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Abstract

Floods impact communities worldwide, resulting in an estimated $651 billion (USD) in damages, countless fatalities, and

threatened livelihoods over the last two decades alone. Climate change and urban development in flood-prone areas will

continue to worsen flood-related losses increasing the urgency for effective tools to monitor recovery. Many Earth Observation

(EO) applications exist for flood-hazard monitoring and provide insights on location, timing, and extent in near real-time and

historically to estimate flood risk. Less attention has been paid to flood recovery, even though differing recovery rates and

outcomes can have immediate and enduring effects within communities. Here, we define post-flood recovery as a change in

land cover types, conditions, or land surface features in the days, weeks, months, or years following a flood event. EO data

are uniquely positioned to monitor post-flood recovery and inform policy on hazard mitigation and adaptation but remain

underutilized. We urge the EO and flood research community to renew focus on developing flood recovery applications to

address growing flood risk. Both methodological innovations and translation of EO insights on flood recovery among flood-

affected communities and decision-makers are necessary to address underlying vulnerabilities in social systems that exacerbate

flooding. We identify an unequivocal need for EO to move beyond hazard mapping to post-flood recovery monitoring to inform

recovery across geographic contexts. This commentary proposes a framework to use EO to advance flood recovery monitoring,

characterize inequitable recovery, redistribute resources to mitigate inequities, and support risk reduction of future floods.
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Key Points: 26 

• Advances in Earth Observation to monitor flood recovery are needed to address growing 27 
flood risks and support equitable recovery. 28 

• Earth Observation proxies of flood recovery should be locally defined and supplemented 29 
with non-Earth Observation data to assess recovery. 30 

• A framework to guide Earth Observation-based flood recovery monitoring is presented, 31 
driven by gaps in current flood recovery monitoring.  32 
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Abstract 33 

Floods impact communities worldwide, resulting in an estimated $651 billion (USD) in damages, 34 
countless fatalities, and threatened livelihoods over the last two decades alone. Climate change 35 
and urban development in flood-prone areas will continue to worsen flood-related losses 36 
increasing the urgency for effective tools to monitor recovery. Many Earth Observation (EO) 37 
applications exist for flood-hazard monitoring and provide insights on location, timing, and 38 
extent in near real-time and historically to estimate flood risk. Less attention has been paid to 39 
flood recovery, even though differing recovery rates and outcomes can have immediate and 40 
enduring effects within communities. Here, we define post-flood recovery as a change in land 41 
cover types, conditions, or land surface features in the days, weeks, months, or years following a 42 
flood event. EO data are uniquely positioned to monitor post-flood recovery and inform policy 43 
on hazard mitigation and adaptation but remain underutilized. We urge the EO and flood 44 
research community to renew focus on developing flood recovery applications to address 45 
growing flood risk. Both methodological innovations and translation of EO insights on flood 46 
recovery among flood-affected communities and decision-makers are necessary to address 47 
underlying vulnerabilities in social systems that exacerbate flooding. We identify an unequivocal 48 
need for EO to move beyond hazard mapping to post-flood recovery monitoring to inform 49 
recovery across geographic contexts. This commentary proposes a framework to use EO to 50 
advance flood recovery monitoring, characterize inequitable recovery, redistribute resources to 51 
mitigate inequities, and support risk reduction of future floods.  52 

Plain Language Summary 53 

Floods harm communities globally, with impacts expected to intensify due to increased 54 
development in flood-prone locations and climate change. Flooding impacts communities 55 
unevenly, and the recovery process itself can create additional disparities in flood risk and 56 
resilience. While Earth Observation (EO) data are commonly used to map flood events, they are 57 
underutilized to monitor recovery. This is a missed opportunity for documenting inequitable 58 
recovery outcomes, which can impact the preparation for, and mitigation of future floods. We 59 
argue for a renewed focus on EO to provide evidence-based information to remedy inequities in 60 
recovery planning and actions. We present a framework to operationalize and advocate for the 61 
integration of EO for flood recovery applications. 62 

1 Introduction 63 

More frequent and extreme flooding exacerbated by climate change stands to increase 64 
societal impacts that disproportionately affect marginalized populations (e.g., Douglas et al. 65 
2008). Beyond climate change, flood risk is also driven by human behaviors, choices, 66 
institutions, and politics. Increased flood risk from rapid development and urbanization in flood-67 
prone areas is enabled by outdated regulatory floodplain maps and deficient flood risk 68 
disclosures (Andreadis et al., 2022; Flores et al., 2022; Hino & Burke, 2021). Even where flood 69 
frequency or magnitude is unchanged, flood vulnerability is exacerbated where mitigation and 70 
recovery responses discriminate and reduce the adaptive capacity of marginalized groups (Elliott 71 
et al., 2020; Emrich et al., 2019, 2022). As a result of climate and social factors, flood mitigation 72 
and adaptation activities have often been insufficient in reducing the impact of flood events on 73 
affected communities (Kreibich et al., 2022). Inhibiting the planning and implementation of 74 
equitable adaptation measures are inadequate tools to monitor post-flood recovery over a broad 75 
range of contexts. We argue that Earth Observation (EO) data, now capturing imagery with 76 
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unprecedented temporal and spatial frequency over Earth's surface, provides significant yet 77 
untapped potential to monitor flood recovery and glean important lessons on adaptation efforts. 78 

To better manage flood risk, a suite of ever-expanding EO data has ushered in a marked 79 
increase in satellite-based emergency mapping (Voigt et al., 2016). Hazard monitoring systems 80 
routinely rely on EO to support early warning systems, impact-based triggers for forecast-based 81 
early action (Nauman et al., 2021), and enable more timely disaster response (Schumann et al., 82 
2018). Specific to flood hazards and impacts, EO has made significant strides in flood detection 83 
in recent years, including providing unprecedented observations of flood extent and duration 84 
(Schumann, 2021). Critically, EO has added new perspectives on understanding changes in 85 
global flood risk where flood models remain coarse or lack consistency (McClain et al., 2022; 86 
Tellman & Sullivan et al., 2021). 87 

Despite advances in EO to map floods, more attention is needed to understand how EO 88 
can be applied to detect and monitor post-flood recovery. Post-flood recovery is critical in 89 
mitigating the impacts of floods on communities. We define post-flood recovery as a change in 90 
land cover types, conditions, or land surface features in the days, weeks, months, or years 91 
following a flood event. For example, post-flood recovery could entail the identified removal of 92 
debris from roadways, the reconstruction of damaged buildings or infrastructure, or the 93 
restoration of agriculture or natural vegetation conditions. Identified changes may occur in flood-94 
inundated areas or nearby non-flooded areas, which undergo changes in relation to recovery 95 
efforts, such as the construction of temporary housing.  96 

Post-flood recovery can also go beyond post-event rebuilding, remediation, or return to a 97 
pre-flood state. Instead of returning to the pre-flood state, i.e., ‘back to normal,’ post-flood 98 
recovery can be a form of ‘building back better’ that addresses pre-flood inequalities and 99 
vulnerabilities (Forrest et al., 2019; De Ita et al., 2022). Another characterization of post-flood 100 
recovery could also entail no change to the flood-affected areas, such as flood-induced changes 101 
that remain stable post-flood. Given the continuous stream of diverse data resolutions and types, 102 
EO is uniquely poised to monitor different characterizations of recovery, a complex phenomenon 103 
that demands data of various resolutions and cadences. To encapsulate a wide-ranging array of 104 
context-specific recovery scenarios, the definition we propose of recovery is thus broad to best 105 
characterize place-specific recovery norms and trends (Rumbach et al., 2016). Data needs 106 
include local context, which is paramount to characterizing recovery and how recovery efforts 107 
differentially impact groups of people.  108 

As history illustrates, marginalized populations are seldom prioritized in recovery (e.g., 109 
Muñoz & Tate, 2016). EO evidence of unequal flood recovery could be particularly effective for 110 
building community-based flood resilience, autonomy, advocacy, and power in data-informed 111 
decision-making and supporting legal remediation to redress inequitable recovery. Recovery and 112 
adaptation actions taken post-flood have a significant bearing on the ability of individuals, 113 
households, communities, and countries to cope and prepare for future flood events (McSweeney 114 
& Coomes, 2011). Documentation of the spatial variability of post-flood recovery is essential to 115 
guide the equitable allocation of mitigation funding and prioritize resources for mitigation in 116 
locations still recovering from previous flood events. The stakes of failing to initiate adaptive 117 
recovery for future events are mounting and have already been witnessed in economic and non-118 
economic loss and damage (Boyd et al., 2021). 119 

Recognition of the potential of EO-monitored recovery inspired a side meeting at the 120 
Global Flood Partnership Annual Meeting in 2022 titled “Mapping Flood Recovery and 121 
Adaptation from Space.” A diverse group of 18 researchers and practitioners, including flood 122 
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modelers, disaster management and flood management experts, social scientists, financial risk 123 
specialists, and public and private sector EO data providers, attended the workshop to share their 124 
perspectives. The main conclusion from this meeting of experts was unequivocal that EO 125 
potential is underutilized to monitor flood recovery. This gap deserves increased attention from 126 
the EO community of practice, governments, emergency managers, planners, and community 127 
organizations involved in recovery planning and support. 128 

Our Commentary Brief attempts to lead the field of EO flood monitoring in new 129 
directions beyond the study of flood events toward flood recovery. The following sections of the 130 
Commentary provide a brief overview of the institutions engaged in recovery monitoring and 131 
applications of EO to monitor post-flood recovery. The heart of the commentary lies in Section 132 
4, where we introduce a framework for applying EO to monitor post-flood recovery in service of 133 
redressing inequities in post-flood recovery. Community participation and data translation 134 
among remote sensing scientists, recovery practitioners, and affected communities are vital to 135 
make the framework actionable. We conclude by inviting the remote sensing community to 136 
consider how to expand the application of EO to support recovery planning and evaluation to 137 
improve and achieve more equitable recovery outcomes. 138 

2 The Institutional Landscape to Extend Post-Flood Recovery Monitoring 139 

There is already wide recognition that EO is a key data element to support resilient 140 
disaster risk management, evidenced by existing institutional organizations and protocols in 141 
place to use EO for disaster response and recovery (Khan et al., 2020; Kruczkiewicz et al., 2022; 142 
Marlier et al., 2022; Percivall et al., 2013; Petiteville et al., 2015; Zuccaro et al., 2020). The 143 
Sendai Framework for Disaster Risk Reduction 2015-2030 promotes using satellite-based and in-144 
situ information to support its first action, “Understanding disaster risk” (GP-STAR, 2017). The 145 
institutional landscape of international collaborations across space agencies is tasked to address 146 
this action item, including the International Charter Space and Major Disasters, Asia-Sentinel, 147 
National Aeronautics and Space Administration (NASA), National Oceanic and Atmospheric 148 
Administration (NOAA), the World Meteorological Organization (WMO), and Copernicus 149 
Emergency Management Services (CEMS). 150 

Specific to mapping post-disaster recovery, the Committee on Earth Observations 151 
Satellites (CEOS) Recovery Observatory and CEMS Risk and Recovery Mapping service 152 
provide map services on recovery. However, these monitoring systems are ad hoc, with no 153 
systematic or long-term sustained monitoring. For example, the only instances of the Recovery 154 
Observatory being activated were in response to Hurricane Matthew in 2016 and Hurricanes Eta 155 
and Iota in 2020 (UNDRR, 2022). Established in 2012, the CEMS Risk and Recovery Mapping 156 
service has had a total of 135 activations, of which most of the flood-related activations have 157 
resulted in flood extent mapping with little to no representation of flood recovery monitoring 158 
(Copernicus, 2022). While these organizations have laid the foundation to mobilize EO data to 159 
aid in targeting resources in response to multiple types of disasters and providing information to 160 
decision-makers, more committed resources are needed to systematically monitor ongoing 161 
recovery from previous events (GFDRR, 2019). 162 

While international and agency efforts have set a precedent for EO-based recovery 163 
monitoring, there are three important gaps in how existing initiatives monitor recovery. The first 164 
gap is an explicit measurement of how recovery trajectories differ across populations of varied 165 
demographics and local biophysical conditions in affected locations. Without analyzing disparate 166 
recovery impacts, insights are less conducive to prioritizing needs, assessing changing flood risks 167 
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(McClain et al., 2022), and informing future recovery efforts. The second gap is that long-term 168 
recovery monitoring often concludes months after the flood event, restricting the capacity of 169 
these protocols and programs to support monitoring of both short- and long-run recovery, which 170 
may last years after an event. Higher frequency and longer-term monitoring are required for the 171 
ever-evolving and, in many cases, long-term recovery processes that unfold post-flood. The third 172 
gap is that EO is used in very few events to monitor recovery, limiting our ability to understand 173 
recovery trends and build resilience for the next flood event. 174 

3 Earth Observation Applications for Post-Flood Recovery 175 

The diversity in EO data's spatial, temporal, and spectral resolution allows for its use in 176 
several flood recovery applications and scenarios. EO can be applied to various flood recovery 177 
activities related to the human-built and natural environment, agriculture, public health, climate 178 
finance, disaster risk reduction, and emergency response (Nauman et al., 2021). We distinguish 179 
four themes in which EO is applied to support flood recovery activities: mapping flood extent, 180 
monitoring impacts within flood-affected areas, flood risk reduction and financing, and flood-181 
related adaptation program evaluation. The examples presented are not mutually exclusive to 182 
each theme; instead, the distinction differentiates unique thematic applications.  183 

3.1 Mapping Flood Extent 184 

A common application of EO for post-flood recovery is mapping the flood extent and 185 
monitoring flood water receding over time. EO-derived flood maps are often included in Post-186 
Disaster Needs Assessments (PDNA) produced for large-scale flood events. PDNAs are 187 
produced by country-affected governments and international aid and development agencies 188 
directly following major events to estimate the costs of total damages, losses, and recovery 189 
needs. PDNA guidelines recommend that EO data be used, when available, to generate pre-190 
disaster baseline information, rapidly assess the impact and extent of a hazard, and determine the 191 
scope of the recovery plan (GFDRR, 2013). A recent example of EO being used to monitor flood 192 
recovery is following the mid-June to October 2022 floods in Pakistan, in which EO data was 193 
relied on to produce flood maps for the PDNA (Government of Pakistan, 2022). After the PDNA 194 
release, longer-term EO monitoring of recovery progress conducted by UNOSAT (2023) reveals 195 
that 1.8 million people remained exposed to stagnant flood water as of late February 2023, and is 196 
an example of how EO can detect the limited to slow rate of ongoing post-flood recovery. The 197 
release of similar UNOSAT reports has been non-systematic, with daily to weekly releases in 198 
August and September 2022 shortly after the peak flood, but releases have become less frequent, 199 
slowing to monthly and later bi-monthly updates from October 2022 through June 2023. While 200 
these reports offer recovery insights at discrete snapshots, the lack of systematic data collection 201 
and analysis of additional recovery progress beyond the presence of floodwater presents a missed 202 
opportunity for more extensive post-flood damage and recovery monitoring. 203 
 204 

3.2 Monitoring Impacts within Flood-Affected Areas  205 
One way to go beyond the narrow focus of long-term standing water mapping is to 206 

monitor landscape changes within the flood-affected extent, such as urban, agricultural, and 207 
natural resources like forests and coastal vegetation that provide natural flood protection (e.g., 208 
Marlier et al., 2022). EO provides critical insights into the obstruction of or damage to buildings, 209 
roadways, bridges, and other public infrastructure (Butenuth et al., 2011; Ghaffarian & Kerle, 210 
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2019; Schnebele et al., 2014). Damage and recovery monitoring of infrastructure provides timely 211 
information on accessibility in the early recovery phase and reconstruction progress in the short 212 
and long-term post-flood (Oddo & Bolten, 2019).  213 

An example of EO being applied to monitor infrastructure recovery comes from the 214 
CEMS (2018) Risk and Recovery final report for Hurricane Matthew, which struck Haiti in 215 
October 2016. In the CEMS report, multiple timestamps of imagery are used to estimate the 216 
evolution of the reconstruction status of damaged infrastructure affected by coastal and riverine 217 
flooding. In two examples from the report, pre-flood aerial imagery and post-flood EO imagery 218 
from two separate timestamps show initial post-Matthew damage to building and road 219 
infrastructure and subsequent reconstruction (Figure 1). While this example clearly shows 220 
recovery progress, the limited availability of two post-event images precludes more systematic 221 
monitoring of repairs. Additionally, the mix of true- and false-color imagery across the pre-222 
Matthew image and two post-Matthew images may confuse viewers unfamiliar with recognizing 223 
stability and change in features in different spectral compositions across the imagery time series. 224 

  225 
Figure 1. Imagery used in CEMS Risk and Recovery final report for Hurricane Matthew to show 226 
recovery and reconstruction for two sites (1A-C and 1D-F, respectively). The panel consists of 227 
aerial imagery acquired in 2014 before Hurricane Matthew (1A, 1D), false-color WorldView-3 228 
imagery from 11 days after landfall of Matthew acquired on October 15, 2016 (1B, 1E), and 229 
false-color Pléiades imagery from 14 months after landfall acquired on December 15, 2017 (1C, 230 
1F). 1A-C shows buildings in pre-damaged, damaged, and reconstructed conditions. 1D-F shows 231 
a bridge in pre-damaged, damaged, and reconstructed conditions. Image adapted from CEMS 232 
(2018) and provided by the European Union. 233 
 234 

The complexity of features and high spatial detail required to monitor urban 235 
infrastructure damage has led to expanded image sources and data to train models to detect 236 
flood-related damage and recovery activities. For example, drone imagery has also been used to 237 
map post-flood debris via semantic segmentation (Whitehurst et al., 2022), and recently the first 238 
training dataset of flooded and not-flooded building footprints and road networks was released 239 
(Hänsch et al., 2022). Beyond using optical or radar imagery to detect infrastructural impacts, 240 
other forms of remotely sensed data, like nighttime lights, could be used to measure the 241 
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restoration of electricity post-flood (Gandhi et al., 2022; Levin et al., 2020; Qiang et al., 2020) 242 
and to understand adaptation responses like population resettlement away from flood risk areas 243 
(Mård et al., 2018). A clear example of nighttime lights data being used to measure electrical 244 
outages following a disaster is by Román et al. (2019), who use time series of NASA Black 245 
Marble high-definition nighttime light data to show differences in the number of days without 246 
electricity for different locations following Hurricane Maria (Figure 2). In this example, variation 247 
in the duration of an electrical outage can be used to help support claims of inequitable recovery. 248 
 249 

 250 
Figure 2. An example of remotely sensed NASA Black Marble high-definition nighttime light 251 
data to track the duration of electricity outages at different rural and urban centers in Puerto Rico 252 
following Hurricane Maria. Image from Román et al. (2019). 253 
 254 

3.3 Flood Risk Reduction and Financing  255 
The measurement of post-flood recovery also has direct relevance for flood risk financing 256 

both before and after the flood event. In the last two decades, humanitarian agencies have put 257 
extensive efforts into establishing early warning systems, anticipatory action, and forecast-based 258 
financing using real-time or predictive models to estimate the potential number of people 259 
impacted and potential impacts on crop productivity as a proxy for food security impacts 260 
(Kruczkiewicz et al., 2021a; Nauman et al., 2021). While anticipatory action programs for floods 261 
typically use forecast models rather than EO (Coughlan de Perez et al., 2016), remote sensing 262 
data is commonly employed to activate interventions when inferred crop conditions breach pre-263 
defined activation thresholds (e.g., Chen et al., 2019).  264 

An example of EO used to map agricultural impacts and support flood risk reduction is 265 
from the Republic of Congo in December 2019, when the World Food Program identified flood-266 
damaged cropland to target cash-based transfers to improve food security (Figure 3). The 267 
inundated area was observed using the Sentinel-2, Sentinel-1, Landsat 8, and PlanetScope 268 
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3.4 Flood-related Adaptation Program Evaluation 300 
The assessment of flood recovery and adaptation initiatives to reduce flood risk are 301 

inextricably linked. Traditional assessments of flood-related adaptation interventions rely on 302 
monitoring and evaluation programs to conduct household surveys and participatory workshops 303 
(Brown et al., 2010), which can be costly and demanding to implement across large spatial 304 
scales. EO can be used to scale up adaptation assessment over large areas, as has been done to 305 
measure yield variation due to the inability to plant in waterlogged soils (Lawal et al., 2021). An 306 
adaptation measure that has emerged in rice farming communities in response to disastrous 307 
flooding is the adoption of flood-resistant rice varieties. For example, 30% of India’s cultivated 308 
rice area is prone to damage due to prolonged flooding, but submergence-tolerant rice has been 309 
estimated to increase yield by 45% compared to non-flood-tolerant rice varieties when 310 
submerged for ten days (Dar et al., 2013). EO can help to map the spatial distribution of rice 311 
areas (e.g., Gumma et al., 2015; Xiao et al., 2005; Zhan et al., 2021), offering a cost-effective 312 
way to monitor changes in rice cultivation over large areas and multi-year periods. Thus, EO has 313 
the potential to provide information helpful in evaluating the effectiveness of rice variety 314 
adaptation, often adopted after significant or repeated flood disasters. Additional potential for EO 315 
lies in monitoring post-flood landscape changes in agricultural regions, including erosion of 316 
arable land's topsoil (Morton & Olson, 2014; Schad et al., 2011; Trnka et al., 2016). Such 317 
evaluations can subsequently inform other locations' agriculture and food security strategies 318 
(Chen et al., 2019; Reed et al., 2022). 319 

Reducing flood risk and increasing flood resilience in urban spaces using nature-based 320 
solutions such as green infrastructure practices to mitigate flood losses has become popular as a 321 
flood adaptation strategy that could be initiated during recovery (Wingfield et al., 2019). EO-322 
monitoring can contribute a unique role in tracking the spatial and temporal patterns of 323 
development of flood mitigation and adaptation activities that include increased installation of 324 
green infrastructure practices (e.g., Chrysoulakis et al., 2021). 325 

4 A Framework to Guide EO Applications to Monitor Flood Recovery 326 

To address gaps in existing institutional approaches and extend current uses, we provide a 327 
framework (Figure 4) to expand applications of EO to monitor recovery and reduce disparities in 328 
flood recovery outcomes. The framework offers a generalized approach flexible to different 329 
geographic scales and flood risk contexts. The framework attempts to marry the practice of 330 
planning for flood recovery with EO-based monitoring of recovery alongside community 331 
participatory processes, recovery governance, and systems of accountability. The framework is 332 
split between pre-flood and post-flood stages, with a planning and testing phase within the pre-333 
flood stage, an implementation phase within the post-flood stage, and a knowledge appraisal 334 
phase spanning both stages. The pre-flood stage could entail years or months leading up to the 335 
flood event, with the post-flood stage consisting of years, months, or days following a flood 336 
event. 337 
 338 
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 339 
Figure 4. Framework to guide EO to monitor and redress inequitable post-flood recovery. 340 

 341 
4.1 Planning Phase 342 
The planning phase lays the foundation to achieve equitable participation, identify locally 343 

relevant recovery indicators, evaluate processes to track recovery and explore ways such 344 
information could reduce flood risk. Components of the planning phase draw on lessons from the 345 
literature on co-production (e.g., Davis & Ramírez-Andreotta, 2021; Meadow et al., 2015) and 346 
authors’ experiences engaging alongside communities in their research. 347 

The first component is to establish roles within a flood recovery governance system to 348 
determine expectations and accountability, acknowledge capacities, and agree upon 349 
responsibilities, communication, and coordination (De Ita et al., 2022). Stakeholders include 350 
local community members with experience in previous recovery efforts, organizations and 351 
government officials involved with flood recovery and risk reduction, emergency and disaster 352 
management professionals, social workers, urban and transportation planners, social and physical 353 
scientists, and remote sensing scientists to perform EO-based recovery monitoring. Data 354 
“translators” familiar with the technical limitations and insights that EO can lend are important to 355 
include to identify data sharing issues and strategic gaps in recovery planning (Kruczkiewicz et 356 
al., 2021b). Local residents representing a diverse set of community interests should be involved 357 
in planning and in assigning roles. Lessons from successful participatory environmental justice 358 
research suggest community leaders hold a meaningful position in research projects, project 359 
design includes decision-makers and specific policy goals, and long-term partnership is sustained 360 
through several funding sources (Davis & Ramírez-Andreotta, 2021). Outlining and agreeing 361 
upon roles is a primary step to achieving these outcomes. 362 
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It is critical to acknowledge that participatory efforts are time-consuming, expensive and 363 
should ideally be led by a third-party organization. As such, the next component is to allocate or 364 
apply for sustained funding for ideally multiple years. This step is necessary to build capacity in 365 
the established flood recovery governance system, repair broken trust with disenfranchised 366 
communities and support participatory collaborations with EO scientists and decision-makers. 367 
Within the US, efforts to address environmental and climate injustice are reflected in new 368 
funding opportunities that could be leveraged to co-produce recovery metrics, such as the EPA-369 
funded Environmental Justice Collaborative Problem-Solving Cooperative Agreement, NASA 370 
Environmental Justice Program, or NSF-funded Civic Innovation Challenge. Internationally, 371 
Climate Change AI funds co-produced data applications for adaptation. Sustained funding will 372 
also be critical to scale monitoring systems that include more robust recovery indicators and 373 
longer-term monitoring in a later phase of the framework. 374 

Once roles have been established within a flood governance system and funding 375 
identified, the group defines a recovery indicator(s). Involving residents in identifying relevant 376 
recovery indicators pre-flood (or between flood events) is necessary to ensure participation and 377 
ensure indicators capture what the community knows to be relevant to tracking inequitable 378 
recovery based on experience (Hino & Nance, 2021). Next, all stakeholders should be involved 379 
to determine recovery benchmarks and evaluation processes. Recovery benchmarks could entail 380 
stages of recovery (e.g., electricity restored for all low-income neighborhoods). Evaluating the 381 
benchmarks could include community-first reporting practices (Emmett et al., 2009) and actions 382 
to be taken if benchmarks are not being met at certain points of time post-flood. 383 

Aligning EO-based recovery monitoring with community priorities within the planning 384 
phase is vital to expand and strengthen existing flood risk reduction actions. This component is 385 
geared at using the outcomes of the framework to assess and redress inequity of flood recovery 386 
to bolster existing risk reduction activities. Building off prior components of the planning phase, 387 
the relationships required to elevate the use and impact of EO for flood risk management and 388 
decision-making span jurisdictional boundaries, government agencies, non-profit and 389 
community-based organizations, academia, and industry. Funding to expand and strengthen 390 
flood risk reduction should prioritize how to effectively nurture relationships and build local 391 
capacity long-term so residents’ resident involvement continues if/when funding ends and 392 
partnerships move on.  393 
 394 

4.2 Testing Phase 395 
In the testing phase, EO and non-EO data collection and analysis are undertaken to 396 

develop a methodology aligned with the recovery monitoring processes agreed upon in the 397 
planning phase. Undertaking this task after a flood where personnel, capacity, and resources are 398 
strained can be inefficient and result in inadequate non-EO data being used to inform the EO-399 
based data. As such, the testing phase should occur in anticipation of a future flood to have EO 400 
proxies, non-EO data, processing pipelines, and baseline data well-defined before a flood occurs. 401 
While all stakeholders can contribute, EO scientists should lead the activities outlined within the 402 
testing phase, given their technical expertise and familiarity with operationalizing EO data. 403 

After defining the recovery indicator(s) in the planning phase, EO scientists can work 404 
with stakeholders to identify EO-based proxies representative of locally defined indicators 405 
(dashed line connecting the two components in Figure 4). EO-based proxies entail land cover 406 
types, conditions, or EO-derived land surface features that best capture and characterize the 407 
defined recovery indicator. For example, a recovery indicator could be flood water receding from 408 
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agricultural fields, and an EO-based proxy could be Sentinel-1 imagery to detect and monitor 409 
surface water post-flood.  410 

Once an EO proxy has been identified, EO scientists and stakeholders should generate a 411 
pipeline to collect and process EO data and develop an algorithm to monitor pre-flood trends 412 
and post-flood recovery. Algorithm development may entail refining an existing model with 413 
additional training data or creating a new model to detect a novel recovery-specific feature.  To 414 
determine an appropriate model design, EO scientists should validate the algorithm to assess if a 415 
pre-existing algorithm can be used or if a new one needs to be developed to monitor the defined 416 
recovery proxy. This includes establishing data processing protocols during the subsequent 417 
implementation phase.  418 

In tandem with establishing the EO data pipeline and analysis approach, the larger group 419 
should take stock of and collect non-EO data to supplement and contextualize the EO-based 420 
recovery proxy. Measuring flood recovery requires coupling EO with non-EO-based data to 421 
contextualize baseline flood risk, socioeconomic vulnerabilities, recovery resources, and policies 422 
governing recovery mechanisms and critically assess inequities (e.g., Cian et al., 2021; Schwarz 423 
et al., 2018). Non-EO data could be collected through semi-structured interviews, surveys, 424 
participatory mapping approaches, and serious games to understand local social processes (e.g., 425 
Forrest et al., 2022) and complement EO-based data on post-flood recovery. Non-EO data could 426 
include, for example, data from in-drain sensors (Gold et al., 2023), high water marks, photos 427 
from social media (Hultquist & Cervone, 2020), residents’ experience or memory of inundated 428 
events (Tellman et al., 2015), census-based population and demographic data, health records data 429 
to track hazard-related mortalities (Parks et al., 2021), and information on the economic impacts 430 
of floods (Wen et al., 2022).  431 

As part of this process, learning exchanges between all actors with roles identified in the 432 
framework could demonstrate how resident-defined recovery indicators can be monitored with 433 
EO and what non-EO-based data is needed to fill gaps in recovery monitoring that EO cannot 434 
adequately capture. To achieve this, the identified data translators should facilitate discussion 435 
among stakeholders identified in the planning phase regarding how EO and non-EO data can be 436 
operationalized to monitor flood recovery. By facilitating stakeholder engagement, knowledge 437 
may be co-produced to agree upon relevant and necessary non-EO datasets that need to be 438 
collected and generated to elucidate recovery trends. 439 

To characterize what recovery means for a particular geography or flood event, 440 
constructing pre-flood baseline trends is critical to assess post-flood changes and compare 441 
recovery trajectories against them (Jain, 2020; Marlier et al., 2022). Constructing baseline trends 442 
is also helpful for refining expected changes associated with recovery activities. This may 443 
require a temporally dense archive of pre-flood imagery to model pre-flood trends. If this action 444 
is taken pre-flood, though, less time and resources are required to construct baseline trends 445 
immediately following an event, and efforts can be placed instead on monitoring flood recovery. 446 
Establishing pre-event trends is also an opportunity to test and develop detection and monitoring 447 
algorithms that perform well for the specific location and available EO data.  448 

 449 
4.3 Implementation Phase 450 
A flood event triggers the implementation phase, in which the goals are to track and 451 

determine variability in recovery progress and redress identified inequities in recovery progress. 452 
The broad scope of the implementation phase and potential action needed during this phase 453 
should therefore involve all stakeholders identified in the planning phase. The first component of 454 
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this phase is to monitor post-flood recovery, which relies on EO proxies, monitoring algorithms, 455 
and non-EO data determined in the testing phase. Post-flood recovery trends could show ongoing 456 
inundation, persistent damage or impacts, a return to a pre-flood type and condition, or some 457 
improvement via changes associated with recovery based on the locally defined indicators in the 458 
planning phase.  459 

While recovery monitoring is ongoing, the concurrent task is to evaluate benchmarks and 460 
identify differential recovery progress. One example of disparities in recovery progress could be 461 
comparing rebuilding rates in a flood-affected area by neighborhood characteristics. If available, 462 
data on EO-based flood extent, depth, or inundation duration could be used to control for 463 
variable flood exposure. By comparing recovery rates, such as how quickly flood waters recede, 464 
and debris is removed from streets or yards, disparities could be identified and contextualized 465 
with non-EO data. Without burdening affected communities, including residents’ interpretation 466 
of benchmarks is crucial to assessing post-flood recovery trends. 467 

If differential recovery is measured, this is absolute grounds to seek a remedy to reduce 468 
the recovery gap and enforce distributional accountability. EO-based recovery measures can 469 
provide documentation of unequal recovery rates across affected populations to allow 470 
government and non-government actors to prioritize recovery efforts. It can also be used to 471 
buttress legal processes to remedy unjust flood recovery by addressing unequal flood recovery 472 
processes.  Examples of flood-impacted communities addressing flood injustices abound. There 473 
are multiple examples of how flood-affected residents and organized social movements have 474 
successfully sued the federal government for discriminatory flood relief (Rivera et al., 2019) or 475 
galvanized new investments for needed drainage (Rivera, 2023). Horry County Rising, a 476 
community organization based in South Carolina established after catastrophic flooding from 477 
Hurricane Florence in 2018, successfully advocated for accessible flood risk data and grants to 478 
support flood mitigation (McLean, 2023). EO monitoring of disparate recovery impacts can aid 479 
community-led efforts like these to remedy flood injustices. Distributional injustice can lead to 480 
the identification of marginalized community members that can be part of the recovery 481 
monitoring team and address potential procedural injustices (Zuniga-Teran et al., 2021). 482 
  483 

4.4 Knowledge Appraisal Phase  484 
The knowledge appraisal phase is active in both the pre-flood and post-flood stages, with 485 

the sub-components occurring throughout the entire process of the framework. The proposed 486 
framework is intended to be reflexive and iterative. Thus, an important step to evaluate the 487 
framework in the knowledge appraisal phase is to refine the framework and adapt it to portray 488 
shifting community needs, gaps, or capacities following adaptive management principles 489 
(Varady et al., 2016). As applications to monitor recovery are tested, this could lead to refined 490 
monitoring methods, identification of new recovery indicators, an improvement upon EO-based 491 
recovery proxies and algorithms, and the development of novel combinations of EO sensors and 492 
non-EO data sources. As such, refinement of the framework may occur contemporaneously 493 
while addressing additional components in other phases. If the framework is applied to existing 494 
monitoring platforms, such as the CEMS Rapid Response and Recovery Platform and WG 495 
Recovery Observatory, this appraisal could complement a formal review of program goals, 496 
operations, and internal evaluation processes to elevate EO insights to prioritize equitable 497 
recovery efforts.  498 

Lastly, the knowledge appraisal phase provides opportunities to strengthen the theory of 499 
flood recovery, a poorly understood process that deserves concerted attention to guide how 500 
recovery monitoring could reduce flood risk and vulnerability inequities. The challenge in 501 
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leveraging EO to characterize recovery is reflected in a shortage of examples beyond ad hoc 502 
damage assessments (Lallemant et al., 2017). While various theories of flood damages 503 
(Bakkensen & Blair, 2020) and disaster recovery have been proposed concerning ecosystems 504 
(Berke & Glavovic, 2012), sustainable urban systems (Smith & Birkland, 2012), and economics 505 
(Chang & Miles, 2004), to our knowledge, little to no theorization of post-flood recovery 506 
informed by EO has been developed. EO-based documentation of recovery patterns could be 507 
used to test underlying assumptions in theories of flood recovery and elucidate new insights on 508 
how inequity is exacerbated or potentially mitigated thru recovery actions. 509 

5 Opportunities for EO Monitoring to Reduce the Flood Recovery Gap 510 

We write this commentary at a time when decisions are past due on how we adapt to 511 
current and future flood risks. Promoting resilient and adaptive flood recovery is necessary to 512 
close the adaptation gap (UNEP, 2022) and prevent further unnecessary harm concerning the loss 513 
of life and economic, environmental, social, and community damage and disruption. Expanding 514 
EO monitoring systems to support systematic calculation or documentation of divergent recovery 515 
and the outsized impacts recovery inequities have on future flood event outcomes is urgent. This 516 
commentary brief calls for a more comprehensive approach to post-flood recovery monitoring, 517 
which measures locally defined recovery processes to understand variation in recovery 518 
outcomes. We recommend that EO close a recovery gap by adopting a proactive approach and 519 
pinpointing areas of greatest need long after the initial response. EO-derived insights on recovery 520 
progress can guide the redistribution of resources more equitably to enable adaptive recovery and 521 
lessen the impact of future flood events. 522 

Importantly, EO is an incomplete tool to monitor all aspects of recovery. This 523 
commentary calls to ensure that scientific and policy agendas to document and respond to floods 524 
include flood recovery. This will require collaboration across remote sensing scientists, earth and 525 
environmental scientists, flood practitioners, and flood-affected community members and 526 
advocates. We offer a framework to expand EO to monitor flood recovery in a participatory way 527 
and document and redress post-flood recovery inequities. Improved accounting of flood recovery 528 
efforts and progress has the potential to further develop and refine adaptive recovery strategies, 529 
advocate for more equitable outcomes, and strengthen flood risk reduction strategies. To 530 
actualize novel actions of EO for flood adaptive recovery, we aim to inspire broad participation 531 
across disciplines to tackle this challenge that impacts communities globally. 532 
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