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Abstract

The value of seasonal streamflow forecasts for the hydropower industry has long been assessed by considering metrics related

to hydropower availability. However, this approach overlooks the role played by hydropower dams within the power grid,

therefore providing a myopic view of how forecasts could improve the operations of large-scale power systems. With the aim of

understanding how the value of streamflow forecasts penetrates through the power grid, we developed a coupled-water energy

model that is subject to reservoir inflow forecasts with different levels of accuracy. We implement the modelling framework

on a real-world case study based on the Cambodian grid, which relies on hydropower, coal, oil, and imports from neighboring

countries. In particular, we evaluate the performance in terms of metrics selected from both the reservoir and power systems,

including available and dispatched hydropower, power production costs, CO2 emissions, and transmission line congestion.

Through this framework, we demonstrate that streamflow forecasts can positively impact the operations of hydro-dominated

power systems, especially during the transition from wet to dry seasons. Moreover, we show that the value largely varies with

the specific metric of performance at hand as well as the level of operational integration between water and power systems.
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Abstract11

The value of seasonal streamflow forecasts for the hydropower industry has long been as-12

sessed by considering metrics related to hydropower availability. However, this approach13

overlooks the role played by hydropower dams within the power grid, therefore providing14

a myopic view of how forecasts could improve the operations of large-scale power systems.15

With the aim of understanding how the value of streamflow forecasts penetrates through16

the power grid, we developed a coupled-water energy model that is subject to reservoir17

inflow forecasts with different levels of accuracy. We implement the modelling framework18

on a real-world case study based on the Cambodian grid, which relies on hydropower, coal,19

oil, and imports from neighboring countries. In particular, we evaluate the performance in20

terms of metrics selected from both the reservoir and power systems, including available and21

dispatched hydropower, power production costs, CO2 emissions, and transmission line con-22

gestion. Through this framework, we demonstrate that streamflow forecasts can positively23

impact the operations of hydro-dominated power systems, especially during the transition24

from wet to dry seasons. Moreover, we show that the value largely varies with the specific25

metric of performance at hand as well as the level of operational integration between water26

and power systems.27

Plain Language Summary28

Forecasts of river streamflow are regularly used by water system operators to plan29

the operations of large-scale infrastructures, such as hydropower dams. To date, research30

has focussed primarily on how the accuracy, or skill, of forecasts translates into added31

performance of reservoir systems, thereby overlooking the potential benefits for other inter-32

connected infrastructures that depend on water availability. Here, we focus on the case on33

national power grids, whose performance is partially controlled by hydropower production.34

We show that the use of streamflow forecasts could bring benefits that ‘trickle down’ to35

power system operations, reducing, for instance, power production costs and CO2 emissions36

during specific periods.37

1 Introduction38

Water managers often rely on streamflow forecasts to inform reservoir release decisions39

(Turner et al., 2020). As opposed to operating reservoir networks with static rule curves,40

streamflow forecasts offer operators the ability to dynamically adapt to anticipated inflow41

conditions (Troin et al., 2021). Accurate streamflow forecasts have been found to benefit42

multiple aspects of water management, such as flood control, water supply reliability, or43

hydropower production (Nayak et al., 2018; Delaney et al., 2020). The metrics used to44

assess the benefits, or value, of streamflow forecasts can be broadly classified under two45

categories. Under the first category, benefits are defined in terms of deviations from a pre-46

defined target, usually the target storage or release (Li et al., 2014; Turner et al., 2017).47

Under the second category, benefits are defined through metrics measuring the improvement48

in performance with respect to one or multiple objectives. Examples include reduction in49

water shortage (Nayak et al., 2018) or spilled water volume (Anghileri et al., 2016), better50

flood control (Wang et al., 2012; Galelli, Goedbloed, et al., 2014), and hydropower generation51

or revenue (Anghileri et al., 2019; Ahmad & Hossain, 2020; Doering et al., 2021; Guo et52

al., 2021; Lee et al., 2022). The common denominator among these metrics is that they are53

based on the output produced by a reservoir system model.54

In hydro-dominated power systems, reservoir operations can have profound effects on55

power system operations (Voisin et al., 2020; Chowdhury et al., 2021; Chowdhury, Dang, et56

al., 2020). During dry conditions, for instance, a decrease in hydropower production may57

force power grid operators to raise production from thermoelectric plants, leading to higher58

operating costs and CO2 emissions (Kern et al., 2020; Chowdhury et al., 2021). Defining59

streamflow forecast value solely in terms of water-related metrics thus overlooks the role60
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played by hydropower reservoirs in the power grid. In this regard, it is worth stressing that61

there are only a handful of studies that evaluated whether the use of streamflow forecasts62

brings value to power grid operations (Ding et al., 2021; Gong et al., 2021). Both studies63

were conducted at the scale of a river basin—rather than on a spatial domain encompassing64

a national or regional grid—and adopted performance metrics defined in terms of power65

production only (i.e., supply from hydropower, wind, and solar photovoltaic). Hence, an in-66

depth understanding of how power system operations could benefit of streamflow forecasts67

is missing. In particular, it is important to understand which performance metrics are68

improved by the use of streamflow forecasts, when forecasts are most useful, and how forecast69

skill translates into different performance metrics. All these aspects would indeed be relevant70

to support the operationalization of streamflow forecasts.71

Here, we aim to advance the current body of knowledge by studying how the value72

of streamflow forecasts unfolds as we move beyond a water reservoir system to include the73

operations of a national power grid. The questions of interest are therefore the following:74

How does forecast value change as we consider different performance aspects of a power75

grid? When is the use of forecasts more beneficial? How does forecast skill affect power76

system operations? Is forecast value affected by the interdependencies of the water-energy77

system? With the aid of a reservoir and power system model, we answer these questions78

by evaluating the value of streamflow forecasts for the operations of the Cambodian power79

system, which largely relies on the hydropower sector (Section 2 and 3). The criteria used80

in such evaluation are multiple metrics taken from both the reservoir and power systems,81

including available hydropower, dispatched hydropower (i.e., hydropower used within the82

grid), power production costs, CO2 emission, and transmission line stress (Section 4). By83

simulating the coupled water-energy system with and without streamflow forecasts, we show84

that forecasts are particularly useful during the transition from the summer monsoon to the85

dry season. We also quantify the relationship between forecast skill and value, and show86

that forecast error is less important for production costs and CO2 emissions, which are also87

impacted by electricity demand. We finally study how different levels of integration between88

water and power systems reshapes the skill-value relationship (Section 5).89

2 Case study and Data90

2.1 Case study91

We carried out our analysis on the Cambodian water-energy system, illustrated in Fig-92

ure 1. The representation of the system is based on the infrastructure built and operated93

in 2016, for which detailed data are available (Chowdhury, Kern, et al., 2020). Power sup-94

ply is largely controlled by a network of six hydropower dams, which have a total installed95

capacity of 1,048 MW (see Table 1). In this reservoir network, there are two embankment96

dams (Kirirom I and Kirirom III), two dams operated in cascade (Atay and LR Chrum),97

and two headwater dams (Kamchay and Tatay). As we shall see, their production shows98

a pronounced inter-annual pattern; production increases during the summer monsoon (typ-99

ically between May and October) and decreases during the dry season. The hydropower100

production is complemented by a few additional resources, namely thermoelectric plants101

(three coal-fired units totaling 400 MW of installed capacity and 15 oil-fired units totaling102

282 MW), and import from neighboring countries (Thailand, Laos, and Cambodia). Taken103

together, all these resources are designed to meet the peak demand of 1,068 MW (EDC,104

2016).105

2.2 Data106

Different datasets were obtained as inputs to the reservoir and power system models.107

Inputs to reservoir system model include reservoir specifications (Table 1) and time series108

of observed inflow and inflow forecasts. Since long and reliable time series of observed109

river discharge are not available, we retrieved inflow data for the six reservoirs from the110
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Figure 1. Main components of the Cambodian water-energy system, as of 2016. The circles

represent the thermoelectric plants (coal and oil) and imports from neighbouring countries, while the

triangles represent the hydropower plants. The purple squares and segments denote the substations

and transmission lines, respectively. The river network is shown in light blue. Further details are

provided in Section 2.1

.

Table 1. Design specifications of the Cambodian hydropower dams (EDC, 2016).

Name Installed

capacity

(MW)

Dam

height

(m)

Storage

(Mm3)

Design

discharge

(m3/s)

Hydraulic

head

(m)

Basin

area

(km2)

Kamchay 194.1 110 680 163.5 122 710

Kirirom I 12 34 30 20 373.5 99

Kirirom III 18 40 30 40 271 105

Atay 240 45 443.8 125 216 1,157

LR Chrum 338 68 62 300 132 1,550

Tatay 246 77 322 150 188 1,073

Global Flood Awareness System (GloFAS) (Harrigan et al., 2021), a data source that (i) is111

commonly used in developing Asian countries (MacLeod et al., 2021) and (ii) allows us to112

model the water-energy system with a reasonable degree of accuracy (Koh et al., 2022). For113

consistency, we adopted the streamflow forecasts issued by GloFAS, which consists of an114

11-member ensemble (Zsoter et al., 2020). The inflow data are available from 1979 to near115

real-time with daily resolution. Inflow forecasts are available for two days weekly (every116

Monday and Thursday) with a 24-hour time step and up to 46-day lead time. Forecasts117

–4–



manuscript submitted to Water Resources Research

are available from January 1999 to December 2018. The common period (2000-2018) was118

selected for all experiments.119

For the power system model, required data include the specifications of the trans-120

mission lines and generators, as well as hourly time series of electricity demand at each121

substation. The line and generator details were extracted from technical reports (EDC,122

2016; JICA, 2014), while the monthly peak demand was retrieved from the same reports.123

Based on the available monthly peak demand and hourly demand profiles for weekdays and124

weekends, we distribute the national demand to each substation on the basis of its voltage125

level. The detailed methodology for deriving the electricity demand time series is reported126

in Koh et al. (2022).127

3 Modelling framework128

3.1 Overview129

As illustrated in Figure 2, the components of our computational framework are (1) a130

reservoir system model, (2) a power system model, and (3) a reservoir re-operation model.131

Note that the ‘typical’ representations of water-energy models include only the first two132

components: the reservoir model releases water according to its operating rules, and the133

amount of available hydropower is communicated to the power system model, which then134

dispatches (part of) the available hydropower depending on the specific dynamics of the135

power grid. This approach of separately modelling the water and power systems with a136

one-way information flow is known as ‘soft-coupling’ (Voisin et al., 2006; Chowdhury, Kern,137

et al., 2020; Kern et al., 2020). In our framework, we also use a reservoir re-operation model138

that explicitly accounts for the feedback from the power to the water system. In particular,139

the re-operation model gathers information on the amount of hydropower dispatched into the140

grid and calculates the corresponding amount of water that should be released from the dams141

(more details in Section 3.4). By engaging this component, the reservoir and power system142

models are ‘hard-coupled’, thus representing a situation in which the reservoir operations143

are contingent upon the state of the power system (Ibanez et al., 2014; Gebretsadik et al.,144

2016; Koh et al., 2022).145

In our study, we evaluate the value of streamflow forecasts in the Cambodian grid by146

first operating the system with the soft-coupling approach. Doing so has two advantages.147

First, the unidirectional information flow provides insights into how the value of streamflow148

forecasts changes as we move from performance metrics focussing on the reservoir system to149

metrics focussing on the power system. Second, the lack of a tight operational integration150

between the two systems yields a larger operating space, allowing us to identify stressors151

(e.g., forecast skill) that control system performance—and that could be ‘masked’ by the152

presence of the feedback between the energy and water system. In the second part of our153

experiments, we incorporate the feedback mechanism between the systems by introducing154

the reservoir re-operation model. This adds one more stage to the modelling process, where155

the amount of hydropower dispatched by the power system is communicated back to the156

reservoir system model. Doing so provides insights into how the role played by streamflow157

forecasts within the power grid changes when the operating space is reduced.158

3.2 Reservoir system model159

The daily amount of hydropower available at each reservoir is determined by the reser-160

voir system model through its release decisions, which can be determined by two alternative161

schemes: (i) a benchmark one based on static rule curves, and (ii) a more complex scheme162

that dynamically integrates the streamflow forecasts.163
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Figure 2. Schematic of the computational framework, comprising a reservoir system model, a

power system model, and a reservoir re-operation model. The arrows represent the information

flow between modelling components. The circles for the reservoir and power system models are in

solid lines to represent the fact that these components are ‘typically’ considered in water-energy

studies, where a water model provides the boundary conditions for a power system model. The

dashed circle around the re-operation model indicates that this is an optional model that can be

engaged when needed.

3.2.1 Benchmark scheme: rule curves164

The storage dynamics of the i-th reservoir are described by the following mass balance,165

solved with a daily time step:166

Si
d = Si

d−1 +Qi
d −Ri

d − spillid − Ei
d, (1)

0 ≤ Si
d ≤ Si

cap,

Qi
MEF,d ≤ Ri

d ≤ Ri
max,

where Si
d is the reservoir storage on day d, Qi

d the reservoir inflow (between day d− 1 and167

d), Ri
d the volume of water released through the turbines, spillid the volume of water spilled168

from the reservoir, Ei
d the evaporation losses from the dam, and Si

cap the capacity of the169

dam.170

An example of the rule curves we adopted is illustrated in Figure S1 (in the SI). Each171

rule curve is composed of a piecewise linear function based on the maximum and minimum172

water levels that the reservoir should reach within a calendar year (Hi
1 and Hi

2) and the173

time of year in which these values should be reached (Ti
1 and Ti

2). The concept of defining174

reservoir operating rule curves in this manner was proposed by Oliveira and Loucks (1997)175

and subsequently adapted in several other studies (e.g., Liu et al. (2011); Yassin et al.176

(2019)). Its use in representing actual system operations in Southeast Asia has also been177

validated (Chowdhury, Kern, et al., 2020; Dang et al., 2020). As an offline operating policy,178

the daily release decision Ri
d is made to bring the actual storage as close to the target storage179

as possible, while being subjected to an upper bound (Ri
max) and lower bound (Qi

MEF,d).180

Ri
max is the maximum volume of water that can be turbined (representing the designed181

discharge capacity of the dam), while Qi
MEF,d represents the downstream environmental182

flow requirement, calculated according to the method used in Pastor et al. (2014).183
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Finally, the daily available hydropower for the i-th reservoir is calculated as follows:184

HP i
d = η × ρ× g ×Ri

d × (Hi
d−1 +Hi

d)/2, (2)

where HP i
d is the available hydropower (MW) on day d, η the turbine efficiency, ρ the water185

density (1000 kg/m3), g the gravitational acceleration (9.81 m/s2), and Hi
d the hydraulic186

head, taken as the average between days d − 1 and d. For dams operated in cascade, Eq.187

(1) is updated to account for the natural inflow as well as the turbined and spilled water188

from the upper reservoir(s).189

3.2.2 Forecast-informed scheme190

In contrast to the benchmark scheme—where the reservoir release is only contingent191

upon the target water level—operating with streamflow forecasts allows the operators to192

make release decisions based on the knowledge available for the future inflows. In turn, this193

allows the system to prepare for impending wet or dry events. To integrate this information,194

the reservoir operation scheme employs a deterministic Model Predictive Control (MPC)195

approach (Galelli, Goedbloed, et al., 2014; Turner et al., 2017; Lee et al., 2022). According196

to this scheme, at the beginning of day d, the model receives a deterministic streamflow197

forecast for the next H days for each reservoir i (Qf,i
d , . . . , Qf,i

d+H−1), and optimizes the198

release over that finite horizon (i.e., days [d,d+H − 1]) according to a pre-defined objective199

function. In our work, consistent with the operating rules, we seek to explicitly maximize200

the hydropower generated by each dam. To prevent an over-aggressive release profile, we201

impose a penalty on the final state of the reservoir storage at the end of the forecast horizon202

(Soncini-Sessa et al., 2007), ensuring that it does not deviate too much from the target203

water levels (Figure S1). This yields the following optimization problem for each reservoir204

i:205

max
Ri

d,R
i
d+1,...,R

i
d+H−1

d+H−1∑
t=d

HP i
t −X(sit=d+H−1), (3)

where HP i
t is the amount of hydropower produced by the i-th reservoir in one day and206

X(·) is the penalty associated to the storage on day (d + H − 1). HP i
t is derived from207

Eq. (2) as a result of iteratively solving, over H days, Eq. (1) with Qi
d replaced by the208

streamflow forecast Qf,i
d . The release decisions are thus bounded by Qi

MEF,d and Ri
max. The209

output of the optimization problem (block of H days) is a time series of release decisions210

Ri
d, R

i
d+1, . . . , R

i
d+H−1. Contingent upon the actual inflow (Qi

d), we implement the release211

for the first day (Ri
d), and calculate the mass balance for each reservoir according to Eq. (1).212

The actual hydropower produced (HP i
d) derived through Eq. (2) is then communicated to213

the power system model for dispatch. In sum, prior to each day d, we solve multiple MPC214

problems (one for each hydropower reservoir) with the aim of maximizing the hydropower215

generation for each reservoir over the next H days, yielding a sequence of reservoir releases216

as decision variables (Ri
d, R

i
d+1, . . . , R

i
d+H−1).217

3.3 Power system model218

The power system model is PowNet, a production cost model that solves a mixed219

integer linear program with the objective of fulfilling the hourly electricity demand at min-220

imum cost (Chowdhury, Kern, et al., 2020). The decisions made by PowNet include, for221

the next 24 hours, (i) which generating units to start-up and shut down (unit commitment)222

and (ii) the amount of power supplied by each unit (economic dispatch). Key inputs to223

PowNet include transmission line parameters, hourly time series of electricity demand at224

each sub-station, techno-economic parameters of thermoelectric generators (e.g., capacity,225

operations and maintenance costs), and the hydropower available at each dam calculated by226

the reservoir system model (Section 3.2). In scheduling the hourly production, the model227

is subject to multiple constraints, including ramping limits, generation limits, minimum up228

and down-time of each generator, and transmission capacity constraints. The decision vari-229

ables at each hour thus include binary variables (e.g., generating unit to use and whether230
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to switch it on or off) and continuous ones (e.g., electricity generated by each unit, voltage231

angle at each node, spinning and non-spinning reserves, amount of renewables and imports232

dispatched). For each simulated day, PowNet outputs include hourly time series of operat-233

ing costs, CO2 emissions, generation mix, and transmission line usage. PowNet has been234

applied to multiple national grids, such as the ones of Cambodia (Chowdhury, Kern, et al.,235

2020), Laos (Chowdhury, Dang, et al., 2020), and Thailand (Chowdhury et al., 2021; Galelli236

et al., 2022).237

3.4 Reservoir re-operation model238

The reservoir re-operation model is introduced as a means to capture the feedback239

between interdependent water-energy systems. Serving as a bridge between the reservoir240

and power system, this model compares the amount of available hydropower produced by241

the i-th reservoir (HP i
d) with the amount dispatched by the power system (HP i∗

d ). With242

the goal of reducing the mismatch between these two values, the re-operation is triggered243

when there is an over-production of hydropower (i.e., HP i∗
d < HP i

d). The re-operation244

algorithm (refer to Koh et al. (2022) for details) then re-calculates the reservoir release such245

that the i-th reservoir releases only the amount Ri∗
d (< Ri

d) needed to produce HP i∗
d . In this246

study, all reservoirs are re-operated in the scenario where the feedback between the systems247

is considered. Operating in this manner offers flexibility whereby the release decisions made248

by the hydropower reservoir can be updated based on real-time information regarding the249

power system. In other words, this allows each reservoir to be used as a ‘battery’, so water250

can be stored for future use. Doing so may alter the value of forecasts, as the operations of251

the reservoirs would then depend on the state of the power system as well.252

4 Experimental setup253

The goal of our study is to quantify the value of streamflow forecasts for power system254

operations, understand how the value changes with skill, and determine when the value255

matters the most. We use multiple benchmarks to characterize system operations under256

different conditions and thus meet our goals. First, we use the benchmark scheme (Sec-257

tion 3.2.1), i.e., static rule curves, to characterize reservoir operations. Subsequently, we258

compare the results to the forecast-informed scheme. Here, we introduce two benchmarks,259

perfect forecasts and climatology, both commonly used to assess the value of streamflow260

forecasts (Grantz et al., 2005; Zhao et al., 2012; Yossef et al., 2013; Zimmerman et al., 2016;261

Nayak et al., 2018; Anghileri et al., 2019; McInerney et al., 2020; Quedi & Fan, 2020). To262

characterize the skill-value relationships, we have at our disposal multiple forecasts within263

the ensemble, so one could perform weighted aggregation on the members or consider each264

member as a separate deterministic forecast (Slater et al., 2016; Delaney et al., 2020). We265

consider both, that is, (i) we take the ensemble mean across the 11 members (more details266

in Section 2.2), and (ii) we use the individual members as independent inputs. In sum, we267

run our simulations under 14 different forecast scenarios—i.e., perfect forecasts, climatology268

(taken as a 365-calendar day average from the inflow data), ensemble mean, and each of the269

11 members. Taking into account how system operations may depend on the state of the270

power system as well, we repeat the experiments with the feedback from the power system271

back to the reservoir model. This means that our experiments are conducted (i) with 14272

different deterministic forecast scenarios, and (ii) without and with feedback.273

The forecast horizon selected in our study is 30 days based on the power generation274

mix obtained by preliminarily testing the system operations with different forecast horizons275

(see Table S1 in the SI for additional details). Since the reservoirs in our model are operated276

at the daily time step while the forecasts are only available on every Monday and Thursday277

of each week (Zsoter et al., 2020), we fill the gaps (Tuesday-Wednesday, Friday-Sunday) by278

extracting a 30-day window from the 46-day availability, and shifting the forecast one-day279

ahead, until the next set of forecasts is available. For example, the forecast for a given280
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Monday would be from day 1 to day 30 (out of the available 46 days), and the forecast281

for Tuesday would be from day 2 to 31 for the same set of 46 days. This is repeated for282

Wednesday; on Thursday, a new set of forecast is available again. Based on simulations ran283

on an Intel(R) Core (TM) i7-8700 CPU 3.2 GHz with 8 GB RAM running Windows 10, the284

runtime is approximately 20 hours for each simulation. The total runtime for 14 scenarios285

is thus approximately 280 hours. The experiments including the feedback from the power286

to the water system are more computationally demanding, taking about 40 hours each to287

complete.288

Moving to the specific metrics that can be used to quantify forecast skill for determin-289

istic forecasts, it is worth stressing that the options are many (Huang & Zhao, 2022). In290

this study, we considered the use of the Nash-Sutcliffe efficiency (NSE) (Nash & Sutcliffe,291

1970), Pearson correlation coefficient (Lima & Lall, 2010; Li et al., 2014) and Symmetric292

Mean Absolute Percentage Error (SMAPE) (Ogliari et al., 2021). Since the forecast skill is293

calculated for each reservoir within the system, a spatial aggregation is necessary to repre-294

sent the overall skill for the entire study area and contrast it against performance metrics295

defining forecast value (e.g., CO2 emissions). The primary criterion for the chosen metric296

is that it has to be bounded to prevent skewed values upon aggregation, thus eliminating297

NSE (−∞, 1] as a candidate. As for the Pearson correlation coefficient, there is a possibility298

of positive and negative values cancelling each other out during the aggregation process,299

thus misleading both the strength and direction of the relationship between the actual and300

forecast time series. SMAPE is an accuracy metric that measures the difference between the301

actual and forecast data between 0 and 1, and is a metric that fulfills both requirements for302

our study. All candidate metrics are illustrated in Figure S2; across the reservoirs, forecast303

errors tend to be larger during the pre-monsoon (Feb-Apr). The skill then progressively304

increases until the end of the year. To derive the overall skill of a forecast member across305

space, we perform a weighted average of the errors with respect to the hydropower plant306

capacities following Eq. (4):307

SMAPEd =

N∑
i=1

(wi ∗ SMAPEi,d), (4)

where SMAPEd is the aggregated forecast error on day d, wi is the weight of the i-th308

reservoir, taken as the hydropower capacity divided by the total capacity of the N reservoirs,309

and SMAPEi,d is the forecast error for the i-th reservoir on day d.310

As for the forecast value, we consider six metrics: the available, dispatched, and unused311

hydropower, system operating costs, CO2 emissions, and the number of N-1 violations—i.e.,312

instances in which any of the high-voltage lines reaches 75% of its capacity—an indicator of313

grid stress. Here, note that the available hydropower is an output of the reservoir system314

model (derived through Eq. (2)), a commonly-used metric to assess forecast value in previous315

studies (Lee et al., 2022; Anghileri et al., 2019). The other metrics are produced by the316

power system model, and are thus chosen to represent multiple performance aspects of the317

grid. First, the hydropower metrics provide insights into how forecast value is transferred318

from the water system to the power system. Next, the system operating costs and CO2319

emissions provide insights into how system operations are impacted by different levels of320

forecast accuracy. Last, the N-1 violations indicate how stressed the transmission lines are.321

This is important, since (i) grid stress is considered one of the triggers for blackouts (Veloza &322

Santamaria, 2016), and (ii) can serve as an indicator of system performance (e.g., when line323

capacity limits the penetration of renewables in the grid (Chowdhury, Dang, et al., 2020)).324

In assessing the skill-value relationship, we note that there are other input variables (from325

both the reservoir and power system) that may influence the overall system performance.326

As such, besides forecast skill, the actual inflow (Q) and the electricity demand are also327

considered as system stressors.328
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5 Results329

In this section, we first evaluate the benefits that lie in adopting streamflow forecasts330

when operating hydro-dominated power systems (Section 5.1). This is done by comparing331

results obtained from simulating the reservoir and power systems under different benchmark332

operating schemes. Then, we investigate how the value of forecasts changes with skill (Sec-333

tion 5.2). Here, we investigate the skill-value relationship under both standard operations334

(i.e., without feedback; Section 5.2.1) and operations with feedback between the power and335

water systems (Section 5.2.2). Such comparison illustrates how the value changes as we336

capture the interdependencies between water and power systems.337

5.1 Value of streamflow forecasts338

5.1.1 Comparison across multiple performance metrics339

To determine the value of streamflow forecasts in power system operations, we aggre-340

gate the five key performance metrics across both space and time (since the reservoir model341

is run with a daily time-step and the power system model with an hourly time-step). The342

metrics include system-wide available and dispatched hydropower, system operating costs,343

CO2 emissions, and number of N-1 violations (Figure 3). For comparison, we include the344

results for operations guided by rule curves and three different forecast-informed schemes,345

namely perfect forecasts, climatology, and the ensemble mean. At the monthly timescale,346

a strong seasonal pattern can be observed across all metrics. Despite the similar pattern347

exhibited by the different operating schemes, it is clear that the use of streamflow forecasts348

affects the operations of both reservoir and power system.349

5.1.1.1 Available hydropower. Temporally, the system behavior can be classified350

into three periods, namely pre-monsoon (Feb-Apr), summer monsoon (May-Oct), and post-351

monsoon (Nov-Jan). The value of streamflow forecasts largely varies across these periods.352

We first focus on the amount of available hydropower, a direct product of the reservoir353

system model (boxplot in the top panel of Figure 3). Across all scenarios, the hydropower354

availability increases from the pre-monsoon to peak at the end of the monsoon, before355

decreasing again. This follows the seasonal pattern of the summer monsoon, a key feature356

of Southeast Asian climates (Chowdhury et al., 2021). Operating the reservoirs using rule357

curves results in larger hydropower availability than the schemes with forecasts during the358

pre-monsoon and monsoon period (see the corresponding mean and standard deviation in359

Table 2). During the monsoon, operating the dams without streamflow forecasts generates360

an average of at least 40 GWh more hydropower each month than the other schemes. This361

result is attributed to the nature of the decisions made with rule curves: without forecast, the362

release decisions of each reservoir are made with respect to the target storage only. As such,363

the reservoirs tend to release water whenever they receive large inflow volumes, resulting364

in large hydropower availability. Consequently, after the monsoon, the reduced inflow also365

causes the reservoirs to make smaller releases. The hydropower availability thus drops366

significantly (by 40–60% from November to December), averaging at least 60 GWh/month367

less than the forecast-informed schemes. In other words, this sharp decline is due to the368

myopic nature of the rule curves. In contrast, operating with forecasts allows the reservoirs369

to maintain a larger hydropower production after the monsoon. Looking at the specific370

forecast-informed schemes, we observe that operating with perfect foresight produces the371

best results throughout all seasons—a result that is consistent with past studies (Anghileri372

et al., 2019; Ahmad & Hossain, 2020; Doering et al., 2021; Guo et al., 2021; Lee et al.,373

2022).374

5.1.1.2 Power-related metrics. The circles in the top panel of Figure 3 represent375

the hydropower dispatched within the grid. The first point to make is that not all available376

hydropower is dispatched by the grid. The mismatch between available and dispatched377

hydropower is accentuated during the monsoon season, when the amount of dispatched hy-378
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Figure 3. Monthly variability in system performance under different forecast-informed schemes.

The four panels illustrate the range of variability in hydropower (available and dispatched), system

operating costs, CO2 emissions, and frequency of N-1 violations, respectively. All variables are

spatially aggregated across the entire power system. Within each panel, the results from three

forecast-informed schemes (perfect forecasts, climatology, and ensemble mean) are compared to the

benchmark (no forecasts). Experiments are conducted without feedback between the reservoir and

power systems.
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Table 2. Variability in mean and standard deviation of the performance metrics illustrated in

Figure 3 across different operating schemes (no forecasts, perfect forecasts, climatology and ensem-

ble mean) and periods (pre-monsoon, monsoon and post-monsoon).

Performance metric Scenario Pre-monsoon monsoon Post-monsoon

Available hydropower No forecasts 195.16± 83.11 584.51±137.29 302.19±173.18
(GWh/mon.) Perfect forecasts 164.98±101.99 539.87±136.00 377.93±151.97

Climatology 159.95± 91.11 527.80±142.82 360.75±142.47
Ensemble mean 151.60± 78.62 506.85±132.20 366.82±146.94

Dispatched hydropower No forecasts 191.04± 76.31 451.26±71.55 267.27±120.78
(GWh/mon.) Perfect forecasts 160.62±94.75 439.50±76.23 329.83±114.60

Climatology 157.17±86.50 431.12±82.74 319.20±111.61
Ensemble mean 149.58±75.94 415.42±77.53 323.97±113.65

Unused hydropower No forecasts 4.12± 8.12 133.26± 69.40 34.92± 55.00
(GWh/mon.) Perfect forecasts 4.36± 8.57 100.37± 62.29 48.10± 40.90

Climatology 2.78± 5.62 96.68± 62.58 41.54± 33.51
Ensemble mean 2.02± 3.65 91.42± 56.61 42.85± 36.16

System operating cost No forecasts 21.58± 4.13 8.02± 4.70 17.28± 6.65
(M.dollars/mon.) Perfect forecasts 23.47± 5.21 8.67± 4.99 13.34± 5.91

Climatology 23.68± 4.81 9.17± 5.39 13.99± 5.79
Ensemble mean 24.16± 4.42 10.11± 5.12 13.70± 5.87

CO2 emission No forecasts 0.25± 0.02 0.10± 0.07 0.21± 0.07
(tonnes/mon.) Perfect forecasts 0.27± 0.04 0.12± 0.08 0.18± 0.07

Climatology 0.27± 0.03 0.13± 0.08 0.19± 0.06
Ensemble mean 0.27± 0.03 0.14± 0.07 0.19± 0.07

# N-1 violations No forecasts 22.96± 15.00 3.98± 9.32 59.16± 40.45
(hours/mon.) Perfect forecasts 27.70± 15.67 3.39± 7.78 20.07± 21.10

Climatology 30.00± 19.83 2.42± 6.13 20.65± 21.05
Ensemble mean 27.63± 17.32 2.76± 5.42 26.21± 22.36
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dropower not does not increase with hydropower availability. In fact, its value stabilizes379

around 450 GWh/month, leading to a larger discrepancy between the two metrics. This380

indicates a condition of over-production, a situation in which the grid is unable to dis-381

patch all the available hydropower due to oversupply or limited transmission capacity. The382

percentage of total dispatched hydropower with respect to the total available for the four383

scenarios (no forecasts, perfect forecasts, climatology, and ensemble mean) over 19 years is384

81.7%, 84.4%, 84.9%, and 85.1%, respectively. The discrepancy peaks at the end of the385

monsoon season, with up to 35%, 29%, 29%, and 28% of hydropower unused in the four386

scenarios, respectively. This indicates that defining value in terms of different performance387

metrics can produce varying conclusions. The current practice of defining value in terms388

of available hydropower (determined by a water system model), may therefore overlook the389

disparity between the available and dispatched hydropower, especially during the monsoon.390

To achieve a comprehensive understanding of streamflow forecast values, it is therefore im-391

portant to evaluate the responses of multiple performance metrics spanning across water392

and power systems.393

With the largest installed capacity in the grid (about 50%), hydropower fulfills more394

than half of the overall electricity demand in Cambodia. The amount of hydropower within395

the system thus plays a paramount role in determining the power system operations and the396

energy generation mix (refer to Figure S3 in the SI), which directly affects operating costs397

and CO2 emissions. Referring to the second and third panel in Figure 3, an observation398

similar to the case of hydropower can be made; the benefits of operating with forecasts399

are accentuated during the post-monsoon season. Towards the end of the monsoon (in400

October), the scheme with perfect forecasts outperforms all other scenarios in terms of401

operating costs, and is comparable to the case without forecasts in terms of CO2 emissions.402

This suggests that while the use of forecasts may not be very beneficial to the system during403

the pre-monsoon and the peak of the monsoon, given the right conditions, a better forecast404

can be advantageous from an earlier point in time to achieve lower operating costs and CO2405

emissions. A larger amount of hydropower in the grid also reduces stress in the transmission406

line, a point illustrated by the frequency of N-1 violations. There are, in particular, three407

transmission lines that are periodically stressed, two of which are part of a network that feeds408

Phnom Penh, Cambodia’s capital and main load-centre (see Figure 1). The line congestions409

are eased as less pressure is placed on the thermal plants to fulfil the high demand. After410

the monsoon, the scenarios with forecasts are able to sustain the hydropower production,411

allowing more hydropower to be dispatched in the grid as opposed to the scenario without412

forecasts.413

Given these results, it is evident that the use of streamflow forecasts is valuable to414

power system operations in terms of (i) reducing hydropower over-production during the415

monsoon, (ii) maintaining hydropower supply after the monsoon, and (iii) reducing trans-416

mission line stress. Importantly, these points are revealed by the use of a modelling frame-417

work accounting for both water and power system dynamics, something that would be418

hidden if one were to use a reservoir system model, thereby only focussing on the available419

hydropower. This highlights the complexity of the coupled water-energy system and the420

importance of exploring the multiple roles played by forecasts as we move beyond a water421

reservoir system.422

5.1.2 Intra- and inter-annual variability of forecast value423

Better understanding the inter- and intra-annual variability of forecast value can pro-424

vide a deeper insight into when and why forecasts matter to grid operations in hydro-425

dominated power systems. To support this analysis, we focus solely on dispatched hy-426

dropower (which largely affects the power generation mix), and introduce a metric defined427

as the difference between the hydropower dispatched by each forecast-informed scheme and428

the one dispatched when adopting rule curves. Hence, positive values mean that a forecast-429

informed scheme performs better than rule curves. The values illustrated in Figure 4 reveal430
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a few interesting insights. First, the benefit associated to forecasts is most of the time neg-431

ative between February and October, meaning that forecasts are in general not beneficial432

during the pre-monsoon and monsoon seasons. This is in contrast to the period between433

November and January (post-monsoon season), when positive benefits are observed. Second,434

positive benefits extend to almost 200 GWh/month, while the negative ones to less than435

-100 GWh/month. This indicates that the extent of benefits derived from using forecast-436

informed schemes, albeit less frequent, is more significant. Third, there are a few instances437

in which positive benefits are observed during the the pre-monsoon and monsoon seasons438

(e.g., April 2007, June 2010, July 2004). These episodes are due to specific, and unexpected,439

fluctuations in dam inflow for that particular year. In 2007, for instance, the 30-day outlook440

shows that the inflow will keep increasing in May, therefore the reservoirs release more water441

and produce more hydropower, which is then dispatched into the grid (refer to Figure S4 in442

the SI). This information is unknown to the scheme without forecast, explaining the larger443

benefits derived in April 2007.444

Looking at the inter-annual variability, our results show that the three best and worst445

performing years are 2000, 2001, 2018, and 2002, 2005, and 2008, respectively. A closer look446

at the reservoir inflow corresponding to each year, shown in Figure 5, gives us two insights447

regarding the hydrological conditions that are favorable to forecast-informed schemes. First,448

larger inflow volumes tend to be beneficial. Second, and perhaps more interesting, forecasts449

are more useful when the inflow patterns present sudden and unexpected changes; a situation450

that can be hardly managed when controlling a reservoir system with rule curves.451

5.2 Skill-value relationship452

To understand how forecast value changes with skill, we conducted deterministic sim-453

ulations using the 11 individual streamflow forecast members. We then investigate the454

skill-value relationship under two reservoir operating schemes: (i) without (Section 5.2.1)455

and (ii) with (Section 5.2.2) feedback between the reservoir and power systems. This al-456

lows us to characterize the skill-value relationship under different levels of integration of the457

coupled water-energy system.458

5.2.1 System operations without feedback459

To study the relationship between forecast skill and value, we define skill using the460

forecast error (Section 4) and relate it to difference performance metrics that character-461

ize forecast value, namely available, dispatched, and unused hydropower, system operating462

costs, CO2 emissions, and number of N-1 violations. In our analysis, we also consider463

two additional variables, or stressors, that may affect system performance. These are the464

inflow to the reservoirs and electricity demand, or load. All these variables are then ana-465

lyzed through a correlation matrix and a multiple linear regression model, whose results are466

reported Figure 6.467

Beginning with the correlation analysis (left panel), our results show that the corre-468

lation between stressors and performance is significant (p < 0.05) for most stressor-metric469

pairs. Beginning with the forecast error, we note two important patterns. First, there is a470

strong negative correlation between error and available and dispatched hydropower, meaning471

that, as the error increases, the contribution of hydropower to the generation mix decreases.472

In turn, this explains the positive correlation with costs, CO2 emissions, and N-1 violations473

(recall that the power system must rely more on thermoelectric power and imports when less474

hydropower is available). Second, the strength of the relationship between forecast error and475

performance metrics decreases as we move from the reservoir system to the power system,476

a result that is explained by the fact that other stressors become relevant when studying477

coupled water-energy systems. Inflow, for instance, positively affects hydropower-related478

and negatively affects costs, CO2 emissions, and grid stress. An increase in load, on the479

other hand, implies an increase in costs and CO2 emissions.480
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Figure 5. Comparison of daily time series (top panels) and cumulative (bottom panels) inflow

profiles across different years. Each gray line represents one year between 2000 and 2018. Based

on the total hydropower dispatched each year, three years with the highest and lowest benefits are

identified and highlighted in the left and right panels, respectively.

–16–



manuscript submitted to Water Resources Research

To further understand how forecast error, inflow, and load control the performance481

metrics, we identify multiple linear regression models in which the inputs are the significant482

independent variables (predictors) and each of the six metrics are the dependent variables483

(predictands). All variables are first standardized (by subtracting the variable’s mean from484

each observed value and then dividing by the variable’s standard deviation) to facilitate the485

comparison. Using a forward selection approach, the predictors are iteratively added to the486

regression model, beginning from the one with the highest (absolute value of) correlation487

coefficient r (Galelli, Humphrey, et al., 2014). From the model, the coefficient of determina-488

tion (r2) and final regression coefficients allow us to infer the contribution of each predictor489

to the variance of the predictands, and hence the importance of the model inputs. The490

variables are grouped according to the calendar months before carrying out the regression.491

The results are illustrated in the central and right panels of Figure 6.492

Similar to the previous analyses, this analysis can also be organized around three493

periods, i.e., pre-monsoon, monsoon and post-monsoon. The importance of the forecast494

error for the available hydropower is more obvious during the post-monsoon season, since495

a discrepancy between observed and predicted inflow determines how well the system can496

adapt to foreseen changes in reservoir inflow and overall transition into the dry season.497

This is in contrast to the monsoon season, when the reservoirs usually release close to the498

maximum designed release, reducing the importance of forecast errors. Moving to the next499

metric, the dispatched hydropower is determined through power system operations. During500

the pre-monsoon, less hydropower is produced, and whatever is produced usually gets fully501

utilized. The importance of inflow and error to hydropower usage is thus similar to that502

of hydropower production between February and April. During the monsoon, however, the503

abundant hydropower production forces the electricity demand to be the limiting factor for504

the amount of dispatched hydropower, explaining the importance of load during this period.505

Regardless of the error or inflow, the power system constraints dictate the grid usage. The506

dynamics between the available and dispatched hydropower also directly influence the next507

metric, i.e., the unused hydropower. As seen from the regression coefficients, a reduction508

in load can create a more than proportionate increase in the amount of unused hydro. The509

over-production peaks in October across all forecast-informed schemes, with about 30%510

unused hydro. Figure 6 also suggests that the forecast errors become insignificant beyond511

the first two performance metrics, since the power system performance depends primarily512

on inflow and load.513

Breaking down the relative contributions of forecast errors, reservoir inflow, and elec-514

tricity demand to different performance metrics highlights the complexity of the systems515

and the interdependencies between stressors. Streamflow forecasts are most valuable to516

improving power system performance during the post-monsoon by facilitating a smooth517

transition between the monsoon and post-monsoon seasons. A more accurate forecast al-518

lows resources to be exploited for continued hydropower availability for the grid to dispatch.519

As we move from the water system to the power system, the skill-value relationship becomes520

less significant, as the system responses depend more on the electricity demand.521

5.2.2 System operations with feedback522

The operations of the reservoir and power systems may not be entirely independent.523

To characterize the skill-value relationship under a tighter integration of the two systems,524

we repeat all experiments with the same inputs, but this time adding the feedback between525

the power and reservoir systems. This set of experiments thus makes use of the re-operation526

module described in Section 3.4. Using the same methodology described in Section 5.2.1,527

we study the relationship between the system stressors and performance metrics illustrated528

in Figure 7.529

With the re-operation mechanism in place, the role played by electricity demand is am-530

plified, while the importance of forecast skill (error) and reservoir inflow is largely reduced.531
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Figure 6. Relationship between system stressors (forecast error, inflow, and load) and perfor-

mance metrics (available, dispatched, and unused hydropower, system operating costs, CO2 emis-

sions, and number of N-1 violations) illustrated by a correlation matrix (left) and regression model

results (center and right). In the correlation matrix, the values (shown in the color bar) between

each stressor-metric pair are obtained by bootstrapping the data through 1,000 iterations. Based

on the correlation values, we first identify a multiple linear regression model between the stressors

(predictors) and metrics (predictands), and then estimate the contribution of each predictor to the

explained variance (center) and the corresponding regression coefficients (right). These results are

reported for the scenarios that do not include the feedback between the power and water system.
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Figure 7. Relationship between system stressors (forecast error, inflow, and load) and per-

formance metrics (available, dispatched, and unused hydropower, system operating costs, CO2

emissions, and number of N-1 violations). These results are reported for the scenarios that include

the feedback between the power and water system.

As the goal of the re-operation mechanism is to flexibly store and release water to generate532

hydropower that better matches the power system demand, the reservoir storage patterns533

can largely deviate from the seasonal patterns (Koh et al., 2022). In turn, this partially534

dampens the impact of hydrological variability on power system performance, making both535

inflow and forecast skill less important. With hydropower-related metrics being explained536

by load, it follows that operating costs and CO2 emissions can almost entirely be determined537

by load as well, with r2 values close to one for every month. Evidently, the presence of the538

feedback mechanism reduces the value of forecasts, allowing load to dominate the operating539

decisions in both the reservoirs and power system.540

6 Discussion and conclusions541

Our study evaluates the value of streamflow forecasts in hydro-dominated power sys-542

tems. The performance metrics were selected from both the reservoir and power systems to543

represent the hydropower generation by the reservoirs, hydropower usage within the grid, as544

well as economic, environmental, and reliability aspects of the power system. We show that545

defining forecast value in terms of different performance metrics can produce different out-546

comes. For instance, while previous studies often associate favorable forecasts with greater547
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hydropower availability, we found that larger hydropower availability does not necessarily548

translate into more usage within the grid. Unless the excess water release can serve a second549

purpose—such as for groundwater storage (Nayak et al., 2018) or inter-basin transfer (Li et550

al., 2014)—measuring value only in terms of the available hydropower may thus overlook551

other important aspects, such as production costs or CO2 emissions. Therefore, when we552

study hydropower systems, we should consider the role that hydropower reservoirs play, not553

only within the reservoir network, but also within the power system as well.554

In hydro-dominated power systems, hydropower operations are highly influenced by555

the seasonality of reservoir inflow. As a result, the grid operations and performance exhibit556

a strong seasonal profile as well. In our case study, the system behavior can be classified557

into three periods—pre-monsoon, monsoon and post-monsoon. We show that the value558

of streamflow forecasts varies with these different periods. During the monsoon, the use559

of forecasts reduces hydropower over-production. In the post-monsoon season, operating560

with forecasts is beneficial to sustain hydropower supply. Accurate forecasts are especially561

useful during the three months after the end of the monsoon to facilitate the transition from562

wet to dry seasons. Better forecast skill, combined with large inflow conditions, can thus563

benefit the system in terms of larger dispatched hydropower, lowering operating costs and564

CO2 emissions. Our analysis also shows that, with a tighter integration of the reservoir565

and power systems, the role played by electricity demand becomes dominant in determining566

operational decisions within both systems.567

Looking forward, an important aspect warranting additional research is the impact of568

the uncertainty associated to streamflow forecasts, which could be ‘operationalized’ through569

the use of stochastic MPC schemes (Pianosi & Soncini-Sessa, 2009). Such control schemes570

would become particularly useful when dealing with streamflow forecasts spanning across571

longer timescales than those currently available for this region. Another relevant aspect to572

consider in the future is the integration of other forms of forecasts that could improve the573

operation of water-energy systems, such as electric load forecasts (Hong & Fan, 2016).574

Overall, we believe that a better understanding of the value provided by streamflow575

forecasts to multi-sector infrastructures could promote and support their use. The need for576

better approaches to system operations is indeed necessary in a variety of contexts, from577

regions experiencing hydro-climatological shifts to regions, like Southeast Asia, that are578

expanding their water and power supply networks.579

Notation580

Si
d Storage on day d of the i-th reservoir581

Si
cap Capacity of the i-th reservoir582

Ri
d Volume of water released through the turbines of the i-th reservoir on day d583

Ri
max Maximum volume of water that can be turbined from the i-th reservoir584

Qi
d Inflow on day d to the i-th reservoir585

Qi
MEF,d Downstream environmental flow requirement of the i-th reservoir on day d586

spillid Volume of water spilled from the i-th reservoir on day d587

Ei
d Evaporation losses from the i-th reservoir on day d588

HP i
d Available hydropower on day d from the i-th reservoir589

HP i∗
t Hydropower dispatched in hour t from the i-th reservoir590

Hi
d Hydraulic head from the i-th reservoir on day d591

Open Research Section592

The data and Python scripts used to simulate the water-energy system in Cambodia for593

this research are available at Koh (2023) via https://doi.org/10.5281/zenodo.8163034.594
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The observed reservoir inflow data are available from https://doi.org/10.24381/cds595

.a4fdd6b9 (Harrigan et al., 2021) and the reservoir inflow forecast data are available from596

https://doi.org/10.24381/cds.2d78664e (Zsoter et al., 2020). Power system parame-597

ters, including generator and transmission line specifications, as well as monthly electricity598

peak demand data are extracted from EDC (2016) and JICA (2014).599
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Abstract11

The value of seasonal streamflow forecasts for the hydropower industry has long been as-12

sessed by considering metrics related to hydropower availability. However, this approach13

overlooks the role played by hydropower dams within the power grid, therefore providing14

a myopic view of how forecasts could improve the operations of large-scale power systems.15

With the aim of understanding how the value of streamflow forecasts penetrates through16

the power grid, we developed a coupled-water energy model that is subject to reservoir17

inflow forecasts with different levels of accuracy. We implement the modelling framework18

on a real-world case study based on the Cambodian grid, which relies on hydropower, coal,19

oil, and imports from neighboring countries. In particular, we evaluate the performance in20

terms of metrics selected from both the reservoir and power systems, including available and21

dispatched hydropower, power production costs, CO2 emissions, and transmission line con-22

gestion. Through this framework, we demonstrate that streamflow forecasts can positively23

impact the operations of hydro-dominated power systems, especially during the transition24

from wet to dry seasons. Moreover, we show that the value largely varies with the specific25

metric of performance at hand as well as the level of operational integration between water26

and power systems.27

Plain Language Summary28

Forecasts of river streamflow are regularly used by water system operators to plan29

the operations of large-scale infrastructures, such as hydropower dams. To date, research30

has focussed primarily on how the accuracy, or skill, of forecasts translates into added31

performance of reservoir systems, thereby overlooking the potential benefits for other inter-32

connected infrastructures that depend on water availability. Here, we focus on the case on33

national power grids, whose performance is partially controlled by hydropower production.34

We show that the use of streamflow forecasts could bring benefits that ‘trickle down’ to35

power system operations, reducing, for instance, power production costs and CO2 emissions36

during specific periods.37

1 Introduction38

Water managers often rely on streamflow forecasts to inform reservoir release decisions39

(Turner et al., 2020). As opposed to operating reservoir networks with static rule curves,40

streamflow forecasts offer operators the ability to dynamically adapt to anticipated inflow41

conditions (Troin et al., 2021). Accurate streamflow forecasts have been found to benefit42

multiple aspects of water management, such as flood control, water supply reliability, or43

hydropower production (Nayak et al., 2018; Delaney et al., 2020). The metrics used to44

assess the benefits, or value, of streamflow forecasts can be broadly classified under two45

categories. Under the first category, benefits are defined in terms of deviations from a pre-46

defined target, usually the target storage or release (Li et al., 2014; Turner et al., 2017).47

Under the second category, benefits are defined through metrics measuring the improvement48

in performance with respect to one or multiple objectives. Examples include reduction in49

water shortage (Nayak et al., 2018) or spilled water volume (Anghileri et al., 2016), better50

flood control (Wang et al., 2012; Galelli, Goedbloed, et al., 2014), and hydropower generation51

or revenue (Anghileri et al., 2019; Ahmad & Hossain, 2020; Doering et al., 2021; Guo et52

al., 2021; Lee et al., 2022). The common denominator among these metrics is that they are53

based on the output produced by a reservoir system model.54

In hydro-dominated power systems, reservoir operations can have profound effects on55

power system operations (Voisin et al., 2020; Chowdhury et al., 2021; Chowdhury, Dang, et56

al., 2020). During dry conditions, for instance, a decrease in hydropower production may57

force power grid operators to raise production from thermoelectric plants, leading to higher58

operating costs and CO2 emissions (Kern et al., 2020; Chowdhury et al., 2021). Defining59

streamflow forecast value solely in terms of water-related metrics thus overlooks the role60
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played by hydropower reservoirs in the power grid. In this regard, it is worth stressing that61

there are only a handful of studies that evaluated whether the use of streamflow forecasts62

brings value to power grid operations (Ding et al., 2021; Gong et al., 2021). Both studies63

were conducted at the scale of a river basin—rather than on a spatial domain encompassing64

a national or regional grid—and adopted performance metrics defined in terms of power65

production only (i.e., supply from hydropower, wind, and solar photovoltaic). Hence, an in-66

depth understanding of how power system operations could benefit of streamflow forecasts67

is missing. In particular, it is important to understand which performance metrics are68

improved by the use of streamflow forecasts, when forecasts are most useful, and how forecast69

skill translates into different performance metrics. All these aspects would indeed be relevant70

to support the operationalization of streamflow forecasts.71

Here, we aim to advance the current body of knowledge by studying how the value72

of streamflow forecasts unfolds as we move beyond a water reservoir system to include the73

operations of a national power grid. The questions of interest are therefore the following:74

How does forecast value change as we consider different performance aspects of a power75

grid? When is the use of forecasts more beneficial? How does forecast skill affect power76

system operations? Is forecast value affected by the interdependencies of the water-energy77

system? With the aid of a reservoir and power system model, we answer these questions78

by evaluating the value of streamflow forecasts for the operations of the Cambodian power79

system, which largely relies on the hydropower sector (Section 2 and 3). The criteria used80

in such evaluation are multiple metrics taken from both the reservoir and power systems,81

including available hydropower, dispatched hydropower (i.e., hydropower used within the82

grid), power production costs, CO2 emission, and transmission line stress (Section 4). By83

simulating the coupled water-energy system with and without streamflow forecasts, we show84

that forecasts are particularly useful during the transition from the summer monsoon to the85

dry season. We also quantify the relationship between forecast skill and value, and show86

that forecast error is less important for production costs and CO2 emissions, which are also87

impacted by electricity demand. We finally study how different levels of integration between88

water and power systems reshapes the skill-value relationship (Section 5).89

2 Case study and Data90

2.1 Case study91

We carried out our analysis on the Cambodian water-energy system, illustrated in Fig-92

ure 1. The representation of the system is based on the infrastructure built and operated93

in 2016, for which detailed data are available (Chowdhury, Kern, et al., 2020). Power sup-94

ply is largely controlled by a network of six hydropower dams, which have a total installed95

capacity of 1,048 MW (see Table 1). In this reservoir network, there are two embankment96

dams (Kirirom I and Kirirom III), two dams operated in cascade (Atay and LR Chrum),97

and two headwater dams (Kamchay and Tatay). As we shall see, their production shows98

a pronounced inter-annual pattern; production increases during the summer monsoon (typ-99

ically between May and October) and decreases during the dry season. The hydropower100

production is complemented by a few additional resources, namely thermoelectric plants101

(three coal-fired units totaling 400 MW of installed capacity and 15 oil-fired units totaling102

282 MW), and import from neighboring countries (Thailand, Laos, and Cambodia). Taken103

together, all these resources are designed to meet the peak demand of 1,068 MW (EDC,104

2016).105

2.2 Data106

Different datasets were obtained as inputs to the reservoir and power system models.107

Inputs to reservoir system model include reservoir specifications (Table 1) and time series108

of observed inflow and inflow forecasts. Since long and reliable time series of observed109

river discharge are not available, we retrieved inflow data for the six reservoirs from the110
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Figure 1. Main components of the Cambodian water-energy system, as of 2016. The circles

represent the thermoelectric plants (coal and oil) and imports from neighbouring countries, while the

triangles represent the hydropower plants. The purple squares and segments denote the substations

and transmission lines, respectively. The river network is shown in light blue. Further details are

provided in Section 2.1

.

Table 1. Design specifications of the Cambodian hydropower dams (EDC, 2016).

Name Installed

capacity

(MW)

Dam

height

(m)

Storage

(Mm3)

Design

discharge

(m3/s)

Hydraulic

head

(m)

Basin

area

(km2)

Kamchay 194.1 110 680 163.5 122 710

Kirirom I 12 34 30 20 373.5 99

Kirirom III 18 40 30 40 271 105

Atay 240 45 443.8 125 216 1,157

LR Chrum 338 68 62 300 132 1,550

Tatay 246 77 322 150 188 1,073

Global Flood Awareness System (GloFAS) (Harrigan et al., 2021), a data source that (i) is111

commonly used in developing Asian countries (MacLeod et al., 2021) and (ii) allows us to112

model the water-energy system with a reasonable degree of accuracy (Koh et al., 2022). For113

consistency, we adopted the streamflow forecasts issued by GloFAS, which consists of an114

11-member ensemble (Zsoter et al., 2020). The inflow data are available from 1979 to near115

real-time with daily resolution. Inflow forecasts are available for two days weekly (every116

Monday and Thursday) with a 24-hour time step and up to 46-day lead time. Forecasts117

–4–



manuscript submitted to Water Resources Research

are available from January 1999 to December 2018. The common period (2000-2018) was118

selected for all experiments.119

For the power system model, required data include the specifications of the trans-120

mission lines and generators, as well as hourly time series of electricity demand at each121

substation. The line and generator details were extracted from technical reports (EDC,122

2016; JICA, 2014), while the monthly peak demand was retrieved from the same reports.123

Based on the available monthly peak demand and hourly demand profiles for weekdays and124

weekends, we distribute the national demand to each substation on the basis of its voltage125

level. The detailed methodology for deriving the electricity demand time series is reported126

in Koh et al. (2022).127

3 Modelling framework128

3.1 Overview129

As illustrated in Figure 2, the components of our computational framework are (1) a130

reservoir system model, (2) a power system model, and (3) a reservoir re-operation model.131

Note that the ‘typical’ representations of water-energy models include only the first two132

components: the reservoir model releases water according to its operating rules, and the133

amount of available hydropower is communicated to the power system model, which then134

dispatches (part of) the available hydropower depending on the specific dynamics of the135

power grid. This approach of separately modelling the water and power systems with a136

one-way information flow is known as ‘soft-coupling’ (Voisin et al., 2006; Chowdhury, Kern,137

et al., 2020; Kern et al., 2020). In our framework, we also use a reservoir re-operation model138

that explicitly accounts for the feedback from the power to the water system. In particular,139

the re-operation model gathers information on the amount of hydropower dispatched into the140

grid and calculates the corresponding amount of water that should be released from the dams141

(more details in Section 3.4). By engaging this component, the reservoir and power system142

models are ‘hard-coupled’, thus representing a situation in which the reservoir operations143

are contingent upon the state of the power system (Ibanez et al., 2014; Gebretsadik et al.,144

2016; Koh et al., 2022).145

In our study, we evaluate the value of streamflow forecasts in the Cambodian grid by146

first operating the system with the soft-coupling approach. Doing so has two advantages.147

First, the unidirectional information flow provides insights into how the value of streamflow148

forecasts changes as we move from performance metrics focussing on the reservoir system to149

metrics focussing on the power system. Second, the lack of a tight operational integration150

between the two systems yields a larger operating space, allowing us to identify stressors151

(e.g., forecast skill) that control system performance—and that could be ‘masked’ by the152

presence of the feedback between the energy and water system. In the second part of our153

experiments, we incorporate the feedback mechanism between the systems by introducing154

the reservoir re-operation model. This adds one more stage to the modelling process, where155

the amount of hydropower dispatched by the power system is communicated back to the156

reservoir system model. Doing so provides insights into how the role played by streamflow157

forecasts within the power grid changes when the operating space is reduced.158

3.2 Reservoir system model159

The daily amount of hydropower available at each reservoir is determined by the reser-160

voir system model through its release decisions, which can be determined by two alternative161

schemes: (i) a benchmark one based on static rule curves, and (ii) a more complex scheme162

that dynamically integrates the streamflow forecasts.163
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Figure 2. Schematic of the computational framework, comprising a reservoir system model, a

power system model, and a reservoir re-operation model. The arrows represent the information

flow between modelling components. The circles for the reservoir and power system models are in

solid lines to represent the fact that these components are ‘typically’ considered in water-energy

studies, where a water model provides the boundary conditions for a power system model. The

dashed circle around the re-operation model indicates that this is an optional model that can be

engaged when needed.

3.2.1 Benchmark scheme: rule curves164

The storage dynamics of the i-th reservoir are described by the following mass balance,165

solved with a daily time step:166

Si
d = Si

d−1 +Qi
d −Ri

d − spillid − Ei
d, (1)

0 ≤ Si
d ≤ Si

cap,

Qi
MEF,d ≤ Ri

d ≤ Ri
max,

where Si
d is the reservoir storage on day d, Qi

d the reservoir inflow (between day d− 1 and167

d), Ri
d the volume of water released through the turbines, spillid the volume of water spilled168

from the reservoir, Ei
d the evaporation losses from the dam, and Si

cap the capacity of the169

dam.170

An example of the rule curves we adopted is illustrated in Figure S1 (in the SI). Each171

rule curve is composed of a piecewise linear function based on the maximum and minimum172

water levels that the reservoir should reach within a calendar year (Hi
1 and Hi

2) and the173

time of year in which these values should be reached (Ti
1 and Ti

2). The concept of defining174

reservoir operating rule curves in this manner was proposed by Oliveira and Loucks (1997)175

and subsequently adapted in several other studies (e.g., Liu et al. (2011); Yassin et al.176

(2019)). Its use in representing actual system operations in Southeast Asia has also been177

validated (Chowdhury, Kern, et al., 2020; Dang et al., 2020). As an offline operating policy,178

the daily release decision Ri
d is made to bring the actual storage as close to the target storage179

as possible, while being subjected to an upper bound (Ri
max) and lower bound (Qi

MEF,d).180

Ri
max is the maximum volume of water that can be turbined (representing the designed181

discharge capacity of the dam), while Qi
MEF,d represents the downstream environmental182

flow requirement, calculated according to the method used in Pastor et al. (2014).183
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Finally, the daily available hydropower for the i-th reservoir is calculated as follows:184

HP i
d = η × ρ× g ×Ri

d × (Hi
d−1 +Hi

d)/2, (2)

where HP i
d is the available hydropower (MW) on day d, η the turbine efficiency, ρ the water185

density (1000 kg/m3), g the gravitational acceleration (9.81 m/s2), and Hi
d the hydraulic186

head, taken as the average between days d − 1 and d. For dams operated in cascade, Eq.187

(1) is updated to account for the natural inflow as well as the turbined and spilled water188

from the upper reservoir(s).189

3.2.2 Forecast-informed scheme190

In contrast to the benchmark scheme—where the reservoir release is only contingent191

upon the target water level—operating with streamflow forecasts allows the operators to192

make release decisions based on the knowledge available for the future inflows. In turn, this193

allows the system to prepare for impending wet or dry events. To integrate this information,194

the reservoir operation scheme employs a deterministic Model Predictive Control (MPC)195

approach (Galelli, Goedbloed, et al., 2014; Turner et al., 2017; Lee et al., 2022). According196

to this scheme, at the beginning of day d, the model receives a deterministic streamflow197

forecast for the next H days for each reservoir i (Qf,i
d , . . . , Qf,i

d+H−1), and optimizes the198

release over that finite horizon (i.e., days [d,d+H − 1]) according to a pre-defined objective199

function. In our work, consistent with the operating rules, we seek to explicitly maximize200

the hydropower generated by each dam. To prevent an over-aggressive release profile, we201

impose a penalty on the final state of the reservoir storage at the end of the forecast horizon202

(Soncini-Sessa et al., 2007), ensuring that it does not deviate too much from the target203

water levels (Figure S1). This yields the following optimization problem for each reservoir204

i:205

max
Ri

d,R
i
d+1,...,R

i
d+H−1

d+H−1∑
t=d

HP i
t −X(sit=d+H−1), (3)

where HP i
t is the amount of hydropower produced by the i-th reservoir in one day and206

X(·) is the penalty associated to the storage on day (d + H − 1). HP i
t is derived from207

Eq. (2) as a result of iteratively solving, over H days, Eq. (1) with Qi
d replaced by the208

streamflow forecast Qf,i
d . The release decisions are thus bounded by Qi

MEF,d and Ri
max. The209

output of the optimization problem (block of H days) is a time series of release decisions210

Ri
d, R

i
d+1, . . . , R

i
d+H−1. Contingent upon the actual inflow (Qi

d), we implement the release211

for the first day (Ri
d), and calculate the mass balance for each reservoir according to Eq. (1).212

The actual hydropower produced (HP i
d) derived through Eq. (2) is then communicated to213

the power system model for dispatch. In sum, prior to each day d, we solve multiple MPC214

problems (one for each hydropower reservoir) with the aim of maximizing the hydropower215

generation for each reservoir over the next H days, yielding a sequence of reservoir releases216

as decision variables (Ri
d, R

i
d+1, . . . , R

i
d+H−1).217

3.3 Power system model218

The power system model is PowNet, a production cost model that solves a mixed219

integer linear program with the objective of fulfilling the hourly electricity demand at min-220

imum cost (Chowdhury, Kern, et al., 2020). The decisions made by PowNet include, for221

the next 24 hours, (i) which generating units to start-up and shut down (unit commitment)222

and (ii) the amount of power supplied by each unit (economic dispatch). Key inputs to223

PowNet include transmission line parameters, hourly time series of electricity demand at224

each sub-station, techno-economic parameters of thermoelectric generators (e.g., capacity,225

operations and maintenance costs), and the hydropower available at each dam calculated by226

the reservoir system model (Section 3.2). In scheduling the hourly production, the model227

is subject to multiple constraints, including ramping limits, generation limits, minimum up228

and down-time of each generator, and transmission capacity constraints. The decision vari-229

ables at each hour thus include binary variables (e.g., generating unit to use and whether230
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to switch it on or off) and continuous ones (e.g., electricity generated by each unit, voltage231

angle at each node, spinning and non-spinning reserves, amount of renewables and imports232

dispatched). For each simulated day, PowNet outputs include hourly time series of operat-233

ing costs, CO2 emissions, generation mix, and transmission line usage. PowNet has been234

applied to multiple national grids, such as the ones of Cambodia (Chowdhury, Kern, et al.,235

2020), Laos (Chowdhury, Dang, et al., 2020), and Thailand (Chowdhury et al., 2021; Galelli236

et al., 2022).237

3.4 Reservoir re-operation model238

The reservoir re-operation model is introduced as a means to capture the feedback239

between interdependent water-energy systems. Serving as a bridge between the reservoir240

and power system, this model compares the amount of available hydropower produced by241

the i-th reservoir (HP i
d) with the amount dispatched by the power system (HP i∗

d ). With242

the goal of reducing the mismatch between these two values, the re-operation is triggered243

when there is an over-production of hydropower (i.e., HP i∗
d < HP i

d). The re-operation244

algorithm (refer to Koh et al. (2022) for details) then re-calculates the reservoir release such245

that the i-th reservoir releases only the amount Ri∗
d (< Ri

d) needed to produce HP i∗
d . In this246

study, all reservoirs are re-operated in the scenario where the feedback between the systems247

is considered. Operating in this manner offers flexibility whereby the release decisions made248

by the hydropower reservoir can be updated based on real-time information regarding the249

power system. In other words, this allows each reservoir to be used as a ‘battery’, so water250

can be stored for future use. Doing so may alter the value of forecasts, as the operations of251

the reservoirs would then depend on the state of the power system as well.252

4 Experimental setup253

The goal of our study is to quantify the value of streamflow forecasts for power system254

operations, understand how the value changes with skill, and determine when the value255

matters the most. We use multiple benchmarks to characterize system operations under256

different conditions and thus meet our goals. First, we use the benchmark scheme (Sec-257

tion 3.2.1), i.e., static rule curves, to characterize reservoir operations. Subsequently, we258

compare the results to the forecast-informed scheme. Here, we introduce two benchmarks,259

perfect forecasts and climatology, both commonly used to assess the value of streamflow260

forecasts (Grantz et al., 2005; Zhao et al., 2012; Yossef et al., 2013; Zimmerman et al., 2016;261

Nayak et al., 2018; Anghileri et al., 2019; McInerney et al., 2020; Quedi & Fan, 2020). To262

characterize the skill-value relationships, we have at our disposal multiple forecasts within263

the ensemble, so one could perform weighted aggregation on the members or consider each264

member as a separate deterministic forecast (Slater et al., 2016; Delaney et al., 2020). We265

consider both, that is, (i) we take the ensemble mean across the 11 members (more details266

in Section 2.2), and (ii) we use the individual members as independent inputs. In sum, we267

run our simulations under 14 different forecast scenarios—i.e., perfect forecasts, climatology268

(taken as a 365-calendar day average from the inflow data), ensemble mean, and each of the269

11 members. Taking into account how system operations may depend on the state of the270

power system as well, we repeat the experiments with the feedback from the power system271

back to the reservoir model. This means that our experiments are conducted (i) with 14272

different deterministic forecast scenarios, and (ii) without and with feedback.273

The forecast horizon selected in our study is 30 days based on the power generation274

mix obtained by preliminarily testing the system operations with different forecast horizons275

(see Table S1 in the SI for additional details). Since the reservoirs in our model are operated276

at the daily time step while the forecasts are only available on every Monday and Thursday277

of each week (Zsoter et al., 2020), we fill the gaps (Tuesday-Wednesday, Friday-Sunday) by278

extracting a 30-day window from the 46-day availability, and shifting the forecast one-day279

ahead, until the next set of forecasts is available. For example, the forecast for a given280
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Monday would be from day 1 to day 30 (out of the available 46 days), and the forecast281

for Tuesday would be from day 2 to 31 for the same set of 46 days. This is repeated for282

Wednesday; on Thursday, a new set of forecast is available again. Based on simulations ran283

on an Intel(R) Core (TM) i7-8700 CPU 3.2 GHz with 8 GB RAM running Windows 10, the284

runtime is approximately 20 hours for each simulation. The total runtime for 14 scenarios285

is thus approximately 280 hours. The experiments including the feedback from the power286

to the water system are more computationally demanding, taking about 40 hours each to287

complete.288

Moving to the specific metrics that can be used to quantify forecast skill for determin-289

istic forecasts, it is worth stressing that the options are many (Huang & Zhao, 2022). In290

this study, we considered the use of the Nash-Sutcliffe efficiency (NSE) (Nash & Sutcliffe,291

1970), Pearson correlation coefficient (Lima & Lall, 2010; Li et al., 2014) and Symmetric292

Mean Absolute Percentage Error (SMAPE) (Ogliari et al., 2021). Since the forecast skill is293

calculated for each reservoir within the system, a spatial aggregation is necessary to repre-294

sent the overall skill for the entire study area and contrast it against performance metrics295

defining forecast value (e.g., CO2 emissions). The primary criterion for the chosen metric296

is that it has to be bounded to prevent skewed values upon aggregation, thus eliminating297

NSE (−∞, 1] as a candidate. As for the Pearson correlation coefficient, there is a possibility298

of positive and negative values cancelling each other out during the aggregation process,299

thus misleading both the strength and direction of the relationship between the actual and300

forecast time series. SMAPE is an accuracy metric that measures the difference between the301

actual and forecast data between 0 and 1, and is a metric that fulfills both requirements for302

our study. All candidate metrics are illustrated in Figure S2; across the reservoirs, forecast303

errors tend to be larger during the pre-monsoon (Feb-Apr). The skill then progressively304

increases until the end of the year. To derive the overall skill of a forecast member across305

space, we perform a weighted average of the errors with respect to the hydropower plant306

capacities following Eq. (4):307

SMAPEd =

N∑
i=1

(wi ∗ SMAPEi,d), (4)

where SMAPEd is the aggregated forecast error on day d, wi is the weight of the i-th308

reservoir, taken as the hydropower capacity divided by the total capacity of the N reservoirs,309

and SMAPEi,d is the forecast error for the i-th reservoir on day d.310

As for the forecast value, we consider six metrics: the available, dispatched, and unused311

hydropower, system operating costs, CO2 emissions, and the number of N-1 violations—i.e.,312

instances in which any of the high-voltage lines reaches 75% of its capacity—an indicator of313

grid stress. Here, note that the available hydropower is an output of the reservoir system314

model (derived through Eq. (2)), a commonly-used metric to assess forecast value in previous315

studies (Lee et al., 2022; Anghileri et al., 2019). The other metrics are produced by the316

power system model, and are thus chosen to represent multiple performance aspects of the317

grid. First, the hydropower metrics provide insights into how forecast value is transferred318

from the water system to the power system. Next, the system operating costs and CO2319

emissions provide insights into how system operations are impacted by different levels of320

forecast accuracy. Last, the N-1 violations indicate how stressed the transmission lines are.321

This is important, since (i) grid stress is considered one of the triggers for blackouts (Veloza &322

Santamaria, 2016), and (ii) can serve as an indicator of system performance (e.g., when line323

capacity limits the penetration of renewables in the grid (Chowdhury, Dang, et al., 2020)).324

In assessing the skill-value relationship, we note that there are other input variables (from325

both the reservoir and power system) that may influence the overall system performance.326

As such, besides forecast skill, the actual inflow (Q) and the electricity demand are also327

considered as system stressors.328
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5 Results329

In this section, we first evaluate the benefits that lie in adopting streamflow forecasts330

when operating hydro-dominated power systems (Section 5.1). This is done by comparing331

results obtained from simulating the reservoir and power systems under different benchmark332

operating schemes. Then, we investigate how the value of forecasts changes with skill (Sec-333

tion 5.2). Here, we investigate the skill-value relationship under both standard operations334

(i.e., without feedback; Section 5.2.1) and operations with feedback between the power and335

water systems (Section 5.2.2). Such comparison illustrates how the value changes as we336

capture the interdependencies between water and power systems.337

5.1 Value of streamflow forecasts338

5.1.1 Comparison across multiple performance metrics339

To determine the value of streamflow forecasts in power system operations, we aggre-340

gate the five key performance metrics across both space and time (since the reservoir model341

is run with a daily time-step and the power system model with an hourly time-step). The342

metrics include system-wide available and dispatched hydropower, system operating costs,343

CO2 emissions, and number of N-1 violations (Figure 3). For comparison, we include the344

results for operations guided by rule curves and three different forecast-informed schemes,345

namely perfect forecasts, climatology, and the ensemble mean. At the monthly timescale,346

a strong seasonal pattern can be observed across all metrics. Despite the similar pattern347

exhibited by the different operating schemes, it is clear that the use of streamflow forecasts348

affects the operations of both reservoir and power system.349

5.1.1.1 Available hydropower. Temporally, the system behavior can be classified350

into three periods, namely pre-monsoon (Feb-Apr), summer monsoon (May-Oct), and post-351

monsoon (Nov-Jan). The value of streamflow forecasts largely varies across these periods.352

We first focus on the amount of available hydropower, a direct product of the reservoir353

system model (boxplot in the top panel of Figure 3). Across all scenarios, the hydropower354

availability increases from the pre-monsoon to peak at the end of the monsoon, before355

decreasing again. This follows the seasonal pattern of the summer monsoon, a key feature356

of Southeast Asian climates (Chowdhury et al., 2021). Operating the reservoirs using rule357

curves results in larger hydropower availability than the schemes with forecasts during the358

pre-monsoon and monsoon period (see the corresponding mean and standard deviation in359

Table 2). During the monsoon, operating the dams without streamflow forecasts generates360

an average of at least 40 GWh more hydropower each month than the other schemes. This361

result is attributed to the nature of the decisions made with rule curves: without forecast, the362

release decisions of each reservoir are made with respect to the target storage only. As such,363

the reservoirs tend to release water whenever they receive large inflow volumes, resulting364

in large hydropower availability. Consequently, after the monsoon, the reduced inflow also365

causes the reservoirs to make smaller releases. The hydropower availability thus drops366

significantly (by 40–60% from November to December), averaging at least 60 GWh/month367

less than the forecast-informed schemes. In other words, this sharp decline is due to the368

myopic nature of the rule curves. In contrast, operating with forecasts allows the reservoirs369

to maintain a larger hydropower production after the monsoon. Looking at the specific370

forecast-informed schemes, we observe that operating with perfect foresight produces the371

best results throughout all seasons—a result that is consistent with past studies (Anghileri372

et al., 2019; Ahmad & Hossain, 2020; Doering et al., 2021; Guo et al., 2021; Lee et al.,373

2022).374

5.1.1.2 Power-related metrics. The circles in the top panel of Figure 3 represent375

the hydropower dispatched within the grid. The first point to make is that not all available376

hydropower is dispatched by the grid. The mismatch between available and dispatched377

hydropower is accentuated during the monsoon season, when the amount of dispatched hy-378
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Figure 3. Monthly variability in system performance under different forecast-informed schemes.

The four panels illustrate the range of variability in hydropower (available and dispatched), system

operating costs, CO2 emissions, and frequency of N-1 violations, respectively. All variables are

spatially aggregated across the entire power system. Within each panel, the results from three

forecast-informed schemes (perfect forecasts, climatology, and ensemble mean) are compared to the

benchmark (no forecasts). Experiments are conducted without feedback between the reservoir and

power systems.
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Table 2. Variability in mean and standard deviation of the performance metrics illustrated in

Figure 3 across different operating schemes (no forecasts, perfect forecasts, climatology and ensem-

ble mean) and periods (pre-monsoon, monsoon and post-monsoon).

Performance metric Scenario Pre-monsoon monsoon Post-monsoon

Available hydropower No forecasts 195.16± 83.11 584.51±137.29 302.19±173.18
(GWh/mon.) Perfect forecasts 164.98±101.99 539.87±136.00 377.93±151.97

Climatology 159.95± 91.11 527.80±142.82 360.75±142.47
Ensemble mean 151.60± 78.62 506.85±132.20 366.82±146.94

Dispatched hydropower No forecasts 191.04± 76.31 451.26±71.55 267.27±120.78
(GWh/mon.) Perfect forecasts 160.62±94.75 439.50±76.23 329.83±114.60

Climatology 157.17±86.50 431.12±82.74 319.20±111.61
Ensemble mean 149.58±75.94 415.42±77.53 323.97±113.65

Unused hydropower No forecasts 4.12± 8.12 133.26± 69.40 34.92± 55.00
(GWh/mon.) Perfect forecasts 4.36± 8.57 100.37± 62.29 48.10± 40.90

Climatology 2.78± 5.62 96.68± 62.58 41.54± 33.51
Ensemble mean 2.02± 3.65 91.42± 56.61 42.85± 36.16

System operating cost No forecasts 21.58± 4.13 8.02± 4.70 17.28± 6.65
(M.dollars/mon.) Perfect forecasts 23.47± 5.21 8.67± 4.99 13.34± 5.91

Climatology 23.68± 4.81 9.17± 5.39 13.99± 5.79
Ensemble mean 24.16± 4.42 10.11± 5.12 13.70± 5.87

CO2 emission No forecasts 0.25± 0.02 0.10± 0.07 0.21± 0.07
(tonnes/mon.) Perfect forecasts 0.27± 0.04 0.12± 0.08 0.18± 0.07

Climatology 0.27± 0.03 0.13± 0.08 0.19± 0.06
Ensemble mean 0.27± 0.03 0.14± 0.07 0.19± 0.07

# N-1 violations No forecasts 22.96± 15.00 3.98± 9.32 59.16± 40.45
(hours/mon.) Perfect forecasts 27.70± 15.67 3.39± 7.78 20.07± 21.10

Climatology 30.00± 19.83 2.42± 6.13 20.65± 21.05
Ensemble mean 27.63± 17.32 2.76± 5.42 26.21± 22.36
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dropower not does not increase with hydropower availability. In fact, its value stabilizes379

around 450 GWh/month, leading to a larger discrepancy between the two metrics. This380

indicates a condition of over-production, a situation in which the grid is unable to dis-381

patch all the available hydropower due to oversupply or limited transmission capacity. The382

percentage of total dispatched hydropower with respect to the total available for the four383

scenarios (no forecasts, perfect forecasts, climatology, and ensemble mean) over 19 years is384

81.7%, 84.4%, 84.9%, and 85.1%, respectively. The discrepancy peaks at the end of the385

monsoon season, with up to 35%, 29%, 29%, and 28% of hydropower unused in the four386

scenarios, respectively. This indicates that defining value in terms of different performance387

metrics can produce varying conclusions. The current practice of defining value in terms388

of available hydropower (determined by a water system model), may therefore overlook the389

disparity between the available and dispatched hydropower, especially during the monsoon.390

To achieve a comprehensive understanding of streamflow forecast values, it is therefore im-391

portant to evaluate the responses of multiple performance metrics spanning across water392

and power systems.393

With the largest installed capacity in the grid (about 50%), hydropower fulfills more394

than half of the overall electricity demand in Cambodia. The amount of hydropower within395

the system thus plays a paramount role in determining the power system operations and the396

energy generation mix (refer to Figure S3 in the SI), which directly affects operating costs397

and CO2 emissions. Referring to the second and third panel in Figure 3, an observation398

similar to the case of hydropower can be made; the benefits of operating with forecasts399

are accentuated during the post-monsoon season. Towards the end of the monsoon (in400

October), the scheme with perfect forecasts outperforms all other scenarios in terms of401

operating costs, and is comparable to the case without forecasts in terms of CO2 emissions.402

This suggests that while the use of forecasts may not be very beneficial to the system during403

the pre-monsoon and the peak of the monsoon, given the right conditions, a better forecast404

can be advantageous from an earlier point in time to achieve lower operating costs and CO2405

emissions. A larger amount of hydropower in the grid also reduces stress in the transmission406

line, a point illustrated by the frequency of N-1 violations. There are, in particular, three407

transmission lines that are periodically stressed, two of which are part of a network that feeds408

Phnom Penh, Cambodia’s capital and main load-centre (see Figure 1). The line congestions409

are eased as less pressure is placed on the thermal plants to fulfil the high demand. After410

the monsoon, the scenarios with forecasts are able to sustain the hydropower production,411

allowing more hydropower to be dispatched in the grid as opposed to the scenario without412

forecasts.413

Given these results, it is evident that the use of streamflow forecasts is valuable to414

power system operations in terms of (i) reducing hydropower over-production during the415

monsoon, (ii) maintaining hydropower supply after the monsoon, and (iii) reducing trans-416

mission line stress. Importantly, these points are revealed by the use of a modelling frame-417

work accounting for both water and power system dynamics, something that would be418

hidden if one were to use a reservoir system model, thereby only focussing on the available419

hydropower. This highlights the complexity of the coupled water-energy system and the420

importance of exploring the multiple roles played by forecasts as we move beyond a water421

reservoir system.422

5.1.2 Intra- and inter-annual variability of forecast value423

Better understanding the inter- and intra-annual variability of forecast value can pro-424

vide a deeper insight into when and why forecasts matter to grid operations in hydro-425

dominated power systems. To support this analysis, we focus solely on dispatched hy-426

dropower (which largely affects the power generation mix), and introduce a metric defined427

as the difference between the hydropower dispatched by each forecast-informed scheme and428

the one dispatched when adopting rule curves. Hence, positive values mean that a forecast-429

informed scheme performs better than rule curves. The values illustrated in Figure 4 reveal430
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a few interesting insights. First, the benefit associated to forecasts is most of the time neg-431

ative between February and October, meaning that forecasts are in general not beneficial432

during the pre-monsoon and monsoon seasons. This is in contrast to the period between433

November and January (post-monsoon season), when positive benefits are observed. Second,434

positive benefits extend to almost 200 GWh/month, while the negative ones to less than435

-100 GWh/month. This indicates that the extent of benefits derived from using forecast-436

informed schemes, albeit less frequent, is more significant. Third, there are a few instances437

in which positive benefits are observed during the the pre-monsoon and monsoon seasons438

(e.g., April 2007, June 2010, July 2004). These episodes are due to specific, and unexpected,439

fluctuations in dam inflow for that particular year. In 2007, for instance, the 30-day outlook440

shows that the inflow will keep increasing in May, therefore the reservoirs release more water441

and produce more hydropower, which is then dispatched into the grid (refer to Figure S4 in442

the SI). This information is unknown to the scheme without forecast, explaining the larger443

benefits derived in April 2007.444

Looking at the inter-annual variability, our results show that the three best and worst445

performing years are 2000, 2001, 2018, and 2002, 2005, and 2008, respectively. A closer look446

at the reservoir inflow corresponding to each year, shown in Figure 5, gives us two insights447

regarding the hydrological conditions that are favorable to forecast-informed schemes. First,448

larger inflow volumes tend to be beneficial. Second, and perhaps more interesting, forecasts449

are more useful when the inflow patterns present sudden and unexpected changes; a situation450

that can be hardly managed when controlling a reservoir system with rule curves.451

5.2 Skill-value relationship452

To understand how forecast value changes with skill, we conducted deterministic sim-453

ulations using the 11 individual streamflow forecast members. We then investigate the454

skill-value relationship under two reservoir operating schemes: (i) without (Section 5.2.1)455

and (ii) with (Section 5.2.2) feedback between the reservoir and power systems. This al-456

lows us to characterize the skill-value relationship under different levels of integration of the457

coupled water-energy system.458

5.2.1 System operations without feedback459

To study the relationship between forecast skill and value, we define skill using the460

forecast error (Section 4) and relate it to difference performance metrics that character-461

ize forecast value, namely available, dispatched, and unused hydropower, system operating462

costs, CO2 emissions, and number of N-1 violations. In our analysis, we also consider463

two additional variables, or stressors, that may affect system performance. These are the464

inflow to the reservoirs and electricity demand, or load. All these variables are then ana-465

lyzed through a correlation matrix and a multiple linear regression model, whose results are466

reported Figure 6.467

Beginning with the correlation analysis (left panel), our results show that the corre-468

lation between stressors and performance is significant (p < 0.05) for most stressor-metric469

pairs. Beginning with the forecast error, we note two important patterns. First, there is a470

strong negative correlation between error and available and dispatched hydropower, meaning471

that, as the error increases, the contribution of hydropower to the generation mix decreases.472

In turn, this explains the positive correlation with costs, CO2 emissions, and N-1 violations473

(recall that the power system must rely more on thermoelectric power and imports when less474

hydropower is available). Second, the strength of the relationship between forecast error and475

performance metrics decreases as we move from the reservoir system to the power system,476

a result that is explained by the fact that other stressors become relevant when studying477

coupled water-energy systems. Inflow, for instance, positively affects hydropower-related478

and negatively affects costs, CO2 emissions, and grid stress. An increase in load, on the479

other hand, implies an increase in costs and CO2 emissions.480
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Figure 5. Comparison of daily time series (top panels) and cumulative (bottom panels) inflow

profiles across different years. Each gray line represents one year between 2000 and 2018. Based

on the total hydropower dispatched each year, three years with the highest and lowest benefits are

identified and highlighted in the left and right panels, respectively.
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To further understand how forecast error, inflow, and load control the performance481

metrics, we identify multiple linear regression models in which the inputs are the significant482

independent variables (predictors) and each of the six metrics are the dependent variables483

(predictands). All variables are first standardized (by subtracting the variable’s mean from484

each observed value and then dividing by the variable’s standard deviation) to facilitate the485

comparison. Using a forward selection approach, the predictors are iteratively added to the486

regression model, beginning from the one with the highest (absolute value of) correlation487

coefficient r (Galelli, Humphrey, et al., 2014). From the model, the coefficient of determina-488

tion (r2) and final regression coefficients allow us to infer the contribution of each predictor489

to the variance of the predictands, and hence the importance of the model inputs. The490

variables are grouped according to the calendar months before carrying out the regression.491

The results are illustrated in the central and right panels of Figure 6.492

Similar to the previous analyses, this analysis can also be organized around three493

periods, i.e., pre-monsoon, monsoon and post-monsoon. The importance of the forecast494

error for the available hydropower is more obvious during the post-monsoon season, since495

a discrepancy between observed and predicted inflow determines how well the system can496

adapt to foreseen changes in reservoir inflow and overall transition into the dry season.497

This is in contrast to the monsoon season, when the reservoirs usually release close to the498

maximum designed release, reducing the importance of forecast errors. Moving to the next499

metric, the dispatched hydropower is determined through power system operations. During500

the pre-monsoon, less hydropower is produced, and whatever is produced usually gets fully501

utilized. The importance of inflow and error to hydropower usage is thus similar to that502

of hydropower production between February and April. During the monsoon, however, the503

abundant hydropower production forces the electricity demand to be the limiting factor for504

the amount of dispatched hydropower, explaining the importance of load during this period.505

Regardless of the error or inflow, the power system constraints dictate the grid usage. The506

dynamics between the available and dispatched hydropower also directly influence the next507

metric, i.e., the unused hydropower. As seen from the regression coefficients, a reduction508

in load can create a more than proportionate increase in the amount of unused hydro. The509

over-production peaks in October across all forecast-informed schemes, with about 30%510

unused hydro. Figure 6 also suggests that the forecast errors become insignificant beyond511

the first two performance metrics, since the power system performance depends primarily512

on inflow and load.513

Breaking down the relative contributions of forecast errors, reservoir inflow, and elec-514

tricity demand to different performance metrics highlights the complexity of the systems515

and the interdependencies between stressors. Streamflow forecasts are most valuable to516

improving power system performance during the post-monsoon by facilitating a smooth517

transition between the monsoon and post-monsoon seasons. A more accurate forecast al-518

lows resources to be exploited for continued hydropower availability for the grid to dispatch.519

As we move from the water system to the power system, the skill-value relationship becomes520

less significant, as the system responses depend more on the electricity demand.521

5.2.2 System operations with feedback522

The operations of the reservoir and power systems may not be entirely independent.523

To characterize the skill-value relationship under a tighter integration of the two systems,524

we repeat all experiments with the same inputs, but this time adding the feedback between525

the power and reservoir systems. This set of experiments thus makes use of the re-operation526

module described in Section 3.4. Using the same methodology described in Section 5.2.1,527

we study the relationship between the system stressors and performance metrics illustrated528

in Figure 7.529

With the re-operation mechanism in place, the role played by electricity demand is am-530

plified, while the importance of forecast skill (error) and reservoir inflow is largely reduced.531
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Figure 6. Relationship between system stressors (forecast error, inflow, and load) and perfor-

mance metrics (available, dispatched, and unused hydropower, system operating costs, CO2 emis-

sions, and number of N-1 violations) illustrated by a correlation matrix (left) and regression model

results (center and right). In the correlation matrix, the values (shown in the color bar) between

each stressor-metric pair are obtained by bootstrapping the data through 1,000 iterations. Based

on the correlation values, we first identify a multiple linear regression model between the stressors

(predictors) and metrics (predictands), and then estimate the contribution of each predictor to the

explained variance (center) and the corresponding regression coefficients (right). These results are

reported for the scenarios that do not include the feedback between the power and water system.
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Figure 7. Relationship between system stressors (forecast error, inflow, and load) and per-

formance metrics (available, dispatched, and unused hydropower, system operating costs, CO2

emissions, and number of N-1 violations). These results are reported for the scenarios that include

the feedback between the power and water system.

As the goal of the re-operation mechanism is to flexibly store and release water to generate532

hydropower that better matches the power system demand, the reservoir storage patterns533

can largely deviate from the seasonal patterns (Koh et al., 2022). In turn, this partially534

dampens the impact of hydrological variability on power system performance, making both535

inflow and forecast skill less important. With hydropower-related metrics being explained536

by load, it follows that operating costs and CO2 emissions can almost entirely be determined537

by load as well, with r2 values close to one for every month. Evidently, the presence of the538

feedback mechanism reduces the value of forecasts, allowing load to dominate the operating539

decisions in both the reservoirs and power system.540

6 Discussion and conclusions541

Our study evaluates the value of streamflow forecasts in hydro-dominated power sys-542

tems. The performance metrics were selected from both the reservoir and power systems to543

represent the hydropower generation by the reservoirs, hydropower usage within the grid, as544

well as economic, environmental, and reliability aspects of the power system. We show that545

defining forecast value in terms of different performance metrics can produce different out-546

comes. For instance, while previous studies often associate favorable forecasts with greater547
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hydropower availability, we found that larger hydropower availability does not necessarily548

translate into more usage within the grid. Unless the excess water release can serve a second549

purpose—such as for groundwater storage (Nayak et al., 2018) or inter-basin transfer (Li et550

al., 2014)—measuring value only in terms of the available hydropower may thus overlook551

other important aspects, such as production costs or CO2 emissions. Therefore, when we552

study hydropower systems, we should consider the role that hydropower reservoirs play, not553

only within the reservoir network, but also within the power system as well.554

In hydro-dominated power systems, hydropower operations are highly influenced by555

the seasonality of reservoir inflow. As a result, the grid operations and performance exhibit556

a strong seasonal profile as well. In our case study, the system behavior can be classified557

into three periods—pre-monsoon, monsoon and post-monsoon. We show that the value558

of streamflow forecasts varies with these different periods. During the monsoon, the use559

of forecasts reduces hydropower over-production. In the post-monsoon season, operating560

with forecasts is beneficial to sustain hydropower supply. Accurate forecasts are especially561

useful during the three months after the end of the monsoon to facilitate the transition from562

wet to dry seasons. Better forecast skill, combined with large inflow conditions, can thus563

benefit the system in terms of larger dispatched hydropower, lowering operating costs and564

CO2 emissions. Our analysis also shows that, with a tighter integration of the reservoir565

and power systems, the role played by electricity demand becomes dominant in determining566

operational decisions within both systems.567

Looking forward, an important aspect warranting additional research is the impact of568

the uncertainty associated to streamflow forecasts, which could be ‘operationalized’ through569

the use of stochastic MPC schemes (Pianosi & Soncini-Sessa, 2009). Such control schemes570

would become particularly useful when dealing with streamflow forecasts spanning across571

longer timescales than those currently available for this region. Another relevant aspect to572

consider in the future is the integration of other forms of forecasts that could improve the573

operation of water-energy systems, such as electric load forecasts (Hong & Fan, 2016).574

Overall, we believe that a better understanding of the value provided by streamflow575

forecasts to multi-sector infrastructures could promote and support their use. The need for576

better approaches to system operations is indeed necessary in a variety of contexts, from577

regions experiencing hydro-climatological shifts to regions, like Southeast Asia, that are578

expanding their water and power supply networks.579

Notation580

Si
d Storage on day d of the i-th reservoir581

Si
cap Capacity of the i-th reservoir582

Ri
d Volume of water released through the turbines of the i-th reservoir on day d583

Ri
max Maximum volume of water that can be turbined from the i-th reservoir584

Qi
d Inflow on day d to the i-th reservoir585

Qi
MEF,d Downstream environmental flow requirement of the i-th reservoir on day d586

spillid Volume of water spilled from the i-th reservoir on day d587

Ei
d Evaporation losses from the i-th reservoir on day d588

HP i
d Available hydropower on day d from the i-th reservoir589

HP i∗
t Hydropower dispatched in hour t from the i-th reservoir590

Hi
d Hydraulic head from the i-th reservoir on day d591

Open Research Section592

The data and Python scripts used to simulate the water-energy system in Cambodia for593

this research are available at Koh (2023) via https://doi.org/10.5281/zenodo.8163034.594

–20–



manuscript submitted to Water Resources Research

The observed reservoir inflow data are available from https://doi.org/10.24381/cds595

.a4fdd6b9 (Harrigan et al., 2021) and the reservoir inflow forecast data are available from596

https://doi.org/10.24381/cds.2d78664e (Zsoter et al., 2020). Power system parame-597

ters, including generator and transmission line specifications, as well as monthly electricity598

peak demand data are extracted from EDC (2016) and JICA (2014).599
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Text S1. The rule curve of each reservoir is defined as a piece-wise linear function based

on four parameters: the minimum and maximum water levels that a reservoir should reach

within a year (H1 and H2) and the time at which the two levels should be reached (T1

and T2). As illustrated in Figure S1, there are three water levels that divide the storage

into four zones. These levels are the dead water (or minimum elevation) level, the target

water level, and the full (or maximum elevation) level. H1 and H2 cannot exceed the dead

and critical water levels (Hmin and Hmax), respectively. The release dynamics when the

reservoir water levels are in Zones 1, 2, and 3 are defined by Eq. 1.
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Rd =



0 if Sd ≤ Hmin (Zone 1)

0 if Hmin ≤ Sd ≤ Sts,dmodT

and Sd−1 +Qd ≤ Sts,dmodT

(Zone 2, case 1)
Sts,tmodT

− (Sd−1 +Qd) if Hmin ≤ Sd ≤ Sts,dmodT

and Sd−1 +Qd > Sts,dmodT

(Zone 2, case 2)
(Sd−1 +Qd)− Sts,dmodT

if Sts,dmodT
≤ Sd ≤ Scap

and Sd−1 +Qd −Rmax ≤ Sts,dmodT

(Zone 3, case 1)
Rmax if Sts,dmodT

≤ Sd ≤ Scap

and Sd−1 +Qd −Rmax > Sts,dmodT

(Zone 3, case 2)

(1)

where Sts,dmodT
is the target storage at time tmodT (in our study, we use a period T of 365

days).

If the water level falls below the dead water level (Zone 1), the turbines are not operated.

If the level is between the dead water and target level (Zone 2), the model first uses the

information on the incoming daily inflow to solve a mass balance equation, in which the

discharge from the dam is kept at zero. The aim is to understand whether the water level

is expected to go beyond the target at the end of the day. If that is the case, the model

discharges through the turbines the amount of water needed to keep the level close to the

target. Otherwise, the turbines are not activated. In Zone 3 (between the target and full

level), the turbines are used at their maximum capacity, until the water reaches the target

level. In Zone 4 (i.e., level above the maximum elevation), both turbines and spillways

are used.

July 12, 2023, 4:04am



: X - 3

Figure S1. Rule curve.

.
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Figure S2. The average streamflow forecast skill of each ensemble member, measured in terms

of (a) NSE, (b) r and (c) SMAPE. The six subgrids within each panel represent the six reservoirs

in our case study. The range of the forecast metrics can be seen in the colorbar on the right

of each panel. As seen in panel (a), NSE can go as low as -20000, amplifying the errors when

we do a weighted aggregation. In panel (b), r is bounded by -1 and 1, subjecting them to the

possibility of being cancelled out during aggregation. In panel (c), SMAPE ranges between 0

and 1, avoiding the two problems highlighted above.July 12, 2023, 4:04am
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Figure S3. Monthly variability in Cambodia’s generation mix under different forecast scenar-

ios. All variables are spatially aggregated for the entire system. Within each panel, the results

from three forecast scenarios (perfect, climatology forecast, and the forecast ensemble mean) are

compared to the benchmark (no forecast).
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Figure S4. Daily reservoir inflow. Each gray line represents one year between 2000 and 2018.

The profile for 2007 is highlighted in green.
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