 51.2 arcsec/year (25.3 kyr) in the Eocene 885 
(55 Ma). Our results imply that at 1.4 Ga Earth days were ~18.4 hours long and that the Moon 886 
was 12% closer to the Earth compared to the present (assuming that the angular momentum of 887 
the Earth-Moon system was conserved).  888 

Stratigraphic data invariably contain “geological noise” unrelated to astronomical 889 
forcing, and resultant estimates of astronomical frequencies are inevitably uncertain. By applying 890 
a Bayesian formulation, we determine posterior probability distributions that describe how much 891 
each astronomical frequency can vary while fitting the observed data. We also describe a Monte 892 
Carlo procedure to test whether astronomical cycles are significant over a noisy background of 893 
sediment property variations. 894 

A key assumption of our methods is that sedimentation rate remains constant in the 895 
studied interval. This conservative requirement keeps the analysis simple and ensures that 896 
recovered astronomical cycles are not the result of overfitting due to arbitrary changes in 897 
sedimentation rate. We plan to investigate relaxing this assumption in future developments, for 898 
example using “sedimentation templates” (Meyers, 2019) or age models defined by a number of 899 
age-depth tie points (e.g., Haslett & Parnell, 2008). Variations in the age-depth relationship 900 
should be kept as small as possible to avoid overfitting, and a sound significance analysis should 901 
be performed to help guard against artificially identifying astronomical cycles.  902 

While the constant sedimentation rate assumption restricts the range of suitable 903 
cyclostratigraphic records, the examples shown here demonstrate that relatively short 904 
stratigraphic intervals (spanning as little as ~600 kyr) provide valid estimates of past 905 
astronomical frequencies. The methods we presented are well suited to recover from the 906 
geological record the history of variation in the Earth’s axial precession frequency, the 907 
fundamental Solar system frequencies, and the periods of the resultant astronomical insolation 908 
rhythms. The results will be useful to constrain the past history of the Earth-Moon and Solar 909 
system, to inform models of past tidal dissipation, and to improve astrochronology estimates, 910 
especially those based on climatic precession and obliquity cycles. 911 
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The Xiamaling Formation Cu/Al data (Zhang et al., 2015) and Walvis Ridge a* data 920 
(Zachos et al., 2004) used as examples in this study have been previously published and are also 921 
accessible with the function ‘getData’ of the ‘Astrochron’ package for R (Meyers, 2014). The 922 
prototype code for the TimeOptB and TimeOptBMCMC analyses presented in this work was 923 
created in MATLAB and is being used and tested on additional data by CycloAstro graduate 924 
students advised by the authors, whose results have not been yet published. The algorithm will 925 
be made available in the ‘Astrochron’ package following publication of additional results and 926 
translation into the free statistical software R. 927 
  928 
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Text S1. Calculation of the Likelihood for the Spectral Fit

To calculate the data dpred predicted by parameters in m, the first step is to transform the strati-
graphic depth in the data to an age vector t (which is zero at the top) using the sedimentation rate u
in m. (Symbols and acronyms used here are listed in Table S1.) To compute the predicted data, we
then construct a matrix G whose columns contain sine and cosine signals as a function of ages in t
with the frequencies of eccentricity, obliquity, and climatic precession listed in Table 1 of the main
text calculated for the values of gi, si, and k in m.

We then obtain by least squares the amplitudes of the sine and cosine terms in a vector y fitted
to the data as

y = (GTG)−1GTd, (S1)

where the data in d were linearly detrended and standardized to zero mean and unit variance. The
data predicted by the astronomical frequencies are

dpred = G y. (S2)

The sum of a sine and a cosine function of the same frequency and amplitudes in the corresponding
elements of y results in a fitted sinusoidal function with the same frequency and a phase determined

1



by the data in d. This is a “spectral fit” in the sense that sinusoidal functions of arbitrary phase are
fitted to the data, but we stress that it is not based on an estimate of the power spectrum.

The calculation of the spectral likelihood is based on fitting an AR(2) process to the vector e of
residuals that are the difference between observed and predicted data as in

e = d − dpred. (S3)

Following an empirical Bayes strategy, we estimate the AR(2) coefficients φ1 and φ2 from e with
a method originally due to Burg (1967) that is based on minimizing the prediction error variance
computed both in the forward and backward direction (Andersen, 1974; Ulrych & Bishop, 1975).
Using the fitted AR(2) coefficients, we then compute the vector w of the driving noise from

wi = ei − φ1ei−1 − φ2ei−2. (S4)

If e can be successfully modeled as an AR(2) process, the vector w should be close to uncorrelated
white noise. This can be checked from the sample autocorrelation of w, shown in Figures S1b to
S3b for the data sets examined here.

If residuals e are modeled as an AR process, the spectral fit likelihood can be written as the
multivariate normal PDF of the noise w (Dettmer et al., 2012), which is

p(d | m) = p(w | m) =
1

(2π)N/2 σN
w

exp
[
−

wTw
2σ2

w

]
, (S5)

where N is the number of data points in d and w. Applying again empirical Bayes, we estimate the
variance σ2

w from w as

σ2
w =

wTw
N

. (S6)

Substituting this estimate of σ2
w in Equation S5 we obtain a final expression for the spectral fit

likelihood that is
p(d | m) = p(w | m) =

1
(2π)N/2 σN

w
exp

[
−

N
2

]
, (S7)

Text S2. Calculation of the Likelihood for the Envelope Fit

In the envelope fit, the observed data vector d is the amplitude envelope of the climatic precession
signal in the data and dpred is the envelope predicted by eccentricity signals with the frequencies
given by the values of gi in m. The precession envelope of the data is calculated by first extracting
the signal in the climatic precession frequency band applying a Taner bandpass filter with a roll-off

rate of 107 (Zeeden et al., 2018). The cutoff frequencies equal the minimum climatic precession
frequency minus 0.005 cycles/kyr and the maximum climatic precession frequency plus 0.005 cy-
cles/kyr. The envelope of the climatic precession signal is then computed from its Hilbert transform
and is standardized to have zero mean and unit variance.

The predicted precession envelope is calculated by fitting the eccentricity frequencies given by
the gi values in m to the precession envelope of the data; the result is then standardized to zero mean
and unit variance. The procedure is the same as that described for the spectral likelihood, except
that the matrix G contains only sine and cosine terms for the eccentricity frequencies. The residual
vector e in the envelope fit is the difference between the precession envelope extracted from the data
by bandpass filtering and that predicted by the eccentricity frequencies defined by the values in m.
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The envelope likelihood calculation is based on an effective number of observations

Neff = N/τ < N, (S8)

where τ > 1 is the lag where the autocorrelation of the envelope residuals decays to zero (see
Section 2.2 in the main text). Consequently, if we were to subsample the vector of residuals e by
taking one every τ values, we would obtain a vector of uncorrelated residuals esub of length Neff.
The likelihood for these subsampled uncorrelated residuals would be a multivariate normal PDF as
in

p(d | m) = p(esub | m) =
1

(2π)Neff/2 σNeff
e

exp

−eT
subesub

2σ2
e

 . (S9)

As the vector esub consists of Neff elements, the sum of their squared values will be approximately
the same as the sum of squares of e times the ratio Neff/N as in

eT
subesub

σ2
e
≈

eTe
σ2

e

Neff

N
=

eTe
τσ2

e
, (S10)

which shows that correlations in the vector e result in an increase of the variance σ2
e by a factor τ.

If we follow an empirical Bayes strategy and estimate σ2
e from the sample variance of e as in

σ2
e =

eTe
N
, (S11)

the likelihood of the subsampled vector of residuals can be written as

p(d | m) = p(esub | m) =
1

(2π)Neff/2 σNeff
e

exp
[
−

Neff

2

]
. (S12)

(Note that the calculation of the envelope fit likelihood never requires the hypothetical vector esub.)
We estimate the lag τ from a simple model of the autocorrelation of envelope fit residuals that

contain periodic components with eccentricity frequencies. The autocorrelation will first cross zero
at a lag that is approximately a quarter of the wavelength λecc of the shortest eccentricity cycle in
the data, so that

τ ≈
λecc

4∆z
, (S13)

where ∆z is the data sampling interval and λecc will equal uTecc, where u is the sedimentation rate
and Tecc is the period of the shortest eccentricity cycle (e.g., 100 kyr), so that

τ =
uTecc

4∆z
. (S14)

However, making τ proportional to a variable sedimentation rate has the effect of inducing a sys-
tematic bias that makes the envelope likelihood in Equation S12 substantially larger at lower sedi-
mentation rates where τ is lower and Neff is larger. (The measured and predicted envelope data are
standardized to unit variance, so that the residual σe < 1; for a given value of σe, the likelihood
will be greater for a greater value of Neff.) Numerical experiments show that this sedimentation rate
bias overwhelms the effect of differences in σe, and the highest likelihood for the envelope fit is in-
variably at the lowest sedimentation rate considered. To avoid this bias, the value of τ is calculated
from Equation S14 at a reference value of u, set to the average sedimentation rate in the prior range
considered.
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Text S3. Lunar Distance and LOD from the Axial Precession Frequency

In this section, we describe our approach and provide easy-to-use expressions to obtain lunar dis-
tance and LOD from estimates of the axial precession frequency. To simplify the notation, hence-
forth we denote the ratios between past and present values of axial precession frequency k, lunar
distance a, and Earth spin rate ω as follows:

kr =
k(t)
k(0)

, ar =
a(t)
a(0)

, ωr =
ω(t)
ω(0)

, (S15)

where t is age and 0 denotes present day. With this notation, Equation 5 in the main text for the
K-curve is

ωr = kr
K + 1

K + a−3
r

(S16)

and Equation 6 for the AM-curve is

ωr = 1 + A − A
√

ar (S17)

The values of the constants K and A in Equation S16 and S17 were adjusted from the original values
in Walker & Zahnle (1986) to better fit the relationship between lunar distance, Earth spin rate, and
axial precession frequency in the tidal dissipation model results of Farhat et al. (2022), which take
into account the long-term increase in the obliquity ε of the Earth’s axis and the effect of solar ocean
tides in slowing down Earth’s rotation (see Section 7 in the the main text).

The value of k that can be predicted for given values of a and ω by rearranging Equation S16
and the original value of K = 0.465 in Walker & Zahnle (1986) results in a difference with the k
computed by Farhat et al. (2002) that increases with increasing age, reaching 3.3% at 3.3 Ga. This
misfit matches the predicted effect of the secular trend in obliquity: as the full expression for the
axial precession frequency contains a cos ε term (e.g., Berger & Loutre, 1994; Laskar, 2020), the
ratio k(t)/k(0) at age t will be multiplied by a factor cos ε(t)/cos ε(0), which equals 1.032 at 3.3 Ga
in the results of Farhat et al. (2022). By adjusting the value of K to 0.358, the difference between the
k predicted from Equation S16 and that computed by Farhat et al. (2022) remains within ±0.14%
between the present and 3 Ga, increasing to 0.28% at 3.3 Ga.

We also compared the LOD predicted by Equation S17 for a given lunar distance a to the values
computed by Farhat et al. (2022). The original value of A = 4.87 in Walker & Zahnle (1986)
results in a difference in LOD with the Farhat et al. (2022) values that increases with increasing age,
reaching 0.55% at 3.3 Ga. With an adjusted value of A = 4.81, this difference remains between
±0.03% from the present to 3 Ga, reaching −0.07% at 3.3 Ga.

At the intersection of the K-curve and of the AM-curve, the value of ωr in Equation S16 and S17
must be the same, and we obtain an expression for the ratio kr that conserves Earth-Moon angular
momentum and is a function of ar only:

kr =
(
1 + A − A

√
ar

) K + a−3
r

K + 1
. (S18)

This nonlinear equation cannot be solved directly for ar. However, an accurate value can be obtained
by computing the value of kr from Equation S18 for ar between 1 and 0.77 (the value at 3.3 Ga in
the results of Farhat et al. 2022) and fitting a polynomial to ar as a function of kr. The relationship
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between ar and the natural logarithm of kr is almost linear, and the third order polynomial in the
following equation fits the values of ar to within ±3 × 10−5:

ar = 1 − 0.217194 log(kr) − 0.00060922 [log(kr)]2 + 0.00621404 [log(kr)]3. (S19)

Once the ratio ar is obtained from kr using Equation S19, ωr can be computed from Equation S17.

Text S4. Uncertainty in Estimated Lunar Distance and LOD

The K-curve and AM-curve will intersect at a point of coordinates âr and ω̂r, which define the
lunar distance and Earth spin rate at a past time from an estimate of the axial precession frequency
(Figure 14a in the main text). This section describes how to obtain the uncertainty in âr and ω̂r from
the uncertainty in an estimated value of axial precession frequency ratio k̂r. There are three sources
of uncertainty to take into account in this problem:

– Uncertainty in the precession frequency ratio k̂r estimated from stratigraphic data, quantified
by a standard deviation σk̂r

;

– Uncertainty in the value of ωr predicted by the K-curve in Equation S16 for a given ar and
kr, quantified by a standard deviation σK;

– Uncertainty in the value of ωr predicted by the AM-curve in Equation S17 for a given ar,
quantified by a standard deviation σAM.

The standard deviation σk̂r
equals the posterior standard deviation of k divided by the present day

axial precession frequency k(0). A thorough determination of the standard deviations σK and σAM
requires quantifying and propagating uncertainties in the constants that define the K-curve and AM-
curve (in Equation S16 and S17), and is beyond the scope of the present study. We use here a
value of 0.005 for both σK and σAM, meaning that the K-curve and AM-curve predict the value
of the ratio ωr with a standard deviation of 0.5%. This value is well above the misfit in fitting
the values calculated by Farhat et al. (2022) with the adjusted values of K in Equation S16 and of
A in Equation S17 (see Text S3), thus we take it as providing a conservative measure of the the
uncertainty.

The uncertainty of the AM-curve in the region around the intersection at âr and ω̂r, where we
approximate the AM-curve by a straight line, can be represented by a bivariate normal PDF that is
centered on the intersection and has a covariance matrix

CAM = σ2
0

 1 bAM

bAM b2
AM +

σ2
AM
σ2

0

 , (S20)

where bAM is the slope of the AM-curve (Equation S17) at the intersection

bAM =
dωr

dar

∣∣∣∣∣
ar=âr

= −
A

2
√

âr
(S21)

and σ0 spans a range of ar that is large compared to the overlap between the uncertain AM-curve
and K-curve; see Figure 14b in the main text for an illustration. (As shown below, σ0 will be
eliminated from our final expressions.)
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The bivariate normal PDF that represents the uncertainty of the K-curve in the region around
the intersection is

CK = σ2
0


1 bK

bK b2
K +

σ2
K+σ2

k̂r
σ2

0

 , (S22)

where bK is the slope of the K-curve (Equation S16) at the intersection

bK =
dωr

dar

∣∣∣∣∣
ar=âr

= k̂r
3 (K + 1) â2

r

(Kâ3
r + 1)2

(S23)

and the sum σ2
K + σ2

k̂r
accounts for the uncertainty of both the K-curve and of the estimated kr.

(Equation S16 shows that the uncertainty in the value of ωr predicted by kr is the same as the
uncertainty of kr.)

The uncertainty of the intersection will be defined by the product of the two PDFs that quantify
the uncertainty of the AM-curve and of the K-curve. This product is another bivariate normal PDF
that is centered on the intersection point and that has a covariance matrix

C =
[
C−1

K + C−1
AM

]−1
, (S24)

and an expression for C can be obtained letting σ2
0 → ∞ as

C =
1

(bK − bAM)2

 σ2
AM + σ2

K + σ2
k̂r

bAM(σ2
K + σ2

k̂r
)2 + bKσ

2
AM

bAM(σ2
K + σ2

k̂r
) + bKσ

2
AM b2

AM(σ2
K + σ2

k̂r
) + b2

Kσ
2
AM

 . (S25)

The diagonal elements of C contain the variances of the values of âr (C11) and ω̂r (C22) at the
intersection of the AM-curve and K-curve.
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Table S1. List of symbols and acronyms.

a Semi-major axis of lunar orbit
ar Ratio a(t)/a(0) of a at age t over the present day value
A Constant in equation for conservation of angular momentum
C Covariance matrix
d Vector of observed data
dpred Vector of data predicted by a given value of m
e Vector of data residuals d − dpred

esub Subsampled vector of data residuals
G Matrix of sine and cosine terms with astronomical frequencies
gi Fundamental Solar system frequencies for the rotation of the planetary perihelia
k Precession frequency of the Earth’s spin axis
kr Ratio k(t)/k(0) of k at age t over the present day value
m Vector of parameters (gi, si, k, u)
N Number of data points in d
Neff Effective number of independent observations in d
p(x | y) Probability density function (PDF) of x given y
P Order of an AR(P) process
ri Autocorrelation of data residuals e at lag i
si Fundamental Solar system frequencies for the rotation of the ascending nodes

of the orbital planes
t Vector of ages in the stratigraphic data
Tecc Period of shortest eccentricity cycle in the data
u Sedimentation rate
w Vector of uncorrelated (white) noise driving an autoregressive (AR) process
λecc Wavelength of shortest eccentricity cycle in the data
φi i-th coefficient of an AR(P) process (1 ≤ i ≤ P)
σ2

e Variance of data residuals e
σ2

w Variance of uncorrelated noise w
τ Minimum lag where the autocorrelation function crosses zero
ω Earth spin rate
ωr Ratio ω(t)/ω(0) of ω at age t over the present day value
AR Autoregressive process
LOD Length of day
MAP Maximum a posteriori
MCMC Markov chain Monte Carlo
PDF Probability density function
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AR(2) process fitted to ETP data ( 1=0.84, 2=-0.07)
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Figure S1. Fit of an AR(2) process to the residuals for the synthetic ETP test data set. (a) Com-
parison of data periodogram with the spectrum of an AR(2) process with the coefficients φ1 and φ2
fitted for the MAP value of the parameters. The vertical dotted line marks the maximum climatic
precession frequency in the data. (b) Sample autocorrelation of the driving noise w of the residuals
obtained for the MAP values of the parameters.
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AR(2) process fitted to Xiamaling data ( 1=0.24, 2=-0.01)
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Figure S2. Fit of an AR(2) process to the residuals for the Xiamaling formation Cu/Al data set.
(a) Comparison of data periodogram with the spectrum of an AR(2) process with the coefficients
φ1 and φ2 fitted for the MAP value of the parameters. The vertical dotted line marks the maximum
climatic precession frequency in the data. (b) Sample autocorrelation of the driving noise w of the
residuals obtained for the MAP values of the parameters.
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AR(2) process fitted to Walvis data ( 1=1.14, 2=-0.33)
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Figure S3. Fit of an AR(2) process to the residuals for the Walvis Ridge a* data set. (a) Comparison
of data periodogram with the spectrum of an AR(2) process with the coefficients φ1 and φ2 fitted for
the MAP value of the parameters. The vertical dotted line marks the maximum climatic precession
frequency in the data. (b) Sample autocorrelation of the driving noise w of the residuals obtained
for the MAP values of the parameters.
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Figure S4. Posterior correlation of parameters sampled by TimeOptBMCMC for the Xiamaling
formation Cu/Al data set. The color background for each pair of parameters is proportional to the
correlation coefficient (as shown by the color bar at the bottom of the figure). Posterior correlations
are near zero, with the exception of a strong positive correlation between u and k.
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MCMC MAP data fit for Xiamaling (N iter=50000)
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Figure S5. Fit to the Xiamaling formation Cu/Al data obtained by TimeOptBMCMC for the MAP
value of sedimentation rate u and astronomical frequencies gi, si, and k. (a) Fit between measured
and predicted stratigraphic data (spectral fit). (b) Fit between the envelope of the bandpassed cli-
matic precession signal and the envelope predicted by the eccentricity frequencies (envelope fit).
(c) Data periodogram (black continuous line) and frequencies of the reconstructed astronomical cy-
cles in the data (dotted vertical lines). The gray shaded area shows the frequency response of the
filter used to compute the bandpassed climatic precession signal in the data (gray curve in (b)).
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MCMC sampling progress for Walvis
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Figure S6. Progress of TimeOptBMCMC sampling for the Walvis Ridge a* data set over 50,000
iterations. (a) Value of the log-posterior PDF for the sampled model parameter vectors. The black
cross is the starting value and the red cross the MAP. (b, c, d) Standard deviation of the proposal
PDF (as a ratio over the starting value) for each model parameter. (e, f, g) Frequency of acceptance
of the proposed steps in the MCMC random walk. The adaptive Metropolis algorithm used in
TimeOptBMCMC adjusts the standard deviations of the proposal PDF to keep the frequency of
acceptance around the optimal value of 0.44 for all model parameters (white horizontal dotted line).
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Figure S7. Posterior correlation of parameters sampled by TimeOptBMCMC for the Walvis Ridge
a* data set. The color background for each pair of parameters is proportional to the correlation
coefficient (as shown by the color bar at the bottom of the figure). Posterior correlations are near
zero, with the exception of a strong positive correlation between u and k.
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MCMC MAP data fit for Walvis (N iter=50000)
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Figure S8. Fit to the Walvis Ridge a* data obtained by TimeOptBMCMC for the MAP value
of sedimentation rate u and astronomical frequencies gi, si, and k. (a) Fit between measured and
predicted stratigraphic data (spectral fit). (b) Fit between the envelope of the bandpassed climatic
precession signal and the envelope predicted by the eccentricity frequencies (envelope fit). (c) Data
periodogram (black continuous line) and frequencies of the reconstructed astronomical cycles in the
data (dotted vertical lines). The gray shaded area shows the frequency response of the filter used to
compute the bandpassed climatic precession signal in the data (gray curve in (b)).
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