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Abstract

Seasonal snowpack in the Western United States (WUS) is vital for meeting summer hydrological demands, reducing the intensity

and frequency of wildfires, and supporting snow-tourism economies. While the frequency and severity of snow droughts (SD)

are expected to increase under continued global warming, the uncertainty from internal climate variability remains challenging

to quantify. Using a 30-member large ensemble from a state-of-the-art global climate model, the Seamless System for Prediction

and EArth System Research (SPEAR), and an observations-based dataset, we find WUS SD changes are already significant.

By 2100, SPEAR projects SDs to be nearly 9 times more frequent under shared socioeconomic pathway 5-8.5 (SSP5-8.5) and

5 times more frequent under SSP2-4.5. By investigating the influence of the two primary drivers of SD, temperature and

precipitation amount, we find the average WUS SD will become warmer and wetter. To assess how these changes affect future

summer water availability, we track April 15th snowpack across WUS watersheds, finding differences in the onset time of a

“no-snow” threshold between regions and large internal variability within the ensemble that are both on the order of decades.

For example, under SSP5-8.5, SPEAR projects California could experience no-snow anywhere between 2058 and 2096, while in

the Pacific Northwest, the earliest transition happens in 2091. We attribute the inter-regional uncertainty to differences in the

regions’ mean winter temperature and the intra-regional uncertainty to irreducible internal climate variability. This analysis

indicates that internal climate variability will remain a significant source of uncertainty for WUS hydrology through 2100.
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Key Points:9

• Severe snow droughts in the Western U.S. have increased in frequency by 26-70%10

across all major watersheds over the last 60 years.11

• The SPEAR climate model accurately simulates the increase of Western U.S. se-12

vere snow drought that began in the early 2000s.13

• SPEAR projects that increasing temperatures will cause much of the West to tran-14

sition to a no-snow environment by 2100.15
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Abstract16

Seasonal snowpack in the Western United States (WUS) is vital for meeting summer hy-17

drological demands, reducing the intensity and frequency of wildfires, and supporting18

snow-tourism economies. While the frequency and severity of snow droughts (SD) are19

expected to increase under continued global warming, the uncertainty from internal cli-20

mate variability remains challenging to quantify. Using a 30-member large ensemble from21

a state-of-the-art global climate model, the Seamless System for Prediction and EArth22

System Research (SPEAR), and an observations-based dataset, we find WUS SD changes23

are already significant. By 2100, SPEAR projects SDs to be nearly 9 times more frequent24

under shared socioeconomic pathway 5-8.5 (SSP5-8.5) and 5 times more frequent under25

SSP2-4.5. By investigating the influence of the two primary drivers of SD, temperature26

and precipitation amount, we find the average WUS SD will become warmer and wet-27

ter. To assess how these changes affect future summer water availability, we track April28

15th snowpack across WUS watersheds, finding differences in the onset time of a “no-29

snow” threshold between regions and large internal variability within the ensemble that30

are both on the order of decades. For example, under SSP5-8.5, SPEAR projects Cal-31

ifornia could experience no-snow anywhere between 2058 and 2096, while in the Pacific32

Northwest, the earliest transition happens in 2091. We attribute the inter-regional un-33

certainty to differences in the regions’ mean winter temperature and the intra-regional34

uncertainty to irreducible internal climate variability. This analysis indicates that inter-35

nal climate variability will remain a significant source of uncertainty for WUS hydrol-36

ogy through 2100.37

Plain Language Summary38

Snow drought occurs when there is significantly less snow on the ground than nor-39

mal. Snow droughts can intensify water shortages, accelerate wildfires, and harm snow-40

based tourism economies. For the Western United States, whose water supply is already41

limited, a recent increase in snow drought frequency is particularly concerning. Here, we42

use observational data and a new climate model to examine snow drought changes across43

the region between 1921 and 2100. We find snow droughts are already more common and44

could increase almost nine times under a business-as-usual scenario or five times under45

moderate emissions cuts by 2100. To better understand the increase, we tracked the evo-46

lution of the two main snow drought drivers: warmer temperatures and decreased pre-47

cipitation. We find the average snow drought will become warmer and wetter, indicat-48

ing warming temperatures are driving the increase. As the model consists of multiple49

simulations of future climate, or ensemble members, that differ only in the realization50

of chaotic climate variability, we can determine when Western regions are expected to51

lose most of their spring snowpack. We find that loss timing varies dramatically between52

regions and ensemble members, suggesting chaotic climate variability will shape the West’s53

future water availability.54

1 Introduction55

Mountains play an indispensable role in Western United States (WUS) water sup-56

ply, as their low temperatures and high precipitation capture significant water reserves57

in the form of snowpack. Often referred to as the “water towers” of the West, mountains58

store enormous amounts of winter precipitation which is measured as snow-water equiv-59

alent (SWE), or the depth of water if all snow melted instantaneously. During the dry60

spring and summer, the SWE is released as meltwater and supplies human populations61

whose water needs continue to rise (Bonsal et al., 2020). A reliable snowpack provides62

security to human populations across the WUS by providing water for increasing agri-63

cultural demands (Barnett et al., 2005), reducing the severity and intensity of wildfires64

(Trujillo et al., 2012; Gergel et al., 2017), and improving snow tourism economics (Wobus65
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et al., 2017). According to Wobus et al. (2017), ski resorts are expected to lose 50% of66

ski season length by 2050 and 80% by 2090. Despite large seasonal variability, climate67

change has already been found to have significantly decreased SWE globally and across68

the WUS, particularly in late winter (Barnett et al., 2005; Kapnick & Hall, 2012; Fontrodona Bach69

et al., 2018; Huning & AghaKouchak, 2020). When SWE is abnormally low, the region70

is said to experience a snow drought (SD). SDs are driven by either warming, as a phase71

change from frozen to liquid, or reduced precipitation amounts. They affect the WUS’s72

economy and human activity, even in areas far from mountain snowpack that rely on spring73

and summer melt waters for crop production and human consumption.74

The adverse effects of SDs on a region’s hydrology vary depending on the type of75

SD. Dry SDs, characterized by low precipitation and near- or below-normal temperatures,76

result in low streamflow throughout the melt season. In contrast, warm SDs occur un-77

der near- or above-normal precipitation and warm temperatures and often lead to early78

season snowmelt, increased spring flood risk, and summer hydrological drought (Harpold79

et al., 2017). While deviations from normal temperature and precipitation dictate SD80

occurrence, their absolute conditions impact how SDs are expected to respond to climate81

change. Shrestha et al. (2021) demonstrate that additional warming above a critical av-82

erage winter temperature threshold of -6 to -5°C decreases snowpack. As all WUS large83

hydrologic unit code (HUC2) regions have historical average winter temperatures at or84

above -5°C, we expect their snowpack to be vulnerable to any level of warming.85

To study SD across the WUS, we focus on comparing changes in SWE. Large ob-86

servational uncertainty in WUS SWE measurements implies high biases are likely be-87

tween any two datasets or models (Wrzesien et al., 2019). Observational model bias is88

driven by low sampling rates and terrain complexity, present in mountain regions, and89

is further magnified by assumptions in models used to generate SWE estimates (Wrzesien90

et al., 2019). Coupled global climate models (GCMs) are expected to produce snowpack91

estimates that are biased compared to observations because they have a lower spatial92

resolution and have temperature and precipitation biases (McCrary et al., 2017; Wrze-93

sien et al., 2019; Kim et al., 2021; McCrary et al., 2022). Despite these biases, Matiu and94

Hanzer (2022) show that many models exhibit uniformity in simulating robust decreases95

in WUS SWE. Huning and AghaKouchak (2020), for example, have shown that SD to-96

tal duration, average duration, and intensity in the WUS have increased by 28% between97

1980 and 2018, and Shrestha et al. (2021) adds that these conditions are expected to con-98

tinue to worsen because of the WUS’s low latitude. These previous results imply that99

although GCMs are typically biased in their SWE base state, changes relative to their100

base states are still informative. As a result, we will primarily focus on comparing changes101

in SWE across data sets.102

To investigate historical and future changes in SD frequency and intensity we use103

30-member initial condition large ensembles from a state-of-the-art coupled global cli-104

mate model, called the Seamless System for Prediction and EArth System Research (here-105

after SPEAR) (Delworth et al., 2020). To assess SD intensity relative to the historical106

period, we focus on SPEAR’s simulation of severe to exceptional snow droughts (D2+107

SD) and follow the classification framework used by the US Drought Monitor (Svoboda108

et al., 2002). We first show that SPEAR accurately simulates changes in WUS SD by109

comparing it to an observationally based dataset and with previous studies across the110

historical period (1921-2011) (Livneh et al., 2013; Huning & AghaKouchak, 2020). The111

classifications in SPEAR show both an increase in D2+ SD occurrence across the his-112

torical period and a continued increase under future warming scenarios. To understand113

the conditions driving these SDs, we examine the average temperature and precipitation114

conditions for the study period, finding that temperature and not lack of precipitation115

is the main driver of the D2+ SD increase at monthly time resolution. We then provide116

a region-level assessment of the transition to a “no-snow” environment by the end of the117

21st Century that accounts for scenario uncertainty and internal climate variability.118
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By separating the uncertainty into the portion attributable to internal climate vari-119

ability and emissions uncertainty, we can determine the distribution of D2+ SD changes120

until 2100, the variability in the conditions that generate drought/non-drought condi-121

tions, and the probability distribution of the transition timing to a no-snow regime. We122

assess these changes under two scenarios in the SPEAR projections (2014-2100): a middle-123

of-the-road scenario (Shared Socioeconomic Pathway 2-4.5, hereafter SSP2-4.5), and a124

high-emissions scenario (SSP5-8.5) (Delworth et al., 2020). While the two emissions sce-125

narios allow us to explore the effects of emissions uncertainty, the 30-member ensembles126

enable the estimation of internal climate variability.127

2 Data and Methods128

2.1 SPEAR Large Ensemble Global Climate Model129

To assess changes in the probable distribution of historical and future SD, we an-130

alyzed WUS SWE in multiple 30-member SPEAR large ensembles (Delworth et al., 2020).131

SPEAR is a coupled global climate model recently developed at the NOAA Geophys-132

ical Fluid Dynamics Laboratory (GFDL) that is designed for improved prediction and133

projection on seasonal-to-multidecadal timescales. SPEAR is composed of GFDL’s AM4134

atmosphere, LM4 land, MOM6 ocean, and SIS2 sea-ice models. These component mod-135

els are the same as GFDL’s Global Climate Model version 4 (CM4) (Held et al., 2019),136

which is a contributor to the Coupled Model Intercomparison Project phase 6 (CMIP6).137

SPEAR’s configuration differs from CM4 as its physical parameterization choices are op-138

timized for climate prediction on seasonal to centennial timescales. SPEAR has a mod-139

erately high atmospheric and land-surface resolution (approximately 50 km) and a coarser140

ocean and sea-ice horizontal resolution of about 1°, which has meridional refinement to141

0.33° at the equator. For this study, we use SPEAR’s monthly SWE, temperature, and142

precipitation across the historical period and projections from 2014-2100 under both SSP2-143

4.5 and SSP5-8.5 emissions scenarios.144

2.2 Observational Data145

To evaluate SPEAR’s historical simulation of SWE, temperature, and precipita-146

tion, we use an observations-based dataset (Livneh et al., 2013), available from 1915 to147

2011, hereafter the Livneh dataset. Livneh uses statistically gridded in situ daily pre-148

cipitation and temperature observations on a 1/16° grid to generate SWE estimates (among149

other land surface variables) using the Variable Infiltration Capacity (VIC) land model150

(Liang et al., 1994). To compare the Livneh dataset with the SPEAR ensemble mem-151

bers, we re-gridded Livneh to SPEAR’s 1/2° grid and re-sampled it to SPEAR’s monthly152

timescale. Despite incorporating observational data, gridded datasets, like Livneh, re-153

tain large uncertainties across variables including temperature, precipitation and SWE154

(Walton & Hall, 2018; Wrzesien et al., 2019). Many recent papers have found SWE es-155

timates to vary widely, by upwards of a factor of 3 in some cases (Wrzesien et al., 2019),156

leading us to expect significant absolute biases between SWE estimates (McCrary et al.,157

2017, 2022). To overcome this issue, we focus our analysis on proportional changes, com-158

paring SWE values to their own historical distributions within each dataset, and then159

comparing these relative changes across datasets.160

We chose 1921-2011 as our historical period as it is the overlapping period of the161

Livneh and historical SPEAR datasets. We use the 90 complete winters to validate SPEAR162

and develop a baseline against which to compare the modeled future climatology. We163

chose to consider data at monthly resolution intervals for the following three reasons: (1)164

data availability, as SPEAR only recorded SWE at monthly intervals; (2) consistency165

with previous studies (Huning & AghaKouchak, 2020); and (3) because the monthly res-166

olution is an appropriate timescale for monitoring snow drought.167
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2.3 Comparison of a Climate Large Ensemble to Observations168

Delworth et al. (2020) and Maher et al. (2022) demonstrate that SPEAR accurately169

reproduces temperature and precipitation patterns across the US and outperforms many170

other state-of-the-art large ensemble climate models. Delworth et al. (2020) finds that171

SPEAR has negligible temperature bias and a slight positive precipitation bias across172

the WUS. As temperature and precipitation inform snowfall, Delworth et al. (2020) lends173

confidence that the underlying conditions at SPEAR’s approximately 50 km resolution174

are well-simulated. Delworth et al. (2020), Johnson et al. (2022), and Maher et al. (2022)175

assess SPEAR’s accuracy in representing teleconnections of the El Niño-Southern Os-176

cillation (ENSO) and the Pacific Decadal Oscillation (PDO) to North American climate.177

As ENSO and PDO drive inter-annual variability across the region, assessing SPEAR’s178

representation of these teleconnections is important for understanding how accurately179

the model may reproduce other extremes across the region, like SDs. Delworth et al. (2020)180

shows SPEAR accurately captures the relationship between PDO and North American181

precipitation, while Maher et al. (2022) finds that when PDO and ENSO are in phase,182

temperature and precipitation anomalies are amplified and vice versa. When compar-183

ing SPEAR’s performance against other GCMs, Johnson et al. (2022) reports that SPEAR184

improves on CMIP5-generation models with a better representation of global ENSO-related185

temperature and precipitation patterns and Maher et al. (2022) reports SPEAR has higher186

accuracy and resolution than five other large ensemble models after comparing correla-187

tions of ENSO and PDO with North American winter temperature and precipitation anoma-188

lies between observations and models. Together, these studies affirm SPEAR as one of189

the best models to investigate changes and variability in the WUS’ SWE because of its190

accurate representation of the response of temperature and winter hydroclimate to large-191

scale climate drivers.192

However, as both studies focus on SPEAR’s performance in reconstructing large-193

scale temperature and precipitation patterns, we still need to validate SWE patterns against194

Livneh before exploring future behavior. Livneh differs from SPEAR in that it contains195

only a single realization of the historical period, i.e. what actually happened, while the196

SPEAR ensemble captures 30 possible climates in each of its runs. The range of condi-197

tions that SPEAR’s ensemble members experience is called the ensemble spread and it198

arises entirely from internal climate variability. Internal climate variability contributes199

significantly to inter-model spread in CMIP multi-model ensembles (Deser et al., 2020)200

and is essential for modeling extremes. When evaluating model bias, however, it means201

that, short of a taking a long-term average as shown in Figure 1, we do not expect bi-202

ases between observations and either a single SPEAR ensemble member or the SPEAR203

ensemble mean to be reflective of SPEAR’s accuracy in simulating the climate. While204

we do not expect a single SPEAR ensemble member or the ensemble mean to reproduce205

Livneh exactly, we do expect SPEAR to simulate a realization of the climate at least as206

extreme as the observed historical climate over most regions. However, with only 30 en-207

semble members it is still reasonable to expect an occasional observation to fall outside208

of the SPEAR spread. Thus, if the change in SD frequency observed in Livneh falls within209

the SPEAR ensemble spread, we can assume SPEAR produces a realistic historical cli-210

mate. Our analysis reveals that the majority of the Livneh SWE statistics fall near clus-211

ters of SPEAR ensemble members, further strengthening the conclusion that SPEAR212

accurately represents the WUS climate as demonstrated in Figures 2 and S3.213

2.4 Drought Classification214

Before we can assess changes in SD, we first introduce our SD classification method.215

To ensure that only regions which typically have snow are eligible for classification, we216

restrict our region of study to the “historically snowy” region, areas that historically have217

average seasonal SWE maxima above 20 mm, based on the SPEAR ensemble mean. We218
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then assign a classification based on how extreme each month is compared to the his-219

torical distribution of SWE across all grid cells and months.220

Our methodology assigns standardized indices to each location by month and uses221

the US Drought Monitor’s (USDM) drought classification method for hydrological drought222

to categorize observations into six descriptive bins: near normal (NN), abnormally dry223

(D0), and moderate (D1), severe (D2), extreme (D3), and exceptional (D4) drought. Wet224

conditions are classified analogously, with labels W0-W4 for increasingly wet months;225

see Figure S2 (Svoboda et al., 2002; Huning & AghaKouchak, 2020). We use a non-parametric226

empirical model to classify SWE, temperature, and precipitation values for each month.227

Without assuming the underlying distributions, a non-parametric model allows us to ef-228

ficiently capture the variability without imposing subjective constraints on the data.229

We begin by assigning each extended winter month of the year (Oct-April) a score
based on the historical conditions at that location. Our time indices are by year (y) and
month (m), e.g. t1931,1 for January 1931, and spatial indices are in degrees latitude (i)

and longitude (j). For example, s
t1931,1
40.5,250 corresponds to a SWE value at latitude-longitude

pair (40.5, 250) during January 1931. We now compute an empirical distribution over
Sm

i,j =
(
s
t1921,m
i,j , s

t1922,m
i,j , · · · st2011,mi,j

)
, representing the historical SWE values during month

m at location (i, j). We then assign a value in (0, 1) to each SWE measurement using
the empirical cumulative distribution function, F̂m

i,j , based on the proportion of the ob-
served data in Sm

i,j that fall below it. In equation 1, I(·) takes the value 1 if SWE mea-

surement x is larger than the historical SWE measurement, S
ty,m

i,j , and 0 otherwise. We
sum over the historical period which ranges from 1921 to 2011, which is 91 complete years.

F̂m
i,j(x) =

no. of SWE values less than x

91
=

1

91

2011∑
y=1921

I
(
S

ty,m

i,j < x
)

(1)

For each observed or simulated SWE value, s
ty,m

i,j , we can then compute the z-score by

plugging the SWE value into the corresponding F̂ and then into the inverse normal dis-
tribution, Φ. We refer to these z-scores as ZSWE, which are indexed by location, month,
and year. We can now classify snow droughts from the SWE value, s

ty,m

i,j , using

ZSWEy,m
i,j = Φ

(
F̂m
i,j

(
sy,mi,j

))
(2)

Each month is then assigned a classification (W4-W0, NN, D0-D4) which can now be230

compared across regions. While we primarily use this framework to classify SDs, we ex-231

tend the classification scheme to temperature and precipitation as needed.232

A similar empirical methodology is used by Huning and AghaKouchak (2020) to233

classify snow droughts across the Alps, Himalayas, and WUS. Their framework is inspired234

by the USDM which uses the same D0-D4 classification. However, the USDM approach235

is not purely statistical, relying on experts to incorporate regional sensitivity into the236

published drought classification. Without experts, our model attempts to match the fre-237

quency of meteorological droughts in the US Drought Monitor (USDM) with snow drought238

frequency because the USDM is the widely accepted standard, despite its subjectivity239

(Svoboda et al., 2002). While our method may result in a mismatch of SWE values and240

impact in some locations, it provides a statistically-rigorous way to quickly capture ex-241

tremes without gathering detailed human and environmental data for each pixel.242

2.5 Computing Changes in Snow Drought243

We can now apply our drought classification scheme to evaluate how well SPEAR244

reconstructs historical changes. We define two 41-year windows containing 40 complete245

winters to assess change, and after applying our drought classification scheme to snow-246

pack data aggregated to the HUC2-level, we count the number of D2+ SD occurrences247
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across the early and late historical periods, given by a ZSWE of less than −1.3, e.g. I(Zt
R <248

−1.3) for HUC2 region R at time t. The percent change for a given region, ∆R, is de-249

rived via250

∆R =

∑
t′ I(Zt′

R < −1.3)∑
t I(Zt

R < −1.3)
· 100% for t ∈ (1930, 1970), t′ ∈ (1971, 2011) (3)

For example, in the Upper Colorado region, 27 months of Livneh-derived D2+ SD251

occur in the early historical period and 28 in the late historical period, translating to an252

increase of 3.7%. Next, we leverage the SPEAR ensemble spread to determine whether253

the overall trend is significant.254

2.6 Snow Transition Threshold255

In addition to evaluating drought climatology, we are also motivated to determine256

how a changing SWE will affect water resources. We seek to discern when a shifting cli-257

mate will begin to severely and persistently impact snow as a water resource. Long-term258

droughts are particularly damaging, as one or two years of low snow-pack can be buffered259

by groundwater, above-ground reservoirs, or stored in live biomass, but these buffers dwin-260

dle with extended exposure to drought conditions. Thus, we are particularly interested261

in determining when no-snow conditions are expected to become systemic (Siirila-Woodburn262

et al., 2021; Harpold et al., 2017).263

To determine this transition, we focus on April SWE because April typically cor-
responds to peak SWE. By first calculating the fraction of April 15th SWE remaining
in the historically snowy portion across each of the 5 HUC2 regions: Upper Colorado,
Lower Colorado, Great Basin, Pacific Northwest, and California (abbreviated UC, LC,
GB, PNW, and CA), we can classify an April (m = 4) grid cell st,4i,j as no-snow for that
year if there is at most 10% of the historical snowfall average remaining at the location
(Siirila-Woodburn et al., 2021). We then calculate the regional no-snow area proportion
as the fraction of the historically snowy region which experiences those conditions. For-
mally, we let N Y

R denote this no-snow area proportion, where R represents the region,

for our application a WUS HUC2, and Y the year. As before,
¯

StY ,4
i,j is the average his-

torical SWE value for the grid cell and stY ,4
i,j the SWE value for the specific year. Us-

ing 10% as our no-snow threshold, T = 0.1, then N Y
R can be written as:

N Y
R =

∑
(i,j)∈R I

(
stY ,4
i,j < T · ¯S4

i,j

)
|(i, j) ∈ R|

. (4)

Thus we have a fraction of the historically snowy region that is snow free in a given year
in April. To assess when no-snow conditions become endemic, we apply a 10-year moving-
window mean and then define the no-snow transition time as the year when the moving-
window mean last crosses the area threshold, A, before 2100. Applying this procedure
to all ensemble members, we compute a distribution for when these conditions are likely
to become endemic. Formally, the no-snow transition time for an ensemble member, T ,
is given by:

T :=
[
min t : Ñ t′

R ≥ A ∀ t < t′ ≤ 2100
]

(5)

where Ñ t′

R gives the moving-window mean fraction of region R that experiences no-snow264

conditions at time t′. By requiring the moving-window average to be above A for all sub-265

sequent years (until 2100), T is uniquely determined. For a graphical explanation of this266

method, please refer to Figure S5.267
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Figure 1. Winter average SPEAR SWE deviation from Livneh (%). Red indicates regions

where SPEAR has a negative SWE bias while blue indicates regions with a positive bias. The

five HUC2 regions are outlined in black.

3 Results268

3.1 SPEAR Model Evaluation269

3.1.1 SPEAR Ensemble Mean Bias270

Before assessing how accurately SPEAR reconstructs historical change, we com-271

pute WUS SWE bias to assess absolute error. By taking the difference of monthly SWE272

averaged over the winter season (Oct-April) and the entire historical period for both datasets,273

we find that SPEAR has a negative snow bias across much of the Mountain West. Fig-274

ure 1 reveals that in regions characterized by high elevation, SPEAR often has average275

SWE values less than 50% of Livneh values, while in regions adjacent to mountains, SPEAR276

overestimates SWE by a factor of two or more. While these are significant absolute bi-277

ases, the difference is not particularly surprising because by resampling the 1/16° Livneh278

grid to match SPEAR’s 1/2°, bias is introduced because higher elevations have dispro-279

portionately more snow than low elevations and are not accurately captured by SPEAR’s280

1/2° resolution due to topological smoothing (McCrary et al., 2022). We also compare281

historical temperature and precipitation biases in Figure S1, finding that, consistent with282

Delworth et al. (2020), SPEAR has a slight positive precipitation bias across the WUS.283

3.1.2 Evaluating Snow Drought Changes across the Historical Period284

Despite large absolute biases in SWE, SPEAR can still provide insights for future285

SDs if it reproduces trends and relative variability in SWE, temperature, and precipi-286

tation. Figure 2 reveals that across SPEAR, the ensemble means of all five WUS HUC2287

regions experience increases in D2+ SD, ranging from an average of 26% (LC) to over288

70% (UC). When we compare Livneh to the SPEAR distribution, we find that the same289

Livneh D2+ SD statistic always falls within the ensemble spread and is between the first290

and third quartiles in three of the five regions. The increases in D2+ SD occurrence are291

consistent with findings in Huning and AghaKouchak (2020), who use 1980-2018 as their292
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Figure 2. Comparison of SPEAR-estimated D2+ SD increases across the 1921-2011 historical

period to Livneh observed increases. The SPEAR distribution is given by the box and whisker

plot. The lower and upper bounds of the box correspond to the 25th and 75th percentiles, respec-

tively, and points more than 1 interquartile range away from the box are denoted with a “+”.

The observed change in D2+ SD frequency in the Livneh dataset is marked with a red circle.

historical period — in fact, a 95% confidence interval for the SPEAR ensemble mean across293

four of the five regions contains the 28% benchmark for drought intensity increases found294

in Huning and AghaKouchak (2020), with only the UC interval exceeding the benchmark295

with a 30% lower bound on historical D2+ SD increases. While we could not use the same296

historical period due to data constraints, the agreement helps to further validate the SPEAR297

ensemble. See supplemental Text S1 and Figure S3 for an analysis of changes in precip-298

itation and temperature across the historical period.299

3.2 Analyzing SWE into the 21st Century: Accelerating Loss300

We next shift our attention to projected changes in 21st century D2+ SD, focus-301

ing first on changes in droughts classified with our ZSWE metric. We construct our em-302

pirical CDF F̂m
i,j distributions from the historical period (1921-2011) and calculate cor-303

responding ZSWE scores for each winter month across the historically snowy west (2014-304

2100) for all 30 ensemble members. Projected changes in SWE are dramatic, with rapid305

increases in D2+ SD occurring at mid-century (Figure 3). Under SSP5-8.5, we find that306

towards the end of the century, all regions are projected to experience severe, extreme,307

or exceptional SD during most months. Under SSP2-4.5, SD increases are less severe,308

with conditions by the end of the century resembling conditions under SSP5-8.5 by mid-309

century. As expected, the higher forcing scenario corresponds with an accelerated time-310

line for increases in snow drought frequency. SD frequencies for all 18 study decades are311

shown in Figure S4.312

Examining the spatial distribution of D2+ SDs in Figure 3, a pattern of regional313

“hot spots” emerges through time. D2+ SD frequency is consistently higher in certain314

regions beginning in 2030 in SSP5-8.5 and SSP2-4.5. For example, the Washington Cas-315

cades and Colorado Rockies are projected to experience more frequent D2+ SD across316

all decades than regions in south-central Idaho and the California Sierra Nevada. We ex-317

pected to see more dramatic D2+ SD increases in the southern basins, including the Cal-318
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Figure 3. SPEAR D2+ SD frequencies between 1960-2100 under (a) low (SSP2-4.5) and (b)

high (SSP5-8.5) emissions scenarios. The plots are masked to historically snowy regions and

shaded by the percentage of winter months that the grid-cell experiences D2+ SD across a two

decade period. Historically snowy regions are characterized by having an average peak SWE of at

least 20mm. All 18 study decades are shown individually in Figure S4.
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ifornia and Lower Colorado regions, as Shrestha et al. (2021) found that even low amounts319

of warming at southern latitudes result in strong SWE loss signals. We assume the hot320

spot pattern emerges because we are looking over a narrow enough range of latitudes that321

the latitude signal is overshadowed by regional variation, perhaps coming from elevation322

variability. Shrestha et al. (2021) examined basins ranging from the Yukon to Columbia323

River basins that have average winter temperatures of -8°C to +4°C, finding that below324

-5°C to -6°C warming temperatures did not reduce SWE. Our HUC2 regions had mean325

winter temperatures in historically snowy regions ranging from -5.1°C (UC) to 0.3°C (Cal-326

ifornia). Therefore, we expect any amount of warming will decrease SWE and correspond-327

ingly increase D2+ SD.328

While Figure 3 reveals the expected changes in D2+ SD frequency under different329

emissions scenarios, it does not show the impact of internal climate variability. The anal-330

ysis of a large ensemble allows us to examine this effect by looking at the distribution331

of SD frequency across the ensemble. To study internal climate variability at the level332

of the entire WUS, we consider D2+ SD across the WUS in each ensemble member sep-333

arately. The individual trajectories, shown in Figure 4, reveal large tail probabilities that334

emphasize the region may experience worse drought conditions much earlier than the en-335

semble mean. For example, under both future warming scenarios, the ensemble mean336

D2+ SD frequency is reached in some ensemble members a decade or two earlier. This337

emphasizes that the WUS must be prepared for D2+ SD conditions well before the en-338

semble mean expects them.339

Figure 4 also reveals just how dramatic the increases in D2+ SD frequency may340

be. SPEAR ensemble members experience an average of 5-12% D2+ SD frequency dur-341

ing the historical period and an average of 6.5% before 2000. However, the probability342

of D2+ SD is projected to be over 35% by 2050 under SSP5-8.5, while under SSP2-4.5,343

the 35% D2+ SD probability is projected for 2070. Examining the shape of the two curves,344

we see an inflection point in 2000. Before 2000, both curves do not show a noticeable in-345

crease in D2+ SD frequency while after 2000 the increase is dramatic and sustained. Un-346

der SSP2-4.5, the increase in D2+ SD has a second inflection point in 2070, where the347

increase in snow droughts flattens. We assume the slowdown parallels the changes in the348

underlying climatology discussed in 3.3. Contrary to the simulations, Livneh does not349

show the same uptick in drought frequency in 2000. When examining the observed changes350

in Figure 2, we find a 53% decrease in D2+ SD frequency in the PNW. While within the351

SPEAR ensemble range, this decrease is far from the SPEAR ensemble mean and per-352

haps explains the deviation.353

3.3 Temperature and Precipitation Controls on SWE354

As changes in SWE are primarily driven by changes in temperature and precipi-355

tation climatology (McCrary et al., 2017; Harpold et al., 2017), we next examine changes356

in SWE in the phase space spanned by temperature and precipitation. By aggregating357

over the entire historically snowy WUS, we can determine how temperature and precip-358

itation anomalies are driving the dramatic increase in SD. In Figure 5, each dot repre-359

sents the average temperature and precipitation anomaly by decade and is colored ac-360

cording to the average ZSWE score. By definition, the average all-month historical (1921-361

2011) temperature and precipitation mean is (0, 0). However, by breaking the century362

down by decade we can see variation within the 20th century.363

As expected, all-month decadal averages in the historical period cluster around a364

zero temperature and precipitation deviation. We observe small changes in anomalies365

before 2000, a finding consistent with our understanding of changing D2+ SD frequency.366

Beginning in the 2000s, the all-month decadal-average rapidly shifts towards warmer and367

wetter conditions. By 2050 under SSP5-8.5, the average temperature and precipitation368

are 1.50 and 0.25 standard deviations higher than the 20th century average, respectively.369
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Figure 4. Each thin curve represents the percentage of historically snowy months classi-

fied as D2+ SDs and averaged by decade in Livneh (pink) and for each member of the three

SPEAR ensembles; historical (blue), SSP2-4.5 (green), and SSP5-8.5 (yellow). The dark curves

and surrounding shaded regions represent the ensemble mean and 95% confidence interval for the

historical (blue), SSP2-4.5 (purple), and SSP5-8.5 (red) scenarios.

Figure 5. Temporal evolution of average temperature and precipitation anomalies with re-

spect to the historical conditions (1921-2011). Each dot represents the average temperature and

precipitation condition for historically snowy locations during winter (Oct-April) for a given

decade either for all months and locations (outlined in green) or only for months classified as

D2+ (outlined in gray). Each point is shaded by its average ZSWE score; thus because D2+

SD months are restricted to have a ZSWE of less than −1.3, these points average snow drought

conditions are less than −1.3. Both all-month and D2+ SD-month points are surrounded by a

contour which captures 95% of ensemble members. Panel (a) depicts these changes under SSP2-

4.5 while (b) depicts changes under SSP5-8.5.
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This corresponds to a dramatic warming and slight wetting across the WUS and indi-370

cates the average month in 2050 to be warmer than 93% of months in the historical pe-371

riod for a given location. For SSP2-4.5, the values are 1.18 and 0.20, respectively, reflect-372

ing a moderate increase in temperature and precipitation by mid-century, with the av-373

erage month in 2050 being warmer than 88% of historical months.374

To understand changes in SDs, we also track the underlying climatology of months375

that experience D2+ SD. Outlined in grey in Figure 5, we find historical D2+ SD av-376

erages are both dry and warm with an average temperature and precipitation anomaly377

of 0.6 to 0.8 and -0.6 to -0.8, respectively, indicating historical snow droughts are pri-378

marily driven by a near equal combination of both warm and dry conditions. These con-379

ditions suggest that an average historical D2+ SD month is both warmer and drier than380

75% of months. However, when examining SPEAR’s future climate, we find the aver-381

age drought is both warmer and wetter. By 2050 under SSP5-8.5, the temperature de-382

viation is 1.84 while the precipitation deviation is -0.015, indicating that future D2+ SDs383

are significantly warmer than the historical ones and that dry conditions are no longer384

needed to produce a SD. We conclude future D2+ SD conditions are driven by the in-385

creasingly high-temperature average, which is warmer than 97% of historical conditions.386

By 2090, the average drought month has a temperature deviation of 2.18 and a precip-387

itation deviation of 0.27, close to the all-month anomalies of 2.10 and 0.36 for temper-388

ature and precipitation, respectively. Average monthly temperature for both D2+ and389

all-month averages are in the 98th percentile of historical conditions, indicating that fu-390

ture winter conditions will, on average, be extremely warm and that the difference be-391

tween average conditions for all months and SD months has decreased. Examining the392

ZSWE scores for 2090 under SSP5-8.5 confirms that the convergence is also reflected in393

SWE changes, with the average all-month ZSWE being -1.79 and the average D2+ month394

having a ZSWE of -2.10. Thus, the 2090 all-month average is expected to be a D3 SD,395

while the average month classified as a SD is D4. Under SSP2-4.5, conditions do not reach396

such an extreme, with average all-month conditions by 2090 reaching 1.48 for temper-397

ature, 0.27 for precipitation, and -1.10 ZSWE. The temperature, precipitation, and ZSWE398

deviations for the months that experience D2+ SD are 1.75, 0.064, and -1.91, respectively.399

Although the gap between drought months and all-months shrinks, the difference is far400

less extreme than under SSP5-8.5; the average month under SSP2-4.5 is only given a D1401

snow drought classification. The convergence of the all-month and drought-month tem-402

perature and precipitation anomalies, particularly under SSP5-8.5 emphasize that D2+403

SDs will require increasingly smaller deviations from normal conditions to produce. This404

underscores that SDs will become a “new normal” for the WUS by the end of the 21st405

century.406

3.4 Timeline for Snow-Free Conditions407

In addition to changes in D2+ SD frequency, we also examine how total SWE avail-408

ability is expected to change, by assessing the timing of Western regions’ transition to409

a no-snow regime. A no-snow regime, characterized by a 10-year moving average of April410

SWE consistently below 10% of the historical April average, indicates severely limited411

summer water supply from SWE. To understand when a no-snow regime is likely to af-412

fect a HUC2 region, we examine the distribution of transition times to no-snow across413

SPEAR’s ensemble members. By varying the area threshold, A, we can assess how quickly414

conditions are expected to deteriorate. Figure 6 shows the distribution of the transition415

to no-snow regimes for 3 different area thresholds, A: 50%, 75%, and 90%, for the his-416

torically snowy HUC2 regions. Note that by construction, an individual ensemble mem-417

ber’s transition year always occurs later for higher A. However, the ensemble distribu-418

tions can overlap, which indicates large variability in the severity of conditions, especially419

later this century.420
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Figure 6. Distribution of SPEAR-simulated transition times to no-snow regimes, or T , by

Western HUC2 region, split between SSP5-8.5 and SSP2-4.5 scenarios. The 3 subplots represent

the different thresholds A = 50%, 75% and 90%. Meeting a higher threshold corresponds with an

increased proportion of the region experiencing perennial no-snow conditions, and implies more

severe conditions. The vertical lines in the distributions represent the quantiles of the ensem-

ble members that transition. We also include a transition time for the entire historically snowy

WUS, labeling it “West-Wide”.

When aggregated to the entire historically snowy WUS (“West-Wide”), the aver-421

age transition time for A = 50% is 2071 for SSP2-4.5 and 2048 for SSP5-8.5. However,422

when considered as separate regions, transition times for A = 50% varied from as early423

as 2025 (CA) to 2088 (UC) under SSP2-4.5 and 2018 (CA) to 2056 (UC) for SSP5-8.5.424

The snow-free transition distribution center occurs later for all regions under SSP2-4.5425

scenario than SSP5-8.5. However, the difference is less pronounced in regions that ex-426

perience a no-snow transition earlier, such as California. We conclude that while follow-427

ing a lower emissions trajectory improves the probability that transitioning to a no-snow428

regime will occur later, large irreducible internal climate variability could result in a tran-429

sition to no-snow much sooner than the ensemble mean projects.430

Another notable feature of Figure 6 is the large range of transition times within431

each region of the 30-ensemble member transition times. We find that in some ensem-432

ble members, the earliest transition occurs over 15 years earlier than the mean transi-433

tion for many regions. For example, under the SSP5-8.5 and 90% area threshold, the first434

ensemble member in the Lower Colorado region transitions to no-snow in 2069 while the435

mean transition time of the ensemble members is not until 2086. The shape of the tran-436

sition time distribution under SSP2-4.5 is also more spread out than the high emissions437

scenario indicating larger uncertainty in the onset of no-snow conditions. The compressed438

timeline is a byproduct of the rapid warming accelerating the transition to no-snow be-439

cause the forcing of temperature and precipitation changes happens more quickly. Thus,440

internal climate variability is particularly influential in SSP2-4.5 when determining no-441

snow transition times, while in SSP5-8.5, the accelerated radiative forcing is the dom-442

inant effect. Furthermore, while emissions reductions improve the probability that the443

no-snow transition will occur later in the 21st century, they do not guarantee a later ar-444

rival. For example, in the PNW, a quarter of the SSP2-4.5 SPEAR members transition445

to no-snow before the median ensemble member under SSP5-8.5. This is particularly true446

for regions where the transition is projected to occur earlier in the 21st century, likely447

because scenario forcing is much more similar.448

To assess the probability that a region becomes snow free over the next century,449

we examine the fraction of ensemble members that transition to no-snow before 2100.450

We model the likelihood of the transition by the maximum likelihood estimator (MLE),451
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or fraction of ensemble members that hit the transition threshold by 2100, and display452

these values in Table 1. By further splitting across the low and high emissions scenar-453

ios, we can model how the likelihood also changes as a function of the radiative forcing454

scenario. In Table 1, we see that under SSP5-8.5, A = 75% is guaranteed by 2100 across455

all regions. The highest threshold (A = 90%) is guaranteed only for California, while456

uncertainty remains for the other 4 HUC2s. Conditions by 2100 are much less severe un-457

der SSP2-4.5, with only A = 50% likely or certain for all regions, while for A = 75%,458

only California is very likely to transition to a low-snow regime; the other regions have459

low probability of doing so. For A = 90% it is unlikely that any region will have tran-460

sitioned by 2100 under SSP2-4.5.461

Furthermore, when we compare the likelihood of transition to no-snow conditions462

with the historical regionally averaged winter temperature, we find the coldest regions463

are least likely to transition while the warmest are most likely. For example, under SSP5-464

8.5 with A = 90%, the order of regions by cold to warm average winter temperature465

and lowest to highest transition probability is the same: UC (-5.1°C, 30%), PNW (-3.9°C,466

53%), GB (-2.4°C, 70%), LC (-0.7°C, 83%), and CA (0.3°C, 100%). Like Shrestha et al.467

(2021), we find that warming any region with a winter average temperature to greater468

than −5°C negatively impacts SWE. We also find that warmer regions are expected to469

experience a greater increase in no-snow conditions, emphasizing the role historical tem-470

perature has in determining not only whether a region will see decreased SWE but also471

the magnitude of the change.472

Table 1 indicates that under either SSP2-4.5 or SSP5-8.5 we expect at least half473

of the historically snowy WUS to have less than 10% of its historical April SWE by 2100.474

Both columns where A = 50% show greater than 80% probability for all regions, with475

the threshold guaranteed under SSP5-8.5. We also find that under SSP5-8.5, 4 of the 5476

Western watersheds are more likely than not to cross the A = 90% no-snow threshold477

by 2100. Upper Colorado is the exception with only a 30% chance, likely driven by lower478

average winter temperatures. While severe, it is important to consider how snow-covered479

area and total snow volume differ. As SWE declines are dominated by losses at lower480

elevations that are closer to the freezing point (Mote et al., 2005; Minder, 2010), we ex-481

pect the topological smoothing of SPEAR may result in an overestimate of the total amount482

of SWE storage lost. Therefore we expect the area-based no-snow transition to over-predict483

the hydrological impact of warming.484

4 Summary485

In this study, we analyze large ensembles from a coupled global climate model, SPEAR,486

to understand changes in SWE across the 20th and 21st centuries. According to SPEAR,487

the frequency of D2+ SD has already increased dramatically across the historical period,488

with an average increase across all regions of 51%. While higher than the estimate of 28%489

in observational data found by Huning and AghaKouchak (2020), the large amount of490

internal climate variability of WUS SWE within the SPEAR large ensemble indicates491

that chaotic climate variability could account for some of the difference. SPEAR projects492

even more dramatic changes to come by 2100, classifying over 35% of winter months as493

snow droughts under RCP2-4.5 and 60% under RCP5-8.5 compared with a normalized494

9.6% across the historical period. End-of-the-century projections suggest the average monthly495

temperature will exceed the 93rd and 97th percentiles of historical conditions under RCP2-496

4.5 and RCP5-8.5, respectively, and were found to be the primary driver of increased D2+497

SD. To understand when future conditions will deviate significantly from ‘normal,’ we498

applied the no-snow classification defined in Siirila-Woodburn et al. (2021) to each grid499

cell and across years for all SPEAR ensemble members, and aggregated on the HUC2500

level. We found that for the most severe threshold, A = 90%, a no-snow transition was501

more likely than not in four out of the five WUS HUC2s, the UC region being the ex-502

ception. Under RCP2-4.5, only A = 50% was likely for all regions. Furthermore, our503
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Table 1. Probability of a snow free transition occurring before 2100 at the 3 thresholds A
based on the fraction of ensemble members who transition to a no-snow regime by 2100. We

show the probabilities by area threshold, 50%, 75%, and 90%, across SSP2-4.5 and SSP5-8.5 for

the historically snowy portions of each of the 5 Western HUC2 regions.

finding that California is expected to transition to no snow earlier than most regions,504

and Upper Colorado later, is consistent with Siirila-Woodburn et al. (2021) who use dif-505

ferent climate models in their analysis. These conclusions emphasizes the role of future506

emissions in determining the no-snow transition timing.507

We found regions with higher average winter temperatures were more likely to ex-508

perience a transition to no-snow. The Lower Colorado and California regions, which have509

the highest average winter temperatures, also had the highest probability of reaching no-510

snow conditions across both emissions scenarios and all area thresholds. The Pacific North-511

west and Upper Colorado, the regions with the coldest average temperatures, had the512

smallest transition probabilities. This finding parallels Shrestha et al. (2021), who found513

a strong correlation between average basin temperatures and the sensitivity of the re-514

gion’s snow to warming.515

5 Remarks516

By using initial condition large ensembles from a state-of-the-art GCM to study517

SD, we can conduct a region-wide study that accounts for both radiatively forced changes518

and the uncertainty attributable to internal climate variability. However, while SPEAR519

has higher atmospheric and land resolution than most current GCMs, its 1/2° horizon-520

tal resolution is low when compared with many mountain snowpack models (Minder, 2010),521

which makes it unable to resolve complex mountain topography. This limitation can re-522

sult in significant warm biases and less snow (Matiu & Hanzer, 2022). We expect this523

may make SPEAR snowpack estimates particularly sensitive to warming, and therefore524

likely to overestimate increases in SD. Furthermore, Hoylman et al. (2022) asserts that525

using timescales longer than 30 years for drought baseline climatology, as has been done526

here and in the vast majority of previous literature (Svoboda et al., 2002), can result in527
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over-estimating the drought threat in a climate that is shifting towards (in this case) a528

less snowy state – although they argue that the reference period should take into con-529

sideration the adaptive capability of the system in question. Further work should inves-530

tigate both the sensitivity of SD estimates to GCM resolution and the effect of reference531

climatology choice on drought severity estimation.532

Here, we have assessed changes in SD across the WUS in a GCM, focusing on val-533

idating historical changes, assessing changes to the underlying climatology, and deter-534

mining when WUS regions may essentially become snow-free. For this latter objective,535

we developed a metric, the no-snow transition time, to track both how soon a region is536

expected to change and the uncertainty of this timing attributable to internal climate537

variability. One promising avenue for future research is to examine SD changes over smaller538

regions, such as HUC4s, to determine the most vulnerable locations on a sub-region scale.539

This would also allow further exploration of SWE’s sensitivity to latitude and elevation,540

although at smaller watershed scales the GCM’s horizontal resolution will become more541

problematic. Also, estimating total SWE losses and melt timing across each region would542

allow us to better estimate the impacts of snow droughts on the West’s hydrological sys-543

tem. The impacts of future SDs will be felt across the entire country, both directly from544

the hydrological and tourism resources that consistent snowpack provides and indirectly545

through loss of agricultural output from summer water shortages or drifting wildfire smoke.546

Understanding the probable severity and timing of when these conditions are projected547

to become most damaging, alongside uncertainty from emissions and internal climate vari-548

ability, will allow policymakers and infrastructure planners to best prepare the West for549

a future with less snow.550
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Text S1: Historical Changes in Temperature and Precipitation Extremes

To assess SPEAR’s ability to represent historical temperature and precipitation extremes,

we applied the methodology used in section 2.4 of the main text for snow drought clas-

sification to temperature and precipitation. We first aggregated SPEAR and Livneh to

monthly time scales, taking the maximum high and minimum low daily temperature for

each month. We do so because we assume these metrics are more likely to capture heat

waves and cold extremes than an average of daily high and low temperatures. For exam-

ple, a severe multi-day heat wave in January has the potential to melt snowpack quickly

but might fail to show up on a 30-day average. To measure changes in meteorological

drought conditions, we utilize the D2+ severity notation for dry extremes, and introduce

W2+ for wet extremes. For temperatures, we introduce H2+ to indicate heat extremes

and C2+ to indicate cold extremes; refer to Figure S2 for notation. As our analysis focuses

on both monthly maximum and minimum temperatures, we append the subscripts “max”

and “min” to distinguish between these conditions, respectively. Therefore, H2+min rep-

resents the change in frequency of warm extremes for monthly minimum temperatures.

To assess whether changes are significant across the historical time period, we evaluate a

95% confidence interval for the SPEAR ensemble mean, assuming the underlying changes

were distributed normally. If the interval does not contain zero change, then the forced

component is significant in SPEAR. We present these calculations in Figure S3 which

assesses changes to monthly meteorological drought (D2+), warm temperature extremes

(H2+max), and cold temperature extremes (C2+min and H2+min). Together, these panels

provide a method to validate the SPEAR ensemble against changes in extreme tempera-

ture and precipitation observations.
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Across the historical period (1930-2011), we found that while SPEAR’s changes in D2+

meteorological drought were not significant, several measures of temperature extremes

were. Across the five HUC2 regions, we find that H2+max extreme heat increased on aver-

age between 59% and 73%, C2+min extreme cold decreased between 18-21%, and H2+min

extreme heat increased between 41% and 60% (Figure S3(b, c, d)). These changes indi-

cate significant warming in both maximum and minimum temperatures and both of these

trends are expected to negatively impact WUS snowpack. In both SPEAR and Livneh,

extreme heat events have increased in frequency while extreme cold events have decreased

on average. When we assess agreement between SPEAR and Livneh, we find that all

but one Livneh observation falls within the SPEAR ensemble range, suggesting SPEAR

is able to accurately reproduce changes in precipitation and temperature extremes across

the historical period. Examining which trends are significant in SPEAR, we find all tem-

perature trends to be significant while only the increase in D2+ meteorological drought in

the LC region is significant. The LC saw an average increase in meteorological drought of

16% in SPEAR, while in Livneh the increase in the LC was 48%. Amongst the five HUC2

regions, the LC region increase was also the most extreme increase among Livneh meteo-

rological drought observations (Figure S3(a)). Together, these observations may indicate

the LC is drying more rapidly than other regions. When examining temperature trends,

the PNW stood out as it experienced the smallest changes in extreme temperatures and

was the only region to observe a decrease in meteorological drought. We assume these

underlying colder, wetter conditions across the latter half of the historical period explains

the decrease in D2+ SD frequency over the historical period in the PNW seen in Figure

3 and perhaps the deviation in the early 2000s of Livneh D2+ SD frequency from the
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SPEAR ensemble in Figure 5. While PNW falls further from the SPEAR ensemble mean,

the changes are still within the SPEAR ensemble range and thus may be attributable to

internal climate variability. The strong agreement between changes to historical meteo-

rological and temperature conditions in SPEAR and Livneh further lends confidence to

SPEAR’s ability to capture historical trends across the WUS.
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Figure S1. 90-Year winter temperature and precipitation biases including (a) average temper-

ature bias, (b) precipitation bias, (c) maximum temperature bias, and (d) minimum temperature

bias. The winter average temperature bias was computed by taking the difference of the average

maximum and average minimum temperatures of SPEAR and Livneh between October 1st and

April 31st. Overall SPEAR has a slight cold and wet bias across much of the Western United

States. The wet bias is consistent with Delworth et al. (2020). By examining the maximum and

minimum temperature biases we see that SPEAR has a significant cold bias for maximum tem-

peratures across the entire WUS, while it has a systematic cold bias for minimum temperatures

over mountainous regions and slight warm bias over the rest of the WUS. We expect that some

of the bias can be explained by the differences in model resolution: SPEAR is on a 1/2° grid

while Livneh is on a 1/16° grid. We also note that Livneh has a particularly high lapse rate of

6.5°C/1000m which may contribute some additional bias (Walton & Hall, 2018).
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Figure S2. List of drought and temperature classification abbreviations, a text description for

each, the corresponding Z-Score, and the probability of an event being at least as extreme. This

probability captures how likely a random historical month is to be classified in that category or

one that is more extreme. This table uses identical Z-Score ranges to Huning and AghaKouchak

(2020) and attempts to mimic frequencies of hydrological drought given by the US Drought

Monitor (Svoboda et al., 2002).
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Figure S3. Changes in wintertime (Oct-Apr) historical precipitation and temperature extremes

in (a) D2+ meteorological drought and (b) H2+max, (c) C2+min, and (d) H2+min temperatures.

The shaded histogram depicts the SPEAR ensemble distribution, with ensemble mean and con-

fidence interval marked with vertical black dashed and solid lines, respectively. The observed

value from the Livneh dataset is marked as a vertical line shaded red in (a) and blue in (b-d). A

vertical dotted zero trend line is included for reference.
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Figure S4. Panel plots for all 18 study decades between 1920 and 2100 for the SSP2-4.5 and

SSP5-8.5 D2+ SD classification frequencies for the SPEAR ensemble mean. This figure empha-

sizes just how dramatic SPEAR projects the increase in D2+ SD occurrence to be, conditioned

on the emissions scenarios, as the historical variability of the 20th century is barely distinguish-

able when placed on the same color scale as changes in the 21st century.
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Figure S5. An illustration of how the no-snow transition is calculated as a function of the

area threshold. This figure shows the fraction of the historically-snowy region experiencing no-

snow (red), low-snow (yellow), below average-snow (blue), and near-normal or above-average

snow (white) following the categories used by Siirila-Woodburn et al. (2021). The dark red

curve represents a 10-year moving average of the yearly no-snow values (in red), while the green

horizontal line indicates the chosen area threshold, in this case A = .75. For this particular

region in one ensemble member, we see that the red curve crosses the green line for the last time

in 2082. Thus, this ensemble member records a no-snow transition time of 2082 for the given

threshold.
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