# Low cobalt limits cyanobacteria heterocyst frequency in culture but potential for cobalt limitation of frequency in nitrogen-limited surface waters is unclear

Purnank Shah<sup>1</sup>, Jason J. Venkiteswaran<sup>1</sup>, Lewis A. Molot<sup>2</sup>, Scott N. Higgins<sup>3</sup>, Sherry L. Schiff<sup>4</sup>, Helen M. Baulch<sup>5</sup>, R Allen Curry<sup>6</sup>, Karen A Kidd<sup>7</sup>, Jennifer B Korosi<sup>2</sup>, Andrew M. Paterson<sup>8</sup>, Frances R Pick<sup>9</sup>, Dan Walters<sup>10</sup>, Susan B. Watson<sup>11</sup>, and Arthur Zastepa<sup>12</sup>

<sup>1</sup>Department of Geography and Environmental Studies, Wilfrid Laurier University
<sup>2</sup>Faculty of Environmental and Urban Change, York University
<sup>3</sup>International Institute for Sustainable Development-Experimental Lakes Area
<sup>4</sup>Department of Earth and Environmental Sciences, University of Waterloo
<sup>5</sup>School of Environment and Sustainability and Global Institute for Water Security, Department of Biology, University of Saskatchewan
<sup>6</sup>Canadian Rivers Institute, University of New Brunswick, Fredericton, New Brunswick, Canada
<sup>7</sup>Department of Biology, McMaster University, Hamilton Ontario, Canada
<sup>8</sup>Ontario Ministry of Environment Conservation and Parks, Dorset, Ontario, Canada
<sup>9</sup>Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
<sup>10</sup>Department of Biology, Trent University, Peterborough, Ontario, Canada
<sup>12</sup>Canada Centre for Inland Waters, Environment Canada and Climate Change, Burlington Ontario, Canada

August 7, 2023

| 1 l | Low cobalt | limits cyanoba | cteria heterocys | t frequency in | culture but | t potential for | cobalt |
|-----|------------|----------------|------------------|----------------|-------------|-----------------|--------|
|-----|------------|----------------|------------------|----------------|-------------|-----------------|--------|

- 2 limitation of frequency in nitrogen-limited surface waters is unclear
- 3
- 4 Purnank Shah<sup>1</sup>, Jason J. Venkiteswaran<sup>1</sup>, Lewis A. Molot<sup>2</sup>, Scott N. Higgins<sup>3</sup>, Sherry L.
- 5 Schiff<sup>4</sup>, Helen M. Baulch<sup>5</sup>, R. Allen Curry<sup>6</sup>, Karen A. Kidd<sup>7</sup>, Jennifer B. Korosi<sup>2</sup>, Andrew M.
- 6 Paterson<sup>8</sup>, Frances R. Pick<sup>9</sup>, Dan Walters<sup>10</sup>, Susan B. Watson<sup>11</sup> and Arthur Zastepa<sup>12</sup>
- 7
- 8 1. Department of Geography and Environmental Studies, Wilfrid Laurier University, Ontario,
  9 Canada
- 10 2. Faculty of Environmental and Urban Change, York University, Toronto, Ontario, Canada
- 11 3. International Institute for Sustainable Development-Experimental Lakes Area, Winnipeg,
- 12 Manitoba, Canada
- 13 4. Department of Earth and Environmental Sciences, University of Waterloo, Waterloo,
- 14 Ontario, Canada
- 15 5. School of Environment and Sustainability and Global Institute for Water Security,
- 16 Saskatoon, University of Saskatchewan
- 17 6. Canadian Rivers Institute, University of New Brunswick, Fredericton, New Brunswick,
- 18 Canada
- 19 7. Department of Biology, McMaster University, Hamilton Ontario, Canada
- 20 8. Ontario Ministry of Environment Conservation and Parks, Dorset, Ontario, Canada
- 21 9. Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- 22 10. Department of Geography, Nipissing University, North Bay, Ontario, Canada
- 23 11. Department of Biology, Trent University, Peterborough, Ontario, Canada
- 24 12. Canada Centre for Inland Waters, Environment Canada and Climate Change, Burlington
- 25 Ontario, Canada
- 26
- 27 Correspondence: Lewis A. Molot, Faculty of Environmental and Urban Change, York
- 28 University, Toronto, Ontario, M3A 3L4, Canada. Email: lmolot@yorku.ca

# 29 Abstract

| 30 | 1. | Impacts of three cobalt (Co) concentrations were examined on heterocyst frequency and                 |
|----|----|-------------------------------------------------------------------------------------------------------|
| 31 |    | growth rate in four diazotrophic cyanobacteria species in nitrogen (N)-depleted culture and growth    |
| 32 |    | rate in one non-diazotrophic species in N-replete culture. After 11 days in batch culture, heterocyst |
| 33 |    | frequency (HF, % of all cells that are heterocysts) increased from 4.1-5.7% to 5.4-7.4% to 5.9-       |
| 34 |    | 9.3% at 0.17, 17 and 170 nmol $L^{-1}$ Co, implicating Co in heterocyst differentiation. Growth       |
| 35 |    | rate was not significantly affected by Co in any of the species suggesting that the impact of         |
| 36 |    | low Co on other metabolic pathways was minimized.                                                     |
| 37 | 2. | Stoichiometric extrapolation of culture results to N-limited natural systems with lower               |
| 38 |    | nutrient concentrations infers that HF could be limited by sub-nanomolar Co                           |
| 39 |    | concentrations.                                                                                       |
| 40 | 3. | In experimentally fertilized N-limited Lake 227, mean summer HF in 2000-2020 was 3.4%                 |
| 41 |    | (epilimnion) and 4.0% (metalimnion). However, in 2017 (the only year for which Co data                |
| 42 |    | are available) dissolved Co increased from 0.7 to 2.0 nmol L <sup>-1</sup> during the bloom           |
| 43 |    | simultaneously with increasing HF and cyanobacteria biomass, hence, Co probably did not               |
| 44 |    | limit HF and biomass. HF was significantly higher after 2015 following a shift in                     |
| 45 |    | dominant bloom species from Aphanizomenon schindlerii to smaller A. skujae. The                       |
| 46 |    | smaller cell size may have required a higher HF in order to maintain a relatively constant            |
| 47 |    | supply rate of fixed N per unit biomass.                                                              |
| 48 | 4. | Surveys of ambient Co in over 280 aquatic systems across Canada and elsewhere indicate that Co        |
| 49 |    | is sometimes low enough to theoretically limit HF in N-limited waters. However,                       |
| 50 |    | numerous variables influence HF so a clear understanding of relationships between Co and              |
| 51 |    | HF in natural systems remains elusive.                                                                |
| 52 |    |                                                                                                       |
|    |    |                                                                                                       |

53 Keywords: heterocyst frequency, cyanobacteria, cobalt, Lake 227

#### 54 **1. INTRODUCTION**

Although the productivity of most freshwaters waters is most often limited by 55 nitrogen (N) and phosphorus (P), phytoplankton are occasionally limited by metabolically 56 essential trace metals (iron (Fe), manganese (Mn), zinc (Zn), copper (Cu), molybdenum (Mo), 57 and cobalt (Co)) (Wurtsbaugh and Horne, 1982, 1983; Wurtsbaugh, 1988; Evans and Prepas, 58 59 1997; Twiss et al., 2000; Downs et al., 2008; Romero, et al., 2013; Schmidt, 2018; Facey et al., 2021, 2022; Halac et al., 2023). Many of these metal-limited systems are eutrophic, which 60 61 increases biological demand for these elements, and tend to be located in relatively unurbanized watersheds with low levels of industrialization, presumably with low metal 62 loading rates from anthropogenic sources. Low weathering rates may also result in low metal 63 loading to aquatic ecosystems in very dry watersheds or watersheds subjected to long periods 64 of sub-zero temperatures. 65

Metabolically essential trace metals are critical components for cells, acting as 66 67 enzyme cofactors, electron transfer agents and protein structure stabilizers (Barton et al., 68 2007; Schoffman et al., 2016; Barber-Zucker et al., 2017; Andresen et al., 2018). Fe, Mn and Zn are used as cofactors by approximately 30% of all enzymes with Co, Mo, Ni and Cu less 69 widely used (Ho et al., 2003; Foster et al., 2014; Reich et al., 2020). Hence, their availability 70 and chemical speciation have the potential to influence microbial productivity as well as 71 species composition and physiology. For example, low levels of Mo and Fe have the potential 72 73 to exacerbate N limitation by limiting synthesis of the cofactor for nitrogenase, the N fixing enzyme (Howarth et al., 1988; Burgess, 1990). 74

Co, the focus of this study, is an essential nutrient for N-fixing cyanobacteria (Holm-75 76 Hansen et al., 1954). Cyanobacteria require inorganic Co to synthesize pseudocobalamin, a 77 variant of the enzyme cofactor cobalamin (Helliwell et al., 2016). Co has been found to 78 occasionally limit cyanobacteria productivity in freshwaters (Downs et al., 2008; Facey et al., 79 2022) even though cyanobacteria cellular Co content is relatively low (Hawco et al., 2020). While Co is an essential micronutrient for filamentous cyanobacteria (Holm-Hansen 80 81 et al., 1954), studies have not demonstrated that it is directly involved in N fixation or the processing of its end products,  $H_2$  and superoxide ( $O_2^{-}$ ) although other metals are involved, 82 83 e.g., Fe, Mo and Ni (Burgess, 1990; Ho, 2013; Ogata et al., 2016; Søndergaard et al., 2016). 84 However, evidence appears to suggest that low Co can limit heterocyst frequency (percentage

of all cells in filaments that are heterocysts, also called heterocytes) which implies at least an

86 indirect role in N fixation (Kelly et al., 2021) such as heterocyst differentiation. Heterocysts,

87 the site of N-fixation in filamentous cyanobacteria species in the order Nostocales, are

specialized cells derived from vegetative cells with thick walls and high respiration rates

 $designed to minimize O_2 deactivation of the N-fixing enzyme, nitrogenase$ 

90 (Kangatharalingam et al., 1992). Heterocyst differentiation which is a complex multi-step

91 (and multi-enzyme) process (Zhao and Wolk, 2006; Kumar et al., 2010; Videau et al., 2016;

92 Xu et al., 2020; Harish and Seth, 2020). If Co is involved in heterocyst differentiation, low Co

93 could limit N fixation in heterocystous species through resource limitation of the

94 differentiation process.

95 There are a few studies of heterocyst frequency in surface waters, estimates vary widely and our understanding of heterocyst frequency regulation in natural systems is poor 96 aside from the effect of inorganic N in suppressing heterocyst formation (Cmiech et al., 1984; 97 98 Riddolls, 1985; Anagnostidis et al., 1988; Wood et al., 2010; Zakrisson and Larsson, 2014). Thus, we do not have a good understanding of how heterocyst frequency is regulated at the 99 100 ecosystem level or the consequences for N fixation rate in N-limited systems although some modeling progress on heterocyst frequency has been made (Brown and Rutenberg, 2012). 101 102 The objectives of this study were to determine (1) whether heterocyst differentiation is dependent on the availability of inorganic Co in cyanobacteria cultures, and (2) ambient Co 103 concentrations and thus the potential for Co limitation of heterocyst frequency in Canadian 104 freshwaters. Heterocyst frequencies of several species of freshwater cyanobacteria were 105 measured in N-deficient laboratory cultures in three Co concentrations and the results were 106 compared to a detailed 20-year data set of heterocyst and vegetative cell abundance and 107 biovolumes in experimentally eutrophic Lake 227 and surveys of dissolved Co concentrations 108 109 in lakes and reservoirs across Canada.

110

### 111 2. MATERIALS AND METHODS

### 112 **2.1** Cyanobacteria culture experiment

113 Cultures of the cyanobacteria Dolichospermum flos-aquue (CPCC67), Aphanizomenon flos-

114 *aqaue* (NIES 81), *Aphanizomenon skujae* (isolated from Lake 227) and *Dolichospermum* 

*lemmermanii* (isolated from Lake Erie) were grown in BG11<sub>0</sub> media (BG11 without

116 inorganic N) containing an equivalent amount of FeCl<sub>3</sub> instead of ferric ammonium citrate

117 (Rippka et al., 1979). A culture of the non-N fixing cyanobacteria *Microcystis aeruginosa* 

118 (PCC7005) was grown in BG11 with NaNO<sub>3</sub> as a reference species. The phosphorus

119 concentration in BG11 and BG11<sub>0</sub> was  $172 \mu mol L^{-1}$  (5.33 mg L<sup>-1</sup>).

120 Cultures were grown at 20°C on a 12:12 hr light/dark cycle at 100  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup>. All 121 reagents used were trace metal grade, and all flasks and bottles were soaked in 10% HCl over 48 hours and then in deionized water (Milli-Q) for another 24 hours. Only acid-washed clear
pipette tips were used throughout this experiment. All media, glassware and supplies were
UV sterilized under a laminar flow hood for 15 minutes.

125 1 mL of exponentially growing cells from starter cultures was transferred to duplicate 126 plastic tubes of BG11<sub>0</sub> or BG11 containing three concentrations of inorganic Co added as 127 CoSO<sub>4</sub> spanning three orders of magnitude, 0.17, 17 or 170 nmol L<sup>-1</sup>, and incubated for 11 128 days. Each treatment is referred to by its nominal concentration, i.e., the total Co added, 129 regardless of speciation and phase which changes with time. Before inoculation, all of the Co 130 was dissolved and primarily complexed to an organic chelator (EDTA) which would have 131 partitioned into particulate (cellular) and perhaps colloidal phases as cultures grew.

132 Biomass was assayed as absorbance at 750 nm (A<sub>750</sub>) using a Cary 100 spectrophotometer. At 750 nm, interference from photosynthetic pigments is minimal and can 133 be used as a proxy for population biomass (Chioccioli et al., 2014). Vegetative cells and 134 heterocysts were counted on the 11<sup>th</sup> day in late exponential/early stationary phase using a 135 136 haemocytometer under the microscope at 40X magnification. Heterocysts were stained with alcian blue (0.015% weight/volume) for 10 minutes (Maldener et al., 2003). A minimum of 137 five squares of the haemocytometer field were counted for each culture tube. Heterocyst 138 frequency was calculated by dividing the number of heterocysts by the total number of 139 heterocyst and vegetative cells. 140

The R package *growthcurver* (version 0.3.0) was used to estimate the growth rate of
each sample (Sprouffske and Wagner, 2016) by finding the best fit of a given dataset to the
logistic growth equation (Eq. 1),

144

145

$$N_t = \frac{K}{1 + \left(\frac{K - N_0}{N_0}\right)e^{-rt}} \tag{1}$$

146

where  $N_t$  is the  $A_{750}$  at a given time, K is the carrying capacity (maximum cell biomass),  $N_0$  is 147 the initial  $A_{750}$ , t is time and r is the growth rate that would occur if there were no restrictions 148 imposed on total population size (Sprouffske and Wagner, 2016). We interpret this to mean 149 150 that r is the maximum instantaneous growth rate which is located to the right of the inflection point in the  $N_t$  versus time curve. Statistical differences between mean heterocyst frequencies 151 152 were determined with two-way ANOVA followed by Tukey's HSD. Growth rate was also calculated as the slope of  $\ln(A_{750})$  versus time during the linear phase of the semi-logarithmic 153 154 curve  $(\mu_{sl})$  and thus represents an averaged value for a multi-day period rather than an

- 155 instantaneous growth rate like r.
- 156

### 157 **2.2 Lake 227 heterocyst enumeration**

Lake 227 is a small (5 ha, mean depth 4.4 m, maximum depth 10 m), headwater lake locatedat the IISD-Experimental Lakes Area in northwestern Ontario, Canada. The lake is dimictic,

- 160 with thermal stratification in the summer occurring at 1-3 m. Lake 227 was fertilized with N
- 161 and P (27:1 molar N:P) from 1969 to 1974, with reduced N loading from 1975 to 1989 (9:1
- molar N:P) and with only P from 1990 to present (Findlay et al., 1994; Molot et al., 2010;
- 163 Higgins et al., 2018). A bloom of N-fixing cyanobacteria *Aphanizomenon* typically occurred
- in early summer of each year since 1990, lasting about one month (Schindler et al., 2008;
- 165 Higgins et al., 2018).

Phytoplankton in integrated epilimnetic and metalimnetic samples were enumerated by the same person via microscopy during the ice-free seasons in 2000-2021 for cell counts and cell sizes at the species level allowing estimates of population abundance as cell density and biovolume (Findlay and Kasian, 1987). Biovolumes were converted to biomass wet weight by assuming a cell density of 1 g mL<sup>-1</sup>. Heterocyst frequency was calculated as the ratio of heterocyst cells/(heterocyst cells + vegetative cells) of Nostocales species and expressed as a percentage.

173

### 174 Surveys of dissolved Co in Canadian freshwaters

Water samples were collected in 2017 from 40 lakes in five provinces (New Brunswick, 175 Quebec, Ontario, Manitoba, and Saskatchewan) ranging in size from 5 ha (Lake 227 in 176 northwestern Ontario) to 24,514 km<sup>2</sup> (Lake Winnipeg in Manitoba). Site locations, 177 morphometry and basic water quality are presented in Table S1 with references and links to 178 watershed geology in Table S2. Epilimnetic samples were collected according to each 179 research group's sampling protocols. While collection methods differed, all groups used 180 vials, syringes and syringe filters provided by York University, Toronto, Ontario and all 181 182 samples were analyzed at the Trent Water Quality Centre in Peterborough, Ontario. Vials and syringes were acid-washed in 10% trace metal grade HCl before shipping to participants. 183 184 Plastic syringes were used to collect 20 mL from well-shaken samples. A syringe filter 185 cartridge (0.45 µm cellulose acetate with GF pre-filter, Sartorius Minisart) was placed on the 186 end of the syringe, 5 mL were discarded and the remaining 15 mL were filtered into a 15 mL Falcon polypropylene vial. Vials were labeled with date, lake name, depth, and 'filtered' and 187 188 shipped to York University where they were acidified to pH < 2 with concentrated trace

189 metal grade nitric acid. Dissolved Co in this survey is operationally defined as Co passing

- through a 0.45 μm filter pore size. All samples were analyzed by inductively coupled plasma-
- 191 mass spectrometry (ICP-MS). Each sample run consisted of 3 repeated measurements and
- each repeat consisted of 25 measurements (0.1 sec dwell time). Hence, the overall mean value
- 193 for each sample was based on 75 individual measurements of each isotope peak. The Co
- 194 detection limit was 0.017 nmol  $L^{-1}$  (0.001 µg  $L^{-1}$ ).
- 195 Co data from two other projects were provided to the authors for this study. Sampling 196 and analytical methods for surveys of 94 lakes conducted by the Northwest Territories 197 Geological Survey in 2012 and 2014 (Palmer et al., 2015) and nine lakes in central Ontario 198 conducted by the Ontario Ministry of Environment, Conservation and Parks (MECP) between 199 2010 and 2017 (unpublished data) are presented in Appendix 1.
- 200

### 201 **3. RESULTS**

### 202 **3.1 Batch cultures**

- Co concentration did not significantly affect instantaneous (*r*) or semi-logarithmic growth rates ( $\mu_{sl}$ ) of the five cyanobacterial species examined in batch culture (ANOVA p > 5%) with the exception of *Aphanizomenon skujae* which had significantly higher  $\mu_{sl}$  at 0.17 nmol L<sup>-1</sup> at the 1% level (Figure 1, Table 1). Semi-logarithmic growth rates ( $\mu_{sl}$ ) were consistently
- lower than instantaneous logistic growth rates (r) which is not surprising since r is the slope
- of the population size versus time curve at one point in time, probably after the inflection
- 209 point where the maximum slope typically occurs, and  $\mu_{sl}$  is the slope over several days.

Growth rates at 0.17 nmol  $L^{-1}$  were higher than growth rates at 17 and 170 nmol Co  $L^{-1}$  for

- three of the five species, suggesting that  $0.17 \text{ nmol } L^{-1}$  was not growth-limiting and,
- therefore, the concentration thresholds for membrane transport and Monod growth (i.e.,
- 213 maximum Co concentrations where transport and growth rates are zero) were much lower
- 214 than 0.17 nmol  $L^{-1}$ .

All four filamentous cyanobacterial species showed increasing heterocyst frequency 215 216 with increasing Co concentration (Figure 2). Heterocyst frequencies ranged from 4.1 to 9.3% with lowest frequencies observed at 0.17 nmol  $L^{-1}$  Co (4.1-5.7%, mean 4.6%), intermediate 217 frequencies at 17 nmol L<sup>-1</sup> (5.4-7.4%, mean 6.4%) and highest frequencies at 170 nmol L<sup>-1</sup> 218 (5.9-9.3%, mean 7.4%). A post-hoc test showed that heterocyst frequencies at 0.17 nmol L<sup>-1</sup> 219 were significantly lower than frequencies at 170 nmol L<sup>-1</sup> in three of the four heterocystous 220 species and significantly lower than the frequencies in two of these four species at 17 nmol L<sup>-</sup> 221 222 <sup>1</sup>. Hence, the lowest Co treatment may have limited heterocyst differentiation even though the concentration did not limit growth over the 11 days of the experiment.

These limiting Co concentrations cannot be directly extrapolated to other systems 224 without applying a stoichiometric correction because of the high concentrations of other 225 elements in BG11 media. If we assume that P limits growth in diluted BG11 rather than light, 226 then we can use the P/Co molar ratios in the three experimental treatments  $(10^6, 10^4 \text{ and } 10^3)$ 227 to estimate limiting concentrations of Co at lower P. In a system with a total P concentration 228 of, say, 1.61  $\mu$ mol L<sup>-1</sup> (50  $\mu$ g L<sup>-1</sup>), the three Co treatments would be equivalent to 0.0016, 229 0.16, and 1.61 nmol L<sup>-1</sup>. This suggests that sub-nanomolar concentrations of dissolved Co 230 could potentially limit heterocyst frequency in N-limited eutrophic waters. 231

232

#### 233 **3.2 Lake 227**

In Lake 227, the mean ( $\pm$  standard deviation) annual summer (June-September) heterocyst frequencies in the epilimnion and metalimnion (mainly *Aphanizomenon* with some *Dolichospermum*) were not significantly different during 2000-2020, 4.0  $\pm$  1.4% in the epilimnion and 3.4  $\pm$  1.1% in the metalimnion (t-test, p = 0.12). Annual summer frequencies exceeded 6% in two of the years and only in the epilimnion (Figure 3). These mean values are similar to the values observed at the lowest Co of 0.17 nmol L<sup>-1</sup> in the cultures.

However, some differences over time were noted. Aphanizomenon schindlerii was the 240 dominant species from 2002-2012, shifting to Aphanizomenon skujae from 2015-2020. While 241 individual A. skujae cell and heterocyst biovolumes were smaller than A. schindlerii, total 242 heterocyst biovolume remained relatively unchanged between the two time periods due to an 243 increase in heterocyst frequency (Table 2). In the metalimnion, the mean annual summer 244 heterocyst frequency increased from 3.0% in 2002-2012 to 4.8% in 2015-2020, a large and 245 significant increase of 60%. While the differences in mean values for June-September are 246 statistically significant, caution is warranted given the size of errors that are sometimes 247 associated with phytoplankton sampling and manual enumeration even though samples were 248 enumerated by the same analyst for the entire study period (Kutkuiin, 1958; Irish and Clarke, 249 1984). 250

The increase in mean heterocyst frequency was not associated with significant differences (Student t-test at the 1% level) in ammonia, calcium or temperature between the two periods. Metalimnetic data are too sparse to estimate long term means, however, mean epilimnetic values from May to September for ammonia were  $17.5 \pm 5.0 \ \mu g \ L^{-1}$  in 2002-2012 and  $12.4 + 4.6 \ \mu g \ L^{-1}$  in 2015-2020 (p = 0.062), and calcium were  $1.6 + 0.2 \ m g \ L^{-1}$  in 2002256 2012 and  $1.5 \pm 0.1 \text{ mg L}^{-1}$  in 2015-2020 (p = 0.031). The mean temperature at 2 m from May 257 to September was  $16.9 \pm 1.2^{\circ}$ C in 2002-2012 and  $16.1 \pm 1.4^{\circ}$ C in 2016-2019 (p = 0.29). The 258 higher heterocyst frequency associated with *A. skujae* after 2015 could have been influenced 259 by the lower ammonia concentration.

In 2017, the only year in which Co was measured in Lake 227, dissolved Co ranged 260 from 0.7 to 4.0 nmol L<sup>-1</sup> with a mean and standard deviation of 2.2 + 0.9 nmol L<sup>-1</sup> in the top 3 261 m and was less than 1 nmol L<sup>-1</sup> until late June. Co was not correlated with heterocyst 262 frequency. Heterocyst frequency paralleled changes in cyanobacteria biomass during the 263 264 bloom period in 2017 with the timing of maximum heterocyst frequency corresponding to peak cyanobacteria biomass (Figure 4). Heterocyst frequency may not have been Co-limited 265 since a buildup rather than a drawdown of dissolved Co occurred during the cyanobacteria 266 bloom with epilimnetic and metalimnetic Co increasing 3x from 0.7 to 2.0 nmol L<sup>-1</sup> and 0.8 267 to 2.1 nmol L<sup>-1</sup>, respectively, coincident with increases in heterocyst frequency and biomass 268 (Figure 4). The increasing heterocyst frequency during the exponential growth phase suggests 269 270 that heterocysts were synthesized as needed to meet an accelerating cellular demand for N. Ammonia was low, ranged from 1 to 5  $\mu$ g L<sup>-1</sup> from the end of May to late September except 271 for one sample in the metalimnion (Figure 4). 272

273

### 274 **3.3 Surveys of cobalt in Canadian freshwaters**

A list of Canadian Co surveys is presented in Table 3 with some pertinent characteristics. The 275 wide range in detection limits reported by accredited laboratories (three orders of magnitude) 276 277 is attributable to differences in methods and equipment used over the last 40 years. For example, the detection limits were 17 nmol  $L^{-1}$  (1 µg  $L^{-1}$ ) in the Canadian Arctic Archipelago 278 survey (Michelutti et al., 2002a, 2002b; Antoniades et al., 2003a, 2003b), 0.7 nmol L<sup>-1</sup> (0.01 279  $\mu$ g L<sup>-1</sup>) in the Laurentian Great Lakes (probable detection limit since it was not explicitly 280 stated in the paper) (Rossmann and Barres, 1988) and 0.017 nmol  $L^{-1}$  (0.001 µg  $L^{-1}$ ) in the 281 detection limit in the 2017 survey. 282

In the 2017 cross-Canada survey, dissolved Co samples ranged from 0.03 to 11.5 nmol L<sup>-1</sup> in the epilimnia of 40 lakes in Manitoba, Ontario, Quebec, and New Brunswick (n = 167 samples) with all samples above the detection limit of 0.017 nmol L<sup>-1</sup>). Mean lake concentrations were below 4 nmol L<sup>-1</sup> in 37 of the lakes (Figure 5). Co was highest in three eutrophic, N-limited lakes in the Qu'Appelle River system in Saskatchewan, ranging from 5.1 to 11.5 nmol L<sup>-1</sup> (Hall et al., 1999). Co in Hamilton Harbour, Ontario, the most industrialized watershed, was 3.2 nmol L<sup>-1</sup>, a value similar to several other lakes and reservoirs in Ontario and Saskatchewan. For reference, the mean ( $\pm$  standard deviation) Co concentration in 16 blanks (syringe filtered deionized water samples) was  $0.069 \pm 0.112$  nmol L<sup>-1</sup>.

The majority of samples (88 of 115) from 94 lakes in the Yellowknife region of the 293 Northwest Territories in 2012 and 2014 had dissolved Co concentrations that were at or 294 below their detection limit of 1.7 nmol  $L^{-1}$  (0.1 µg  $L^{-1}$ ) (Palmer et al., 2015). The remainder 295 (23%) were 3.4 or 5.1 nmol  $L^{-1}$  (0.2 or 0.3 µg  $L^{-1}$ ; results were reported in 0.1 increments). 296 Total Co in most of the samples in 161 High Arctic lakes and ponds were below that study's 297 relatively high detection limit of 17 nM (1  $\mu$ g L<sup>-1</sup>). Michelutti et al. (2002a, 2002b) did not 298 299 present details other than to report that more than 50% of the samples were below the detection limit. Antoniades et al. (2003a, 2003b) reported that about 2/3 of the 73 samples in 300 their study were below their detection limit of 17 nmol  $L^{-1}$  but the high detection limit 301 precludes knowing if Co was in the sub-nanomolar range relevant to limitation of heterocyst 302 303 frequency. The remainder of the samples, 21 of 73, had total Co concentrations that were either 34, 51 or 68 nmol L<sup>-1</sup> (i.e., 2, 3 or 4  $\mu$ g L<sup>-1</sup>, results were reported in 1  $\mu$ g L<sup>-1</sup> 304 increments). A large majority of the 103 ponds and lakes sampled for nutrients by Michelutti 305 et al. (2002a, 2002b) and Antoniades et al. (2003b) had TN/TP ratios > 23 by weight, 306 suggesting they were P limited while only four the sites were potentially N limited with 307 TN/TP < 9 by weight (Guildford and Hecky, 2000). In contrast, 9 of the 25 sites on Ellef 308 Ringnes Island, all ponds, had TN/TP ratios < 9 (Antoniades et al., 2003a). However, none of 309 these potentially N-limited systems would have been warm enough to support growth of 310 pelagic cyanobacteria. 311

312 Co concentrations in 97% of coarse filtered (80  $\mu$ m mesh), settled epilimnetic samples 313 from eight thermally stratified lakes in central Ontario between 2010 and 2017 in the MECP 314 study (414 samples) were less than or equal to their detection limit of 1.2 nmol L<sup>-1</sup>. Hence, 315 there appears to be some potential for Co limitation of heterocyst frequency although these 316 lakes are not N-limited.

Median dissolved Co concentrations in near surface waters (1 m depth) in the Laurentian Great Lakes ranged from 0.1 nmol L<sup>-1</sup> in Lake Superior to 0.4, 0.8 and 1.5 nmol L<sup>-1</sup> in Lake Ontario, Lake Michigan and Lake Erie, respectively, with 73%, 0%, 0% and 9% of the dissolved Co samples below the detection limit which was probably < 0.4 nmol L<sup>-1</sup> (the detection limit was inferred from the Lake Ontario median value in 1985) in these lakes, respectively, between 1981 and 1985 (Rossman and Barres, 1988). Hence, there appears to be some potential for Co limitation of heterocyst frequency in the Great Lakes although N- limitation of the pelagic zones is not widespread, appearing episodically in some locations inthe western basin in Lake Erie (Chaffin et al., 2013).

326

#### 327 **4. Discussion**

### 328 **4.1 Does Co limit heterocyst frequency?**

Our batch culture study revealed that heterocyst differentiation was dependent on Co concentration. Heterocyst frequency was limited after 11 days of incubation with Co  $\leq$  17 nmol L<sup>-1</sup>. Mean heterocyst frequency increased 39% when Co increased from low (0.17 nmol L<sup>-1</sup>) to intermediate concentration (17 nmol L<sup>-1</sup>) and the frequency increased 61% when Co increased from low to high concentration (170 nmol L<sup>-1</sup>).

The impact of low Co on heterocyst frequency implicates Co in heterocyst 334 differentiation, perhaps by limiting production of an unknown Co cofactor required in the 335 multi-step cell differentiation pathway (Zhao and Wolk, 2006; Kumar et al., 2010; Videau et 336 al., 2016; Xu et al., 2020; Harish and Seth, 2020). Interestingly, Co deficiency limits nodule 337 338 formation and N fixation by symbiotic N-fixing bacteria in legumes and non-leguminous nodular plant roots (Hallsworth et al., 1960; Iswaran and Rao, 1964; Hewitt and Bond, 1966; 339 Dilworth et al., 1979; Riley and Dilworth 1985; Jayakumar et al., 2008). Multicellular 340 nodules in plant roots are analogous to one-celled heterocysts in that both structures are 341 designed to house low O<sub>2</sub> environments to protect the N-fixing enzyme, nitrogenase (Guinel 342 2009a, 2009b). 343

The limitation of heterocyst frequency by lower Co in batch culture was not 344 accompanied by a limitation of growth rate. This decoupling suggests that Co was essential to 345 346 heterocyst differentiation but was not as necessary for other metabolic processes, perhaps due to substitution of Co by other metals, as is the case for replacement of Zn by Cd and Co to 347 some extent in eukaryotic phytoplankton under low Zn conditions (Morel et al., 2020). Our 348 experiments were conducted in full strength culture media with high metal concentrations but 349 the capacity for metal substitution in low-metal natural systems would presumably be more 350 351 limited.

Membrane transporters specifically for Co have not been reported, instead, Co appears to cross membranes via transporters that also move other divalent metals such as  $Fe^{2+}$ ,  $Zn^{2+}$ ,  $Ni^{2+}$  and  $Cd^{2+}$  (Sunda and Huntsman, 1995; Kobayashi and Shimizu, 1999; Hu et al., 2021). This implies that high concentrations of these metals can competitively limit transport of Co<sup>2+</sup>. In Co-limited cultures of the pico-cyanobacterium, *Prochlorococcus*, the growth rate decreased when presented with high levels of Zn and Mn (Hawco and Saito 2018). Ni can inhibit Co uptake in bacteria (Kobayashi and Shimizu, 1999) and Fe competes

- with Co for uptake in the bacterium *Pseudomonas* (Kothamasi and Kothamasi, 2004). If the
- 360 filamentous cyanobacteria used in this study react the same way as these prokaryotes, then
- the relatively high levels of divalent trace metals in BG11<sub>o</sub> culture media could have
- 362 exacerbated Co deficiency.

Relatively high growth rates for the five cyanobacteria species at the lowest Co 363 concentration of 0.17 nmol  $L^{-1}$  in this study (Table 1) imply that their concentration 364 thresholds for Co membrane transport and Monod growth (i.e., the highest concentration at 365 which transport and growth do not occur) were less than 0.17 nmol L<sup>-1</sup>, i.e., in the sub-366 nanomolar range. Facey et al. (2022) found that growth of the non-heterocystous, non-N 367 368 fixing cyanobacterium *Microcystis aeruginosa* was most severely inhibited in cultures when dissolved Co was less than 0.34 nmol L<sup>-1</sup> so the threshold for *Microcystis* must have been less 369 than 0.34 nmol L<sup>-1</sup>. Monod growth thresholds for Fe reported by Shah et al. (2023) for three 370 cyanobacteria (two of which were used in this study) under N-replete and N-deplete 371 conditions and two eukaryotic algae ranged from 0.02 to 1.20 nmol L<sup>-1</sup>, with three of the 372 seven thresholds below 0.17 nmol L<sup>-1</sup>. Cyanobacteria thresholds for other metabolically 373 374 essential trace metals are probably in the sub-nanomomolar range as well.

We found 22 published studies reporting heterocyst frequencies in 24 wild-type 375 filamentous cyanobacteria strains grown in N-free cultures (Table 4) but interpretation of 376 relationships between heterocyst frequency and Co is not straightforward because of the 377 different experimental conditions (e.g., temperature, light, photoperiod) and media used and 378 because most of the studies used very high Co concentrations. While different media recipes 379 tend to be 'variations on a theme', culture media typically have high concentrations of the 380 three major groups of ingredients to ensure high growth rates and yields - trace metals, major 381 cations and anions, and the macronutrients P and N. Hence, it is not surprising that 16 of 382 these 22 studies used 170 nmol L<sup>-1</sup> (the highest concentration in out batch culture experiment) 383 and 198 nmol L<sup>-1</sup> which are well above concentrations found in the Swedish, Norwegian and 384 385 Canadian surveys of surface waters. Based on our culture results, high heterocyst frequencies are expected in severely N-limited culture media with high Co concentrations which explains 386 why many of the studies in Table 4 reported frequencies between 5.9 and 9.2%. However, the 387 results of several published studies cannot be explained using Co as a driver: frequencies in 388 eight taxa were relatively low, ranging between 3.2 and 5.8%, and two taxa grown at 42 nmol 389  $L^{-1}$  Co (higher than our 0.17 and 17 nmol  $L^{-1}$ ) had relatively low frequencies of 3.2 and 3.8%. 390

### **4.2** Potential for Co limitation of heterocyst frequency in Canadian freshwaters

The ambient concentration of Co within Canadian freshwaters appeared related to 393 lake trophic status, local geology and land use. In our 2017 survey, lakes with the highest Co 394 concentrations were typically eutrophic with the highest values found in Qu'Appelle Valley 395 lakes of Saskatchewan where surrounding land use developed on thick quaternary sediment 396 sequences is dominated by agriculture. Lakes with the lowest Co concentrations were 397 oligotrophic lakes on the Precambrian Shield of Ontario and New Brunswick, with forested 398 watersheds, weathering resistant bedrock and minimal disturbance with the exception of 399 400 experimentally eutrophied Lake 227 at the IISD -ELA in northwestern Ontario which had 401 elevated levels. Any Co impurities in the phosphate fertilizer added to Lake 227 could have 402 raised lake concentrations.

403 Using the P/Co molar ratio in the BG11<sub>0</sub> culture media to extrapolate to eutrophic 404 natural systems with approximately 50  $\mu$ g P L<sup>-1</sup>, it appears that sub-nanomolar Co 405 concentrations < 0.2 nmol L<sup>-1</sup> could potentially limit heterocyst frequency in N-limited 406 eutrophic waters. Concentrations below 0.2 nmol L<sup>-1</sup> were observed in some lakes across 407 Canada inferring potential Co limitation of heterocyst frequency should they become N-408 limited. The range of dissolved Co in the 2017 survey was < 0.03 to 11.5 nmol L<sup>-1</sup>. 409 Concentrations would have to be substantially lower than 0.2 nmol L<sup>-1</sup> to limit growth.

Most dissolved Co concentrations in the 2017 Canadian survey were  $< 4 \text{ nmol } L^{-1}$ 410 with some in the sub-nanomolar range but it is difficult to predict the importance that Co 411 might have had on heterocyst frequency in N-limited systems since other factors also affect 412 frequency. We know that heterocyst frequency differs among species (perhaps because of 413 differences in cell size as discussed above) and among strains grown under controlled 414 conditions (this study and Nayak et al., 2007; Ahad et al., 2015). Frequency also varies with 415 environmental factors such as incubation time (Vasas et al., 2013; Zulkefli and Hwang, 416 2020), calcium (Smith et al, 1987; Torecilla et al., 2004), Fe (Aly and Andrews, 2016), Ni 417 (Rai and Raizada, 1986), inorganic N (Fogg, 1949; Ogawa and Carr, 1969; Rother and Fay 418 419 1979; Brown and Rutenberg, 2012; Mohlin et al., 2012; Zulkefli and Hwang, 2020), CO<sub>2</sub> (Kulasooriya et al., 1972; Kang et al., 2004; Masukawa et al., 2017), O<sub>2</sub> (Kangatharalingam et 420 al., 1992), light (Fogg, 1949) and temperature (Zakrisson and Larsson, 2014). This large 421 422 number of known confounding variables (there may be others) makes it very difficult to 423 assign relative importance to variables known to affect heterocyst frequencies. Co seems not to have limited heterocyst frequency in Lake 227 in 2017 although 424

concentrations were below 1 nmol L<sup>-1</sup> in June just before the bloom began. Heterocyst

425

frequency was generally low, however, it increased during the ascending limb of the bloom
as did epilimnetic dissolved Co from approximately 0.7 to approximately 2 nmol L<sup>-1</sup> (Figure
4). The fact that dissolved Co was not drawn down during the bloom but increased along with
heterocyst frequency suggests that cyanobacteria were able to synthesize heterocysts as
needed.

It is unknown why the dominant species shifted from *A. schindlerii* to *A. skujae* after 2015 although lower ammonia may have been a factor. Co was probably not a factor since concentrations exceeded 0.2 nmol  $L^{-1}$  and there was no major difference in epilimnetic and metalimnetic dissolved Co before and after 2015. However, other surveyed lakes at ELA had lower Co, for example, dissolved Co was 0.12 nmol  $L^{-1}$  in oligotrophic P-limited Lake 304 in September 2017.

The higher heterocyst frequency associated with the smaller A. skujae after 2015 437 could have been affected by the change in mean heterocyst cell volume relative to mean 438 vegetative cell volume. The ratio of mean heterocyst cell volume to mean vegetative cell 439 440 volume declined from 1.3 in 2002-2012 to 1.1 in 2015-2020 (Table 2), and while the 441 magnitude of the decline does not seem large, it may have necessitated an increase in heterocyst frequency to maintain a similar fixed N supply rate per unit volume. Consider the 442 following calculations: the mean vegetative/heterocyst cell density ratio declined from 28.2 to 443 20.6 between 2002-2012 and 2015-2020 which means that newly fixed N diffused down a 444 concentration gradient into approximately 14 vegetative cells on either side of a heterocyst in 445 2010-2012, and 10 vegetative cells in 2015-2020. At the same, the mean vegetative cell 446 volume declined from 28 to 15  $\mu$ m<sup>3</sup> per cell so the total vegetative biovolume supplied by 447 each heterocyst cell (V<sub>h</sub>) declined 61% from 790  $\mu$ m<sup>3</sup> in 2002-2012 to 309  $\mu$ m<sup>3</sup> in 2015-448 2020. Heterocyst cell size (H) decreased from 36 to 17  $\mu$ m<sup>3</sup> resulting in V<sub>h</sub>/H ratios of 21.9 in 449 2002-2012 and 18.2 in 2015-2020 which are not markedly different from each other. Thus, 450 while the proportion of cells that were heterocysts increased from 3.0 to 4.8% after 2015, the 451 change in the proportion of biovolume (biomass) that was heterocyst was much smaller 452 453 (Table 2). The shift from A. schindlerii to smaller A. skujae also resulted in shorter travel distances for newly fixed N although how this might have affected net N supply rates (N 454 455 leakage, which is a function of cell surface area/volume ratio and residence time, must be 456 taken into account) is unclear. The mean individual vegetative cell length declined from 5.5 457 to 5.2 µm so the total travel length for newly fixed N on one side of a heterocyst declined from 77.6 to 53.6 µm. The similar Vh/H ratio and shorter diffusion distance after 2015 may 458 459 have maintained a similar efficiency of N supply to neighboring cells compared to 2000460 2012. These are variables that have not been previously considered.

This analysis of the potential impact of cell size on heterocyst frequency in Lake 227 461 suggests that species-specific regressions of fixation rate versus heterocyst abundance 462 (Findlay et al., 1994; Higgins et al., 2018) may not necessarily be transferrable to other 463 filamentous species that differ significantly in cell size. Hence, we recommend augmenting 464 estimates of heterocyst frequency based on cell abundance with estimates based on 465 466 biovolume or biomass ratios. Frequency estimates based on the number of heterocysts per filament length are sometimes used (Laamanen and Kuosa, 2005; Walve et al., 2014; Zulkefli 467 and Hwang, 2020) but are analogous to frequency estimates based on cell abundance. 468

We found five published studies of natural freshwater and brackish systems that 469 470 measured in situ heterocyst frequencies (Table 5). Co concentrations were not reported but were probably much lower than full strength culture media. Maximum heterocyst frequencies 471 472 in these natural systems generally ranged from 3-7%, similar to the frequencies at the two lower Co concentrations in this study and in Lake 227 (Figure 4). However, higher peaks of 473 474 10-11% were recorded in the Lower Karori Reservoir in New Zealand in two of the three documented years (Wood et al., 2010). Heterocyst frequency varies with sampling date 475 during blooms (Wood et al., 2010) so sampling date relative to timing of the bloom should be 476 reported along with frequency and biomass. For example, heterocyst frequency increased 477 during the A. skujae bloom in Lake 227 in 2017 but the annual peak in frequency preceded a 478 bloom of Dolichospermum (Anabaena) planktonica in Lower Karori Reservoir in New 479 480 Zealand (Wood et al., 2010).

The majority of the total Co concentrations in Canadian High Arctic freshwaters were 481 less than the relatively high detection limit of 17 nmol L<sup>-1</sup> but the proportion in the sub-482 nanomolar range relevant to Co limitation of heterocyst frequency is unknown. Low Co in 483 484 Arctic regions is expected because of low weathering rates caused by long periods of freezing temperatures and low precipitation (Statistics Canada, 2017) and the absence of mining, 485 industrial activities and urbanization in most areas (Aliff et al., 2020). However, Co content 486 487 in bedrock and overburden can vary regionally which would affect aquatic concentrations. It should be noted that while Co may be low enough to affect heterocyst frequency in 488 489 cyanobacteria in the Arctic, these would be benthic forms (Vézina and Vincent, 1997; Bonilla 490 et al., 2005) since pelagic filamentous cyanobacteria are absent (Schindler et al., 1974; 491 Schlesinger et al., 1981; Holmgren, 1984; Vincent, 2000; Rautio et al., 2011; Vincent and Quesada, 2012) although this may be changing, at least in the subarctic (Pick, 2016; 492 493 Sivarajah et al., 2021). In the Northwest Territories (Palmer et al., 2015), dissolved Co in

494 most of the lakes (77%) were at or below the detection limit of 1.7 nmol  $L^{-1}$  with 23% of the 495 samples at 3.4 and 5.1 nmol  $L^{-1}$ . The large proportion of samples below 1.7 nmol  $L^{-1}$  suggests 496 there is some potential for Co limitation of heterocyst differentiation in N-limited systems in 497 the Yellowknife region of the Northwest Territories.

Despite higher runoff and consequently higher weathering rates, Co is also low in 498 Scandinavia although high runoff can dilute concentrations (European Environment Agency, 499 1999). Dissolved Co (0.22 µm filter) in one region in northern Sweden ranged from 0.17 to 500 17 nmol  $L^{-1}$  with a median concentration of 0.7 nmol  $L^{-1}$  in one local area within the region 501 (Fischer et al., 2020). Skjelkvale et al. (2006) reported a median Co concentration of 0.85 502 nmol L<sup>-1</sup> in Norwegian surface waters with a range from less than the detection limit of 0.34 503 nmol  $L^{-1}$  to greater than 3.4 nmol  $L^{-1}$  (samples may have been unfiltered). Lenvik et al. 504 (1978) reported a range of 1.5 to 7.8 nmol  $L^{-1}$  for settled, decanted samples from 11 505 506 Norwegian rivers.

Co concentrations are usually reported as total (unfiltered) or dissolved (filtered), i.e., 507 508 as size fractions, as we have done in this study but the supply rate to the microbial community is influenced by more than just the concentration within size classes. Co 509 availability is also a function of chemical species which is influenced by within-lake factors, 510 especially dissolved organic carbon (DOC).  $Co^{2+}$  is the dominant oxidation state in circum-511 neutral, oxygenated waters which partitions between free uncomplexed and DOC-bound 512 states (Collins and Kinsela, 2010; Tang et al., 2021). Co<sup>2+</sup> binding to organic ligands serves 513 to keep it in solution while adsorption to amorphous ferric hydroxides and manganese oxides 514 removes Co to sediments along with settling phytoplankton and particulate organic matter 515 (Esmadi and Simms, 1995; Tang et al., 2021). Since DOC inhibits formation of particulate 516 ferric hydroxide (Moore et al., 1979; Molot and Dillon, 2003) and perhaps manganese oxide 517 which would limit Co removal from the water column, and DOC maintains Co<sup>2+</sup> in solution 518 through complexation, it follows that DOC potentially helps to meet microbial demand for 519 Co. However, high concentrations of DOC with very strong binding affinities for Co could 520 521 have the opposite effect (Imai et al., 1999).

There was one exception to the generally low Co levels found in the 2017 survey of Canadian surface waters -311 nmol L<sup>-1</sup> was measured in a filtered sample of cyanobacteria surface scum (i.e., a dense population) in Buffalo Pound, Saskatchewan, a concentration that was 97 times higher than a surface sample collected 2 days earlier. The scum also concentrated several other metabolically essential metals but to a much lesser extent. Ni, Fe, Mn, and Cu were concentrated 4 to 8-fold so the elevated metal concentrations may be real.

- 528 Metals in surface samples without scum in Buffalo Pound were consistently lower throughout
- the summer than this one scum sample. Co was also apparently concentrated during the *A*.
- *skujae* bloom in Lake 227 in 2017 judging by the 3x increase in dissolved Co from 0.7 to 2
- nmol  $L^{-1}$  during the exponential growth phase of the bloom in the epilimnion and 0.8 to 2.1
- 532 nmol  $L^{-1}$  in the metalimnion.
- The presence of higher dissolved Co concentrations in the middle of a dense
  cyanobacteria population suggests that large populations possess a concentration mechanism
  that limits Co loss from the upper water column such as might occur via competing
  adsorption of inorganic Co<sup>2+</sup> to settling Fe and Mn hydroxides (Esmadi and Simm, 1995;
- 537 Balistrieri et al., 1992). The concentration mechanism might consist of inorganic  $Co^{2+}$
- adsorption to cell sheaths or complexation to dissolved extracellular ligands (e.g.,
- siderophores) (Sharma and Azeez, 1988; Freire-Nordi et al., 2005; Baptista and Vasconcelos,
- 2006; Li et al., 2009; Olguín and Sánchez-Galván, 2012; Mona and Kaushik, 2015; Rossi and
  de Phillipis, 2015; Bishop et al., 2019). Saito et al. (2002) speculated that excretion of organic
  ligands could account for the higher growth rate of the pico-cyanobacterium,
- *Prochlorococcus*, in conditioned culture media versus growth in fresh media. Alternatively,
  Co buildup could be due to loss from senescing cells or excretion by viable cells (Bonnet et
  al., 2012). Whatever the nature of the concentration mechanism, it follows from MichaelisMenten transport and Monod growth kinetics (Shah et al., 2023) that a buildup of Co next to
  cellular membranes could increase Co transport and growth rates although dissociation of Co
  strongly bound to ligands with high binding affinities would likely have to be biologically
  facilitated first (Quigg et al., 2006; Worms et al., 2006; Fujii et al., 2010; Rose, 2012).
- 550 In summary, we found that (1) Co affects heterocyst frequency in batch cultures which suggests that Co may be involved in differentiation of vegetative cells into heterocysts. 551 (2) Some Co concentrations in natural systems in Canada and Scandinavia were low enough 552 (sub-nanomolar range) to potentially limit heterocyst frequency in N-limited waters based on 553 comparison to stoichiometrically corrected culture results. (3) However, we cannot conclude 554 555 that sub-nanomolar concentrations of Co will result in low heterocyst frequency in N-limited natural systems because many variables influence frequency. (4) Low heterocyst frequency 556 557 by itself should not be taken as an indicator of Co limitation in N-limited systems as the Lake 558 227 analysis demonstrates. (5) The ratio of heterocyst to vegetative cell volume may affect 559 heterocyst frequency. Hence, our understanding of relationships between Co and heterocyst frequency in natural systems is still unclear. (6) All of the Canadian Co surveys listed in 560 561 Table 3 used analytical methods with relatively high detection limits between 1.2 and 17

- nmol Co  $L^{-1}$  with the exception of the 2017 Canadian survey which had a much lower
- 563 detection limit. This made it difficult to accurately ascertain the extent to which low (sub-
- nanomolar) Co might affect filamentous cyanobacteria in N-limited waters. Given that Co
- 565 concentrations above 0.17 nmol  $L^{-1}$  did not affect cyanobacteria growth rates in our cultures,
- 566 future studies of the impacts of low Co in natural systems would benefit by selecting
- analytical methods with very low detection limits.
- 568

### 569 ACKNOWLEDGEMENTS

- 570 We are grateful to Ken Sandilands, David Findlay and the many field crews from
- 571 Saskatchewan to New Brunswick who collected and analyzed samples for this study. We
- thank Mark Verschoor for his advice on the metal sampling protocol and S.B. Watson and A.
- 573 Zastepa at Environment Canada and Climate Change's Canada Centre for Inland Waters
- 574 (CCIW) for isolating a strain of *Aphanizomenon skujae* from Lake 227 at the Experimental
- 575 Lakes Area. We are grateful to G. Braun and the Centre for Cold Regions and Water Science
- at Wilfrid Laurier University for access to and training in the use of the analytical equipment
- 577 used in the culture study. Many thanks to the New Brunswick Department of Environment
- and Local Government and the Ontario Ministry of Environment, Conservation and Parks for
- 579 sharing their lake data.
- 580

# 581 AUTHOR CONTRIBUTION STATEMENT

- 582 Conceptualisations: PS, LAM, SNH. Developing methods: PS, LAM, JJV. Data analysis: PS,
- 583 LAM, JJV. Preparation of figures and tables: PS, LAM. Conducting the research, data
- 584 interpretation, writing: PS, JJV, LAM, SNH, SLS, HMB, RAC, KAK, JBK, AMP, FRP, DW, SBW,
- 585 AZ.
- 586

# 587 CONFLICT OF INTEREST

588 The authors declare that they have no conflicts of interest.

589

# 590 DATA AVAILABILITY STATEMENT

- 591 The datasets generated and/or analysed during the current study are available from the 592 corresponding author upon reasonable request.
- 593

### 594 FUNDING

595 This work was funded by the Natural Sciences and Engineering Research Council of Canada

596 (NSERC) for a Strategic Partnership Grant to S.L. Schiff (Project STPGP 494497-2016) and

a Discovery Grant to L.A. Molot; by the Canada First Research Excellence Fund grant to the

598 Global Water Futures Initiative for FORMBLOOM (Forecasting Tools and Mitigation

599 Options for Diverse Bloom-Affected Lakes); and the IISD-Experimental Lakes Area.

600

### 601 ORCID

| 602 | Lewis A. Molot        | http://orcid.org/0000-0003-4059-7369     |
|-----|-----------------------|------------------------------------------|
| 603 | Scott N. Higgins      | https://orcid.org/0000-0001-9427-7024    |
| 604 | Sherry L. Schiff      | https://orcid.org/0000-0002-7704-7304    |
| 605 | Jason J. Venkiteswara | an https://orcid.org/0000-0002-6574-7071 |
| 606 | Helen M. Baulch       | https://orcid.org/0000-0001-9018-4998    |
| 607 | R. Allen Curry        | http://orcid.org/0000-0002-7083-9878     |
| 608 | Karen A. Kidd         | http://orcid.org/0000-0002-5619-1358     |
| 609 | Jennifer B. Korosi    | http://orcid.org/0000-0002-9917-8137     |
| 610 | Andrew M. Paterson    | http://orcid.org/0000-0002-4296-9528     |
| 611 | Frances R. Pick       | http://orcid.org/0000-0002-5486-4061     |
| 612 | Purnank Shah          | https://orcid.org/0000-0002-2682-9824    |
| 613 | Arthur Zastepa        | http://orcid.org/0000-0003-1292-932X     |

614

### 615 **REFERENCES**

616 Ahad, A., Phukan, T., & Syiem, M. B. (2015). Random sampling of cyanobacterial diversity

617 from five locations within Eastern Himalayan Biodiversity hot spot. International Journal of

618 Advanced Research in Biological Sciences, 2, 20–29.

619

Aliff, M. N., Reavie, E. D., Post, S. P., & Zanko, L. M. (2020). Metallic elements and oxides

and their relevance to Laurentian Great Lakes geochemistry. PeerJ, 8, p.e9053.

622 https://doi.org/10.7717/peerj.9053.

623

Aly, W. S. M., & Andrews, S. C. (2016). Iron regulation of growth and heterocyst formation

625 in the nitrogen fixing cyanobacterium *Nostoc* sp. PCC 7120. Journal of Ecology of Health &

626 Environment, 4, 103–109.

627

Andresen, E., Peiter, E., & Küpper, H. (2018). Trace metal metabolism in plants. Journal of

629 Experimental Botany, 69, 909–954. doi:10.1093/jxb/erx465.

630 Antoniades, D., Douglas, M. S. V., & Smol, J. P. (2003a). Physical and chemical limnology 631 of 24 lakes and one pond from Isachsen, Ellef Ringnes Island, Canadian High Arctic. 632 International Review of Hydrobiology, 88, 519–539. 633 https://doi.org/10.1002/iroh.200310665. 634 635 Antoniades, D., Douglas, M. S. V., & Smol, J. P. (2003b). Comparative physical and 636 637 chemical limnology of two Canadian High Arctic regions: Alert (Ellesmere Island, NU) and Mould Bay (Prince Patrick Island, NWT). Archiv für Hydrobiologie, 158, 485-516. 638 639 640 Arnott, S. E., Dillon, P. J., Somers, K., & Keller, B. (2003). Inter-and intra-annual chemical variability during the ice-free season in lakes with different flushing rates and acid deposition 641 642 histories. Environmental Monitoring and Assessment, 88, 21-37. 643 644 Balistrieri, L. S., Murray, J. W., & Paul, B. (1992). The biogeochemical cycling of trace metals in the water column of Lake Sammamish, Washington: Response to seasonally anoxic 645 conditions. Limnology and Oceanography, 37, 529-548. 646 https://doi.org/10.4319/lo.1992.37.3.0529. 647 648 Baptista, M. S., & Vasconcelos, M. T. (2006). Cyanobacteria metal interactions: 649 requirements, toxicity, and ecological implications. Critical Reviews in Microbiology, 32, 650 127-132. https://doi.org/10.1080/10408410600822934. 651 652 Barber-Zucker, S., Shaanan, B., & Zarivach, R. (2017). Transition metal binding selectivity 653 in proteins and its correlation with the phylogenomic classification of the cation diffusion 654 facilitator protein family. Scientific Reports, 7: 1638. DOI:10.1038/s41598-017-16777-5. 655 656 657 Barton, L. L., Goulhen, F., Bruschi, M., Woodards, N. A., Plunkett, R. M., & Rietmeijer, F. J. M. (2007). The bacterial metallome: composition and stability with specific reference to the 658 659 anaerobic bacterium Desulfovibrio desulfuricans. Biometals, 20, 291-302. DOI 660 10.1007/s10534-006-9059-2. 661 Berendt, S., Lehner, J., Zhang, Y. V., Rasse, T. M., Forchhammer, K., & Maldener, I. (2012). 662

663 Cell wall amidase AmiC1 is required for cellular communication and heterocyst development

- 664 in the cyanobacterium Anabaena PCC 7120 but not for filament integrity. Journal of
- 665 Bacteriology, 194, 5218–5227. https://doi.org/10.1128/JB.00912-12.
- 666
- Bishop, B. A., Flynn, S. L., Warchola, T. J., Alam, M. S., Robbins, L. J., Liu, Y., Owttrim, G.
- 668 W., Alessi, D. S., & Konhauser, K. O. (2019). Adsorption of biologically critical trace
- elements to the marine cyanobacterium *Synechococcus* sp. PCC 7002: Implications for
- 670 marine trace metal cycling. Chemical Geology, 525, 28-36.
- 671 https://doi.org/10.1016/j.chemgeo.2019.05.021.
- 672
- Bonnet, S., Webb, E. A., Panzeca, C., Karl, D. M., Capone, D. G., & Wilhelmy, S. A. S.
- 674 (2010). Vitamin B12 excretion by cultures of the marine cyanobacteria *Crocosphaera* and
- 675 *Synechococcus*. Limnology and Oceanography, 55, 1959-1964.
- 676 https://doi.org/10.4319/lo.2010.55.5.1959.
- 677
- Bonilla, S., Villeneuve, V., & Vincent, W. F. (2005). Benthic and planktonic algal
- 679 communities in a high arctic lake: pigment structure and contrasting responses to nutrient
- enrichment. Journal of Phycology, 41, 1120-1130. https://doi.org/10.1111/j.1529-
- 681 8817.2005.00154.x.
- 682
- Borthakur, P. B., Orozco, C. C., Young-Robbins, S. S., Haselkorn, R., & Callahan, S. M.
- (2005). Inactivation of patS and hetN causes lethal levels of heterocyst differentiation in the
  filamentous cyanobacterium *Anabaena* sp. PCC 7120. Molecular Microbiology, 57, 111–123.
- 686 https://doi.org/10.1111/j.1365-2958.2005.04678.x.
- 687
- Bradley, S., & Carr, N. G. (1976). Heterocyst and nitrogenase development in Anabaena
  cylindrica. Microbiology, 96, 175-184. https://doi.org/10.1099/00221287-96-1-175.
- 690
- Brown, A. I., & Rutenberg, A. D. (2012). Heterocyst placement strategies to maximize the
  growth of cyanobacterial filaments. Physical Biology, 9, 046002. DOI 10.1088/14783975/9/4/046002.
- 694
- Burgess, B. K. (1990). The iron-molybdenum cofactor of nitrogenase. Chemical
- 696 Reviews, 90, 1377-1406. https://doi.org/10.1021/cr00106a002.
- 697

| 698 | Chaffin, J. D., Bridgeman, T. B., & Bade, D. L. (2013). Nitrogen constrains the growth of     |
|-----|-----------------------------------------------------------------------------------------------|
| 699 | late summer cyanobacterial blooms in Lake Erie. Advances in Microbiology, 3 No.6A,            |
| 700 | Article ID:37926, 11 pages, DOI:10.4236/aim.2013.36A003.                                      |
| 701 |                                                                                               |
| 702 | Chaurasia, A. K., & Apte, S. K. (2011). Improved eco-friendly recombinant Anabaena sp.        |
| 703 | Strain PCC7120 with enhanced nitrogen biofertilizer potential. Applied and Environmental      |
| 704 | Microbiology, 77, 395-399. https://doi.org/10.1128/AEM.01714-10.                              |
| 705 |                                                                                               |
| 706 | Chioccioli, M., Hankamer, B., & Ross, I. L. (2014). Flow cytometry pulse width data enables   |
| 707 | rapid and sensitive estimation of biomass dry weight in the microalgae Chlamydomonas          |
| 708 | reinhardtii and Chlorella vulgaris. PLoS ONE, 9, 1–12.                                        |
| 709 | https://doi.org/10.1371/journal.pone.0097269.                                                 |
| 710 |                                                                                               |
| 711 | Collins, R. N., & Kinsela, A. S. (2010). The aqueous phase speciation and chemistry of        |
| 712 | cobalt in terrestrial environments. Chemosphere 79, 763-771.                                  |
| 713 | https://doi.org/10.1016/j.chemosphere.2010.03.003.                                            |
| 714 |                                                                                               |
| 715 | Creed, J. T., Brockhoff, C. A., & Martin, T. D. (1994). Method 200.8: Determination of trace  |
| 716 | elements by inductively coupled plasma – mass spectrometry, rev. 5.4. US Environmental        |
| 717 | Protection Agency. Cincinnati, Ohio, 57 p.                                                    |
| 718 |                                                                                               |
| 719 | de Figueiredo, D. R., Goncalves, A. M. M., Castro, B. B., Goncalves, F., Pereira, M. J., &    |
| 720 | Correia, A. (2011). Differential inter- and intra-specific responses of Aphanizomenon strains |
| 721 | to nutrient limitation and algal growth inhibition. Journal of Plankton Research, 33, 1606-   |
| 722 | 1616. https://doi.org/10.1093/plankt/fbr058.                                                  |
| 723 |                                                                                               |
| 724 | Dilworth, M. J., Robson, A. D., & Chatel, D. L. (1979). Cobalt and nitrogen fixation in       |
| 725 | Lupinus angustifolius L. II. Nodule formation and function. New Phytologist, 83, 63-79.       |
| 726 | https://doi.org/10.1111/j.1469-8137.1979.tb00727.x.                                           |
| 727 |                                                                                               |
| 728 | Downs, T. M., Schallenberg, M., & Burns, C. W. (2008). Responses of lake phytoplankton to     |
| 729 | micronutrient enrichment: a study in two New Zealand lakes and an analysis of published       |
| 730 | data. Aquatic Sciences, 70, 347-360. https://doi.org/10.1007/s00027-008-8065-6.               |
| 731 |                                                                                               |

| 732 | Duarte, C. M., Marrasé, C., Vaqué, D., & Estrada, M. (1990). Counting error and the             |
|-----|-------------------------------------------------------------------------------------------------|
| 733 | quantitative analysis of phytoplankton communities. Journal of Plankton Research, 12, 295-      |
| 734 | 304. https://doi.org/10.1093/plankt/12.2.295.                                                   |
| 735 |                                                                                                 |
| 736 | Esmadi, F., & Simm, J. (1995). Sorption of cobalt (II) by amorphous ferric hydroxide.           |
| 737 | Colloids and Surfaces A: Physicochemical and Engineering Aspects, 104, 265-270.                 |
| 738 | https://doi.org/10.1016/0927-7757(95)03289-4.                                                   |
| 739 |                                                                                                 |
| 740 | European Environment Agency. 1999. Environment in the European Union at the turn of the         |
| 741 | century. Environmental assessment report No 2, Chapter 3.5 Water Stress.                        |
| 742 | https://www.eea.europa.eu/data-and-maps/figures/average-annual-runoff.                          |
| 743 |                                                                                                 |
| 744 | Evans, J. C., & Prepas, E. E. (1997). Relative importance of iron and molybdenum in             |
| 745 | restricting phytoplankton biomass in high phosphorus saline lakes. Limnology and                |
| 746 | Oceanography, 42, 461-472. https://doi.org/10.4319/lo.1997.42.3.0461.                           |
| 747 |                                                                                                 |
| 748 | Facey, J. A., Rogers, T. A., Apte, S. C., & Mitrovic, S. M. (2021). Micronutrients as growth    |
| 749 | limiting factors in cyanobacterial blooms; a survey of freshwaters in South East Australia.     |
| 750 | Aquatic Sciences, 83: 28. https://doi.org/10.1007/s00027-021-00783-x.                           |
| 751 |                                                                                                 |
| 752 | Facey, J. A., King, J. J., Apte, S. C., & Mitrovic, S. M. (2022). Assessing the importance of   |
| 753 | cobalt as a micronutrient for freshwater cyanobacteria. Journal of Phycology, 58, 71-79.        |
| 754 | https://doi.org/10.1111/jpy.13216.                                                              |
| 755 |                                                                                                 |
| 756 | Findlay, D. L., & Kasian, S. E. M. (1987). Phytoplankton community responses to nutrient        |
| 757 | addition in Lake 226, Experimental Lakes Area, northwestern Ontario. Canadian Journal of        |
| 758 | Fisheries and Aquatic Sciences, 44(Suppl. 1), 35-46. doi.org/10.1139/f87-278.                   |
| 759 |                                                                                                 |
| 760 | Findlay, D. L., Hecky, R. E., Hendzel, L. L., Stainton, M. P., & Regehr, G. W. (1994).          |
| 761 | Relationship between $N_2$ -fixation and heterocyst abundance and its relevance to the nitrogen |
| 762 | budget of Lake 227. Canadian Journal of Fisheries and Aquatic Sciences, 51, 2254–2266.          |
| 763 | https://doi.org/10.1139/f94-229.                                                                |
| 764 |                                                                                                 |
| 765 | Fischer, S., Rosqvist, G., Chalov, S. R., & Jarsjö, J. (2020). Disproportionate water quality   |

- impacts from the century-old Nautanen copper mines, northern Sweden. Sustainability, 12,
- 767 1394. https://doi.org/10.3390/su12041394.
- 768
- Fogg, G. E. (1949). Growth and heterocyst production in *Anabaena cylindrica* Lemm.: II. In
- relation to carbon and nitrogen metabolism. Annals of Botany, 13, 241-259.
- 771
- Foster, A. W., Osman, D., & Robinson, N. J. (2014). Metal preferences and
- metallation. Journal of Biological Chemistry, 289, 28095-28103.
- 774 https://doi.org/10.1074/jbc.R114.588145.
- 775
- 776 Freire-Nordi, C. S., Vieira, A. A. H., & Nascimento, O. R. (2005). The metal binding
- capacity of *Anabaena spiroides* extracellular polysaccharide: an EPR study. Process
- 778 Biochemistry, 40, 2215-2224. https://doi.org/10.1016/j.procbio.2004.09.003.
- 779
- Fujii, M., Rose, A. L., Waite, T. D., & Omura, T. (2010). Oxygen and superoxide-mediated
- redox kinetics of iron complexed by humic substances in coastal seawater. Environmental
- 782 Science & Technology, 44, 9337-9342. https://doi.org/10.1021/es102583c.
- 783
- Guildford, S. J., & Hecky, R. E. (2000). Total nitrogen, total phosphorus, and nutrient
- 785 limitation in lakes and oceans: is there a common relationship? Limnology and
- 786 Oceanography, 45, 1213-1223. https://doi.org/10.4319/lo.2000.45.6.1213.
- 787
- Guinel, F. C. (2009a). Getting around the legume nodule: I. The structure of the peripheral
  zone in four nodule types. Botany, 87, 1117-1138. https://doi.org/10.1139/B09-074.
- 790
- 791 Guinel, F.C. (2009b). Getting around the legume nodule: II. Molecular biology of its
- peripheral zone and approaches to study its vasculature. Botany, 87, 1139-1166.
- 793 https://doi.org/10.1139/B09-075.
- 794
- Halac, S. R., Ruibal-Conti, A. L., Mengo, L. D. V., Ullmer, F., Cativa, A., Bazan, R., &
- Rodriguez, M. I. (2023). Effect of iron availability on the growth and microcystin content of
- natural populations of *Microcystis* spp. from reservoirs in Central Argentina: a microcosm
- experiment approach. Phycology, 3, 168-185. https://doi.org/10.3390/phycology3010011.
- 799

agriculture, urbanization, and climate on water quality in the northern Great Plains. 801 Limnology and Oceanography, 44, 739-756. 802 https://doi.org/10.4319/lo.1999.44.3 part 2.0739. 803 804 Hallsworth, E. G., Wilson, S. B., & Greenwood, E. A. N. (1960). Copper and cobalt in nitrogen 805 fixation. Nature, 187(4731), 79-80. https://doi.org/10.1038/187079a0. 806 807 Harish, S. K. (2020). Molecular circuit of heterocyst differentiation in cyanobacteria. Journal 808 809 of Basic Microbiology, 60, 738-745. https://doi.org/10.1002/jobm.202000266. 810 Hawco, N. J., & Saito, M. A. (2018). Competitive inhibition of cobalt uptake by zinc and 811 812 manganese in a pacific *Prochlorococcus* strain: Insights into metal homeostasis in a streamlined oligotrophic cyanobacterium. Limnology and Oceanography, 63, 2229-2249. 813 814 https://doi.org/10.1002/lno.10935. 815 Hawco, N. J., McIlvin, M. M., Bundy, R. M., Tagliabue, A., Goepfert, T. J., Moran, D. M., 816 Valentin-Alvarado, L., DiTullio, G. R., & Saito, M. A. (2020). Minimal cobalt metabolism in 817 the marine cyanobacterium *Prochlorococcus*. Proceedings of the National Academy of 818 Sciences, 117, 15740-15747. https://doi.org/10.1073/pnas.2001393117. 819 820 Helliwell, K. E., Lawrence, A. D., Holzer, A., Kudahl, U. J., Sasso, S., Kräutler, B., Scanlan, 821 D. J., Warren, M. J., & Smith, A. G. (2016). Cyanobacteria and eukaryotic algae use different 822 chemical variants of vitamin B<sub>12</sub>. Current Biology, 26, 999-1008. 823 https://doi.org/10.1016/j.cub.2016.02.041 824 825 Hewitt, E. J., & Bond, G. (1966). The cobalt requirement of non-legume root nodule plants. 826 827 Journal of Experimental Botany, 17, 480–491. https://doi.org/10.1093/jxb/17.3.480. 828 Higgins, S. N., Paterson, M. J., Hecky, R. E., Schindler, D.W., Venkiteswaran, J. J., & 829 Findlay, D. L. (2018). Biological nitrogen fixation prevents the response of a eutrophic lake to 830 831 reduced loading of nitrogen: evidence from a 46-year whole-lake experiment. Ecosystems 21, 1-13. https://doi.org/10.1007/s10021-017-0204-2. 832 833

Hall, R. I., Leavitt, P. R., Quinlan, R., Dixit, A. S., & Smol, J. P. (1999). Effects of

| 834 | Ho, T. Y., Quigg, A., Finkel, Z. V., Milligan, A. J., Wyman, K., Falkowski, P. G., & Morel,   |
|-----|-----------------------------------------------------------------------------------------------|
| 835 | F. M. M. 2003. The elemental composition of some marine phytoplankton 1. Journal of           |
| 836 | Phycology, 39, 1145-1159. https://doi.org/10.1111/j.0022-3646.2003.03-090.x.                  |
| 837 |                                                                                               |
| 838 | Ho, T. Y. (2013). Nickel limitation of nitrogen fixation in Trichodesmium. Limnology and      |
| 839 | Oceanography, 58, 112-120. https://doi.org/10.4319/lo.2013.58.1.0112.                         |
| 840 |                                                                                               |
| 841 | Holmgren, S. K. (1984). Experimental lake fertilization in the Kuokkel area, northern         |
| 842 | Sweden. Phytoplankton biomass and algal composition in natural and fertilized subarctic       |
| 843 | lakes. Internationale Revue der gesamten Hydrobiologie und Hydrographie, 69, 781-817.         |
| 844 | https://doi.org/10.1002/iroh.19840690603.                                                     |
| 845 |                                                                                               |
| 846 | Holm-Hansen, O., Gerloff, G. C., & Skoog, F. (1954). Cobalt as an essential element for blue- |
| 847 | green algae. Physiologia Plantarum, 7, 665–675. https://doi.org/10.1111/j.1399-               |
| 848 | 3054.1954.tb07727.x.                                                                          |
| 849 |                                                                                               |
| 850 | Howarth, R. W., Marino, R., & Cole, J. J. (1988). Nitrogen fixation in freshwater, estuarine, |
| 851 | and marine ecosystems. 2. Biogeochemical controls. Limnology and Oceanography, 33, 688-       |
| 852 | 701. https://doi.org/10.4319/lo.1988.33.4part2.0688.                                          |
| 853 |                                                                                               |
| 854 | Hu, X., Wei, X., Ling, J., & Chen, J. (2021). Cobalt: an essential micronutrient for plant    |
| 855 | growth? Frontiers in Plant Science, 12, 768523. https://doi.org/10.3389/fpls.2021.768523.     |
| 856 |                                                                                               |
| 857 | Imai, A., Fukushima, T., & Matsushige, K. (1999). Effects of iron limitation and aquatic      |
| 858 | humic substances on the growth of Microcystis aeruginosa. Canadian Journal of Fisheries and   |
| 859 | Aquatic Sciences, 56, 1929-1937. https://doi.org/10.1139/f99-131.                             |
| 860 |                                                                                               |
| 861 | Irish, A. E., & Clarke, R. T. (1984). Sampling designs for the estimation of phytoplankton    |
| 862 | abundance in limnetic environments. British Phycological Journal, 19, 57-66.                  |
| 863 | https://doi.org/10.1080/00071618400650061.                                                    |
| 864 |                                                                                               |
| 865 | Iswaran, V., & Rao, W. V. B. S. (1964). Role of cobalt in nitrogen fixation by Azotobacter    |
| 866 | chroococcum. Nature, 203(4944): 549. https://doi.org/10.1038/203549a0.                        |
| 867 |                                                                                               |

| 868                                                                                                                 | Jayakumar, K., Vijayarengan, P., Changxing, Z., Gomathinayagam, M., & Jaleel, C. A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 869                                                                                                                 | (2008). Soil applied cobalt alters the nodulation, leg-haemoglobin content and antioxidant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 870                                                                                                                 | status of Glycine max (L.) Merr. Colloids and Surfaces B: Biointerfaces, 67, 272-275.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 871                                                                                                                 | https://doi.org/10.1016/j.colsurfb.2008.08.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 872                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 873                                                                                                                 | Jewell, W. J., & Kulasooriya, S. A. (1970). The relation of acetylene reduction to heterocyst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 874                                                                                                                 | frequency in blue-green algae. Journal of Experimental Botany 21, 874-880.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 875                                                                                                                 | https://doi.org/10.1093/jxb/21.4.874.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 876                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 877                                                                                                                 | Kang, R. J., Shi, D. J., Cong, W., Cai, Z. L., & Ouyang, F. (2005). Regulation of CO2 on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 878                                                                                                                 | heterocyst differentiation and nitrate uptake in the cyanobacterium Anabaena sp. PCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 879                                                                                                                 | 7120. Journal of Applied Microbiology, 98, 693-698. https://doi.org/10.1111/j.1365-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 880                                                                                                                 | 2672.2004.02510.x.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 881                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 882                                                                                                                 | Kangatharalingam, N., Priscu, J. C., & Paerl, H. W. (1992). Heterocyst envelope thickness,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 883                                                                                                                 | heterocyst frequency and nitrogenase activity in Anabaena flos-aquae: influence of exogenous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 884                                                                                                                 | oxygen tension. Journal of General Microbiology, 138, 2673–2678.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 885                                                                                                                 | https://doi.org/10.1099/00221287-138-12-2673.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 886                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 886<br>887                                                                                                          | Kelly, L. T., Champeaud, M., Beuzenberg, V., Goodwin, E., Verburg, P., & Wood, S. A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 886<br>887<br>888                                                                                                   | Kelly, L. T., Champeaud, M., Beuzenberg, V., Goodwin, E., Verburg, P., & Wood, S. A. (2021). Trace metal and nitrogen concentrations differentially affect bloom forming                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 886<br>887<br>888<br>889                                                                                            | Kelly, L. T., Champeaud, M., Beuzenberg, V., Goodwin, E., Verburg, P., & Wood, S. A. (2021). Trace metal and nitrogen concentrations differentially affect bloom forming cyanobacteria of the genus <i>Dolichospermum</i> . Aquatic Sciences, 83, 1-11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 886<br>887<br>888<br>889<br>890                                                                                     | Kelly, L. T., Champeaud, M., Beuzenberg, V., Goodwin, E., Verburg, P., & Wood, S. A. (2021). Trace metal and nitrogen concentrations differentially affect bloom forming cyanobacteria of the genus <i>Dolichospermum</i> . Aquatic Sciences, 83, 1-11.<br>https://doi.org/10.1007/s00027-021-00786-8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 886<br>887<br>888<br>889<br>890<br>891                                                                              | Kelly, L. T., Champeaud, M., Beuzenberg, V., Goodwin, E., Verburg, P., & Wood, S. A. (2021). Trace metal and nitrogen concentrations differentially affect bloom forming cyanobacteria of the genus <i>Dolichospermum</i> . Aquatic Sciences, 83, 1-11.<br>https://doi.org/10.1007/s00027-021-00786-8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 886<br>887<br>888<br>889<br>890<br>891<br>892                                                                       | <ul> <li>Kelly, L. T., Champeaud, M., Beuzenberg, V., Goodwin, E., Verburg, P., &amp; Wood, S. A.</li> <li>(2021). Trace metal and nitrogen concentrations differentially affect bloom forming cyanobacteria of the genus <i>Dolichospermum</i>. Aquatic Sciences, 83, 1-11.</li> <li>https://doi.org/10.1007/s00027-021-00786-8.</li> <li>Kobayashi, M., &amp; Shimizu, S. (1999). Cobalt proteins. European Journal of</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 886<br>887<br>888<br>889<br>890<br>891<br>891<br>892<br>893                                                         | <ul> <li>Kelly, L. T., Champeaud, M., Beuzenberg, V., Goodwin, E., Verburg, P., &amp; Wood, S. A. (2021). Trace metal and nitrogen concentrations differentially affect bloom forming cyanobacteria of the genus <i>Dolichospermum</i>. Aquatic Sciences, 83, 1-11. https://doi.org/10.1007/s00027-021-00786-8.</li> <li>Kobayashi, M., &amp; Shimizu, S. (1999). Cobalt proteins. European Journal of Biochemistry, 261, 1-9. https://doi.org/10.1046/j.1432-1327.1999.00186.x.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 886<br>887<br>888<br>889<br>890<br>891<br>891<br>892<br>893<br>894                                                  | <ul> <li>Kelly, L. T., Champeaud, M., Beuzenberg, V., Goodwin, E., Verburg, P., &amp; Wood, S. A. (2021). Trace metal and nitrogen concentrations differentially affect bloom forming cyanobacteria of the genus <i>Dolichospermum</i>. Aquatic Sciences, 83, 1-11. https://doi.org/10.1007/s00027-021-00786-8.</li> <li>Kobayashi, M., &amp; Shimizu, S. (1999). Cobalt proteins. European Journal of Biochemistry, 261, 1-9. https://doi.org/10.1046/j.1432-1327.1999.00186.x.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 886<br>887<br>888<br>889<br>890<br>891<br>891<br>892<br>893<br>894<br>895                                           | <ul> <li>Kelly, L. T., Champeaud, M., Beuzenberg, V., Goodwin, E., Verburg, P., &amp; Wood, S. A. (2021). Trace metal and nitrogen concentrations differentially affect bloom forming cyanobacteria of the genus <i>Dolichospermum</i>. Aquatic Sciences, 83, 1-11.<br/>https://doi.org/10.1007/s00027-021-00786-8.</li> <li>Kobayashi, M., &amp; Shimizu, S. (1999). Cobalt proteins. European Journal of Biochemistry, 261, 1-9. https://doi.org/10.1046/j.1432-1327.1999.00186.x.</li> <li>Kothamasi, D., &amp; Kothamasi, S. (2004). Cobalt interference in iron-uptake could inhibit</li> </ul>                                                                                                                                                                                                                                                                                                                                                      |
| 886<br>887<br>888<br>889<br>890<br>891<br>892<br>893<br>893<br>894<br>895<br>896                                    | <ul> <li>Kelly, L. T., Champeaud, M., Beuzenberg, V., Goodwin, E., Verburg, P., &amp; Wood, S. A. (2021). Trace metal and nitrogen concentrations differentially affect bloom forming cyanobacteria of the genus <i>Dolichospermum</i>. Aquatic Sciences, 83, 1-11. https://doi.org/10.1007/s00027-021-00786-8.</li> <li>Kobayashi, M., &amp; Shimizu, S. (1999). Cobalt proteins. European Journal of Biochemistry, 261, 1-9. https://doi.org/10.1046/j.1432-1327.1999.00186.x.</li> <li>Kothamasi, D., &amp; Kothamasi, S. (2004). Cobalt interference in iron-uptake could inhibit growth in <i>Pseudomonas aeruginosa</i>. World Journal of Microbiology and Biotechnology, 20,</li> </ul>                                                                                                                                                                                                                                                            |
| 886<br>887<br>888<br>889<br>890<br>891<br>891<br>892<br>893<br>894<br>895<br>896<br>897                             | <ul> <li>Kelly, L. T., Champeaud, M., Beuzenberg, V., Goodwin, E., Verburg, P., &amp; Wood, S. A. (2021). Trace metal and nitrogen concentrations differentially affect bloom forming cyanobacteria of the genus <i>Dolichospermum</i>. Aquatic Sciences, 83, 1-11. https://doi.org/10.1007/s00027-021-00786-8.</li> <li>Kobayashi, M., &amp; Shimizu, S. (1999). Cobalt proteins. European Journal of Biochemistry, 261, 1-9. https://doi.org/10.1046/j.1432-1327.1999.00186.x.</li> <li>Kothamasi, D., &amp; Kothamasi, S. (2004). Cobalt interference in iron-uptake could inhibit growth in <i>Pseudomonas aeruginosa</i>. World Journal of Microbiology and Biotechnology, 20, 755–758. https://doi.org/10.1007/s11274-004-5810-4.</li> </ul>                                                                                                                                                                                                        |
| 886<br>887<br>888<br>889<br>890<br>891<br>891<br>892<br>893<br>894<br>895<br>895<br>896<br>897<br>898               | <ul> <li>Kelly, L. T., Champeaud, M., Beuzenberg, V., Goodwin, E., Verburg, P., &amp; Wood, S. A. (2021). Trace metal and nitrogen concentrations differentially affect bloom forming cyanobacteria of the genus <i>Dolichospermum</i>. Aquatic Sciences, 83, 1-11. https://doi.org/10.1007/s00027-021-00786-8.</li> <li>Kobayashi, M., &amp; Shimizu, S. (1999). Cobalt proteins. European Journal of Biochemistry, 261, 1-9. https://doi.org/10.1046/j.1432-1327.1999.00186.x.</li> <li>Kothamasi, D., &amp; Kothamasi, S. (2004). Cobalt interference in iron-uptake could inhibit growth in <i>Pseudomonas aeruginosa</i>. World Journal of Microbiology and Biotechnology, 20, 755–758. https://doi.org/10.1007/s11274-004-5810-4.</li> </ul>                                                                                                                                                                                                        |
| 886<br>887<br>888<br>890<br>890<br>891<br>892<br>893<br>893<br>894<br>895<br>896<br>895<br>896<br>897<br>898<br>899 | <ul> <li>Kelly, L. T., Champeaud, M., Beuzenberg, V., Goodwin, E., Verburg, P., &amp; Wood, S. A. (2021). Trace metal and nitrogen concentrations differentially affect bloom forming cyanobacteria of the genus <i>Dolichospermum</i>. Aquatic Sciences, 83, 1-11. https://doi.org/10.1007/s00027-021-00786-8.</li> <li>Kobayashi, M., &amp; Shimizu, S. (1999). Cobalt proteins. European Journal of Biochemistry, 261, 1-9. https://doi.org/10.1046/j.1432-1327.1999.00186.x.</li> <li>Kothamasi, D., &amp; Kothamasi, S. (2004). Cobalt interference in iron-uptake could inhibit growth in <i>Pseudomonas aeruginosa</i>. World Journal of Microbiology and Biotechnology, 20, 755–758. https://doi.org/10.1007/s11274-004-5810-4.</li> <li>Kulasooriya, S. A., Lang, N. J., &amp; Fay, P. (1972). The heterocysts of blue-green algae. III.</li> </ul>                                                                                              |
| 886<br>887<br>888<br>890<br>891<br>892<br>893<br>893<br>894<br>895<br>896<br>895<br>896<br>897<br>898<br>899<br>900 | <ul> <li>Kelly, L. T., Champeaud, M., Beuzenberg, V., Goodwin, E., Verburg, P., &amp; Wood, S. A. (2021). Trace metal and nitrogen concentrations differentially affect bloom forming cyanobacteria of the genus <i>Dolichospermum</i>. Aquatic Sciences, 83, 1-11. https://doi.org/10.1007/s00027-021-00786-8.</li> <li>Kobayashi, M., &amp; Shimizu, S. (1999). Cobalt proteins. European Journal of Biochemistry, 261, 1-9. https://doi.org/10.1046/j.1432-1327.1999.00186.x.</li> <li>Kothamasi, D., &amp; Kothamasi, S. (2004). Cobalt interference in iron-uptake could inhibit growth in <i>Pseudomonas aeruginosa</i>. World Journal of Microbiology and Biotechnology, 20, 755–758. https://doi.org/10.1007/s11274-004-5810-4.</li> <li>Kulasooriya, S. A., Lang, N. J., &amp; Fay, P. (1972). The heterocysts of blue-green algae. III. Differentiation and nitrogenase activity. Proceedings of the Royal Society of London. Series</li> </ul> |

| 902 |                                                                                                |
|-----|------------------------------------------------------------------------------------------------|
| 903 | Kumar, K., Mella-Herrera, R. A., & Golden, J. W. (2010). Cyanobacterial heterocysts. Cold      |
| 904 | Spring Harbor Perspectives in Biology, 2(4): a000315–a000315.                                  |
| 905 | https://doi.org/10.1101/cshperspect.a000315.                                                   |
| 906 |                                                                                                |
| 907 | Kutkuiin, J. H., 1958. Notes on the precision of numerical and volumetric plankton estimates   |
| 908 | from small-sample concentrates. Limnology and Oceanography, 3, 69-83.                          |
| 909 | https://doi.org/10.4319/lo.1958.3.1.0069.                                                      |
| 910 |                                                                                                |
| 911 | Laamanen, M., & Kuosa, H. (2005). Annual variability of biomass and heterocysts of the $N_2$ - |
| 912 | fixing cyanobacterium Aphanizomenon flos-aquae in the Baltic Sea with reference to             |
| 913 | Anabaena spp. and Nodularia spumigena. Boreal Environment Research, 10, 19-30.                 |
| 914 |                                                                                                |
| 915 | Lenvik, K., Steinnes, E., & Pappas, A. C. (1978). Contents of some heavy metals in             |
| 916 | Norwegian rivers. Hydrology Research, 9, 197-206. https://doi.org/10.2166/nh.1978.0021.        |
| 917 |                                                                                                |
| 918 | Li, P., Cai, Y., Shi, L., Geng, L., Xing, P., Yu, Y., Kong, F., & Wang, Y. (2009). Microbial   |
| 919 | degradation and preliminary chemical characterization of Microcystis exopolysaccharides        |
| 920 | from a cyanobacterial water bloom of Lake Taihu. International Review of Hydrobiology, 94,     |
| 921 | 645-655. https://doi.org/10.1002/iroh.200911149.                                               |
| 922 |                                                                                                |
| 923 | Maldener, I., Hannus, S., & Kammerer, M. (2003). Description of five mutants of the            |
| 924 | cyanobacterium Anabaena sp. strain PCC 7120 affected in heterocyst differentiation and         |
| 925 | identification of the transposon-tagged genes. FEMS Microbiology Letters, 224, 205-213.        |
| 926 | https://doi.org/10.1016/S0378-1097(03)00444-0.                                                 |
| 927 |                                                                                                |
| 928 | Masukawa, H., Sakurai, H., Hausinger, R. P., & Inoue, K. (2017). Increased heterocyst          |
| 929 | frequency by patN disruption in Anabaena leads to enhanced photobiological hydrogen            |
| 930 | production at high light intensity and high cell density. Applied Microbiology and             |
| 931 | Biotechnology, 101, 2177-2188. DOI 10.1007/s00253-016-8078-3.                                  |
| 932 |                                                                                                |
| 933 | Michelutti, N., Douglas, M. S. V., Lean, D. R. S., & Smol, J. P. (2002a). Physical and         |
| 934 | chemical limnology of 34 ultra-oligotrophic lakes and ponds near Wynniatt Bay, Victoria        |

935 Island, Arctic Canada. Hydrobiologia, 482, 1–13. https://doi.org/10.1023/A:1021201704844.

| 0 | 2 | r |
|---|---|---|
| ч | - | n |
| _ | _ | S |

| 550 |                                                                                                |
|-----|------------------------------------------------------------------------------------------------|
| 937 | Michelutti, N., Douglas, M. S. V., Muir, D. C. G., Wang, X., & Smol, J. P. (2002b).            |
| 938 | Limnological characteristics of 38 lakes and ponds on Axel Heiberg Island, High Arctic         |
| 939 | Canada. International Review of Hydrobiology, 87, 385-399.                                     |
| 940 |                                                                                                |
| 941 | Mohlin, M., Roleda, M. Y., Pattanaik, B., Tenne, SJ., & Wulff, A. (2012). Interspecific        |
| 942 | resource competition-combined effects of radiation and nutrient limitation on two diazotrophic |
| 943 | filamentous cyanobacteria. Microbial Ecology, 63, 736-750. https://doi.org/10.1007/s00248-     |
| 944 | 011-9964-у.                                                                                    |
| 945 |                                                                                                |
| 946 | Molot, L. A., & Dillon, P. J. (2003). Variation in iron, aluminum and dissolved organic        |
| 947 | carbon mass transfer coefficients in lakes. Water Research, 37, 1759-1768.                     |
| 948 | https://doi.org/10.1016/S0043-1354(02)00424-4.                                                 |
| 949 |                                                                                                |
| 950 | Molot, L. A., Li, G., Findlay, D. L., & Watson, S. B. (2010). Iron-mediated suppression of     |
| 951 | bloom-forming cyanobacteria by oxine in a eutrophic lake. Freshwater Biology, 55, 1102-        |
| 952 | 1117. https://doi.org/10.1111/j.1365-2427.2009.02384.x.                                        |
| 953 |                                                                                                |
| 954 | Mona, S., & Kaushik, A. (2015). Chromium and cobalt sequestration using                        |
| 955 | exopolysaccharides produced by freshwater cyanobacterium Nostoc linckia. Ecological            |
| 956 | Engineering, 82, 121-125. https://doi.org/10.1016/j.ecoleng.2015.04.037.                       |
| 957 |                                                                                                |
| 958 | Morel, F. M. M., Lam, P. J., & Saito, M.A. (2020). Trace metal substitution in marine          |
| 959 | phytoplankton. Annual Review of Earth and Planetary Sciences, 48, 491-517.                     |
| 960 | https://doi.org/10.1146/annurev-earth-053018-060108.                                           |
| 961 |                                                                                                |
| 962 | Nayak, S., Prasanna, R., Prasanna, B. M., & Sahoo, D.B. (2007). Analysing diversity among      |
| 963 | Indian isolates of Anabaena (Nostocales, Cyanophyta) using morphological, physiological        |
| 964 | and biochemical characters. World Journal of Microbiology and Biotechnology, 23, 1575-         |
| 965 | 1584. https://doi.org/10.1007/s11274-007-9403-x.                                               |
| 966 |                                                                                                |
| 967 | Odaka, M., & Kobayashi, M. (2013). Cobalt Proteins, Overview. In: Kretsinger, R.H.,            |
| 968 | Uversky, V.N., & Permyakov, E.A. (eds) Encyclopedia of Metalloproteins. Springer, New          |
| 969 | York, NY. https://doi-org.ezproxy.library.yorku.ca/10.1007/978-1-4614-1533-6_69.               |

| 970  |                                                                                                                             |
|------|-----------------------------------------------------------------------------------------------------------------------------|
| 971  | Ogata, H., Lubitz, W., & Higuchi, Y. (2016). Structure and function of [NiFe]                                               |
| 972  | hydrogenases. Journal of Biochemistry, 160, 251-258. https://doi.org/10.1093/jb/mvw048.                                     |
| 973  |                                                                                                                             |
| 974  | Ogawa, R. E., & Carr, J. F. (1969). The influence of nitrogen on heterocyst production in blue-                             |
| 975  | green algae. Limnology and Oceanography, 14, 342–351.                                                                       |
| 976  |                                                                                                                             |
| 977  | Olguín, E. J., & Sánchez-Galván, G. (2012). Heavy metal removal in phytofiltration and                                      |
| 978  | phycoremediation: the need to differentiate between bioadsorption and bioaccumulation. New                                  |
| 979  | Biotechnology, 30, 3-8. https://doi.org/10.1016/j.nbt.2012.05.020.                                                          |
| 980  |                                                                                                                             |
| 981  | Palmer, M. J., Galloway, J. M., Jamieson, H. E., Patterson, R. T., Falck, H., & Kokelj, S. V.                               |
| 982  | (2015). The concentration of arsenic in lake waters of the Yellowknife Area. Northwest                                      |
| 983  | Territories Geological Survey, NWT Open File 2015-06, 25 pg.                                                                |
| 984  |                                                                                                                             |
| 985  | Pick, F. R. (2016). Blooming algae: a Canadian perspective on the rise of toxic                                             |
| 986  | Cyanobacteria. Canadian Journal of Fisheries and Aquatic Sciences, 73, 1149-1158.                                           |
| 987  | https://doi.org/10.1139/cjfas-2015-0470.                                                                                    |
| 988  |                                                                                                                             |
| 989  | Quigg, A., Reinfelder, J. R., & Fisher, N. S. (2006). Copper uptake kinetics in diverse marine                              |
| 990  | phytoplankton. Limnology and Oceanography, 51, 893-899.                                                                     |
| 991  | https://doi.org/10.4319/lo.2006.51.2.0893.                                                                                  |
| 992  |                                                                                                                             |
| 993  | Rai, L. C., & Raizada, M. (1986). Nickel induced stimulation of growth, heterocyst                                          |
| 994  | differentiation, <sup>14</sup> CO <sub>2</sub> uptake and nitrogenase activity in <i>Nostoc muscorum</i> . New Phytologist, |
| 995  | 104, 111-114.                                                                                                               |
| 996  |                                                                                                                             |
| 997  | Rautio, M., Dufresne, F., Laurion, I., Bonilla, S., Vincent, W. F., & Christoffersen, K. S.                                 |
| 998  | (2011). Shallow freshwater ecosystems of the circumpolar Arctic. Ecoscience, 18, 204–222                                    |
| 999  | doi.org/10.2980/18-3-3463.                                                                                                  |
| 1000 |                                                                                                                             |
| 1001 | Reich, H. G., Rodriguez, I. B., LaJeunesse, T. C., & Ho, T. Y. (2020). Endosymbiotic                                        |
| 1002 | dinoflagellates pump iron: differences in iron and other trace metal needs among the                                        |
| 1003 | Symbiodiniaceae. Coral Reefs 39, 915–927. https://doi.org/10.1007/s00338-020-01911-z.                                       |

| 1005 | Riley, I. T., & Dilworth, M. J. (1985). Cobalt requirement for nodule development and            |
|------|--------------------------------------------------------------------------------------------------|
| 1006 | function in Lupinus angustifolius L. New Phytologist, 100, 347-359.                              |
| 1007 | https://doi.org/10.1111/j.1469-8137.1985.tb02784.x.                                              |
| 1008 |                                                                                                  |
| 1009 | Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M., & Stanier, R. Y. (1979). Generic       |
| 1010 | assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology,    |
| 1011 | 111, 1–61. https://doi.org/10.1099/00221287-111-1-1.                                             |
| 1012 |                                                                                                  |
| 1013 | Rivers, O. S., Beurmann, S., Dow, A., Cozy, L. M., & Videau, P. 2018. Phenotypic                 |
| 1014 | assessment suggests multiple start codons for HetN, an inhibitor of heterocyst differentiation   |
| 1015 | in, Anabaena sp. Strain PCC 7120. Journal of Bacteriology, 200:16 e00220-18.                     |
| 1016 | https://doi.org/10.1128/JB.00220-18.                                                             |
| 1017 |                                                                                                  |
| 1018 | Romero, I. C., Klein, N. J., Sañudo-Wilhelmy, S. A., & Capone, D. G. (2013). Potential trace     |
| 1019 | metal co-limitation controls on $N_2$ fixation and $NO_3^-$ uptake in lakes with varying trophic |
| 1020 | status. Frontiers in Microbiology, 4:54. https://doi.org/10.3389/fmicb.2013.00054.               |
| 1021 |                                                                                                  |
| 1022 | Rose, A. L. (2012). The influence of extracellular superoxide on iron redox chemistry and        |
| 1023 | bioavailability to aquatic microorganisms. Frontiers in Microbiology, 3, 24.                     |
| 1024 | https://doi.org/10.3389/fmicb.2012.00124.                                                        |
| 1025 |                                                                                                  |
| 1026 | Rossi, F., & de Phillipis, R. D. (2015). Role of cyanobacterial exopolysaccharides in            |
| 1027 | phototrophic biofilms and in complex microbial mats. Life, 5, 1218-1238.                         |
| 1028 | https://doi.org/10.3390/life5021218.                                                             |
| 1029 |                                                                                                  |
| 1030 | Rossmann, R., & Barres, J. (1988). Trace element concentrations in near-surface waters of        |
| 1031 | the Great Lakes and methods of collection, storage, and analysis. Journal of Great Lakes         |
| 1032 | Research, 14, 188-204. https://doi.org/10.1016/S0380-1330(88)71548-8.                            |
| 1033 |                                                                                                  |
| 1034 | Rother, J., & Fay, P. (1979). Blue-green algal growth and sporulation in response to             |
| 1035 | simulated surface bloom conditions. British Phycological Journal, 14, 59-68.                     |
| 1036 | https://doi.org/10.1080/00071617900650091.                                                       |
| 1037 |                                                                                                  |

Saito, M. A., Moffett, J. W., Chisholm, S. W., & Waterbury, J. B. (2002). Cobalt limitation 1038 1039 and uptake in *Prochlorococcus*. Limnology and Oceanography, 47, 1629–1636. 1040 https://doi.org/10.4319/lo.2002.47.6.1629. 1041 Schindler, D. W., Kalff, J., Welch, H. E., Brunskill, G. J., Kling, H., & Kritsch, N. (1974). 1042 Eutrophication in the high arctic – Meretta Lake, Cornwallis Island (75° N Lat.). Journal of 1043 the Fisheries Research Board of Canada, 31, 647-662. https://doi.org/10.1139/f74-096. 1044 1045 1046 Schindler, D. W., Hecky, R. E., Findlay, D. L., Stainton, M. P., Parker, B. R., Paterson, M. J., 1047 Beaty, K. G., Lyng, M., & Kasian, S. E. M. (2008). Eutrophication of lakes cannot be 1048 controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment. Proceedings of the National Academy of Sciences, 105, 11254–11258. 1049 1050 https://doi.org/10.1073/pnas.0805108105. 1051 1052 Schlesinger, D. A., Molot, L. A., & Shuter, B. J. (1981). Specific growth rates of freshwater 1053 algae in relation to cell size and light intensity. Canadian Journal of Fisheries and Aquatic 1054 Sciences, 38, 1052-1058. https://doi.org/10.1139/f81-145. 1055 1056 Schmidt, B. M. (2018). Nitrogen fixation in lakes: response to micronutrients and exploration of a novel method of measurement. MS thesis, Kent State University, Ohio. 1057 http://rave.ohiolink.edu/etdc/view?acc\_num=kent1524172083482442. 1058 1059 Schoffman, H., Lis, H., Shaked, Y., & Keren, N. (2016). Iron-nutrient interactions within 1060 1061 phytoplankton. Frontiers in Plant Science, 7:1223. https://doi.org/10.3389/fpls.2016.01223. 1062 1063 Shah, P., McCabe, S. K., Venkiteswaran, J. J., Molot, L. A., & Schiff, S. L. (2023). Monod parameterization and competition at low iron among freshwater cyanobacteria and 1064 1065 chlorophytes. Hydrobiologia, 850, 1141–1157. https://doi.org/10.1007/s10750-023-05150-5. 1066 1067 Sharma, R. M., & Azeez, P. A. (1988). Accumulation of copper and cobalt by blue-green algae at different temperatures. International Journal of Environmental Analytical Chemistry, 1068 1069 32, 87-95. https://doi.org/10.1080/03067318808078419. 1070 1071 Sivarajah, B., Simmatis, B., Favot, E. J., Palmer, M. J., & Smol, J. P. (2021). Eutrophication 32

| 1072 | and climatic changes lead to unprecedented cyanobacterial blooms in a Canadian sub-Arctic      |
|------|------------------------------------------------------------------------------------------------|
| 1073 | landscape. Harmful Algae, 105: p102036. https://doi.org/10.1016/j.hal.2021.102036.             |
| 1074 |                                                                                                |
| 1075 | Skjelkvåle, B. L., Steinnes, E., Rognerud, S., Fjeld, E., Berg, T., & Røyset, O. (2006). Trace |
| 1076 | metals in Norwegian surface waters, soils, and lake sediments – relation to atmospheric        |
| 1077 | deposition. NIVA Report 5222-2006.                                                             |
| 1078 |                                                                                                |
| 1079 | Smith, R. J., Hobson, S., & Ellis, I. R. (1987). Evidence for calcium-mediated regulation of   |
| 1080 | heterocyst frequency and nitrogenase activity in Nostoc 6720. New Phytologist, 105, 531-       |
| 1081 | 541. https://doi.org/10.1111/j.1469-8137.1987.tb00891.x.                                       |
| 1082 |                                                                                                |
| 1083 | Søndergaard, D., Pedersen, C. N., & Greening, C. (2016). HydDB: a web tool for                 |
| 1084 | hydrogenase classification and analysis. Scientific Reports, 6(1), pp.1-8.                     |
| 1085 | https://doi.org/10.1038/srep34212.                                                             |
| 1086 |                                                                                                |
| 1087 | Sprouffske, A., & Wagner, K. (2016). Growthcurver: an R package for obtaining                  |
| 1088 | interpretable metrics from microbial growth curves. BMC Bioinformatics. 17:172.                |
| 1089 | https://doi.org/10.1186/s12859-016-1016-7.                                                     |
| 1090 |                                                                                                |
| 1091 | Statistics Canada. (2017). Average annual runoff in Canada, 1971 to 2013. Map available        |
| 1092 | online at https://www150.statcan.gc.ca/n1/daily-quotidien/170321/mc-b001-eng.htm.              |
| 1093 |                                                                                                |
| 1094 | Sunda, W. G., & Huntsman, S. A. (1995). Cobalt and zinc interreplacement in marine             |
| 1095 | phytoplankton: Biological and geochemical implications. Limnology and Oceanography, 40,        |
| 1096 | 1404-1417. https://doi.org/10.4319/lo.1995.40.8.1404.                                          |
| 1097 |                                                                                                |
| 1098 | Tang, Y., Ding, S., Wu, Y., Chen, M., Li, C., Yi, Q., Ma, X., & Zhang, M. (2021).              |
| 1099 | Mechanism of cobalt migration in lake sediments during algae blooms. Journal of Soils and      |
| 1100 | Sediments, 21, 3415-3426. https://doi.org/10.1007/s11368-021-02917-y.                          |
| 1101 |                                                                                                |
| 1102 | Torrecilla, I., Leganés, F., Bonilla, I., & Fernández-Piñas, F. (2004). A calcium signal is    |
| 1103 | involved in heterocyst differentiation in the cyanobacterium Anabaena sp.                      |
| 1104 | PCC7120. Microbiology, 150, 3731-3739. https://doi.org/10.1099/mic.0.27403-0.                  |
| 1105 |                                                                                                |

| 1106 | Twiss, M. R., Auclair, JC., & Charlton, M. N. 2000. An investigation into iron-stimulated      |
|------|------------------------------------------------------------------------------------------------|
| 1107 | phytoplankton productivity in epipelagic Lake Erie during thermal stratification using trace   |
| 1108 | metal clean techniques. Canadian Journal of Fisheries and Aquatic Sciences, 57, 86-            |
| 1109 | 95. https://doi.org/10.1139/f99-1892000.                                                       |
| 1110 |                                                                                                |
| 1111 | Vasas, G., Surányi, G., Bácsi, I., M-Hamvas, M., Máthé, C., Gonda, S., & Borbely, G. (2013).   |
| 1112 | Alteration of Cylindrospermopsin content of Aphanizomenon ovalisporum (Cyanobacteria,          |
| 1113 | Nostocales) due to step-down from combined nitrogen to dinitrogen. Advances in                 |
| 1114 | Microbiology, 03, 557–564.                                                                     |
| 1115 | http://www.scirp.org/journal/PaperInformation.aspx?PaperID=40804.                              |
| 1116 |                                                                                                |
| 1117 | Ventila, S., & El-Shehawy, R. (2007). Ammonium ions inhibit nitrogen fixation but do not       |
| 1118 | affect heterocyst frequency in the bloom-forming cyanobacterium Nodularia spumigena            |
| 1119 | strain AV1. Microbiology, 153, 3704-3712. https://doi.org/10.1099/mic.0.2007/007849-0.         |
| 1120 |                                                                                                |
| 1121 | Vézina, S., & Vincent, W. F. (1997). Arctic cyanobacteria and limnological properties of       |
| 1122 | their environment: Bylot Island, Northwest Territories, Canada (73° N, 80° W). Polar           |
| 1123 | Biology, 17, 523-534. https://doi.org/10.1007/s003000050151.                                   |
| 1124 |                                                                                                |
| 1125 | Videau, P., Rivers, O. S., Hurd, K., Ushijima, B., Oshiro, R. T., Ende, R. J., O'Hanlon,       |
| 1126 | S. M., & Cozy, L. M. (2016). The heterocyst regulatory protein HetP and its homologs           |
| 1127 | modulate heterocyst commitment in Anabaena sp. strain PCC 7120. Proceedings of the             |
| 1128 | National Academy of Sciences, 113(45): E6984–E6992.                                            |
| 1129 | https://doi.org/10.1073/pnas.1610533113.                                                       |
| 1130 |                                                                                                |
| 1131 | Vincent, W. F. (2000). Cyanobacteria dominance in the polar regions. Chapter 12 in Whitton,    |
| 1132 | B. A., & Potts, M., The Ecology of Cyanobacteria, pp. 321-340 Kluwer Academic Publishers,      |
| 1133 | the Netherlands.                                                                               |
| 1134 |                                                                                                |
| 1135 | Vincent, W. F., Quesada, A. (2012). Cyanobacteria in high latitude lakes, rivers and seas. In: |
| 1136 | Ecology of Cyanobacteria II: Their Diversity in Space and Time (Ed. Whitton, B. A.), pp.       |
| 1137 | 371-385 doi: 10.1007/978-94-007-3855-3_13. Springer Science+Business Media B.V.,               |
| 1138 | Dordrecht. https://doi.org/10.1007/978-94-007-3855-3_13.                                       |

| 1140 | Walve, J., Gelting, J., & Ingri, J. (2014). Trace metals and nutrients in Baltic Sea          |
|------|-----------------------------------------------------------------------------------------------|
| 1141 | cyanobacteria: Internal and external fractions and potential use in nitrogen fixation. Marine |

1142 Chemistry, 158, 27-38. https://doi.org/10.1016/j.marchem.2013.11.002.

1143

1144 Wood, S. A., Prentice, M. J., Smith, K., & Hamilton, D. P. (2010). Low dissolved inorganic

1145 nitrogen and increased heterocyte frequency: precursors to *Anabaena planktonica* blooms in

a temperate, eutrophic reservoir. Journal of Plankton Research, 32, 1315-1325.

1147 https://doi.org/10.1093/plankt/fbq048.

1148

1149 Worms, I., Simon, D. F., Hassler, C. S., & Wilkinson, K. J. (2006). Bioavailability of trace

1150 metals to aquatic microorganisms: importance of chemical, biological and physical processes

1151 on biouptake. Biochimie, 88, 1721-1731. https://doi.org/10.1016/j.biochi.2006.09.008.

1152

1153 Wurtsbaugh, W. A. (1988). Iron, molybdenum and phosphorus limitation of N<sub>2</sub> fixation

1154 maintains nitrogen deficiency of plankton in the Great Salt Lake drainage (Utah, USA), SIL

1155 Proceedings, 23, 121-130. https://doi.org/10.1080/03680770.1987.11897913.

1156

1157 Wurtsbaugh, W. A., & Horne, A. J. (1982). Effects of copper on nitrogen fixation and growth

of blue-green algae in natural plankton associations. Canadian Journal of Fisheries and

1159 Aquatic Sciences, 39, 1636-1641. https://doi.org/10.1139/f82-220.

1160

1161 Wurtsbaugh, W. A., & Horne, A. J. (1983). Iron in eutrophic Clear Lake, California: its

1162 importance for algal nitrogen fixation and growth. Canadian Journal of Fisheries and Aquatic

- 1163 Sciences, 40, 1419-1429. https://doi.org/10.1139/f83-164.
- 1164

1165 Xu, X., Risoul, V., Byrne, D., Champ, S., Douzi, B., & Latifi, A. (2020). HetL, HetR and PatS

1166 form a reaction-diffusion system to control pattern formation in the cyanobacterium *nostoc* 

1167 PCC 7120. eLife, 9: e59190. https://doi.org/10.7554/eLife.59190.

1168

1169 Zakrisson, A., & Larsson, U. (2014). Regulation of heterocyst frequency in Baltic Sea

1170 *Aphanizomenon* sp. Journal of Plankton Research, 36, 1357–1367.

1171 https://doi.org/10.1093/plankt/fbu055.

- 1173 Zhao, J., & Wolk, C. P. (2006). Developmental biology of heterocysts. In Whitworth, D. E.,
- editor, Myxobacteria: multicellularity and differentiation, pp. 397–418. American Society of
- 1175 Microbiology, Washington, D.C. https://doi.org/10.1128/9781555815677.ch23.
- 1176
- 1177 Zulkefli, N. S., & Hwang, S.J. (2020). Heterocyst development and diazotrophic growth of
- 1178 *Anabaena variabilis* under different nitrogen availability. Life, 10, 279.
- 1179 https://doi.org/10.3390/life10110279.

### 1181 Appendix 1

1182 Water samples for dissolved Co (passing through a 0.45 µm membrane filter) were collected from 94 lakes within a 30 km radius of Yellowknife in the Northwest Territories by the 1183 1184 Northwest Territories Geological Survey by helicopter in September 2012 and September 2014 (Palmer et al., 2015). Samples were collected 30 cm below the surface in 250 mL 1185 polyethylene containers that had been rinsed three times with lake water. Following 1186 collection, samples were stored out of direct sunlight in a cooler with ice packs and 1187 immediately delivered to a laboratory accredited by the Canadian Association for Laboratory 1188 1189 Accreditation. Samples were filtered immediately upon arrival at the laboratory with a 0.45 um filter and acidified with high purity nitric acid. Trace metals were measured using ICP-1190 MS following EPA Method 200.8. The detection limit was 1.7 nmol  $L^{-1}$  (0.1 µg  $L^{-1}$ ). Data 1191 were provided in digital format by Jennifer Korosi to the authors of this paper. 1192 1193 Integrated epilimnetic samples were collected from nine lakes in central Ontario between June 2010 and July 2017 by the Ontario Ministry of Environment, Conservation and 1194 1195 Parks (MECP). These lakes include the eight so-called Dorset 'A' lakes (Blue Chalk, 1196 Crosson, Dickie, Plastic, Harp, Heney, Red Main, Red Chalk East (Molot and Dillon, 2003; Arnott et al. 2003) and Ridout. Samples were filtered with 80 µm mesh, allowed to settle, 1197 acidified with nitric acid to make the final solution 1% HNO<sub>3</sub>, decanted and analyzed via 1198 ICP-MS with an inductively coupled argon plasma as the ion source (MECP method 1199 MET3474). Hence, Co included the dissolved and all colloidal phases and perhaps some 1200 small non-settling particulate matter as well. The method detection limit was 1.7 nmol L<sup>-1</sup> 1201  $(0.1 \ \mu g \ L^{-1}).$ 1202

1203

- **Table 1.** Mean growth rates (day<sup>-1</sup>,  $\pm$  standard deviation) of four filamentous cyanobacteria
- species in  $BG11_0$  media without inorganic N and *Microcystis* in BG11 media with inorganic
- 1207 N grown in duplicate at three Co concentrations (nmol L<sup>-1</sup>). Paired superscript letters indicate
- significant differences between treatments within a species at the 1% level (ANOVA).
- 1209

| Species                     | 0.17          | 17              | 170           |
|-----------------------------|---------------|-----------------|---------------|
| Aphanizomenon flos-aquae    | $1.26\pm0.15$ | $0.84\pm0.27$   | $0.79\pm0.13$ |
| Aphanizomenon skujae        | $0.90\pm0.12$ | $0.84\pm0.22$   | $0.79\pm0.06$ |
| Dolichospermum flos-aquae   | $1.83\pm0.18$ | $1.25\pm0.17$   | $1.35\pm0.09$ |
| Dolichospermum lemmermannii | $0.79\pm0.16$ | $1.03 \pm 0.31$ | $0.61\pm0.09$ |
| Microcystis aeruginosa      | $0.84\pm0.15$ | $0.76\pm0.19$   | $1.10\pm0.51$ |

*r* estimated from r growthcurver logistic growth package

### 1210

 $\mu_{sl}$ , estimated as slope of ln(A<sub>750</sub>) versus time during days 0-7.

| Species                                  | 0.17               | 17                | 170               |
|------------------------------------------|--------------------|-------------------|-------------------|
| Aphanizomenon flos-aquae <sup>1</sup>    | $0.66\pm0.05$      | $0.55\pm0.03$     | $0.67\pm0.22$     |
| Aphanizomenon skujae <sup>2</sup>        | $1.05\pm0.08^{ab}$ | $0.66\pm0.03^{a}$ | $0.67\pm0.04^{b}$ |
| Dolichospermum flos-aquae <sup>1</sup>   | $0.62\pm0.06$      | $0.64\pm0.00$     | $0.77\pm0.07$     |
| Dolichospermum lemmermannii <sup>2</sup> | $0.57\pm0.28$      | $0.76\pm0.03$     | $0.60\pm0.02$     |
| Microcystis aeruginosa <sup>2</sup>      | $0.73\pm0.10$      | $0.69\pm0.04$     | $0.63\pm0.10$     |

1211 1. maximum  $\mu_{sl}$  occurred during days 4-7.

- 1212 2. maximum  $\mu_{sl}$  occurred during days 0-4 (cultures were sampled on days 0, 4, 5, 7 and 11).
- 1213

Table 2. Changes in mean summer (June-September) cell abundance, biomass and cell size
of cyanobacteria vegetative and heterocyst cells in the metalimnion of Lake 227 between
2002-2012 when *Aphanizomenon schindlerii* dominated and 2015-2020 when *A. skujae*dominated the cyanobacteria community. June-September means are reported with standard

- deviations. p values are for two-tailed t test for independent means. t-test p values
- 1219 (independent means) are presented; n.s., not significant at the 5% level.
- 1220

|                                       | 2002-2012          | 2015-2020          | % change | p value  |
|---------------------------------------|--------------------|--------------------|----------|----------|
| Heterocyst abundance                  | 1.0 <u>+</u> 0.5   | 1.6 <u>+</u> 0.4   | +68      | 0.015    |
| $(10^7 \text{ cells } \text{L}^{-1})$ |                    |                    |          |          |
| Heterocyst biomass                    | 313 <u>+</u> 115   | 269 <u>+</u> 85    | -14      | n.s.     |
| $(\mu g L^{-1})$                      |                    |                    |          |          |
| Heterocyst cell volume                | 36 <u>+</u> 10     | 17 <u>+</u> 2      | -54      | 0.0002   |
| (µm <sup>3</sup> per cell)            |                    |                    |          |          |
| Vegetative cell abundance             | 3.1 <u>+</u> 1.1   | 3.3 <u>+</u> 0.8   | +6       | n.s.     |
| $(10^8 \text{ cells } \text{L}^{-1})$ |                    |                    |          |          |
| Vegetative biomass <sup>1</sup>       | 7607 <u>+</u> 2381 | 4857 <u>+</u> 1613 | -36      | 0.024    |
| $(\mu g L^{-1})$                      |                    |                    |          |          |
| Vegetative cell volume                | 28 <u>+</u> 5      | 15 <u>+</u> 3      | -46      | < 0.0001 |
| (µm <sup>3</sup> per cell)            |                    |                    |          |          |
| Vegetative cell length                | 5.5 <u>+</u> 0.42  | $5.2 \pm 0.2$      | -5.5     | n.s.     |
| (µm per cell)                         |                    |                    |          |          |
| Cell ratio (%),                       | 3.0 <u>+</u> 1.3   | $4.8 \pm 0.9$      | +60      | 0.01     |
| heterocyst/total                      |                    |                    |          |          |
| cyanobacteria (i.e.,                  |                    |                    |          |          |
| heterocyst frequency)                 |                    |                    |          |          |
| Biomass ratio (%),                    |                    |                    |          |          |
| heterocyst/total                      | 4.1 + 1.2          | 5.4 + 0.1          | +32      | < 0.0001 |
| cyanobacteria <sup>2</sup>            | —                  | —                  |          |          |

1221 1. Biovolume was converted to biomass wet weight by assuming a cell density of 1 gm  $L^{-1}$ .

1222 2. Caution is warranted when comparing cell ratio to biomass ratio since cell densities are1223 used to estimate biomasses, i.e., spurious correlation is possible.

**Table 3.** Summary of metal surveys of Canadian surface waters. The wide range in detection limit reported by accredited laboratories

is due to differences in method and equipment.

|                              |                                                | Number of          | Number of samples and Co                    |                                                     |                                                                         |
|------------------------------|------------------------------------------------|--------------------|---------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------|
| Reference                    | Location                                       | aquatic<br>systems | phase (total,<br>dissolved)                 | Laboratory and<br>method                            | Detection limit<br>(DL)                                                 |
| Antoniades et al.<br>(2003a) | Alert, Arctic<br>Archipelago                   | 31                 | 31 total                                    | Environ Canada<br>NLET <sup>1</sup>                 | 17 nM (1 ppb)                                                           |
| "                            | Mould Bay, Arctic<br>Archipelago               | 17                 | 17 total                                    | Environ Canada<br>NLET <sup>1</sup>                 | 17 nM (1 ppb)                                                           |
| Antoniades et al.<br>(2003b) | Ellef Ringnes<br>Island, Arctic<br>Archipelago | 25                 | 25 total                                    | Environ Canada<br>NLET <sup>1</sup>                 | 17 nM (1 ppb)                                                           |
| Michelutti et al.<br>(2002a) | Victoria Island,<br>Arctic Archipelago         | 34                 | 34 total                                    | Environ Canada<br>NLET <sup>1</sup>                 | 17 nM (1 ppb)                                                           |
| Michelutti et al.<br>(2002b) | Axel Heiberg<br>Island, Arctic<br>Archipelago  | 38                 | 38 total                                    | Environ Canada<br>NLET <sup>1</sup>                 | 17 nM (1 ppb)                                                           |
| Rossmann and Barres (1988)   | Lake Superior                                  | 1                  | 22 dissolved<br>(0.5 μm), 22<br>particulate | flameless atomic<br>absorption<br>spectrophotometry | DL not stated<br>but Tables 1<br>and 10 suggest<br>1.7 nM (0.01<br>ppb) |
| "                            | Lake Huron                                     | 1                  | 1 dissolved (0.5<br>μm), 1 total            | "                                                   | "                                                                       |
|                              | Lake Michigan<br>(USA)                         | 1                  | 11 filtered (0.5 $\mu$ m), 11 total         | "                                                   | "                                                                       |

| "                                                                                          | Lake Erie                                                       | 1  | 11 filtered (0.5<br>μm), 11 total                                                                                                              | "                                                                                                             | "                                                           |
|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| "                                                                                          | Lake Ontario                                                    | 1  | 23 dissolved<br>(0.5 µm), 23<br>particulate                                                                                                    | n                                                                                                             |                                                             |
| Palmer et al. (2015)                                                                       | Northwest<br>Territories,<br>Yellowknife<br>region              | 94 | 115 dissolved<br>(0.45 μm)                                                                                                                     | ICP-MS following<br>EPA Method 200.8<br>revision 5.4 (Creed<br>et al., 1994)                                  | 1.7 nM (0.1 ppb<br>with 0.1 ppb<br>increments<br>above DL)  |
| 2017 cross Canada<br>survey (this study)                                                   | Saskatchewan,<br>Manitoba, Ontario,<br>Quebec, New<br>Brunswick | 40 | 167 dissolved<br>(0.45 μm)<br>excluding<br>Buffalo Pound<br>surface scum<br>and Ottawa and<br>Toronto<br>municipal<br>stormwater<br>facilities | Trent Water Quality<br>Centre; ICP-MS                                                                         | 0.017 nM<br>(0.001 ppb)                                     |
| Ontario Ministry of the<br>Environment,<br>Conservation and<br>Protection<br>(unpublished) | Central Ontario<br>near Dorset                                  | 9  | 414 settled                                                                                                                                    | Ontario Ministry of<br>Environment,<br>Conservation and<br>Protection<br>Laboratory, ICP-MS<br>Method MET3474 | 1.2 nM (0.07<br>ppb with 0.1<br>ppb increments<br>above DL) |

1228 1. Method not described but cited as Environment Canada (1994). Manual of Analytical Methods. National Laboratory for

1229 Environmental Testing, Canadian Centre for Inland Waters.

1231 **Table 4.** Summary of heterocyst frequencies (HF) and Co concentration in published culture

1232 studies. Only wild-type species are included here. The genus names listed here are the names

1233 reported in the publications but pelagic *Anabaena* has been renamed *Dolichospermum*.

| Species                 | Со                      | HF  | Reference                      |
|-------------------------|-------------------------|-----|--------------------------------|
|                         | (nmol L <sup>-1</sup> ) | (%) |                                |
| Anabaena cylindrica     | 170                     | 4.1 | Jewell and Kulasooriya (1970)  |
| Anabaena cylindrica     | 170                     | 4.7 | Kulasooriya et al. (1972)      |
| Anabaena cylindrica     | 170                     | 5.2 | Ogawa and Carr (1969)          |
| Anabaena cylindrica     | 170                     | 9.0 | Bradley and Carr (1976)        |
| Anabaena cylindrica     | 170                     | 5.8 | Nayak et al. (2007)            |
| Anabaena fertilissima   | 170                     | 7.4 | Nayak et al. (2007)            |
| Anabaena flos-aquae     | 170                     | 3.2 | Ogawa and Carr (1969)          |
| Anabaena flos-aquae     | 170                     | 9.2 | Kangatharalingam et al. (1992) |
| Anabaena inequalis      | 170                     | 5.4 | Ogawa and Carr (1969)          |
| Anabaena iyengarii      | 170                     | 7.6 | Nayak et al. (2007)            |
| Anabaena laxa           | 170                     | 5.1 | Nayak et al. (2007)            |
| Anabaena oryzae         | 170                     | 8.5 | Nayak et al. (2007)            |
| Anabaena oscillarioides | 170                     | 4.3 | Nayak et al. (2007)            |
| Anabaena PCC7108        | 170                     | 7.8 | Nayak et al. (2007)            |
| Anabaena PCC7120        | 170                     | 6.5 | Nürnberg et al. (2015)         |
| Anabaena PCC7120        | 170                     | 7.2 | Chaurasia and Apte (2011)      |
| Anabaena PCC7120        | 170                     | 7.5 | Berendt et al. (2012)          |
| Anabaena PCC7120        | 170                     | 8.0 | Videau et al. (2016)           |
| Anabaena PCC7120        | 170                     | 8.7 | Borthakur et al. (2005)        |
| Anabaena PCC7120        | 170                     | 8.9 | Rivers et al. (2018)           |
| Anabaena PCC7120        | 21                      | 11  | Masukawa et al. (2017)         |
| Anabaena PCC7122        | 170                     | 8.0 | Nayak et al. (2007)            |
| Anabaena sp.            | 170                     | 6.3 | Ahad et al. (2015)             |
| Anabaena sphaerica      | 170                     | 5.5 | Nayak et al. (2007)            |
| Anabaena spiroides      | 170                     | 4.3 | Nayak et al. (2007)            |
| Anabaena vaginicola     | 170                     | 6.3 | Nayak et al. (2007)            |
| Anabaena variabilis     | 170                     | 4.3 | Ogawa and Carr (1969)          |
| Anabaena variabilis     | 170                     | 5.9 | Nayak et al. (2007)            |
| Dolichospermum          |                         |     |                                |
| lemmermannii            | 0, 1.7, 17              | <2  | Kelly et al. (2021)            |
| Dolichospermum          |                         |     |                                |
| planctonicum            | 0, 1.7, 17              | >6  | Kelly et al. (2021)            |
| Aphanizomenon           | 12                      | 3 7 | de Figueirado et al. $(2011)$  |
| Aphanizomenon flos-     | 42                      | 3.2 | ue Figueireuo et al. (2011)    |
| ασμαε                   | 16                      | 4.4 | Rother and Fav (1979)          |
| Aphanizomenon           | 10                      |     | 1000001 und 1 uy (1979)        |
| r                       |                         |     |                                |

| ovalisporum         | 170 | 8.4 | Vasas et al. (2013)           |
|---------------------|-----|-----|-------------------------------|
| Aphanizomenon sp.   | 42  | 3.8 | Mohlin et al. (2012)          |
| Nodularia spumigena | 198 | 8.5 | Vintila and El-Shehawy (2007) |
| Nostoc muscorum     | 84  | 5.9 | Rai and Raizada (1986)        |

**Table 5.** Summary of published heterocyst frequencies in natural freshwater and brackish

| 1238 | systems. Co concentrations a | are not available (n/a) | except for Lake 227. |
|------|------------------------------|-------------------------|----------------------|
|------|------------------------------|-------------------------|----------------------|

| Dominant<br>species                                                                 | Study site                                   | Heterocyst<br>frequency (%)                                                          | Co<br>(nmol L <sup>-1</sup> ) | Reference                          |
|-------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------|------------------------------------|
| Aphanizomenon<br>flos-aquae                                                         | Lough Neagh,<br>Northern Ireland             | ~5-7% in 1970 and<br>1971 when nitrate<br>was low; <0.2%<br>when nitrate was<br>high | n/a                           | Riddolls<br>(1985)                 |
| Aphanizomenon<br>sp.                                                                | Baltic Sea                                   | peaked at 4.5%,<br>range 1.5-4.5% at 7<br>stations, oscillated<br>with time          | n/a                           | Zakrisson<br>and Larsson<br>(2014) |
| various                                                                             | Sawley Dene,<br>North<br>Yorkshire, UK       | peaked at 4% in 1976 and 1977                                                        | n/a                           | Cmiech et al.<br>(1984)            |
| Aphanizomenon<br>sp.                                                                | Lake Trichonis,<br>Greece                    | peaked at 3% in<br>1985-86 when<br>nitrate was low                                   | n/a                           | Anagnostidis<br>et al. (1988)      |
| Dolichospermum<br>(Anabaena)<br>planktonica                                         | Lower Karori<br>Reservoir, New<br>Zealand    | several annual<br>peaks between 5.3<br>and 9.3%                                      | n/a                           | Wood et al.<br>(2010)              |
| Aphanizomenon<br>schindlerii 2002-<br>2012,<br>Aphanizomenon<br>skujae<br>2015-2020 | Lake 227,<br>northwestern<br>Ontario, Canada | mean 3.0%<br>2002-2012;<br>mean 4.8%<br>2015-2020                                    | 0.7-4.0                       | this study                         |

| 1241 | Figure 1. Growth curves of five cyanobacteria species at three nominal concentrations of Co.    |
|------|-------------------------------------------------------------------------------------------------|
| 1242 | $A_{750}$ is absorbance at 750 nm. Lines connect mean absorbance of duplicate cultures and bars |
| 1243 | indicate standard deviations.                                                                   |

**Figure 2.** Heterocyst frequencies as a percentage of total cell number of four cyanobacteria

1246 species at three nominal Co concentrations. Each bar represents the mean heterocyst

1247 percentage of five counts, bars indicate standard deviation and letters above indicate

statistically different means as found by a two-way ANOVA followed by Tukey's HSD.

1249

Figure 3. Mean summer (June-September) (± standard deviation) heterocyst frequency based
on cell abundance in the epilimnion and metalimnion of Lake 227, 2000-2020. Error bars are
standard deviations *Aphanizomenon schindlerii* was the dominant cyanobacteria 2002-2012

and *Aphanizomenon skujae* 2015-2020.

1254

Figure 4. Cyanobacteria and total phytoplankton biomass, heterocyst frequency (HF, %) and
dissolved cobalt concentration (nmol L<sup>-1</sup>) in Lake 227 in 2017.

1257

Figure 5. Mean epilimnetic dissolved Co concentrations in Canadian lakes and reservoirs during the summer of 2017. Error bars indicate standard deviation when multiple samples were analyzed for a particular location during the year. Colors indicate the province of the lake. Lake Winnipeg is large enough to be divided into three distinct parts: North Basin, South Basin and the Narrows which separates the basins.

1203

Figure 1. Growth curves of five cyanobacteria species at three nominal concentrations of Co. A<sub>750</sub> is
absorbance at 750 nm. Lines connect mean absorbance of duplicate cultures and bars indicate standard
deviations.



Figure 2. Heterocyst frequencies as a percentage of total cell number of four cyanobacteria
species at three nominal Co concentrations. Each bar represents the mean heterocyst
percentage of five counts, bars indicate standard deviation and letters above indicate
statistically different means as found by a two-way ANOVA followed by Tukey's HSD.



Figure 3. Mean summer (June-September) (± standard deviation) heterocyst frequency based
on cell abundance in the epilimnion and metalimnion of Lake 227, 2000-2020. Error bars are
standard deviations. *Aphanizomenon schindlerii* was the dominant cyanobacteria in 20022012 and *Aphanizomenon skujae* in 2015-2020.



Figure 4. Cyanobacteria and total phytoplankton biomass, heterocyst frequency (HF, %), ammonia concentration (µmol L<sup>-1</sup>) and dissolved cobalt concentration (nmol L<sup>-1</sup>) in Lake 227 in 2017. Note the different vertical scales on the right side. 



Figure 5. Mean epilimnetic dissolved Co concentrations in Canadian lakes and reservoirs
during the summer of 2017. Error bars indicate standard deviation when multiple samples
were analyzed for a particular location during the year. Colors indicate the province of the
lake. Lake Winnipeg is large enough to be divided into three distinct parts: North Basin,
South Basin and the Narrows which separates the basins.



### **Supplementary Information**

**Table S1**. Locations of lakes and reservoirs in 2017 metals survey with basin morphometry, land use (forestry, grassland, agriculture, urban) and surface layer pH, conductivity, total N (TN) and total P (TP). For Lake Winnipeg, data are given for the north and south basins. Chemistry varies with season, depth and station (in large lakes) and these data are meant for approximate characterization purposes only.

|                            | Latitude  | Province     | Mean  | Maximum | Surface | Catchment          | pН  | Conduct             | TP                    | TN                    | Land      |
|----------------------------|-----------|--------------|-------|---------|---------|--------------------|-----|---------------------|-----------------------|-----------------------|-----------|
|                            | longitude |              | depth | depth   | area    | area               |     | ivity               | (µg L <sup>-1</sup> ) | (mg L <sup>-1</sup> ) | use       |
|                            |           |              | (m)   | (m)     | (ha)    | (km <sup>2</sup> ) |     | (µS cm <sup>-</sup> |                       |                       |           |
|                            |           |              |       |         |         |                    |     | <sup>1</sup> )      |                       |                       |           |
| Buffalo Pound <sup>1</sup> | 50.577 N  | Saskatchewan | 3     | 5.5     | 2910    | 1282               | 8.4 | 480                 | 99                    | 1.2                   | Qu'App    |
| Lake                       | 105.360 W |              |       |         |         |                    |     |                     |                       |                       | elle      |
|                            |           |              |       |         |         |                    |     |                     |                       |                       | River     |
|                            |           |              |       |         |         |                    |     |                     |                       |                       | basin:    |
|                            |           |              |       |         |         |                    |     |                     |                       |                       | 75%       |
|                            |           |              |       |         |         |                    |     |                     |                       |                       | agricultu |
|                            |           |              |       |         |         |                    |     |                     |                       |                       | re, 12%   |
|                            |           |              |       |         |         |                    |     |                     |                       |                       | grasslan  |
|                            |           |              |       |         |         |                    |     |                     |                       |                       | ds, urban |
| Wascana Lake <sup>2</sup>  | 50.431 N  | Saskatchewan | 1.5   | 3.4     | 50      | 1248               | 9   | 1000                | 108                   | 0.4-1.6               | See       |
|                            | 104.589 W |              |       |         |         |                    |     |                     |                       | (dissolv              | Buffalo   |
|                            |           |              |       |         |         |                    |     |                     |                       | ed)                   | Pound;    |
|                            |           |              |       |         |         |                    |     |                     |                       |                       | in large  |
|                            |           |              |       |         |         |                    |     |                     |                       |                       | urban     |
|                            |           |              |       |         |         |                    |     |                     |                       |                       | centre    |
| Pasqua Lake                | 50.785 N  | Saskatchewan | 5.8   | 15.5    | 2020    | $11 \times 10^3$   | 8.5 | 2100                | 615                   | 4.23                  | See       |
|                            | 103.961 W |              |       |         |         |                    |     |                     |                       |                       | Buffalo   |
|                            |           |              |       |         |         |                    |     |                     |                       |                       | Pound     |

| Katepwa Lake                      | 50.723 N<br>103.657 W | Saskatchewan | 14.3    | 23.2     | 1620                      | 12.4 x 10 <sup>3</sup> | 8.5     | 1150                                 | 380       | 1.80         | See<br>Buffalo<br>Pound                                     |
|-----------------------------------|-----------------------|--------------|---------|----------|---------------------------|------------------------|---------|--------------------------------------|-----------|--------------|-------------------------------------------------------------|
| Lake Winnipeg                     | 52.606 N<br>98.495 W  | Manitoba     |         |          | 23,750<br>km <sup>2</sup> | 1.0 x 10 <sup>6</sup>  | 8.2     |                                      |           |              | Forested,<br>agricultu                                      |
| South basin<br>North basin        |                       |              | 9<br>13 | 14<br>19 |                           |                        |         | 378 <sup>4</sup><br>390 <sup>4</sup> | 104<br>39 | 0.85<br>0.63 | re, urban                                                   |
| Lake of the<br>Woods <sup>6</sup> | 49.560 N<br>94.502 W  | Ontario      | 10.7    | 64.0     | 4350<br>km <sup>2</sup>   | 69.8 x 10 <sup>3</sup> | 7.4-8.2 | 80-120                               | 20-29     | 0.3-0.64     | mostly<br>forest,<br>6.4%<br>agricultu<br>re, some<br>urban |
| Lake 221                          | 49.702 N<br>93.727 W  | Ontario      | 2.1     | 5.7      | 9.0                       | 82                     | 6.4     | 13.55                                | 10.1      | 0.48         | forest                                                      |
| Lake 222                          | 49.696 N<br>93.723 W  | Ontario      | 3.7     | 5.8      | 16.4                      | 204.3                  | 6.8     | 20.65                                | 9.5       | 0.45         | forest                                                      |
| Lake 224                          | 49.690 N<br>93.718 W  | Ontario      | 11.6    | 27.4     | 25.9                      | 97.5                   | 7.1     | 13.85                                | 5.4       | 0.23         | forest                                                      |
| Lake 227                          | 49.688 N<br>93.689 W  | Ontario      | 4.4     | 10.0     | 5.0                       | 34.4 ha                | 7.0     | 13.05                                | 29.2      | 0.80         | forest                                                      |
| Lake 239                          | 49.664 N<br>93.724 W  | Ontario      | 10.5    | 30.4     | 54.3                      | 393.3 ha               | 7.1     | 21.65                                | 6.4       | 0.30         | forest                                                      |
| Lake 304                          | 49.660 N<br>93.749 W  | Ontario      | 3.2     | 6.7      | 3.6                       | 26.4 ha                | 6.5     | 11.05                                | 10.6      | 0.41         | forest                                                      |
| Lake 373                          | 49.745 N<br>93.800 W  | Ontario      | 11.0    | 20.8     | 27.3                      | 80.6                   | 7.2     | 20.15                                | 5.3       | 0.24         | forest                                                      |
| Lake 442                          | 49.776 N<br>93.817 W  | Ontario      | 9.0     | 17.8     | 16.0                      | 161                    | 7.0     | 16.65                                | 6.4       | 0.34         | forest                                                      |
| Lake Nipissing                    | 46.205 N              | Ontario      | 4.5     | 10.5     | 296                       | 12.1                   | 7.3     | 74                                   | 19        | 0.45         | forest                                                      |

| agricu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ultu       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | unu        |
| re 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5%;        |
| some                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e          |
| urban                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n          |
| Wasi Lake   46.140 N   Ontario   forest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | st         |
| 79.228 W 2.7 5.5 126 6.8 72.5 27.21 0.44 86%;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ;          |
| $\begin{bmatrix} 2.7 & 5.5 & 120 & 0.5 & 7.1 & 75.5 & 27-51 & 0.44 & agrict \\ \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | cultu      |
| re 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2%         |
| Blue Chalk <sup>3</sup> 45.199 N         Ontario         8.5         23         52.4         105.9 ha $6.7$ $22^4$ 5.9         0.15         forest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | st         |
| 78.939 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| Harp Lake <sup>3</sup> 45.380 N Ontario 13.3 38 71.4 470.7 ha 6.5 30 <sup>4</sup> 6.0 0.30 Fores                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | st,        |
| 79.135 W mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | erat       |
| e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
| shore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | eline      |
| develo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lop        |
| ment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | t          |
| Leonard Lake <sup>3</sup> 45.077 NOntario6.817.5195430 ha $5.5$ - $33-35^4$ 6-80.16-Forest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | st,m       |
| 79.447 W 6.7 0.28 odera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ate        |
| shore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | eline      |
| develo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lop        |
| ment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | t .        |
| Three Mile Lake <sup>3</sup> 45.190 N Ontario                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ly         |
| 79.465 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | st,        |
| Hammell's Bay $3.4$ $12$ $240$ $1505$ ha $6.9$ - $12-23^4$ $12-23$ $0.31$ -       some some some some some some some some                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e<br>1     |
| Main basin       (entire       4       630       12030 ha       7.1       19-30       0.42       agriculation of the standard standar | unur<br>4  |
| $\begin{array}{c c} 1ake \end{array} \qquad \qquad 6.8- \qquad \qquad 0.33- \qquad e^{-and} \\ shore \qquad \qquad \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1<br>alina |
| 7.1 0.53 devel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lonm       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lopin      |
| Lake St. George         43.956 N         Optario         4.9         15.3         10.3         7.0         367         25         0.6         mixed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d          |
| (weet bein) 70 420 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | st.        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n.         |

|                     |                      |         |     |     |                         |       |             |                          |       |         | agricultu<br>re                                                                                    |
|---------------------|----------------------|---------|-----|-----|-------------------------|-------|-------------|--------------------------|-------|---------|----------------------------------------------------------------------------------------------------|
| Hamilton<br>Harbour | 43.290 N<br>79.842 W | Ontario | 13  | 23  | 2150                    | 500   | 8.5         | 700                      | 40    | 3-4     | mostly<br>urban &<br>industria<br>l                                                                |
| Conestogo Lake      | 43.684 N<br>80.680 W | Ontario |     | 18  | 7.35<br>km <sup>2</sup> | 563   | 7.7-<br>8.3 | 425-<br>470 <sup>4</sup> | 14-25 | 2.0-5.8 | Mostly<br>agricultu<br>ral with<br>some<br>urban                                                   |
| Constance Lake      | 45.410 N<br>75.979 W | Ontario | 1.9 | 3.4 | N/A                     | 1.315 | 8.6         | 358                      | 28    | 623     | Wetland<br>and<br>pasture<br>lands,<br>shoreline<br>residenti<br>al<br>develop<br>ment,            |
| Big Rideau<br>Lake  | 44.724 N<br>76.231 W | Ontario | 12  | 110 | 407                     | 100   | 8.3         | 196                      | 13    | 299     | Woodlan<br>d and<br>wetland<br>(57%),<br>agricultu<br>ral<br>(37%),<br>shoreline<br>residenc<br>es |
| Otty Lake           | 44.843 N<br>76.225 W | Ontario | 9   | 27  | 52.8                    | 6.4   | 8.0         | 209                      | 13.2  | 470     | Woodlan<br>d and<br>wetland                                                                        |

|               |                      |                  |     |     |       |       |             |       |      |                 | (62%),<br>Agricult<br>ural<br>(13%),<br>Shorelin<br>e<br>residenti<br>al<br>develom<br>ent                    |
|---------------|----------------------|------------------|-----|-----|-------|-------|-------------|-------|------|-----------------|---------------------------------------------------------------------------------------------------------------|
| Lac Breton    | 45.873 N<br>74.229 W | Quebec           | 1.4 | 2.6 | 0.737 | 0.119 | 7.9         | 84    | 9.1  | 440             | Mainly<br>woodlan<br>d with<br>some<br>wetlands<br>; dense<br>shoreline<br>residenti<br>al<br>develop<br>ment |
| Lac Baker     | 47.360 N<br>68.687 W | New<br>Brunswick |     | 20  |       |       | 7.7-<br>7.9 | 101   | 5-10 | <u>&lt;</u> 0.3 |                                                                                                               |
| Chamcook Lake | 45.146 N<br>67.093 W | New<br>Brunswick |     | 34  |       |       | 7.1         | 34    | 4    | <u>&lt;</u> 0.3 |                                                                                                               |
| Davidson Lake | 45.940 N<br>67.158 W | New<br>Brunswick |     | 7   |       |       | 7.2         | 33    | 7    | <u>&lt;</u> 0.3 |                                                                                                               |
| Lake George   | 45.819 N<br>67.047 W | New<br>Brunswick |     | 4.5 |       |       | 7.1         | 22-33 | 3-16 | <u>&lt;</u> 0.3 |                                                                                                               |
| Harvey Lake   | 45.743 N<br>67.032 W | New<br>Brunswick |     | 5   |       |       | 7.1         | 27    | 5    | <u>&lt;</u> 0.3 |                                                                                                               |
| Lake          | 45.707 N             | New              |     | 10  |       |       | 7.2         | 22    | 5    | <u>&lt;</u> 0.3 |                                                                                                               |

| Magaguadavic  | 67.210 W | Brunswick |     |       |      |       |      |                 |  |
|---------------|----------|-----------|-----|-------|------|-------|------|-----------------|--|
| Oromocto Lake | 45.585 N | New       | 14  |       | 7.1  | 22    | 5    | <u>&lt;</u> 0.3 |  |
|               | 67.003 W | Brunswick |     |       |      |       |      |                 |  |
| Sinclair Lake | 47.053 N | New       | 7   |       | 7.1  | 22    | 3    | <u>&lt;</u> 0.3 |  |
|               | 66.575 W | Brunswick |     |       |      |       |      |                 |  |
| Lac Unique    | 47.333 N | New       | 6.7 | 111.2 | 7.5- | 82-88 | 4-17 | <u>&lt;</u> 0.3 |  |
|               | 68.745 W | Brunswick |     |       | 8.9  |       |      |                 |  |
| Lake Utopia   | 45.195 N | New       | 23  |       | 6.8- | 34-43 | 5-14 | <u>&lt;</u> 0.3 |  |
|               | 66.791 W | Brunswick |     |       | 7.3  |       |      |                 |  |
| Walton Lake   | 45.612 N | New       | 25  |       | 7.5  | 40    | 8    | <u>&lt;</u> 0.3 |  |
|               | 65.321 W | Brunswick |     |       |      |       |      |                 |  |
| Yoho Lake     | 45.780 N | New       | 8   |       | 7.1  | 48    | 5    | <u>&lt;</u> 0.3 |  |
|               | 66.858 W | Brunswick |     |       |      |       |      |                 |  |

- 1. Buffalo Pound is a reservoir, with two major water sources. The indicated catchment area is the estimated effective drainage area of the local catchment. The effective area is the area contributing to flow in an average year. (In this semi-arid region, the gross drainage area can be much larger). In addition to flow from this local catchment, the lake receives managed flow from Lake Diefenbaker, which has a vast catchment area.
- 2. Effective drainage area (see #1).
- 3. Chemistry data are for ice-free season in 2017.
- 4. Specific conductance at 25°C.
- 5. In situ conductivity
- 6. Lake of the Woods is morphometrically complex lake with five sub-basins. Chemistry data are ranges of mean values in the mixed layer across the lake.

#### **Selected references for Table S1**

- Bogard, M.J., Donald, D.B., Finlay, K. and Leavitt, P.R. 2012. Distribution and regulation of urea in lakes of central North America. Freshwater Biology. 57: 1277-1292. https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1365-2427.2012.02775.x.
- Boyer, L.M. 2021. The dynamics of biological nitrogen fixation in prairie lakes. Doctoral dissertation, University of Saskatchewan, Canada. https://harvest.usask.ca/bitstream/handle/10388/13318/BOYER-THESIS-2021.pdf?sequence=1&isAllowed=y.
- Guildford, S.J., 2006. Factors controlling Cyanobacteria blooms in three Grand River Basin reservoirs during 2005. Report to the Grand River Conservation Authority. https://www.grandriver.ca/en/our-

watershed/resources/Documents/Water\_Quality\_ReservoirBlooms.pdf.

- Larsen, M.L., Baulch, H.M., Schiff, S.L., Simon, D.F., Sauvé, S. and Venkiteswaran, J.J. 2020. Extreme rainfall drives early onset cyanobacterial bloom. Facets, 5: 899-920. https://www.facetsjournal.com/doi/10.1139/facets-2020-0022.
- McGowan, S., Patoine, A., Graham, M.D. and Leavitt, P. 2005. Intrinsic and extrinsic controls on lake phytoplankton synchrony as illustrated by algal pigments. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen. 29: 794-798. https://doi.org/10.1080/03680770.2005.11902787.
- Rainy-Lake of the Woods State of the Basin Update. 2022. Lake of the Woods Water Sustainability Foundation, Kenora, ON, Canada. https://ijc.org/en/rlwwb/rainy-lake-woods-state-basin-report-sobr-2021.
- Swarbrick, V.J., Quiñones-Rivera, Z.J. and Leavitt, P.R. 2020. Seasonal variation in effects of urea and phosphorus on phytoplankton abundance and community composition in a hypereutrophic hardwater lake. Freshwater Biology. 65: 1765-1781. https://onlinelibrary.wiley.com/doi/epdf/10.1111/fwb.13580.
- Terry, J., Davies, J.M. and Lindenschmidt, K.E. 2022. Buffalo Pound Lake—modelling water resource management scenarios of a large multi-purpose prairie reservoir. Water, 14:584, 19 pgs.

**Table S2**. Provincial and federal Geological Survey and related websites and references describing geological characteristics of watersheds in the 2017 metals survey.

Geological Survey and related websites:

| Canada       | natural-resources.canada.ca/science-and-data/research-centres-and-labs/geological-survey-canada/17100                                                     |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | www.geologicalsurveys.ca                                                                                                                                  |
|              | search.open.canada.ca/opendata                                                                                                                            |
|              | https://geoscan.nrcan.gc.ca/images/geoscan/1860a.jpg                                                                                                      |
|              | https://openpress.usask.ca/geolmanual/chapter/overview-of-canadian-geology/                                                                               |
| Saskatchewan | www.saskatchewan.ca/business/agriculture-natural-resources-and-industry/mineral-exploration-and-<br>mining/saskatchewan-geological-survey                 |
|              | esask.uregina.ca/entry/geology.jsp#:~:text=The%20province%20is%20underlain%20throughout,unmetam<br>orphosed%20younger%20Phanerozoic%20sedimentary%20rocks |
|              | http://saskmining.ca/ckfinder/userfiles/files/97534-ResourceMap2018_English.pdf                                                                           |
| Manitoba     | www.manitoba.ca/iem/geo/index.html                                                                                                                        |
|              | https://www.gov.mb.ca/iem/info/libmin/bgcms/bgcms_winnipeg.pdf                                                                                            |
| Ontario      | www.ontario.ca/page/geology-and-geoscience                                                                                                                |
|              | https://www.hub.geologyontario.mines.gov.on.ca                                                                                                            |
|              | www.geologyontario.mndm.gov.on.ca/ogsearth.html                                                                                                           |
|              | www.geologyontario.mndm.gov.on.ca/mndmfiles/pub/data/records/M2518.html                                                                                   |
|              | www.geologyontario.mndm.gov.on.ca/mndmfiles/pub/data/records/M2541.html                                                                                   |

|           | open.canada.ca/data/en/dataset/d22354e8-cb01-5262-aed5-1de48d1ffb0a                                                                                                                                     |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quebec    | mrnf.gouv.qc.ca/en/mines/geology                                                                                                                                                                        |
|           | sigeom.mines.gouv.qc.ca/signet/classes/I1102_indexAccueil?l=a                                                                                                                                           |
|           | profils-profiles.science.gc.ca/en/research-centre/geological-survey-canada-quebec-division                                                                                                              |
| New       | www2.gnb.ca/content/gnb/en/departments/erd/energy/content/minerals.html                                                                                                                                 |
| Brunswick | www2.gnb.ca/content/gnb/en/departments/erd/energy/content/minerals/content/bedrock_mapping.html                                                                                                         |
|           | www2.gnb.ca/content/gnb/en/departments/erd/energy/content/minerals/content/Surficial_mapping.html                                                                                                       |
|           | www2.gnb.ca/content/gnb/en/departments/erd/energy/content/minerals/content/GeologicalZonation.html#:<br>~:text=The%20Maritimes%20Basin%20includes%20Late,shales%2C%20and%20subaerial%20volcanic%20rocks |
|           | https://www2.gnb.ca/content/dam/gnb/Departments/en/pdf/Minerals-<br>Minerales/Bedrock_Geology_MapNR1-e.pdf                                                                                              |

# Selected references for Table S2:

| Lakes in southern Saskatchewan  | Saskatchewan Geological Survey. 2003. Geology, and Mineral and<br>Petroleum Resources of Saskatchewan. Saskatchewan Industry and<br>Resources, Miscellaneous Report 2003-7<br>Geological Highway Map of Saskatchewan. Saskatchewan Geological<br>Society Special Publication 15                                                                                                |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lake Winnipeg (Manitoba)        | <ul> <li>Fenton, M.M. 1988. Metallic Mineral Exploration on the Interior</li> <li>Platform: Quaternary Contribution. Geoscience Canada. 15: 85-88.</li> <li>Card, K.D. 1990. A review of the Superior Province of the Canadian</li> <li>Shield, a product of Archean accretion. Precambrian Res. 48: 99-156.</li> <li>https://doi.org/10.1016/0301-9268(90)90059-Y.</li> </ul> |
| Lake of the Woods and Lakes     | Card, K.D. 1990. A review of the Superior Province of the Canadian                                                                                                                                                                                                                                                                                                             |
| 221, 222, 224, 227, 239, 304,   | Shield, a product of Archean accretion. Precambrian Res. 48: 99-156.                                                                                                                                                                                                                                                                                                           |
| 373 and 442 in the Experimental | https://doi.org/10.1016/0301-9268(90)90059-Y.                                                                                                                                                                                                                                                                                                                                  |
| Lakes Area (northwestern        |                                                                                                                                                                                                                                                                                                                                                                                |
| Ontario)                        | Ayer, J.A. and Davis, D.W. 1997. Neoarchean evolution of differing<br>convergent margin assemblages in the Wabigoon Subprovince:<br>geochemical and geochronological evidence from the Lake of the                                                                                                                                                                             |
|                                 | Woods greenstone belt, Superior Province, Northwestern Ontario.                                                                                                                                                                                                                                                                                                                |
|                                 | Precambrian Res. 81: 155-178. https://doi.org/10.1016/S0301-                                                                                                                                                                                                                                                                                                                   |
|                                 | 9268(96)00033-2.                                                                                                                                                                                                                                                                                                                                                               |
| Lake Nipissing (Callander Bay)  | Ercit, T.S. 1994. The geochemistry and crystal chemistry of columbite-                                                                                                                                                                                                                                                                                                         |
| and Wasi Lake (northern         | group minerals from granitic pegmatites, southwestern Grenville                                                                                                                                                                                                                                                                                                                |
| Ontario)                        | Province, Canadian Shield. Can. Mineral. 32: 421-438.                                                                                                                                                                                                                                                                                                                          |

|                              | https://en.wikipedia.org/wiki/Callander_Bay#cite_note-7              |
|------------------------------|----------------------------------------------------------------------|
| Blue Chalk, Harp, Leonard,   | Chapman, L.J. and Putnam, D.F., 1973. Physiography of southern       |
| Three Mile, Lake St. George, | Ontario. Published for the Ontario Research Foundation by University |
| Hamilton Harbour (central    | of Toronto Press                                                     |
| Ontario);                    |                                                                      |
| Conestogo Reservoir          |                                                                      |
| (southwestern Ontario);      |                                                                      |
| Constance Lake, Big Rideau   |                                                                      |
| Lake and Otty Lake (eastern  |                                                                      |
| Ontario)                     |                                                                      |