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Abstract20

Hybrid Knowledge-Guided Machine Learning (KGML) models, which are deep learn-21

ing models that utilize scientific theory and process-based model simulations, have shown22

improved performance over their process-based counterparts for the simulation of wa-23

ter temperature and hydrodynamics. We highlight the modular compositional learning24

(MCL) methodology as a novel design choice for the development of hybrid KGML mod-25

els in which the model is decomposed into modular sub-components, that can either be26

process-based models and/or deep learning models. We develop a hybrid MCL model27

that integrates a deep learning model into a modularized, process-based model. To achieve28

this, we first train individual deep learning models with the output of the process-based29

models. In a second step, we fine-tune one deep learning model with observed field data.30

In this study, we replaced process-based calculations of vertical diffusive transport with31

deep learning. Finally, this fine-tuned deep learning model is integrated into the process-32

based model, creating the hybrid MCL model with improved overall projections for wa-33

ter temperature dynamics compared to the original process-based model. We further com-34

pare the performance of the hybrid MCL model with the process-based model and two35

alternative deep learning models and highlight how the hybrid MCL model has the best36

performance for projecting water temperature, Schmidt stability, buoyancy frequency,37

and depths of different isotherms. Modular compositional learning can be applied to ex-38

isting modularized, process-based model structures to make the projections more robust39

and improve model performance by letting deep learning estimate uncertain process cal-40

culations.41

Plain Language Summary42

Lake models based on physical processes are powerful tools for investigating how43

lakes and reservoirs respond to local weather and for projecting lake responses to long-44

term climate change. Historically, physical processes are the basis for designing these mod-45

els. Due to an abundance of long-term and high-frequency data, deep learning models46

are used more frequently although they do not reflect our domain expertise about hy-47

drodynamics and heat transport. Recently, the modeling community is focusing on merg-48

ing models based on physical processes with deep learning. We are highlighting a novel49

methodology, modular compositional learning, that merges different modeling types in50

a modularized framework. Our resulting hybrid model outperformed the original model51

based on physical processes as well as alternative deep learning models regarding the sim-52

ulation of various lake variables related to water temperature, and showed physically valid53

results. We are further showing various ways on how modular compositional learning can54

improve future lake model development and applications.55

1 Introduction56

The conceptual model of aquatic ecosystem dynamics as a linked set of physical,57

chemical, and biological processes is fundamental to lake ecosystems research (H̊akanson,58

2009) and has led to rapid development of hydrodynamic-water quality simulation mod-59

els in the past couple of decades (Mooij et al., 2010). Given the importance of temper-60

ature as a ”master variable” in ecosystems (Magnuson et al., 1979; Read et al., 2019),61

hydrodynamic simulations are used to model the physical environment in which biogeo-62

chemical processes occur. As climate patterns become more uncertain and a growing hu-63

man population increases the need for reliable, expediant assessments of freshwater re-64

sources, process-based aquatic ecosystem models can be used to understand and explore65

how these stressors can impact aquatic ecosystems by detailing the mechanistic effects66

of external and internal forcings (Janssen et al., 2015). Lake hydrodynamic models may67

be used to understand how warming air temperatures will alter lake thermal structure68

(Woolway et al., 2021) and linked biogeochemical conditions such as dissolved oxygen69
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concentrations (Jane et al., 2022). Due to their low computational costs but sufficient70

replication of lake mixing dynamics (Ishikawa et al., 2022), one-dimensional hydrody-71

namic lake models are commonly employed to project changes in water temperature (Moore72

et al., 2021), when it is reasonable to neglect horizontal mixing and focus only on resolv-73

ing the vertical transport.74

Although the low spatial dimensionality provides for computational efficiency, 1D75

hydrodynamic lake models have a number of drawbacks. First, overparameterization of76

processes can make calibration challenging (e.g., Guerrero et al. (2017)), especially when77

field data are sparse. Second, integration of a multitude of processes (atmospheric fluxes,78

vertical transport, inflow entrainment, etc.) can lead to model equifinality (i.e., alter-79

native model parameterizations can result in the same model output, see also Beven (2006)).80

Third, implementations of these models tend to be stiff in their structures, creating a81

high cost to exploring the model’s underlying assumptions and utilizing information in82

observational data that may improve model skill. For example, the MyLake model ne-83

glects the influence of internal oscillations by seiches on mixing (Saloranta & Andersen,84

2007), whereas the Simstrat model parameterizes turbulent kinetic energy production85

by such internal movements (Goudsmit et al., 2002). Consequently, a stiff model struc-86

ture makes incorporating additional data in certain models without major revisions to87

the source code impossible.88

To overcome the limitations of process-based models, the paradigm of “Knowledge-89

Guided Machine Learning” (KGML) focuses on creating hybrid models that combine process-90

based principles (or theory) with data-driven deep learning models (Karpatne et al., 2017;91

Appling et al., 2022). Whereas deep learning models alone need extensive data for train-92

ing, neglect fundamental physical principles, and can have poor performance when pro-93

jecting outside of the training range, hybrid KGML models balance design with discov-94

ery (Appling et al., 2022), in essence how much prior knowledge we specify for the deep95

learning models (design) with the potential for learning useful, and sometimes novel, re-96

lationships between input data and target (discovery). Initial work in developing KGML97

models has revealed how physical laws can be encoded as loss terms in deep learning mod-98

els to make projections more physically valid (Daw et al., 2021), and how recurrent neu-99

ral networks can improve model performance (Jia et al., 2021). Comparisons of hybrid100

model performance with both process-based and purely data-driven deep learning mod-101

els for data-sparse experimental conditions highlight that the hybrid models outperformed102

their counterparts (Read et al., 2019; Jia et al., 2020). Even predicting water temper-103

ature dynamics outside of monitored lake sites has been achieved using a hybrid model,104

which performed better than the process-based counterpart (Willard et al., 2021). The105

applications of such hybrid models have extended to water quality modeling, e.g., phos-106

phorus simulations in Hanson et al. (2020). In general, the current generation of KGML107

hybrid models for water temperature projections have common characteristics: (1) us-108

ing recurrent neural networks, (2) pretraining of these neural networks using process-109

based model output, (3) fine-tuning of neural network weights using in-situ temperature110

data, and (4) incorporating of physical laws as loss terms. Pretraining is the initializa-111

tion of the deep learning network structure using process-based model output in advance112

of fine-tuning with true observations, and has been shown to vastly improve the accu-113

racy and generalizability of model projections (Read et al., 2019). Here, both pretrain-114

ing and fine-tuning are training steps for the deep learning model, but the former acts115

on an uninitialized model structure, whereas the latter trains an already trained model.116

As highlighted above, most current hybrid KGML models incorporate only one-117

way feedbacks from the process-based to the deep learning side, with additional exper-118

tise added through loss functions in the training step. This structure highlights how most119

hybrid KGML models are primarily engineered from a deep learning model with add-120

ons for a specific physical or theoretical process. Although this architecture works well121

for single target studies (e.g., water temperature), water quality modeling includes mul-122
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tiple target variables that need to be accounted for in a flexible framework. Most process-123

based 1D water quality models have a modularized model structure to account for al-124

ternative configurations of biogeochemical, ecological and food web-related interactions125

(e.g., FABM in Bruggeman and Bolding (2014), GLM-AED2 in Hipsey et al. (2019)).126

Here, a flexible framework, in which individual building blocks, or modules, can be re-127

placed with process-based or data-driven calculations can potentially enhance design op-128

tions for future KGML studies. Calculations of uncertain processes can be replaced by129

deep learning to improve overall model confidence. The concept of applying modular-130

ized frameworks for compositional learning (modular compositional learning, or MCL)131

states that domain expertise (scientific knowledge) can be used to decompose the over-132

all modeling goal into modular sub-aspects, hence into a combination of multiple deep133

learning models and/or process-based models (Karpatne et al., 2017). MCL advances134

current hybrid KGML model designs, which generally focus on developing a single deep135

learning model that incorporates process knowledge. Here, hybrid MCL models would136

have a design similar to the modularized structure of process-based lake models, and in-137

dividual sub-parts could either be process-based or deep learning models. This MCL ap-138

proach allows the modeler to balance between framework design (how much prior knowl-139

edge is inserted into the model formulation) and chances for the discovery of relation-140

ships.141

To further the union of process-based and deep learning models, we develop and142

test the MCL concept for hydrodynamic modeling focusing on projecting water temper-143

ature dynamics. Each hydrodynamic, process-based calculation can be envisioned as a144

module that is linked to other modules. The complexity of each module’s process descrip-145

tion depends on the assumptions and relative complexity given to a particular process.146

For example, the effects of atmospheric surface heat fluxes on lake temperature are well147

described using similarity theory sensu Monin-Obukhov, whereas vertical transport through148

turbulent diffusion can be parameterized using alternative approaches, i.e., integral en-149

ergy approach as in GLM (Hipsey et al., 2019) vs. turbulence-based approach as in Sim-150

strat (applies k-ϵ turbulence closure scheme, Goudsmit et al. (2002)). By replacing a process-151

based module with a deep learning model, we can feed additional data into the model152

without the need for formulating a process relationship. Consequently, the link between153

modules will ensure that the overall hybrid MCL model will produce physically-valid re-154

sults.155

To test MCL, we are replacing the process-based modules of a 1D hydrodynamic156

lake model, which modularizes vertical heat transport by sequentially accounting for (a)157

heat generation, (b) ice and snow formation, (c) vertical diffusion, and (d) convective158

overturn, with individual deep learning models. Each deep learning model is used to rep-159

resent each 1D process-based model component. These deep learning models are pretrained160

on the input data going into the process-based model as well as the process-based model161

output temperatures. Subsequently, one deep learning module is fine-tuned on observed162

high-frequency water temperature data to improve model performance. In this study,163

we replaced the diffusion model with a deep learning model to improve the overall ac-164

curacy of the model to capture vertical transport processes. This fine-tuned deep learn-165

ing module is plugged back into the process-based modular framework creating the hy-166

brid MCL model. The performance of the hybrid MCL in replicating hydrodynamic char-167

acteristics of Lake Mendota, USA, is compared with the original process-based model,168

a deep learning model that does not use any process-based information, and a pretrained169

deep learning model that incorporates process-based information. These alternative deep170

learning models reflect different design and discovery ideas; whereas the deep learning171

model with no process information can be used for discovering relationships between in-172

put data and targets, the pretrained deep learning model with process information is con-173

figured to reflect physical processes. With this test of the novel MCL methodology for174

water temperature simulations, we aim to highlight how the hybrid model incorporates175
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potentially both design and discovery, while allowing lake modelers the flexibility of repli-176

cating future, more complex, aquatic ecosystem structures.177

2 Data178

As a test site for model development, we chose Lake Mendota (Wisconsin, USA),179

which has been the subject of many limnological and modeling studies over the last cen-180

tury (e.g., Snortheim et al. (2017); Magee et al. (2016); Ladwig et al. (2021)). Lake Men-181

dota is a 3,961 ha lake with a maximum depth of 25 m that stratifies during the sum-182

mer and winter seasons. Lake Mendota has a residence time of 4.3 years (McDonald &183

Lathrop, 2017), which allows us to assume that inflows and outflows would have a mi-184

nor effect on in-lake water temperatures. All in-lake measurements were collected in the185

center of the lake (43.0988N, -89.4054W) and include: depth-discrete measurements of186

water temperature (collected fortnightly, when ice-free, to monthly, when ice-covered by187

the North Temperate Lake Long-term Ecological Research program [NTL-LTER] since188

1995), and high-frequency water temperature data collected by a sensor-chain connected189

to a buoy (data since 2006 for the ice-free season) (Magnuson, J.J. and Carpenter, S.R.190

and Stanley, E.H., 2023b, 2023a). The 1-min high-frequency data were averaged to hourly191

values. Biweekly measurements were taken with a YSI Pro-ODO meter (YSI, resolution192

of 0.1 °C). For high-frequency measurements, TempLine loggers (Apprise Tech, resolu-193

tion of 0.1 °C) were used in 2006, and since 2007 Concerto loggers (RBR, resolution of194

< 0.00005 °C) are used. Data loggers were placed every 0.5 m from the surface through195

7 m, and every meter from 7 m to 15 m in 2006, and are placed every 0.5 m from the196

surface through 2 m, and every meter from 2 m to 20 m since 2007. Fortnightly and high-197

frequency temperature data were merged into one data set, in which missing hourly and198

depth-discrete data were extrapolated using cubic-spline interpolation. This tempera-199

ture data set consists of hourly, depth-discrete (every 0.5 m) water temperature data at200

the lake’s deepest site. As data during the ice-covered period were sparse and interpo-201

lation was high, we set all water temperatures of the layer closest to the surface to a freez-202

ing temperature of 0 °C whenever air temperature were ≤ 0 °C.203

Meteorological forcing data were obtained from the second phase of the North Amer-204

ican Land Data Assimilation System (NLDAS-2; Xia et al., 2012). The NLDAS-2 data205

are at an hourly resolution and a grid cell that covered most of Lake Mendota’s surface206

area was selected (Mitchell, 2004). Meteorological parameters used in this study included207

wind speed, air temperature, specific humidity, surface pressure, surface downward short-208

and longwave radiation. Relative humidity was calculated as a function of specific hu-209

midity, air temperature, and surface pressure. Cloud cover was calculated as a function210

of air temperature, relative humidity, shortwave radiation, latitude and longitude, and211

elevation above sea level. Air vapor saturation was calculated as a function of relative212

humidity and air temperature.213

3 Methods214

In the following sections, we highlight the equations and workflow of the process-215

based lake model, which provided synthetic data for training and testing of deep learn-216

ing model architectures. To develop a hybrid MCL model (Fig. 1), we first show the nec-217

essary steps of modular compositional learning, pretraining and fine-tuning, and how each218

step performed for the training and testing period against two alternative deep learn-219

ing models (Fig. 2): one without process information and one without modularisation.220

Finally, we describe the design ideas behind the hybrid MCL model that combines a fine-221

tuned deep learning model in the process-based model. To highlight how the hybrid MCL222

model performs in capturing key physical limnological lake characteristics, we ran the223

hybrid MCL model against the process-based model, the deep learning with no process,224

and the deep learning with no modularisation in a time period that was not used pre-225
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viously for neither training nor testing. To avoid confusion, we are using the following226

nomenclature in this study:227

• KGML: Knowledge-Guided Machine Learning, a modeling paradigm that aims228

to combine process-based knowledge and modeling with deep learning models (Karpatne229

et al., 2017, 2022).230

• MCL: Modular Compositional Learning, a KGML methodology in which the over-231

all model is decomposed into modular sub-aspects, each modular sub-aspect can232

be a deep learning model or a process-based model (Karpatne et al., 2017).233

• Pretraining: Training of an uninitialized deep learning model using process-based234

model data as targets.235

• Fine-tuning: Training of an already trained/initialized deep learning model us-236

ing observed field data as targets.237

• Process-based model: 1D hydrodynamic lake model that decomposes each time238

step into the modeling of heat generation, ice and snow formation, vertical diffu-239

sive transport, and convective overturn.240

• Hybrid MCL model: A process-based model in which one (or more) modular241

sub-aspect is modeled through a deep learning model. In this study, we replaced242

the process-based diffusive transport calculations with a deep learning model. This243

deep learning model was pretrained on the process-based model data, and sub-244

sequently fine-tuned on observed field data. The hybrid MCL includes process in-245

formation and is modularised.246

• Deep learning model with no process information: Deep learning model247

that is trained on observed field data with general data inputs, e.g., meteorology248

and lake characteristics.249

• Pretrained deep learning model with no modularisation: Deep learning250

model that is pretrained on process-based model output, and subsequently fine-251

tuned on observed field data. This model has no feedback between the deep learn-252

ing model and any process-based model.253

3.1 Process-based model254

A one-dimensional hydrodynamic lake model was developed to simulate the tem-255

perature, heat flux and stratification dynamics in a lake. The algorithms are based on256

the eddy diffusion approach sensu Henderson-Sellers (1985) and the MyLake (Saloranta257

& Andersen, 2007) model. Using the one-dimensional temperature diffusion equation for258

heat transport, we neglected any inflows and outflows, mass losses due to evaporation259

and water level changes:260

∂h

∂t
= 0 (1)261

A
∂T

∂t
= A

∂

∂z
(Kz

∂T

∂z
) +

∂

∂z

AH(z)

ρwcp
+

∂

∂z

AHgeo(z)

ρwcp
(2)262

where h is the water level (m), A is lake area (m2), T is water temperature (°C), t is time263

(s), Kz is the vertical diffusion coefficient m-2s-1), H is internal heat generation due to264

incoming solar radiation (W m-2), ρw is water density (kg m-3), cp is specific heat con-265

tent of water (J kg-1 °C-1), and Hgeo is internal geothermal heat generation (W m-2).266

Internal heat generation is implemented based on Beer-Lambert law for attenuation of267

short-wave radiation as a function of a constant light attenuation coefficient:268

H(z) = (1− α) Isexp (−kdz) (3)269

where α is the albedo (−), Is is total incident short-wave radiation (W m-2), and kd is270

a light attenuation coefficient (m-1). For the boundary conditions, we assume a Neumann271
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type for the temperature diffusion equation at the atmosphere-surface boundary, and a272

zero-flux Neumann type at the bottom:273

ρwcp(Kz
∂T

∂z
)surface = Hnet (4)274

275

Kz(
∂T

∂z
)bottom = 0 (5)276

where Hnet is the net heat flux exchange between atmosphere and water column (W m-2).277

The neat heat flux exchange consisted of four terms:278

Hnet = Hlw +Hlwr +Hv +Hc (6)279

where Hlw is the incoming long-wave radiation (W m-2), Hlwr is emitted radiation from280

the water column (W m-2), Hv is the latent heat flux (W m-2), and Hc is the sensible281

heat flux (W m-2). Incoming and outgoing long-wave heat fluxes were derived using the282

formulations from Livingstone and Imboden (1989) and Goudsmit et al. (2002). The la-283

tent and sensible heat fluxes were calculated taking into account atmospheric stability284

using the algorithm by Verburg and Antenucci (2010).285

The calculation of a temperature profile at every time step is modularized into four286

steps: (a) heat generation from boundary conditions, (b) ice and snow formation, (c) ver-287

tical diffusion, and (d) convective overturn. The one-dimensional temperature diffusion288

equation was discretized using the implicit Crank-Nicolson scheme (Press et al., 2007),289

which being second-order in both space and time allows the modeling time step to be290

dynamic without numerical stability issues. The model was implemented in Python 3.7291

with a time step of ∆t = 3, 600 s and a spatial discretization of ∆z = 0.5 m.292

3.1.1 Heat generation from boundary conditions (a)293

In the first step, the heat fluxes H, Hgeo and Hnet are applied over the vertical wa-294

ter column. For Lake Mendota, we set the constant light extinction coefficient kd to 0.4295

m-1 based on the upper end of observed Secchi depth measurements since 1995 (Magnuson,296

J.J. and Carpenter, S.R. and Stanley, E.H., 2023c).297

3.1.2 Ice, snow, and snow ice formation (b)298

In the second step, the ice and snow cover algorithm from MyLake (Saloranta &299

Andersen, 2007) was applied to the model. Whenever water temperatures were equal or300

below the freezing point of water (set to 0 °C), ice formation was triggered. All layers301

with water temperatures below the freezing point were set to 0 °C, and the heat deficit302

from atmospheric heat exchange was converted into latent heat of ice formation. Ste-303

fan’s law was applied to calculate ice thickness when air temperatures were below freez-304

ing point triggering ice formation (e.g., Leppäranta (1993)). The formation of a snow305

layer on top of the ice layer depended on the amount of precipitation. Further, when-306

ever the weight of snow exceeded the buoyancy capacity of the ice layer, enough water307

to offset the exceedance forms a snow ice layer with the same properties as ice. When308

air temperatures were above the freezing point, ice and snow growth ceased, and snow309

and ice melting were initiated with ice melt requiring no snow to exist. Here, total en-310

ergy of melting was taken from the total heat flux Hnet. Once the ice layer has disap-311

peared, the default model routine continued. For more details, we refer the reader to Saloranta312

and Andersen (2007).313

3.1.3 Vertical (turbulent) diffusion (c)314

In the third step, vertical turbulent diffusion between adjacent grid cells was cal-315

culated. Here, we applied a centered difference approximation for temperature at the next316

–7–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

time step. The vertical turbulent diffusion coefficients, Kt, were calculated under non-317

neutral conditions in relation to the Richardson number (Henderson-Sellers, 1985):318

Kt =
kw∗z

P0 (1 + 37R2
i )
exp (−k∗z) (7)319

where k is the Karman constant (k = 0.4), w∗ is the wind friction velocity (m s-1) ,320

P0 is the turbulent Prandlt number (P0 = 1.0), Ri is the Richardson number, and k∗321

is a function of wind speed and latitude. Friction velocity was calculated as:322

w∗ = CDU2 (8)323

where the drag coefficient CD was set to 1.3 x 10−3, and U2 is the wind speed at 2 m324

above surface (m s-1). The Richardson number was quantified as:325

Ri =
−1 + [1 + 40N2k2z2/

(
w∗2exp(−2k∗z)

)
](1/2)

20
(9)326

with the squared buoyancy frequency, N2 = g
ρw

∂ρw

∂z (s−2). All values of N2 less than327

7.0 x 10−5 s-2 were set to 7.0 x 10−5 s-2 (Hondzo & Stefan, 1993).328

Further, we applied the turbulent eddy diffusivity modifications from Gu et al. (2015)329

for the Henderson-Sellers parameterization and a lake depth between 15 to 150 m:330

Kt =


102Kt, if Tsurface > 4°C
104Kt, if 0°C < Tsurface ≤ 4°C
0, if Tsurface ≤ 0°C

(10)331

To replicate a lag in the mixing dynamics, we set the values of Kt to the average between332

the current profile and the one from the previous time step (Piccolroaz & Toffolon, 2013).333

The vertical diffusion coefficient was calculated as:334

Kz = Kt +Km (11)335

with the molecular diffusivity Km set to 1.4 x 10−7 m2 s-1.336

3.1.4 Convective overturn (d)337

In the final step, any density instabilities over the vertical water column were mixed338

with the first stable layer below an unstable layer. Here, we applied the area weighed339

mean of temperature between two layers to calculate the new temperature of the pre-340

viously unstable grid cell. Density differences between two layers were averaged until the341

difference was equal or less than 1 x 10−3 kg m-3.342

3.2 Modular compositional learning workflow343

MCL aims to merge process-based modeling and deep learning to create an over-344

all flexible model with improved performance in which individual processes and state vari-345

ables are linked through a modularized approach (Fig. 1 1A). The steps to create a hy-346

brid MCL model consisted of:347

1. Developing and running a process-based model (see subplots 1A and 2A in Fig.348

1)349

2. Pretraining step: sequence of deep learning models are pretrained with simulated350

data to replicate the process-based model output data (see subplots 1B and 2B351

in Fig. 1, Tab. 1)352

3. Fine-tuning step: the pretrained deep learning model surrogating the performance353

of the diffusion module was trained on the observed water temperature data (see354

subplots 1C and 2C in Fig. 1, Tab. 1)355
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4. Developing the hybrid MCL model (described in more detail in Section 3.3): the356

fine-tuned deep learning model mimicking the diffusion module is put back into357

the process-based model (see subplots 1D and 2D in Fig. 1)358

The process-based model descriptions are detailed above. We note that the process-359

based model was not thoroughly calibrated using e.g., an automatic optimization algo-360

rithm. Only the light extinction coefficient was modified to represent field clarity con-361

ditions. For deep learning, we used multi-layer perceptrons (MLP) with 2 hidden lay-362

ers each with 32 neurons, respectively, and Gaussian Error Linear Units (GELU) acti-363

vation functions. The selection of the number of layers and neurons per layer often in-364

volves a hyperparameter search with a validation set. However, our experiments revealed365

that a simple configuration of 2 layers with 32 neurons each is capable of effectively cap-366

turing the data. Incorporating more layers could potentially yield slightly improved per-367

formance. However, we intentionally opted for a simpler model design for each module368

within our modular compositional framework. Seven years of data (2011-12-31 01:00:00369

to 2017-12-28 23:00:00) were used to train and test the process-based model (Fig. 1 1A).370

During pretraining (Fig. 1 1B), the training and testing data were split 60-40 and each371

deep learning model was trained for 100 epochs to replicate the temperature output of372

its respective process-based counterpart (for all inputs and targets see Tab. 1). Train-373

ing and testing data for the MLP models consisted of hourly, depth-discrete (∆z = 0.5374

m) simulated data from the process-based model output. Although each MLP was trained375

individually (Fig. 1 1B), overall model performance was evaluated by linking each MLP376

to the next one (Fig. 1 2B), similar to the process-based model (Fig. 1 2A), i.e., the pro-377

jected temperature from the first deep learning model replaced the respective input tem-378

perature of the next deep learning model (Fig. 1 2B).379

In the fine-tuning step (Fig. 1 1C, 7 years of data from 2011-12-31 01:00:00 to 2017-380

12-28 23:00:00 with a split of 60-40 % for training and testing), each trained deep learn-381

ing model got linked to mimic the process-based model. The linked deep learning mod-382

els did not include recurrent information because for every time step, the initial temper-383

ature got derived from the the process-based model output and not from the previously384

projected final temperature profile (see Fig. 1 2C - there is no loop between final pro-385

jected temperature and the initial temperature of the next time step because the latter386

was taken from the process-based model simulations). To improve model performance,387

we only fine-tuned the weights of the third module mimicking the vertical diffusive trans-388

port (the weights of all other MLP’s were unaltered during fine-tuning). Fine-tuning was389

done using high-frequency observed water temperature data with 1,000 epochs. We chose390

to fine-tune the diffusion module as among state-of-the-art hydrodynamic lake models,391

different approaches are taken in their parameterization of diffusive transport dynam-392

ics. Eddy-diffusion models quantify the eddy diffusivity coefficients for turbulent trans-393

port as a function of the gradient Richardson number (e.g., Henderson-Sellers (1985) or394

Hostetler and Bartlein (1990) models), whereas turbulence-based models use additional395

equations to quantify production and dissipation of turbulent kinetic energy, e.g., the396

k−ϵ approach as in Simstrat (Goudsmit et al., 2002) and LAKE2.0 (Stepanenko et al.,397

2016). For our calculations, we chose the method sensu Henderson-Sellers (1985) and398

parameterised the vertical turbulent diffusivity coefficients as a function depending on399

the gradient Richardson number, Eq. 9, in which external wind energy is directly used400

to compute turbulent transport. Although these alternative calculations have common401

physical assumptions and foundations, the degree to which they replicate the complex-402

ity of a specific lake’s hydrodynamics is uncertain. Therefore, by letting deep learning403

estimate the turbulent diffusive transport, we are actively reducing the process uncer-404

tainty in the hybrid MCL model.405

We further tested the performance of two alternative deep learning models (Fig.406

2, Tab. 1). One model, deep learning (no process, Fig. 2 A), acted as our test case to407

investigate if deep learning with no process-based information in its input data would408
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perform as well as the hybrid MCL model. The other model, pretrained deep learning409

(no modularisation, Fig. 2 B), had a similar setup as the hybrid MCL model (includ-410

ing pretraining on process-based model simulations and fine-tuning on observed data,411

Fig. 1 2D), but without the deep learning model being part of the modularised work-412

flow. This model was tested to see if the feedbacks between the process-based modules413

and the deep learning were improving model performance and stability. The two deep414

learning models consisted of:415

1. Deep learning model (no process): a MLP was trained on the observed data (Fig.416

2 A). The deep learning model had the same amount of hidden layers as the hy-417

brid MCL model, and the input data for training were lake characteristics and me-418

teorological driver data (Tab. 1).419

2. Pretrained deep learning model (no modularisation): a MLP was pretrained with420

the final simulation output from the process-based model (Tab. 1). The deep learn-421

ing model had the same amount of hidden layers as the hybrid MCL model, and422

the input data for training were lake characteristics, initial projected process-based423

water temperature and meteorological driver data. The pretrained deep learning424

model was subsequently fine-tuned on the observed water temperature data (Fig.425

2 B)426

In total, model performance for the training and testing periods were evaluated for427

the process-based model, the intermediate MCL steps of pretraining and fine-tuning, the428

hybrid MCL model, the deep learning model (no process), and the the pretrained deep429

learning model (no modularisation) on how well they replicated the observed water tem-430

perature data for training and testing periods (quantified using the root-mean squared431

error, RMSE).432

433

3.3 Hybrid MCL model434

To develop a hybrid MCL model (Fig. 1 2D) in which the fine-tuned MLP mim-435

icking vertical diffusive transport was integrated into the modularised process-based model,436

we had to acknowledge the architecture of the pretraining and fine-tuning steps (Fig. 1.2437

B+C). We recall that each deep learning model used the projected output of its previ-438

ous process-based module counterpart during pretraining, and that during fine-tuning439

the first deep learning model (acting as substitute for heating) received its initial water440

temperature profile from the process-based model projections, whereas subsequent deep441

learning models used the simulated output from their deep learning predecessors as in-442

put (Fig. 1 2C). This bias of pretraining and fine-tuning to rely on process-based infor-443

mation needed to be replicated in the hybrid MCL model. To ensure the inclusion of un-444

biased process-based initial values in the hybrid MCL model, we ran two parallel paths445

inside the hybrid MCL model at each iteration (Fig. 1 2D). For each iteration (repre-446

senting the calculations for one time step), a complete process-based model calculation447

is performed (heating, ice, diffusion, convection) and the final process-based model out-448

put is used as the input temperature profiles for the next time step (process-based model449

path in Fig. 1 2D). In parallel, after accounting for ice and snow formation, the fine-tuned450

deep learning model is run with its output further processed by a process-based convec-451

tion module. This final temperature profile is stored as the ”true” model output (hybrid452

path in Fig. 1 2D), which is not used as the initial profile for the next time step. Even-453

tually, these parallel processes mean that at each iteration the process-based modules454

are run to create a biased, process-based initial temperature profile for the next itera-455

tion. But on top of this loop, the deep learning model calculates the final modeled tem-456

perature profile for each time step in parallel. This diffusive adjustment by the deep learn-457
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Configuration Input data Pretraining target Fine-tuning
target

Modular compositional learning
Deep learning
model for heating
(a)

depth, air temp., longwave
radiation, sensible heatflux, latent
heatflux, short-wave radiation, light
extinction, area, ice, snow, snow ice,
initial process-based temperature,
day of year, time of day

process-based
heating (a)
temperature

-

Deep learning
model for ice and
snow formation
(b)

depth, ice, snow, snow ice, initial
process-based temperature, process-
based heating temperature (a), day
of year, time of day

process-based ice
temperature (b)

-

Deep learning
model for
diffusion (c)

depth, area, wind speed, process-
based buoyancy profile, process-
based diffusivity coefficient values,
ice, snow, snow ice, initial process-
based temperature, process-based
heating temperature (a), process-
based ice temperature (b), day of
year, time of day

process-based
diffusion
temperature
(c)

observed
temperature

Deep learning
model for
convection (d)

depth, area, ice, snow, snow ice,
initial process-based temperature,
process-based heating temperature
(a), process-based ice temperature
(b), process-based diffusion
temperature (c), day of year, time
of day

process-based
convection
temperature
(d)

-

Alternative deep learning models
Deep learning
model (no
process)

depth, air temp., longwave
radiation, sensible heatflux, latent
heatflux, short-wave radiation, light
extinction, area, wind speed, day of
year, time of day

observed
temperature

-

Pretrained
deep learning
model (no
modularisation)

depth, air temp., longwave
radiation, sensible heatflux, latent
heatflux, short-wave radiation, light
extinction, area, wind speed, day
of year, time of day, initial process-
based temperature

process-based
convection
temperature
(d)

observed
temperature

Table 1. Overview of the deep learning models regarding input data and target variable
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Figure 1. Design process for modular compositional learning. Gray boxes represent process-

based modules, cyan boxes represent pretrained deep learning models, and red boxes represent

fine-tuned deep learning modules. 1: Workflow to create the hybrid MCL model consisting of

(A) the process-based model, (B) pretraining step (deep learning models learn to surrogate

performance of process-based counterparts), (C) fine-tuning step (one deep learning model is

trained on observed data), and the (D) hybrid MCL model. 2: Evaluation of model performance

for the (A) process-based model, the (B) pretraining step, the (C) fine-tuning step, and the (D)

hybrid MCL model.

ing module using data-driven information of the temperature profile provided by the process-458

based model was due to inherent numerical instabilities of the hybrid MCL model. Ini-459

tial, non-published experiments highlighted that a hybrid MCL framework in which the460

final projected temperature profile of the hybrid path would be the input for the next461

iteration was susceptible to numerical oscillations, which over time could develop into462

unrealistic water temperature values. Therefore, in our hybrid MCL model, the process-463

based model is used as the structural backbone (for heat fluxes, ice/snow formation and464

convection and also for temporal evolution), but the diffusive processes are “adjusted”465

using the deep learning model, which was trained on observed water temperature data.466

The hybrid MCL model is tested against the performance of the process-based model,467

the deep learning model (no process), and the pretrained deep learning model (no mod-468

ularisation) in replicating the observed data for the period from 2018-04-26 00:00:00 to469
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Figure 2. Architectures of alternative deep learning models: the gray boxes represent process-

based modules, and red boxes represent trained models. A: Evaluation of the deep learning

model with no process information performance. B: Evaluation of the pretrained deep learning

model (no modularisation) performance.

2019-10-27 11:00:00, which was outside of the training-testing period (2011-12-31 01:00:00470

to 2017-12-28 23:00:00). We quantified model fits using the RMSE and the Nash-Sutcliffe471

coefficient of efficiency (NSE). We evaluated model performance for a set of hydrody-472

namic metrics: whole water temperature profiles over the time period, near-surface wa-473

ter temperatures (depth at 0.5 m), near-bottom water temperature (depth at 24 m), ther-474

mocline depths, upper and lower metalimnion depths, the isothermals of 13, 15 and 17475

°C over time, max. buoyancy frequency, and Schmidt stability. Thermocline depths rep-476

resent if the model can accurately replicate vertical transport dynamics as well as inter-477

nal mixing processes due to oscillations or entrainment, whereas the isothermals at tem-478

peratures close to the thermocline explore the ability of the model to mimick oscillations479

due to internal waves. Maximum buoyancy frequency was quantified as the maximum480

value of each hour’s profile of the Brunt–Väisälä frequency, or squared buoyancy frequency481

N2 (Lerman et al., 1995):482

N2 =
g

ρ0

∂ρ

∂z
(12)483

where g is gravitational acceleration (m s-2). The Schmidt stability, St (J m-2) (Idso, 1973;484

Schmidt, 1928), quantifies the amount of external energy needed to mix the entire wa-485

ter column without affecting the amount of stored internal energy:486

St =
g

A0

∫ zmax

0

(z − zg) (ρz − ρ̂z)Azdz (13)487

where z is the depth referenced from the water surface, zg is the depth of the center of488

mass, and ρ̂z is the mean density.489

Further, we investigated if the respective models produced unstable density pro-490

files over the water column. For this, we calculated average epilimnion and metalimnion491

densities, respectively, and compared their differences over time for the process-based492

model, the hybrid MCL model, the deep learning model (no process), and the pretrained493

deep learning model (no modularisation). To understand if the hybrid MCL model and494

the two deep learning models projected unrealistic fluctuations around their output vari-495

ables, we quantified monthly signal-to-noise ratios by dividing the monthly mean by its496

standard deviation for surface water temperature, bottom water temperature and Schmidt497

stability.498
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Model Train RMSE (°C) Test RMSE (°C)
Process-based model 5.31 4.46
Pretraining step 4.78 5.27
Fine-tuning step 1.31 1.94
Hybrid MCL model 1.97 1.60
Deep learning model (no process) 0.83 2.10
Pretrained deep learning model (no modularisation) 1.42 1.42

Table 2. Performance of models in recreating the full observed temperature profiles of the

training (2011-12-31 to 2015-08-05) and test periods (2015-08-06 to 2017-12-28). Bold numbers

highlight the best performance metric.

3.4 Computational implementation499

The process-based, the deep learning models, and the hybrid MCL model were de-500

veloped and run in Python 3.7. Deep learning models were trained using PyTorch v1.11.0501

(Paszke et al., 2019). All calculations to assess the performance of the hybrid models and502

its competitors were done using R v4.3.1 (R Core Team, 2023) and the package rLakeAnalyzer503

(Read et al., 2011).504

4 Results505

4.1 Performance of modular compositional learning506

The process-based model had shortcomings replicating the field temperature dy-507

namics of the test period (Tab. 2, Fig. 3 A+D). The deep-water heat transport is un-508

derestimated, resulting in bottom temperatures being approx. 5 °C colder than what the509

field data suggest. Further, observed temperature fluctuations near the thermocline were510

not replicated by the process-based model. The pretraining step, with four individual511

deep learning models surrogating the performance of their process-based counterparts,512

achieved a similar performance as the process-based model (Tab. 2, Fig. 3 A+E1). Once513

trained or fine-tuned on observed data, the deep learning model (no process), the pre-514

trained deep learning model (no modularisation), the fine-tuning step, and the hybrid515

MCL model are able to capture the thermal dynamics of the observed data with RMSE’s516

for the test period of 2.10, 1.42, 1.94, and 1.60 °C, respectively (Tab. 2, Fig. 3 B+C, E2+F).517

Training performance suggests that all fine-tuned deep learning models had a very sim-518

ilar performance (1.94 and 1.42 °C for fine-tuning step and pretrained deep learning with519

no modularisation, respectively). The deep learning model with no process information520

had a better performance during training than testing. The combination of pretraining521

and fine-tuning caused the error to decrease from an initial RMSE of 4.46 °C (process-522

based model) to 1.60 °C (hybrid MCL model). Past modeling studies (process-based and523

hybrid KGML models) achieved a similar performance for water temperature simulations,524

i.e., 1.96 °C in Ladwig et al. (2021) and 1.56 °C in Read et al. (2019).525

526

4.2 Performance of the hybrid MCL model527

The performance of the hybrid MCL model was further evaluated against the process-528

based model, the deep learning model (no process), and the pretrained deep learning model529

(no modularisation) for the time period 2018-04-26 00:00:00 to 2019-10-27 11:00:00 (data530

that were previously not used in training/testing). The hybrid MCL model vastly out-531
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Figure 3. Model performance for replicating thermodynamics during the test period (2015-

08-06 to 2017-12-28) visualised through heatmaps of vertical water temperature profiles over

time. A: Observed data. B: Output from deep learning model with no process information

(Fig. 2 A) with erratic oscillations. C: Output from pretrained deep learning model with no

modularisaton (Fig. 2 B). D: Output from process-based model highlighting the shortcomings

of the process-based model to replicate deep-water heat transport (Fig. 1 2A). E1: Output

from pretraining step, which is almost identical to process-based model performance as the

process-based output was used to train the deep learning models (Fig. 1 2B). E2: Output from

fine-tuning step, almost identical to hybrid output for the testing period (Fig. 1 2C). Model

performance improved for deep-water heat transport compared to process-based model. F:

Output from hybrid MCL model (Fig. 1 2D).

performed the process-based model (Tab. 3) regarding the replication of total temper-532
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ature dynamics (RMSE of 2.14 and 4.63 °C, respectively), water column stability (i.e.,533

NSE of Schmidt stability of 0.92 and 0.79, respectively), and density layer fluctuations534

(i.e., NSE of 15 °C isotherm depth of 0.68 and -1.09, respectively). The improved per-535

formance of the hybrid MCL model compared to the process-based model is further high-536

lighted in the time series of projected surface and bottom water temperature dynamics537

(Fig. 4 A+B). The process-based model is not able to capture deep-water heat trans-538

port (revealed by its nearly constant bottom water temperature through summer strat-539

ification), and its earlier decline of surface water temperatures. Further, the process-based540

model generally underestimated the depths of the thermocline, upper metalimnion, lower541

metalimnion and all investigated isotherms (Tab. 3, Fig. 4).542

The hybrid MCL model and the pretrained deep learning model with no modular-543

isation performed similarly for water temperature dynamics, energy budgets, and den-544

sity layer depths. However, the pretrained deep learning (no modularisation) has a bet-545

ter projection of surface water temperatures than the hybrid MCL model, RMSE of 1.57546

to 2.12 °C and NSE of 0.97 to 0.94, respectively. Conversely, the hybrid MCL model bet-547

ter projected overall heat budgets the both alternative deep learning models: NSE of Schmidt548

stability of 0.92, and NSE of maximum buoyancy frequency of 0.25 (Tab. 3, Fig. 4 C-549

D). Although performance metrics suggest that the deep learning model (no process) has550

good projections regarding thermocline and metalimnion depths (i.e., RMSE of thermo-551

cline depth of 3.16 m, which is similar to the RMSE of 2.71 m by the hybrid MCL model),552

subplots E+F as well as H+I in Fig. 4 reveal that the deep learning model has profound553

high-frequency noise around its projections. Overall, the deep learning model with no554

process information performed worse than the other deep learning models for temper-555

ature projections, which is further evident in the depths of the isotherms, e.g., RMSE556

for the 17 °C isotherm of 1.57 m and 2.97 m for hybrid MCL model and deep learning557

(no process), respectively. The hybrid MCL model and the pretrained deep learning model558

(no modularisation) failed to project surface temperatures close to 0 °C during the win-559

ter season of 2018-2019 (Fig. 4 A), similar to the interpolated observed data. Compared560

to the results presented in Section 4.1, the performance of the deep learning with no pro-561

cess has a worse performance for the evaluation period 2018-2019 than during the train-562

ing and testing periods. Contrary, the performance of the hybrid MCL model improved563

during this additional verification period compared to its initial performance during train-564

ing and testing.565

To investigate whether the models project unrealistically long unstable conditions,566

with the assumption that any density instability in the water column would be resolved567

rather quickly under field conditions, we compared depth-integrated epilimnetic and met-568

alimnetic water densities over time (Fig. 5). The hybrid MCL model occasionally pro-569

jected density instabilities (meaning that average metalimnion density was lower than570

average epilimnion density), which were resolved quickly and only occurred during the571

winter ice-covered period. Both other deep learning models produced more frequent den-572

sity instabilities (Fig. 5), especially during turnover conditions (before and after sum-573

mer stratification). The process-based model did also produce density instabilities dur-574

ing turnover conditions as the convective mixing algorithm only considered a threshold575

of equal or less than 1 x 10−3 kg m-3 for mixing, which, when integrated over a layer,576

can result in occasional unstable profiles. However, the models’ susceptibility to gener-577

ate unstable conditions was not critical (max. density differences were < 2 x 10−1 kg578

m-3).579

The signal-to-noise ratios were generally low for the deep learning model (no pro-580

cess) during the winter seasons for surface and bottom water temperature (Fig. 6 A+B).581

The deep learning model with no process further produced low signal-to-noise ratios for582

bottom water temperatures (Fig. 6 B). Regarding water column stability, all three deep583

learning models had similar signal-to-noise ratios (Fig. 6 C). Some of the models occa-584

sionally projected unstable density profiles that resulted in negative Schmidt stability585
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Variable Process-based
model

Hybrid MCL
model

Deep learning
(no process)

Pretrained
deep
learning (no
modularisation)

RMSE (NSE)
Whole water temperature
profiles (°C)

4.63 (0.53) 2.14 (0.90) 4.14 (0.62) 2.11 (0.90)

Surface temperature (°C 4.34 (0.77) 2.12 (0.94) 5.99 (0.57) 1.57 (0.97)
Bottom temperature (°C) 4.02 (-1.35) 1.73 (0.56) 3.10 (-0.40) 2.10 (0.35)
Schmidt Stability (J m-2) 139.92 (0.79) 85.43 (0.92) 255.54 (0.31) 85.85 (0.92)
Max. buoyancy frequency
(s-2)

0.006 (-0.14) 0.004 (0.25) 0.006 (-0.19) 0.005 (-0.02)

Thermocline depth (m)* 5.63 (-4.64) 2.71 (-0.31) 3.16 (-0.77) 2.65 (-0.25)
Upper metalimnion depth
(m)*

6.93 (-5.21) 4.05 (-1.13) 3.60 (-0.68) 4.71 (-1.88)

Lower metalimnion depth
(m)*

3.28 (-2.00) 1.64 (0.24) 2.88 (-1.31) 2.53 (-0.78)

13 °C isotherm depth (m) 4.40 (-0.76) 1.94 (0.65) 3.64 (-0.20) 3.88 (-0.37)
15 °C isotherm depth (m) 4.34 (-1.09) 1.68 (0.68) 2.94 (0.03) 2.58 (0.25)
17 °C isotherm depth (m) 4.16 (-1.94) 1.57 (0.57) 2.97 (-0.50) 2.34 (0.08)

Table 3. Performance of the process-based model, the hybrid MCL model, and deep

learning model with no process information, and the pretrained deep learning model with no

modularisation regarding the replication of a set of water quality variables for the period 2018-

04-26 00:00:00 to 2019-10-27 11:00:00. RMSE is given outside of brackets, whereas NSE is given

inside of brackets. Bold numbers highlight the best performance metric for each variable of

interest.

*Variable fit was calculated from June to September to avoid a bias to strong density fluctuations during

overturn.

values, hence a negative signal-to-noise ratio. The hybrid MCL model and the pretrained586

deep learning model with no modularisation simulated consistently higher signal-to-noise587

ratios than the deep learning model (no process). The lower signal-to-noise ratios for the588

deep learning model (no process) are potentially caused by the spurious oscillations of589

its water temperature projections (Fig. 3 B, Fig. 4).590

591

5 Discussion and conclusions592

A hybrid MCL model incorporating process-based formulations and trained deep593

learning models through MCL improved overall model performance and provided phys-594

ically sound results. Compared to three alternative configurations, a process-based model,595

a deep learning model with no process information, and a pretrained deep learning model596

with no modularisation, the hybrid MCL model had the overall best replications of phys-597

ical limnological characteristics of Lake Mendota. Through fine-tuning, the overall hy-598

brid MCL model learned how to enhance deep-water heat transport as well as thermo-599

cline oscillations compared to the original process-based model. The alternative deep learn-600

ing model with no process information (a design heavily inspired by discovery applica-601

tions, hence learning novel relationships between input data and target without hard-602

wiring potential interactions) performed very well during training, but had several short-603
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Figure 4. Performance analysis of the four models to replicate physical metrics: blue

represents the pretrained deep learning model with no modularisation, green represents the

deep learning model with no process information, orange represents the hybrid MCL model,

black represents observed data, yellow line represents the process-based model. A: Surface

water temperature dynamics. B: Bottom water temperature dynamics. C: Schmidt stability

dynamics. D: Max. buoyancy frequency dynamics. E: Thermocline dynamics in 2018. F: Lower

metalimnion depth dynamics in 2018. G: 15 °C isotherm dynamics in 2018. H: Thermocline

dynamics in 2019. I: Lower metalimnion depth dynamics in 2019. J: 15 °C isotherm dynamics in

2019.
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Figure 5. Density differences between averaged epilimnion and metalimnion layers. Here,

only density violations (
ρEpi

ρMeta
> 1) are highlighted: blue represents the pretrained deep

learning model with no modularisation, green represents the deep learning model with no process

information, orange represents the hybrid MCL model, yellow represents the process-based

model.

comings during the model application to a new time frame: (a) worse performance than604

the hybrid MCL model and the pretrained deep learning model (no modularisation), (b)605

more physically-unrealistic density profiles, and (c) lower signal-to-noise ratio. A pre-606

trained deep learning model that lacked any modularisation between the process-based607

component and the deep learning component performed similarly to our hybrid MCL608

model, but eventually also produced occasional and more pronounced unstable density609

profiles.610

In this study, we merged a simple, process-based 1D hydrodynamic model with a611

fine-tuned MLP both (1) to highlight the potential of the MCL methodology and (2) to612

develop a hybrid MCL model. Notably, there are several shortcomings in the current method-613

ology. The process-based model was not thoroughly calibrated. This step was omitted614

intentionally to highlight MCL’s potential to improve the performance of a broadly un-615

calibrated process-based model. Regarding process uncertainty, a more advanced process-616

based formulation, i.e. as in LAKE2.0 (Stepanenko et al., 2016), that is better guided617

by physical theory, or straightforward improvements like transient light extinction co-618

efficients instead of a constant value could improve the pretraining of the deep learning619

models, which would improve overall hybrid MCL model performance. Further, mem-620

ory of past events is only included in the hybrid MCL model through process-based cal-621

culations; memory could likewise be added to the deep learning through recurrent deep622

learning models. Data uncertainty is confounding our results, as observed data were sparse623

during ice-covered conditions and hence interpolated. The pretraining did not consider624

any testing data to tune the deep learning model because we used test data exclusively625

only for tuning hyperparameters and validating model performance. Potential bias could626

also originate from interpolating the original observed water temperature data to match627

the resolution and time step of the process-based model. Data interpolation can add fic-628

titious trends to depth-discrete water temperature time series data, as well as add in-629

terpolation artifacts. However, all these limitations do not weaken the overall study out-630

come of highlighting how MCL can guide future hybrid KGML model developments.631

Balancing between design and discovery, and best practises to incorporate process632

knowledge into deep learning models, will guide future developments of hybrid KGML633
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Figure 6. Signal-to-Noise ratios (mean divided by standard deviation) for monthly values:

blue represents the pretrained deep learning model with no modularisation, green represents

the deep learning model with no process information, orange represents the hybrid MCL model.

A: Surface water temperature dynamics. B: Bottom water temperature dynamics. C: Schmidt

stability dynamics.

models. In this study, we have highlighted the potential of MCL, in which the final hy-634

brid MCL model directly couples process-based modules with a fine-tuned deep learn-635

ing model. The worse performance of the deep learning model with no process informa-636

tion reveals again the importance of including discipline-specific expertise in the design637

of machine learning models. Although we used MLPs and only accounted for recurrence638

through process information, these results highlight future potentials for aquatic ecosys-639

tem modeling. Similar to the approach in this study, future hybrid MCL models could640

incorporate in-situ data to fine-tune incorporated deep learning models for different mod-641
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ular sub-aspects (Fig. 7 A). Further, coupled ecosystem models could improve projec-642

tions of complex food web dynamics by driving zooplankton projections using long-term643

and high-frequency data through a deep learning model, whereas other components, e.g.,644

nutrient dynamics and phytoplankton, could be simulated using process-based model-645

ing (Fig. 7 A). On a technical level, deep learning models can utilize data from remote646

sensing to incorporate spatial information, which is challenging to be included in 1D process-647

based models due to static input-output relationships (Fig. 7 A).648

A next step for hybrid MCL models could be to add a water quality modules, such649

as coupling a dissolved oxygen concentrations to the hydrodynamic model. For exam-650

ple, dissolved oxygen models account for lake metabolism through:651

A
∂DO

∂t
= A

∂

∂z
(Kz

∂DO

∂z
) +A

∂

∂z
NEP (14)652

where DO is the dissolved oxygen concentration (kg m-3), and NEP is net ecosystem653

production (kg m-3 d-1), which is the difference between an ecosystem’s gross primary654

production and its respiration (Hoellein et al., 2013). Metabolism formulations account655

for the atmospheric exchange and the sediment oxygen demand (a term included in ecosys-656

tem respiration) as boundary conditions near the surface and near the sediment, respec-657

tively (e.g., Perga et al. (2023); Ladwig et al. (2022)). Using a MCL approach, both, tem-658

perature and oxygen calculations could be hybrid MCL models, in which diffusion is es-659

timated by deep learning model (and as an input for the vertical dissolved oxygen trans-660

port), but net ecosystem production could be estimated by a deep learning model for661

the water quality side. Here, additional in-situ data (e.g., zooplankton biomass, depth662

of the photic zone, Chlorophyll-a concentrations) can be used to get improved forecasts663

of net ecosystem production (Fig. 7 B). We envision that the formulation of future hy-664

brid MCL models has the potential to not only improve model performance through bet-665

ter designed KGML models but also through the discovery of feedback relationships be-666

tween input data and target variables.667

In this study we have highlighted the potential of MCL, which is a novel design phi-668

losophy for creating hybrid KGML models consisting of process-based and deep learn-669

ing models. The developed hybrid MCL model, which has process-based formulations670

for heating, snow and ice formation, and convection, that was coupled to a pretrained671

and fine-tuned deep learning model to account for diffusive transport, produced improved672

projections for lake thermal variables compared to the original process-based model, a673

deep learning model with no process information, and a pretrained deep learning model674

without modularisation. Past hybrid KGML models have focused mostly on developing675

a single, deep learning model to project one target variable (Read et al., 2019; Hanson676

et al., 2020). The breaking down of processes into modules and assigning them either677

process-based calculations if the domain expertise is high or deep learning if process for-678

mulation is uncertain allows modelers flexibility in balancing design choices with oppor-679

tunities for discovery. Further, by ensuring that deep learning is an integrated part of680

a process-based model, the results are physically valid and to a certain extent explain-681

able as the whole model is not a black box. As the deep learning side is pretrained with682

synthetic data, the overall hybrid MCL model can be used under (observed) data-scare683

conditions. Further development of hybrid KGML models that support understanding,684

exploring, and mitigating the impacts of global changes on water resources could sup-685

port water resources managers and other decision makers.686

6 Open Research687

All development code and input data for the models as well as output are avail-688

able at https://github.com/robertladwig/LakePIAB with scripts in R and Python689

(relying on PyTorch for training the deep learning models) under a GNU General Pub-690
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Figure 7. Outlook for future modular compositional learning (MCL) approaches. A: Future

MCL approaches can directly incorporate in-situ data to improve model performance, replace

uncertain process formulations in food web modeling with deep learning, and/or directly

incorporate additional data like remote sensing in the deep learning model. B: Proposed

framework for a coupled water temperature - dissolved oxygen hybrid MCL model in which

dissolved oxygen calculations are coupled to temperature through simulated diffusivity

coefficients for vertical transport. On the dissolved oxygen side, atmospheric exchange and

sediment oxygen demand calculations are process-based, whereas net primary production is data-

driven through deep learning.

lic License Version 2.0 (GPL-2.0). All data and scripts will be archived at Zenodo data691

repository once manuscript is accepted.692
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