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Abstract

Following the Hunga Tonga–Hunga Ha’apai (HTHH) eruption in January 2022, stratospheric ozone depletion was observed

in the Southern Hemisphere mid-latitudes and Antarctica during the 2022 austral wintertime and springtime. This eruption

injected sulfur dioxide and unprecedented amounts of water vapor into the stratosphere. This work examines and quantifies the

chemistry contribution of the volcanic materials to the ozone depletion using chemistry-climate model simulations with nudged

meteorology. Simulated 2022 ozone and nitrogen oxides (NOx) anomalies show a good agreement with satellite observations. We

find that chemistry only contributes up to 6% and 20% ozone destruction at mid-latitudes wintertime and Antarctic springtime

respectively. The majority of the ozone depletion is attributed to the internal variability and dynamical changes forced by the

eruption. Both the simulation and observations show a significant NOx reduction associated with the HTHH aerosol plume,

indicating the enhanced dinitrogen pentoxide hydrolysis on sulfate aerosol.
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Abstract 28 

  29 
Following the Hunga Tonga–Hunga Ha’apai (HTHH) eruption in January 2022, stratospheric 30 
ozone depletion was observed in the Southern Hemisphere mid-latitudes and Antarctica during the 31 
2022 austral wintertime and springtime. This eruption injected sulfur dioxide and unprecedented 32 
amounts of water vapor into the stratosphere. This work examines and quantifies the chemistry 33 
contribution of the volcanic materials to the ozone depletion using chemistry-climate model 34 
simulations with nudged meteorology. Simulated 2022 ozone and nitrogen oxides (NOx) 35 
anomalies show a good agreement with satellite observations. We find that chemistry only 36 
contributes up to 6% and 20% ozone destruction at mid-latitudes wintertime and Antarctic 37 
springtime respectively. The majority of the ozone depletion is attributed to the internal variability 38 
and dynamical changes forced by the eruption. Both the simulation and observations show a 39 
significant NOx reduction associated with the HTHH aerosol plume, indicating the enhanced 40 
dinitrogen pentoxide hydrolysis on sulfate aerosol.  41 
 42 
 43 
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Plain language summary 44 
 45 
The January 2022 eruption of the Hunga Tonga-Hunga Ha'apai underwater volcano injected a 46 
large amount of water vapor (H2O) and moderate amounts of sulfur dioxide (SO2) into the 47 
stratosphere. Stratospheric ozone losses were observed following the eruption in the Southern 48 
Hemisphere (SH) mid-latitudes and Antarctica during the 2022 austral wintertime and springtime. 49 
The ozone layer in the stratosphere protects Earth’s human being and biosphere from harmful 50 
ultraviolet light by absorbing the harmful portion of the radiation from the sun. We use computer 51 
simulation in this study to examine the impacts of chemical processes on the ozone layer from the 52 
volcanic materials. We find that chemistry is contributing up to 6% and 20% of the ozone reduction 53 
at SH mid-latitudes winter and Antarctic spring respectively. The majority of ozone changes are 54 
due to transport and dynamical processes from internal variability in the climate system and forced 55 
response by the HTHH eruption.  56 
 57 
1. Introduction  58 
 59 
It has been long known that explosive volcanic eruptions can cause stratospheric ozone depletion 60 
by injecting sulfate and its precursor SO2 into the stratosphere, which enhances aerosol surface 61 
areas for heterogeneous chemistry (Hofmann & Solomon, 1989; Portmann et al., 1996; Kinnison 62 
et al., 1994; Solomon et al., 1996, 1998). Observations have shown that Antarctic ozone depletion 63 
was enhanced after the major eruption of Mount Pinatubo in the early 1990s with injections of ~18 64 
Tg sulfur dioxide (SO2) (e.g., Read et al., 1993; Krueger et al., 1995; Solomon et al., 2005). Even 65 
the moderate magnitude volcanic eruption of Calbuco in 2015, which injected 0.4 Tg of SO2, 66 
exacerbated ozone depletion, producing a record-breaking October ozone hole that lasted late into 67 
the season (Solomon et al., 2016; Ivy et al., 2017; Stone et al., 2017; Zhu et al., 2018). 68 
 69 
The January 2022 Hunga Tonga–Hunga Ha’apai (HTHH) eruption was an unprecedented 70 
underwater volcanic event of the modern era, which injected volcanic materials to altitudes up to 71 
58 km in the mesosphere (Carr et al., 2022; Proud et al., 2022). Unlike land-based volcanoes such 72 
as Mount Pinatubo and Calbuco, HTHH injected about 150 Tg of water (H2O) (Xu et al., 2022; 73 
Millán et al., 2022) along with 0.4 to 0.5 Tg SO2 into the stratosphere (Carn et al. 2022; Taha et 74 
al., 2022). This H2O injection increased the global stratospheric water burden by more than 10% 75 
(Vömel et al., 2022; Khaykin et al., 2022; Randel et al., 2023). The additional source of H2O can 76 
impact the ozone chemistry by altering the HOx chemical cycles, heterogeneous reaction rate, and 77 
the Polar Stratospheric Cloud formation (PSCs) (Solomon et al., 1997; Anderson et al., 2012). In 78 
addition, volcanic aerosols provide extra surface area density (SAD) for heterogeneous reactions 79 
affecting ozone chemistry, and suppressing the NOx-Ox cycles (defined later in Section 3.2) (Tie 80 
and Brasseur, 1995). 81 
 82 
Previous studies have utilized the chemistry-climate model Community Earth System Model 83 
Version 2 (CESM2) with Whole Atmosphere Community Climate Model Version 6 (WACCM6) 84 
to simulate the dispersion and evolution of aerosol and water plumes after the HTHH eruption 85 
(Zhu et al., 2022; Wang et al., 2023, Lu et al., 2023). WACCM6 simulations reproduced the 86 
Microwave Limb Sounder (MLS) observed evolution of the H2O throughout 2022 and the 87 
stratospheric cooling and circulation changes as seen by European Center for Medium Range 88 
Forecasts ERA5 reanalysis (Wang et al., 2023). Zhu et al. (2022) found that the additional water 89 
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vapor increases hydroxide, halves the sulfur dioxide lifetime, promotes faster sulfate aerosol 90 
formation as seen by Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation 91 
(CALIPSO) and The Ozone Mapping and Profiler Suite Limb Profiler (OMPS-LP), and leads to 92 
the increased aerosol optical depth and radiation effect. The persistent perturbations in H2O and 93 
aerosol due to HTHH plumes in the SH stratosphere throughout 2022 draw attention to exploring 94 
the SH stratospheric ozone response. 95 
 96 
Lu et al. (2023) explored the ozone response to the HTHH eruption considering 0.4 Tg SO2 97 
emission but ignored the large H2O injection. Wang et al. (2023) simulated large stratospheric 98 
ozone anomalies in mid-latitudes and Antarctica in 2022 as observed by MLS. Manney et al. 99 
(2023) looked into the nitrous oxide anomalies with ozone and suggested that transport plays a 100 
role in the ozone reduction. However, the relative effects of chemistry and dynamics on these 101 
ozone anomalies has not been quantified. This work aims to examine and quantify the chemical 102 
ozone depletion and the associated chemical processes in the wake of HTHH. We isolate the ozone 103 
impact owing to chemistry by nudging the model dynamics to meteorology analysis fields. 104 
  105 
2. Data and Model  106 
2.1 Microwave Limb Sounder (MLS) 107 
The MLS instrument was launched on NASA's EOS Aura satellite on July 15, 2004.  For the past 108 
19 years, MLS has provided a uniquely comprehensive suite of daily global measurements for 109 
studying lower stratospheric chemical processing. MLS Version 5.0 data is used in this work. The 110 
standard product for O3 is derived from MLS radiance measurements near 240 GHz; the O3 data 111 
and its validation are described by Livesey et al. (2020). The useful data range is from 261 hPa up 112 
to 0.001 hPa. Here the O3 data used are compiled into a daily zonal means at a resolution of 2.5° 113 
latitude from 2004 to 2022. Anomalies for 2022 shown in this study are calculated based on 114 
climatology background from 2007 to 2021, as the model simulations started from 2007.  115 
 116 
2.2 Optical Spectrograph and InfraRed Imager System (OSIRIS) 117 
The Optical Spectrograph and InfraRed Imager System (OSIRIS) has been in sun-synchronous 118 
orbit on the Odin satellite since 2001 (Llewellyn et al., 2004; Murtagh et al., 2002). The optical 119 
spectrograph scans the atmospheric limb to measure vertical profiles of limb-scattered solar 120 
irradiance between 275 and 810 nm. There are between 100 and 400 profiles per day, depending 121 
on the time of year and the scanning range. Only the descending node measurements are considered 122 
here due to a drift in the orbit that has caused inconsistent ascending node sampling over the course 123 
of the mission. We use NOx from version 7.2 of the OSIRIS retrieval, which is described and 124 
validated in Dubé et al. (2022). The OSIRIS NO2 observations are converted to NOx using the 125 
PRATMO photochemical box model (Prather and Jaffe, 1990; McLinden et al., 2000), following 126 
the process in Dubé et al. (2020). PRATMO is also used to scale the OSIRIS measurements to a 127 
common local solar time of 12:00 pm in order to account for variations in the measurement time 128 
caused by the processing satellite orbit, which is described in Dubé et al. (2020). 129 
 130 
2.3 Whole Atmosphere Community Climate Model (WACCM) 131 
The CESM2/WACCM6 was used to conduct the numerical experiments. This state-of-the-art 132 
chemistry-climate model extends from the Earth’s surface to approximately 140 km and includes 133 
comprehensive troposphere-stratosphere-mesosphere-lower-thermosphere (TSMLT) chemistry 134 
(details described in Gettelman et al., 2019). WACCM6 includes a prognostic stratospheric aerosol 135 
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module (Mills et al., 2016) and has been utilized extensively to study volcanic aerosols and their 136 
impact on climate change and ozone losses (e.g., Mills et al., 2017; Stone et al., 2017; Zambri et 137 
al., 2019). In this study, the simulations feature a horizontal resolution of 0.9° latitude × 1.25° 138 
longitude using the finite volume dynamical core (Lin & Rood, 1996), and 110 vertical levels, 139 
with a vertical resolution of ~500m in the upper troposphere and lower stratosphere. WACCM6 is 140 
run in a specified dynamics configuration (WACCM6-SD), where the temperatures and winds are 141 
relaxed to Modern-Era Retrospective analysis for Research and Applications Version 2 (MERRA-142 
2) reanalyses (Gelaro et al., 2017) using a relaxation time of 50 hours. This configuration starts 143 
from 2007 until the end of 2022, using initial conditions from a long historical simulation 144 
(Gettelman et al., 2019). Starting in January 2022, we conduct two cases: the experiment case with 145 
full forcing (SO2 and H2O injection) from the HTHH eruption (as defined in Zhu et al., 2022) and 146 
the control case with no forcing (no SO2 or H2O injection) from HTHH eruption. The difference 147 
between these two nudged simulations gives information about the chemistry contribution to the 148 
stratospheric ozone depletion after the HTHH eruption. We use the emission described in Zhu et 149 
al. (2022), where 150 Tg of H2O and 0.42 Tg of SO2 are injected on January 15, 2022, from ~20 150 
to 35 km. 151 
 152 
 153 
3. Results and Discussions 154 
3.1 Observed and simulated ozone anomaly from MLS and WACCM6-SD   155 
 156 
It is expected that the large HTHH H2O and aerosol perturbations can impact stratospheric 157 
dynamics and chemistry, and hence ozone abundances. Figure 1 shows MLS observed ozone from 158 
2004 to 2022 and WACCM6-SD simulated ozone during 2022 in the stratosphere. MLS satellite 159 
observations indicate anomalous negative ozone in 2022 both over SH midlatitudes and tropics 160 
(10°S-60°S) in winter as well as Antarctica (60°S-82°S) in spring. The MLS ozone concentration 161 
over 10°S-60°S shows a record low relative to the climatology period (2004 to 2022) in the SH 162 
austral winter (Fig. 1a, red line) at 30 hPa. Large midwinter interannual variability in this region 163 
is linked to the Quasi-Biennial Oscillation (QBO), as discussed in Wang et al. (2023).  MLS also 164 
shows a relatively deep ozone hole in the SH austral spring (Fig. 1b) at 80 hPa. The negative ozone 165 
anomaly over the polar region (60°S-82°S) is large in October-December, but within the variability 166 
of previous years. This is because the climatology period (2004 to 2022) also includes years with 167 
either relatively strong polar vortex or volcanic impact. For example, the lowest line in Figure 1b 168 
is in the year 2015, when a record October ozone hole occurred after the Calbuco volcanic eruption 169 
(Solomon et al., 2015; Ivy et al., 2017). The accuracy of MLS O3 is about 0.2 ppmv at 30 hPa and 170 
0.1 ppmv near 80 hPa (Livesey et al., 2020). The difference between MLS climatology mean and 171 
2022 is outside the MLS ozone systematic error during June-August in Fig. 1a and October in Fig. 172 
1b, which reinforces the anomalous low ozone occurring in the SH mid-latitudes winter and 173 
Antarctica spring 2022. WACCM6-SD captures both the record low ozone over 10°S-60°S and 174 
the large ozone anomaly over 60°S-82°S, and is within the systematic error of MLS, except in 175 
December 2022 in Fig. 1b.   176 
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(a) 179 

 180 
(b) 181 

 182 
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Figure 1. Time series of ozone concentration (ppmv) for (a) midlatitudes and tropics (10°S-60°S) 183 
at 30 hPa and (b) polar region (60°S-82°S) at 80 hPa from MLS and WACCM. MLS observations 184 
are shown from 2004 to 2022. Gray lines show time serieses of MLS ozone during 2004-2021 and 185 
the black line indicates the mean MLS ozone over the climatology. The red and blue lines are for 186 
MLS and WACCM6-SD ozone in 2022, respectively. 187 
 188 
 189 
3.2 Quantifying the chemical contribution to the ozone reduction  190 
 191 
Stratospheric ozone changes in 2022 compared with the climatology can be attributed to various 192 
factors: internal variability in the climate system (e.g., QBO), and forced changes after the HTHH 193 
eruption including both dynamics and chemistry impacts. Both observed and simulated 2022 194 
anomalies showing in the following are calculated as deviations from the 2007-2021 background 195 
instead of 2004-2021 to be consistent with model simulation period. We note that the difference 196 
of the derived 2022 anomaly between using 2004 and 2007 is minimal. The derived ozone anomaly 197 
from MLS and WACCM6-SD in August are shown in Figure 2a and 2b. The lower stratospheric 198 
wintertime SH mid-latitude ozone reduction is well represented in WACCM6-SD, along with the 199 
ozone increase in the tropics, which is related to the QBO. These ozone anomalies are the result 200 
of the combination of internal variability and HTHH eruption forced changes. Figure 2c shows the 201 
ozone changes due to chemistry only, calculated by taking the difference between the full forcing 202 
experiment run (SO2+H2O) and the no forcing control run in 2022. The blue and red contour lines 203 
highlight the location of HTHH water and aerosol plumes, which reveals the separation of the H2O 204 
and aerosol plumes over time due to the sedimentation of the aerosols (Legras et al. 2022, Wang 205 
et al., 2023). As the experiment and control simulations are nudged to the same dynamics, the 206 
ozone changes in Figure 2c are purely due to the chemistry impact from the enhanced water and 207 
aerosol SAD perturbation. The ozone depletion over the SH mid-latitudes ranges from 200 hPa up 208 
to 30 hPa. In particular, the reduction at 30 to 50 hPa and 100 to 200 hPa are outside of previous 209 
variability (hatched region), with the peak reaching about 20% ozone reduction. Chemistry only 210 
contributes up to 6% of ozone depletion at mid-latitudes near 70 hPa (Fig. 2c). Consequently, less 211 
than 30% of the ozone reduction at the hatched regions in Figure 2a and 2b is attributed to 212 
chemistry, with the other changes a result of dynamical changes due to internal variability from 213 
QBO and forced dynamical response to the HTHH eruption. 214 
 215 
In the springtime (October-December) of the Antarctic polar region, a large negative ozone 216 
anomaly is observed within the polar vortex (south of 60˚S) in 2022 (Fig. 2d), even though it is 217 
not a record-breaking low ozone hole (not hatched). WACCM6-SD reproduces this large ozone 218 
reduction in general, but slightly underestimates the ozone loss between 30 to 50 hPa (Fig. 2e). 219 
The simulation (Fig. 2f) shows that the aerosol plume from the HTHH eruption entered the 220 
Antarctic near the bottom of the polar vortex (~100 hPa) in October. However, the water plume 221 
was confined outside of the polar vortex due to the strong polar jet stream near 25 km (Schoeberl 222 
et al. 2023; Manney et al, 2023; Wang et al., 2023). Note that although the simulated HTHH 223 
aerosol penetrated across the bottom of the polar vortex, it is difficult to prove it with observations. 224 
Enhanced polar extinction in OMPS-LP measurements can be due to polar stratospheric clouds in 225 
the winter season (Manney et al., 2023; Wang et al., 2023). In addition, the amount of sulfate 226 
entering the polar vortex in the simulation is relatively small (only double the background), and 227 
satellite observations (e.g., CALIPSO lidar) sometimes cannot capture it due to background noise 228 
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level. The ozone depletion simulated in Figure 2f is because the volcanic aerosol entered the 229 
bottom of the polar vortex which provides additional SAD for heterogeneous chemistry in the 230 
polar region. Chemistry (Fig. 2f) leads to ~ 20% ozone reduction (this is equivalent to about 40% 231 
of the total ozone depletion) near the center of the Antarctic vortex.  232 
 233 

  234 
                          (a)         (b)            (c) 235 
 236 

  237 
                          (d)         (e)            (f) 238 
 239 
Figure 2. Percentage change of 2022 ozone anomaly (%) relative to climatology (2007 to 2021) 240 
from MLS (a) and WACCM6-SD (b) in August. (d) and (e) are the same but for October. Hatched 241 
regions indicate where the 2022 anomalies are outside the range of all variability during 2007-242 
2021. Percentage change of ozone (%) calculated from full-forcing (SO2+H2O) compared to no-243 
forcing control runs in August (c) and October (f).  The blue and red contour lines in (c) and (f) 244 
are water anomaly in ppmv and aerosol surface area density anomaly in um2/cm3, respectively. 245 
Note that panel c and f have different color bar ranges from panel a, b, d, e. 246 
 247 
We characterize the major chemical processes that lead to the 6% and 20% of chemical ozone 248 
depletion in the mid-latitudes and polar regions discussed above. The chemical destruction of odd 249 
oxygen (Ox = O3 + O + O(1D) + other terms; Brasseur & Solomon, 2005) is directly linked to 250 
ozone abundance in the stratosphere. Different Ox catalytic destruction cycles involve nitrogen 251 
oxides (NOx-Ox), hydrogen radicals (HOx-Ox), halogen oxides (ClOx/BrOx-Ox) as well as the 252 
chemical loss by the Chapman self-destruction mechanism (Ox-Ox) (e.g., Crutzen & Ehhalt, 1977; 253 
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Solomon, 1999). Supplementary Text S1 defines the odd oxygen used in this study and the 254 
reactions that are contained in each odd oxygen chemical family. Figure 3a and 3b characterize 255 
the total Ox loss (sum of Ox-Ox, NOx-Ox, HOx-Ox and ClOx/BrOx-Ox cycles) during the SH 256 
winter and spring. The changes in Ox are induced by the addition of water and aerosol injection 257 
from HTHH eruption. In the wintertime, the major Ox loss occurs in the mid-latitudes from 150 258 
to 20 hPa, consistent with the location of major ozone loss in Figure 2c. During springtime, the 259 
total Ox loss extends into the polar region, associated with the aerosol plume shown in Figure 2f.  260 
 261 
The vertical profile of changes in individual loss cycles are illustrated in Figure 3c and 3d for mid-262 
latitudes winter and Antarctic spring, respectively. Increasing aerosol surface areas decrease the 263 
abundance of NOx and hence the NOx-catalyzed ozone destruction cycles (red lines) (discussed 264 
in section 3.3). Both HOx-Ox and ClOx/BrOx-Ox cycles play important roles in the chemical 265 
ozone destruction for mid-latitudes winter, but at different altitudes. The HOx-Ox cycle is more 266 
significant at 20 to 30 km, while the ClOx/BrOx-Ox cycle plays a larger role below 20 km. The 267 
enhanced HOx cycle is the combined results of direct water injection and the HOx repartitioning 268 
induced from NOx reduction (Wennberg et al., 1994; Solomon et al., 1996). The reduced NOx 269 
also gives rise to ClOx enhancement as ClOx is inversely correlated with NOx (Stimpfle et al., 270 
1994; Solomon et al., 1999). In the Antarctic spring, ClOx/BrOx-Ox cycle controls the behavior 271 
of total Ox change below around 18 km. HOx-Ox loss cycle is still the major loss mechanism at 272 
20 to 25 km. However, this loss is largely offset by hindered NOx-Ox loss, which is normally the 273 
most important loss cycle at this altitude in the background atmosphere (Zhang et al., 2021). It is 274 
eye-catching to see there is a negative Ox perturbation at around 16-18 km, corresponding to 70-275 
100 hPa in Figure 2b. This is because the ozone abundances in the experiment run drop to extreme 276 
low values at 70-100 hPa in the core of the vortex, hence the formation of ClO (and therefore 277 
chlorine nitrate ClONO2) is impeded (Fig. S1). Rapid deactivation of Cl into hydrochloric acid 278 
(HCl) then occurs even if the enhanced SAD are still present and temperatures are very cold 279 
(Douglass et al., 1995; Solomon et al., 2015). This rapid deactivation suppresses the Ox loss due 280 
to ClOx/BrOx-Ox cycle in the experiment run compared to the control run. Figure 3c and 3d 281 
indicate that the reaction rates of all the Ox chemical loss cycles are modified even though only 282 
SO2 and H2O emissions are injected into the atmosphere from the HTHH eruption. This is expected 283 
since these cycles couple to each other and change repartitioning from each other. 284 
  285 
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 286 
 287 

 288 
(a) (b) 289 

 290 

       291 
(c)        (d) 292 

Figure 3. Calculated perturbations from full-forcing (SO2+H2O) experiment run compared to no-293 
forcing control run for total OddOx loss in August (a) and October (b). Vertical profile of total 294 
Odd oxygen (Ox) loss (in black) and the loss from individual cycles of HOx-Ox, NOx-Ox, 295 
ClOxBrOx-Ox and Ox-Ox at mid-latitudes in August (c) and Antarctic region in October (d).  296 
 297 
3.3 Negative NOx anomaly after HTHH eruption 298 
 299 
NOx reduction is expected following large volcanic eruptions, which perturbs ozone abundance in 300 
the stratosphere (e.g., Fahey et al., 1993; Mills et al., 1993; Berthet et al., 2017; Zambri et al., 301 
2019). Figure 4 examines the NOx anomaly after the HTHH eruption from OSIRIS observations 302 
and WACCM6-SD model simulations. A dipole pattern is observed both in the OSIRIS and 303 
WACCM: a NOx reduction at around 25 km and below, and a positive anomaly above. This 304 
positive anomaly is mainly due to the QBO internal variability, as it is also seen in 2008 when the 305 
QBO phase is similar to 2022 while the negative anomaly is not found (Fig. S2) (Park et al., 2017). 306 
Figure 4a and 4d show the OSIRIS observed NOx anomalies in August and October 2022, with 307 
reductions of 30~40% over the mid-latitude lower stratosphere. This negative anomaly is 308 
approximately collocated with the HTHH aerosol plume in Figure 2c and 2f, which is consistent 309 
with the plume location shown in Wang et al. (2023) from the OMPS-LP data. The HTHH aerosol 310 
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reduce the NOx abundance via the well-known heterogeneous chemical reactions dinitrogen 311 
pentoxide (N2O5) hydrolysis on aerosols (e.g., Hofmann and Solomon, 1989; Solomon, 1999; 312 
Berthet et al., 2017). Due to the N2O5 hydrolysis on the surface of aerosol, nitric acid (HNO3) 313 
formation is promoted which acts as a major sink of NOx in the atmosphere during night-time. We 314 
note that OSIRIS data show strong NOx decreases throughout 2022 (not shown) that overlap the 315 
HTHH aerosol layer, but OSIRIS does not have high latitude measurements during midwinter. 316 
Model calculations (Fig. 4b and 4e) show NOx decreases in the lower stratosphere that are similar 317 
in magnitude (~30-40%) and location to the OSIRIS results, demonstrating that the NOx-aerosol 318 
reactions are captured well in the model. Figure 4c and 4f denote the modeled changes in N2O5 319 
hydrolysis rate overlying with aerosol SAD anomaly due to the HTHH eruption, derived from the 320 
difference between full-forcing (SO2+H2O) and no-forcing control runs. This heterogeneous 321 
chemical reaction rate is enhanced by more than 50% at the location where the maximum of NOx 322 
reduction occurs in Figure 4b and 4e. The results shown here are consistent with the conclusion 323 
drawn from Santee et al. (2023) using MLS data, suggesting the hydrolysis of N2O5 is the primary 324 
mechanism for the reduction of NOx. We note that even though this NOx reduction is significant, 325 
we found that the NOx impact on ozone is largely canceled by HOx-Ox and ClOx-Ox cycles as 326 
shown in Figure 3c and 3d. 327 
 328 

 329 
                          (a)         (b)            (c) 330 
 331 

 332 
                          (d)         (e)            (f) 333 
 334 
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Figure 4. Calculated NOx anomaly (%) relative to climatology (2007 to 2021) from OSIRIS and 335 
WACCM6-SD in August and October (a), (b) and (d), (e). Calculated changes (%) in N2O5 336 
hydrolysis rate on sulfate aerosols in the WACCM6-SD model from full-forcing (SO2+H2O) 337 
compared to no-forcing control runs in August and October (c) and (f).  The white contour line in 338 
(c) and (f) is the aerosol surface area density anomaly in um2/cm3.  339 
 340 
4. Summary and discussion 341 
 342 
The January 2022 Hunga Tonga-Hunga Ha'apai eruption injected ~150 Tg of water and ~0.42 Tg 343 
SO2 into the SH stratosphere. MLS observed ozone reductions in the SH stratosphere mid-latitudes 344 
and Antarctica during the 2022 austral wintertime and springtime. This work focuses on examining 345 
and quantifying the chemical ozone depletion due to the SO2 and H2O injection. We use 346 
WACCM6-SD nudged simulations to disentangle the role of chemistry from that of dynamics. 347 
WACCM6-SD shows a good agreement with MLS ozone anomaly and also reproduces the NOx 348 
anomaly in 2022 compared to OSIRIS measurements. 349 
 350 
We found chemistry contributes to 6% and 20% ozone depletion at mid-latitudes and Antarctica, 351 
respectively. The majority of ozone changes are due to transport and dynamical processes from 352 
internal variability in the climate system and forced response by the HTHH eruption. One caveat 353 
is that the chemistry quantified here does not include the dynamics feedback on the chemistry. For 354 
example, water can cool the stratosphere, which would further promote heterogeneous reactions. 355 
However, because these two simulations conducted here are nudged to the same dynamics, the 356 
temperature is not allowed to change to reflect the feedback on chemistry. To characterize the 357 
chemical processes that contributed to the ozone loss, different loss cycles (NOx-Ox, HOx-Ox, 358 
ClOx/BrOx-Ox and Ox-Ox) were examined and their relative significance to the ozone depletion 359 
at SH mid-latitudes and Antarctica were evaluated. We found both HOx-Ox and ClOx/BrOx-Ox 360 
cycles play important roles in the total chemical ozone destruction for mid-latitudes winter. While 361 
during the Antarctic spring, ClOx/BrOx-Ox cycle is dominant and controls the behavior of total 362 
Ox change in the lower stratosphere. We also document that both OSIRIS and WACCM6-SD 363 
show a NOx reduction that collocates with HTHH aerosols plume, demonstrating the enhanced 364 
N2O5 hydrolysis on sulfate aerosol. Consequently, the NOx-Ox loss cycle is strongly suppressed 365 
associated with the significant NOx reduction. However, the NOx impact on ozone is minimal 366 
since it is largely canceled by HOx-Ox and ClOx/BrOx-Ox cycles.  367 
 368 
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Key Points: 19 
 20 

● Nudged chemistry-climate model simulations are used to quantify the chemistry impact on 21 
the stratospheric ozone following the Hunga Tonga-Hunga Ha’apai eruption. 22 

● The modeled ozone and nitrogen oxides anomalies show a good agreement with satellite 23 
observations. 24 

● Chemistry contributes to 6% and 20% ozone depletion at mid-latitudes and Antarctica, 25 
respectively. 26 

 27 
Abstract 28 

  29 
Following the Hunga Tonga–Hunga Ha’apai (HTHH) eruption in January 2022, stratospheric 30 
ozone depletion was observed in the Southern Hemisphere mid-latitudes and Antarctica during the 31 
2022 austral wintertime and springtime. This eruption injected sulfur dioxide and unprecedented 32 
amounts of water vapor into the stratosphere. This work examines and quantifies the chemistry 33 
contribution of the volcanic materials to the ozone depletion using chemistry-climate model 34 
simulations with nudged meteorology. Simulated 2022 ozone and nitrogen oxides (NOx) 35 
anomalies show a good agreement with satellite observations. We find that chemistry only 36 
contributes up to 6% and 20% ozone destruction at mid-latitudes wintertime and Antarctic 37 
springtime respectively. The majority of the ozone depletion is attributed to the internal variability 38 
and dynamical changes forced by the eruption. Both the simulation and observations show a 39 
significant NOx reduction associated with the HTHH aerosol plume, indicating the enhanced 40 
dinitrogen pentoxide hydrolysis on sulfate aerosol.  41 
 42 
 43 



 

 2 

Plain language summary 44 
 45 
The January 2022 eruption of the Hunga Tonga-Hunga Ha'apai underwater volcano injected a 46 
large amount of water vapor (H2O) and moderate amounts of sulfur dioxide (SO2) into the 47 
stratosphere. Stratospheric ozone losses were observed following the eruption in the Southern 48 
Hemisphere (SH) mid-latitudes and Antarctica during the 2022 austral wintertime and springtime. 49 
The ozone layer in the stratosphere protects Earth’s human being and biosphere from harmful 50 
ultraviolet light by absorbing the harmful portion of the radiation from the sun. We use computer 51 
simulation in this study to examine the impacts of chemical processes on the ozone layer from the 52 
volcanic materials. We find that chemistry is contributing up to 6% and 20% of the ozone reduction 53 
at SH mid-latitudes winter and Antarctic spring respectively. The majority of ozone changes are 54 
due to transport and dynamical processes from internal variability in the climate system and forced 55 
response by the HTHH eruption.  56 
 57 
1. Introduction  58 
 59 
It has been long known that explosive volcanic eruptions can cause stratospheric ozone depletion 60 
by injecting sulfate and its precursor SO2 into the stratosphere, which enhances aerosol surface 61 
areas for heterogeneous chemistry (Hofmann & Solomon, 1989; Portmann et al., 1996; Kinnison 62 
et al., 1994; Solomon et al., 1996, 1998). Observations have shown that Antarctic ozone depletion 63 
was enhanced after the major eruption of Mount Pinatubo in the early 1990s with injections of ~18 64 
Tg sulfur dioxide (SO2) (e.g., Read et al., 1993; Krueger et al., 1995; Solomon et al., 2005). Even 65 
the moderate magnitude volcanic eruption of Calbuco in 2015, which injected 0.4 Tg of SO2, 66 
exacerbated ozone depletion, producing a record-breaking October ozone hole that lasted late into 67 
the season (Solomon et al., 2016; Ivy et al., 2017; Stone et al., 2017; Zhu et al., 2018). 68 
 69 
The January 2022 Hunga Tonga–Hunga Ha’apai (HTHH) eruption was an unprecedented 70 
underwater volcanic event of the modern era, which injected volcanic materials to altitudes up to 71 
58 km in the mesosphere (Carr et al., 2022; Proud et al., 2022). Unlike land-based volcanoes such 72 
as Mount Pinatubo and Calbuco, HTHH injected about 150 Tg of water (H2O) (Xu et al., 2022; 73 
Millán et al., 2022) along with 0.4 to 0.5 Tg SO2 into the stratosphere (Carn et al. 2022; Taha et 74 
al., 2022). This H2O injection increased the global stratospheric water burden by more than 10% 75 
(Vömel et al., 2022; Khaykin et al., 2022; Randel et al., 2023). The additional source of H2O can 76 
impact the ozone chemistry by altering the HOx chemical cycles, heterogeneous reaction rate, and 77 
the Polar Stratospheric Cloud formation (PSCs) (Solomon et al., 1997; Anderson et al., 2012). In 78 
addition, volcanic aerosols provide extra surface area density (SAD) for heterogeneous reactions 79 
affecting ozone chemistry, and suppressing the NOx-Ox cycles (defined later in Section 3.2) (Tie 80 
and Brasseur, 1995). 81 
 82 
Previous studies have utilized the chemistry-climate model Community Earth System Model 83 
Version 2 (CESM2) with Whole Atmosphere Community Climate Model Version 6 (WACCM6) 84 
to simulate the dispersion and evolution of aerosol and water plumes after the HTHH eruption 85 
(Zhu et al., 2022; Wang et al., 2023, Lu et al., 2023). WACCM6 simulations reproduced the 86 
Microwave Limb Sounder (MLS) observed evolution of the H2O throughout 2022 and the 87 
stratospheric cooling and circulation changes as seen by European Center for Medium Range 88 
Forecasts ERA5 reanalysis (Wang et al., 2023). Zhu et al. (2022) found that the additional water 89 
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vapor increases hydroxide, halves the sulfur dioxide lifetime, promotes faster sulfate aerosol 90 
formation as seen by Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation 91 
(CALIPSO) and The Ozone Mapping and Profiler Suite Limb Profiler (OMPS-LP), and leads to 92 
the increased aerosol optical depth and radiation effect. The persistent perturbations in H2O and 93 
aerosol due to HTHH plumes in the SH stratosphere throughout 2022 draw attention to exploring 94 
the SH stratospheric ozone response. 95 
 96 
Lu et al. (2023) explored the ozone response to the HTHH eruption considering 0.4 Tg SO2 97 
emission but ignored the large H2O injection. Wang et al. (2023) simulated large stratospheric 98 
ozone anomalies in mid-latitudes and Antarctica in 2022 as observed by MLS. Manney et al. 99 
(2023) looked into the nitrous oxide anomalies with ozone and suggested that transport plays a 100 
role in the ozone reduction. However, the relative effects of chemistry and dynamics on these 101 
ozone anomalies has not been quantified. This work aims to examine and quantify the chemical 102 
ozone depletion and the associated chemical processes in the wake of HTHH. We isolate the ozone 103 
impact owing to chemistry by nudging the model dynamics to meteorology analysis fields. 104 
  105 
2. Data and Model  106 
2.1 Microwave Limb Sounder (MLS) 107 
The MLS instrument was launched on NASA's EOS Aura satellite on July 15, 2004.  For the past 108 
19 years, MLS has provided a uniquely comprehensive suite of daily global measurements for 109 
studying lower stratospheric chemical processing. MLS Version 5.0 data is used in this work. The 110 
standard product for O3 is derived from MLS radiance measurements near 240 GHz; the O3 data 111 
and its validation are described by Livesey et al. (2020). The useful data range is from 261 hPa up 112 
to 0.001 hPa. Here the O3 data used are compiled into a daily zonal means at a resolution of 2.5° 113 
latitude from 2004 to 2022. Anomalies for 2022 shown in this study are calculated based on 114 
climatology background from 2007 to 2021, as the model simulations started from 2007.  115 
 116 
2.2 Optical Spectrograph and InfraRed Imager System (OSIRIS) 117 
The Optical Spectrograph and InfraRed Imager System (OSIRIS) has been in sun-synchronous 118 
orbit on the Odin satellite since 2001 (Llewellyn et al., 2004; Murtagh et al., 2002). The optical 119 
spectrograph scans the atmospheric limb to measure vertical profiles of limb-scattered solar 120 
irradiance between 275 and 810 nm. There are between 100 and 400 profiles per day, depending 121 
on the time of year and the scanning range. Only the descending node measurements are considered 122 
here due to a drift in the orbit that has caused inconsistent ascending node sampling over the course 123 
of the mission. We use NOx from version 7.2 of the OSIRIS retrieval, which is described and 124 
validated in Dubé et al. (2022). The OSIRIS NO2 observations are converted to NOx using the 125 
PRATMO photochemical box model (Prather and Jaffe, 1990; McLinden et al., 2000), following 126 
the process in Dubé et al. (2020). PRATMO is also used to scale the OSIRIS measurements to a 127 
common local solar time of 12:00 pm in order to account for variations in the measurement time 128 
caused by the processing satellite orbit, which is described in Dubé et al. (2020). 129 
 130 
2.3 Whole Atmosphere Community Climate Model (WACCM) 131 
The CESM2/WACCM6 was used to conduct the numerical experiments. This state-of-the-art 132 
chemistry-climate model extends from the Earth’s surface to approximately 140 km and includes 133 
comprehensive troposphere-stratosphere-mesosphere-lower-thermosphere (TSMLT) chemistry 134 
(details described in Gettelman et al., 2019). WACCM6 includes a prognostic stratospheric aerosol 135 
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module (Mills et al., 2016) and has been utilized extensively to study volcanic aerosols and their 136 
impact on climate change and ozone losses (e.g., Mills et al., 2017; Stone et al., 2017; Zambri et 137 
al., 2019). In this study, the simulations feature a horizontal resolution of 0.9° latitude × 1.25° 138 
longitude using the finite volume dynamical core (Lin & Rood, 1996), and 110 vertical levels, 139 
with a vertical resolution of ~500m in the upper troposphere and lower stratosphere. WACCM6 is 140 
run in a specified dynamics configuration (WACCM6-SD), where the temperatures and winds are 141 
relaxed to Modern-Era Retrospective analysis for Research and Applications Version 2 (MERRA-142 
2) reanalyses (Gelaro et al., 2017) using a relaxation time of 50 hours. This configuration starts 143 
from 2007 until the end of 2022, using initial conditions from a long historical simulation 144 
(Gettelman et al., 2019). Starting in January 2022, we conduct two cases: the experiment case with 145 
full forcing (SO2 and H2O injection) from the HTHH eruption (as defined in Zhu et al., 2022) and 146 
the control case with no forcing (no SO2 or H2O injection) from HTHH eruption. The difference 147 
between these two nudged simulations gives information about the chemistry contribution to the 148 
stratospheric ozone depletion after the HTHH eruption. We use the emission described in Zhu et 149 
al. (2022), where 150 Tg of H2O and 0.42 Tg of SO2 are injected on January 15, 2022, from ~20 150 
to 35 km. 151 
 152 
 153 
3. Results and Discussions 154 
3.1 Observed and simulated ozone anomaly from MLS and WACCM6-SD   155 
 156 
It is expected that the large HTHH H2O and aerosol perturbations can impact stratospheric 157 
dynamics and chemistry, and hence ozone abundances. Figure 1 shows MLS observed ozone from 158 
2004 to 2022 and WACCM6-SD simulated ozone during 2022 in the stratosphere. MLS satellite 159 
observations indicate anomalous negative ozone in 2022 both over SH midlatitudes and tropics 160 
(10°S-60°S) in winter as well as Antarctica (60°S-82°S) in spring. The MLS ozone concentration 161 
over 10°S-60°S shows a record low relative to the climatology period (2004 to 2022) in the SH 162 
austral winter (Fig. 1a, red line) at 30 hPa. Large midwinter interannual variability in this region 163 
is linked to the Quasi-Biennial Oscillation (QBO), as discussed in Wang et al. (2023).  MLS also 164 
shows a relatively deep ozone hole in the SH austral spring (Fig. 1b) at 80 hPa. The negative ozone 165 
anomaly over the polar region (60°S-82°S) is large in October-December, but within the variability 166 
of previous years. This is because the climatology period (2004 to 2022) also includes years with 167 
either relatively strong polar vortex or volcanic impact. For example, the lowest line in Figure 1b 168 
is in the year 2015, when a record October ozone hole occurred after the Calbuco volcanic eruption 169 
(Solomon et al., 2015; Ivy et al., 2017). The accuracy of MLS O3 is about 0.2 ppmv at 30 hPa and 170 
0.1 ppmv near 80 hPa (Livesey et al., 2020). The difference between MLS climatology mean and 171 
2022 is outside the MLS ozone systematic error during June-August in Fig. 1a and October in Fig. 172 
1b, which reinforces the anomalous low ozone occurring in the SH mid-latitudes winter and 173 
Antarctica spring 2022. WACCM6-SD captures both the record low ozone over 10°S-60°S and 174 
the large ozone anomaly over 60°S-82°S, and is within the systematic error of MLS, except in 175 
December 2022 in Fig. 1b.   176 
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Figure 1. Time series of ozone concentration (ppmv) for (a) midlatitudes and tropics (10°S-60°S) 183 
at 30 hPa and (b) polar region (60°S-82°S) at 80 hPa from MLS and WACCM. MLS observations 184 
are shown from 2004 to 2022. Gray lines show time serieses of MLS ozone during 2004-2021 and 185 
the black line indicates the mean MLS ozone over the climatology. The red and blue lines are for 186 
MLS and WACCM6-SD ozone in 2022, respectively. 187 
 188 
 189 
3.2 Quantifying the chemical contribution to the ozone reduction  190 
 191 
Stratospheric ozone changes in 2022 compared with the climatology can be attributed to various 192 
factors: internal variability in the climate system (e.g., QBO), and forced changes after the HTHH 193 
eruption including both dynamics and chemistry impacts. Both observed and simulated 2022 194 
anomalies showing in the following are calculated as deviations from the 2007-2021 background 195 
instead of 2004-2021 to be consistent with model simulation period. We note that the difference 196 
of the derived 2022 anomaly between using 2004 and 2007 is minimal. The derived ozone anomaly 197 
from MLS and WACCM6-SD in August are shown in Figure 2a and 2b. The lower stratospheric 198 
wintertime SH mid-latitude ozone reduction is well represented in WACCM6-SD, along with the 199 
ozone increase in the tropics, which is related to the QBO. These ozone anomalies are the result 200 
of the combination of internal variability and HTHH eruption forced changes. Figure 2c shows the 201 
ozone changes due to chemistry only, calculated by taking the difference between the full forcing 202 
experiment run (SO2+H2O) and the no forcing control run in 2022. The blue and red contour lines 203 
highlight the location of HTHH water and aerosol plumes, which reveals the separation of the H2O 204 
and aerosol plumes over time due to the sedimentation of the aerosols (Legras et al. 2022, Wang 205 
et al., 2023). As the experiment and control simulations are nudged to the same dynamics, the 206 
ozone changes in Figure 2c are purely due to the chemistry impact from the enhanced water and 207 
aerosol SAD perturbation. The ozone depletion over the SH mid-latitudes ranges from 200 hPa up 208 
to 30 hPa. In particular, the reduction at 30 to 50 hPa and 100 to 200 hPa are outside of previous 209 
variability (hatched region), with the peak reaching about 20% ozone reduction. Chemistry only 210 
contributes up to 6% of ozone depletion at mid-latitudes near 70 hPa (Fig. 2c). Consequently, less 211 
than 30% of the ozone reduction at the hatched regions in Figure 2a and 2b is attributed to 212 
chemistry, with the other changes a result of dynamical changes due to internal variability from 213 
QBO and forced dynamical response to the HTHH eruption. 214 
 215 
In the springtime (October-December) of the Antarctic polar region, a large negative ozone 216 
anomaly is observed within the polar vortex (south of 60˚S) in 2022 (Fig. 2d), even though it is 217 
not a record-breaking low ozone hole (not hatched). WACCM6-SD reproduces this large ozone 218 
reduction in general, but slightly underestimates the ozone loss between 30 to 50 hPa (Fig. 2e). 219 
The simulation (Fig. 2f) shows that the aerosol plume from the HTHH eruption entered the 220 
Antarctic near the bottom of the polar vortex (~100 hPa) in October. However, the water plume 221 
was confined outside of the polar vortex due to the strong polar jet stream near 25 km (Schoeberl 222 
et al. 2023; Manney et al, 2023; Wang et al., 2023). Note that although the simulated HTHH 223 
aerosol penetrated across the bottom of the polar vortex, it is difficult to prove it with observations. 224 
Enhanced polar extinction in OMPS-LP measurements can be due to polar stratospheric clouds in 225 
the winter season (Manney et al., 2023; Wang et al., 2023). In addition, the amount of sulfate 226 
entering the polar vortex in the simulation is relatively small (only double the background), and 227 
satellite observations (e.g., CALIPSO lidar) sometimes cannot capture it due to background noise 228 
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level. The ozone depletion simulated in Figure 2f is because the volcanic aerosol entered the 229 
bottom of the polar vortex which provides additional SAD for heterogeneous chemistry in the 230 
polar region. Chemistry (Fig. 2f) leads to ~ 20% ozone reduction (this is equivalent to about 40% 231 
of the total ozone depletion) near the center of the Antarctic vortex.  232 
 233 

  234 
                          (a)         (b)            (c) 235 
 236 

  237 
                          (d)         (e)            (f) 238 
 239 
Figure 2. Percentage change of 2022 ozone anomaly (%) relative to climatology (2007 to 2021) 240 
from MLS (a) and WACCM6-SD (b) in August. (d) and (e) are the same but for October. Hatched 241 
regions indicate where the 2022 anomalies are outside the range of all variability during 2007-242 
2021. Percentage change of ozone (%) calculated from full-forcing (SO2+H2O) compared to no-243 
forcing control runs in August (c) and October (f).  The blue and red contour lines in (c) and (f) 244 
are water anomaly in ppmv and aerosol surface area density anomaly in um2/cm3, respectively. 245 
Note that panel c and f have different color bar ranges from panel a, b, d, e. 246 
 247 
We characterize the major chemical processes that lead to the 6% and 20% of chemical ozone 248 
depletion in the mid-latitudes and polar regions discussed above. The chemical destruction of odd 249 
oxygen (Ox = O3 + O + O(1D) + other terms; Brasseur & Solomon, 2005) is directly linked to 250 
ozone abundance in the stratosphere. Different Ox catalytic destruction cycles involve nitrogen 251 
oxides (NOx-Ox), hydrogen radicals (HOx-Ox), halogen oxides (ClOx/BrOx-Ox) as well as the 252 
chemical loss by the Chapman self-destruction mechanism (Ox-Ox) (e.g., Crutzen & Ehhalt, 1977; 253 



 

 8 

Solomon, 1999). Supplementary Text S1 defines the odd oxygen used in this study and the 254 
reactions that are contained in each odd oxygen chemical family. Figure 3a and 3b characterize 255 
the total Ox loss (sum of Ox-Ox, NOx-Ox, HOx-Ox and ClOx/BrOx-Ox cycles) during the SH 256 
winter and spring. The changes in Ox are induced by the addition of water and aerosol injection 257 
from HTHH eruption. In the wintertime, the major Ox loss occurs in the mid-latitudes from 150 258 
to 20 hPa, consistent with the location of major ozone loss in Figure 2c. During springtime, the 259 
total Ox loss extends into the polar region, associated with the aerosol plume shown in Figure 2f.  260 
 261 
The vertical profile of changes in individual loss cycles are illustrated in Figure 3c and 3d for mid-262 
latitudes winter and Antarctic spring, respectively. Increasing aerosol surface areas decrease the 263 
abundance of NOx and hence the NOx-catalyzed ozone destruction cycles (red lines) (discussed 264 
in section 3.3). Both HOx-Ox and ClOx/BrOx-Ox cycles play important roles in the chemical 265 
ozone destruction for mid-latitudes winter, but at different altitudes. The HOx-Ox cycle is more 266 
significant at 20 to 30 km, while the ClOx/BrOx-Ox cycle plays a larger role below 20 km. The 267 
enhanced HOx cycle is the combined results of direct water injection and the HOx repartitioning 268 
induced from NOx reduction (Wennberg et al., 1994; Solomon et al., 1996). The reduced NOx 269 
also gives rise to ClOx enhancement as ClOx is inversely correlated with NOx (Stimpfle et al., 270 
1994; Solomon et al., 1999). In the Antarctic spring, ClOx/BrOx-Ox cycle controls the behavior 271 
of total Ox change below around 18 km. HOx-Ox loss cycle is still the major loss mechanism at 272 
20 to 25 km. However, this loss is largely offset by hindered NOx-Ox loss, which is normally the 273 
most important loss cycle at this altitude in the background atmosphere (Zhang et al., 2021). It is 274 
eye-catching to see there is a negative Ox perturbation at around 16-18 km, corresponding to 70-275 
100 hPa in Figure 2b. This is because the ozone abundances in the experiment run drop to extreme 276 
low values at 70-100 hPa in the core of the vortex, hence the formation of ClO (and therefore 277 
chlorine nitrate ClONO2) is impeded (Fig. S1). Rapid deactivation of Cl into hydrochloric acid 278 
(HCl) then occurs even if the enhanced SAD are still present and temperatures are very cold 279 
(Douglass et al., 1995; Solomon et al., 2015). This rapid deactivation suppresses the Ox loss due 280 
to ClOx/BrOx-Ox cycle in the experiment run compared to the control run. Figure 3c and 3d 281 
indicate that the reaction rates of all the Ox chemical loss cycles are modified even though only 282 
SO2 and H2O emissions are injected into the atmosphere from the HTHH eruption. This is expected 283 
since these cycles couple to each other and change repartitioning from each other. 284 
  285 
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 286 
 287 

 288 
(a) (b) 289 

 290 

       291 
(c)        (d) 292 

Figure 3. Calculated perturbations from full-forcing (SO2+H2O) experiment run compared to no-293 
forcing control run for total OddOx loss in August (a) and October (b). Vertical profile of total 294 
Odd oxygen (Ox) loss (in black) and the loss from individual cycles of HOx-Ox, NOx-Ox, 295 
ClOxBrOx-Ox and Ox-Ox at mid-latitudes in August (c) and Antarctic region in October (d).  296 
 297 
3.3 Negative NOx anomaly after HTHH eruption 298 
 299 
NOx reduction is expected following large volcanic eruptions, which perturbs ozone abundance in 300 
the stratosphere (e.g., Fahey et al., 1993; Mills et al., 1993; Berthet et al., 2017; Zambri et al., 301 
2019). Figure 4 examines the NOx anomaly after the HTHH eruption from OSIRIS observations 302 
and WACCM6-SD model simulations. A dipole pattern is observed both in the OSIRIS and 303 
WACCM: a NOx reduction at around 25 km and below, and a positive anomaly above. This 304 
positive anomaly is mainly due to the QBO internal variability, as it is also seen in 2008 when the 305 
QBO phase is similar to 2022 while the negative anomaly is not found (Fig. S2) (Park et al., 2017). 306 
Figure 4a and 4d show the OSIRIS observed NOx anomalies in August and October 2022, with 307 
reductions of 30~40% over the mid-latitude lower stratosphere. This negative anomaly is 308 
approximately collocated with the HTHH aerosol plume in Figure 2c and 2f, which is consistent 309 
with the plume location shown in Wang et al. (2023) from the OMPS-LP data. The HTHH aerosol 310 
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reduce the NOx abundance via the well-known heterogeneous chemical reactions dinitrogen 311 
pentoxide (N2O5) hydrolysis on aerosols (e.g., Hofmann and Solomon, 1989; Solomon, 1999; 312 
Berthet et al., 2017). Due to the N2O5 hydrolysis on the surface of aerosol, nitric acid (HNO3) 313 
formation is promoted which acts as a major sink of NOx in the atmosphere during night-time. We 314 
note that OSIRIS data show strong NOx decreases throughout 2022 (not shown) that overlap the 315 
HTHH aerosol layer, but OSIRIS does not have high latitude measurements during midwinter. 316 
Model calculations (Fig. 4b and 4e) show NOx decreases in the lower stratosphere that are similar 317 
in magnitude (~30-40%) and location to the OSIRIS results, demonstrating that the NOx-aerosol 318 
reactions are captured well in the model. Figure 4c and 4f denote the modeled changes in N2O5 319 
hydrolysis rate overlying with aerosol SAD anomaly due to the HTHH eruption, derived from the 320 
difference between full-forcing (SO2+H2O) and no-forcing control runs. This heterogeneous 321 
chemical reaction rate is enhanced by more than 50% at the location where the maximum of NOx 322 
reduction occurs in Figure 4b and 4e. The results shown here are consistent with the conclusion 323 
drawn from Santee et al. (2023) using MLS data, suggesting the hydrolysis of N2O5 is the primary 324 
mechanism for the reduction of NOx. We note that even though this NOx reduction is significant, 325 
we found that the NOx impact on ozone is largely canceled by HOx-Ox and ClOx-Ox cycles as 326 
shown in Figure 3c and 3d. 327 
 328 

 329 
                          (a)         (b)            (c) 330 
 331 

 332 
                          (d)         (e)            (f) 333 
 334 
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Figure 4. Calculated NOx anomaly (%) relative to climatology (2007 to 2021) from OSIRIS and 335 
WACCM6-SD in August and October (a), (b) and (d), (e). Calculated changes (%) in N2O5 336 
hydrolysis rate on sulfate aerosols in the WACCM6-SD model from full-forcing (SO2+H2O) 337 
compared to no-forcing control runs in August and October (c) and (f).  The white contour line in 338 
(c) and (f) is the aerosol surface area density anomaly in um2/cm3.  339 
 340 
4. Summary and discussion 341 
 342 
The January 2022 Hunga Tonga-Hunga Ha'apai eruption injected ~150 Tg of water and ~0.42 Tg 343 
SO2 into the SH stratosphere. MLS observed ozone reductions in the SH stratosphere mid-latitudes 344 
and Antarctica during the 2022 austral wintertime and springtime. This work focuses on examining 345 
and quantifying the chemical ozone depletion due to the SO2 and H2O injection. We use 346 
WACCM6-SD nudged simulations to disentangle the role of chemistry from that of dynamics. 347 
WACCM6-SD shows a good agreement with MLS ozone anomaly and also reproduces the NOx 348 
anomaly in 2022 compared to OSIRIS measurements. 349 
 350 
We found chemistry contributes to 6% and 20% ozone depletion at mid-latitudes and Antarctica, 351 
respectively. The majority of ozone changes are due to transport and dynamical processes from 352 
internal variability in the climate system and forced response by the HTHH eruption. One caveat 353 
is that the chemistry quantified here does not include the dynamics feedback on the chemistry. For 354 
example, water can cool the stratosphere, which would further promote heterogeneous reactions. 355 
However, because these two simulations conducted here are nudged to the same dynamics, the 356 
temperature is not allowed to change to reflect the feedback on chemistry. To characterize the 357 
chemical processes that contributed to the ozone loss, different loss cycles (NOx-Ox, HOx-Ox, 358 
ClOx/BrOx-Ox and Ox-Ox) were examined and their relative significance to the ozone depletion 359 
at SH mid-latitudes and Antarctica were evaluated. We found both HOx-Ox and ClOx/BrOx-Ox 360 
cycles play important roles in the total chemical ozone destruction for mid-latitudes winter. While 361 
during the Antarctic spring, ClOx/BrOx-Ox cycle is dominant and controls the behavior of total 362 
Ox change in the lower stratosphere. We also document that both OSIRIS and WACCM6-SD 363 
show a NOx reduction that collocates with HTHH aerosols plume, demonstrating the enhanced 364 
N2O5 hydrolysis on sulfate aerosol. Consequently, the NOx-Ox loss cycle is strongly suppressed 365 
associated with the significant NOx reduction. However, the NOx impact on ozone is minimal 366 
since it is largely canceled by HOx-Ox and ClOx/BrOx-Ox cycles.  367 
 368 
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Chapman mechanism self-loss cycle, plus O1D_H2O (Ox-Ox): 44 
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NOx involved Ox loss cycle (NOx-Ox): 47 
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(c)        (d) 63 

Figure S1. Calculated perturbations from full-forcing (SO2+H2O) experiment run (red lines) 64 
compared to no-forcing control runs (black lines) for (a) O3 (b) ClO (c) ClONO2 and (d) HCl at 65 
70 hPa 80°S. Shown day 240 to 320 in 2022. 66 

 67 
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Figure S2. Calculated NOx anomaly (%) relative to climatology (2007 to 2021) from OSIRIS in 72 
September 2008 (top) and 2022 (bottom).  73 
 74 


