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Abstract

Given the role played by the historical and extensive coverage of sea ice concentration (SIC) observations in reconstructing the

long-term variability of Antarctic sea ice, and the limited attention given to model-dependent parameters in current sea ice

data assimilation studies, this study focuses on enhancing the performance of the Data Assimilation System for the Southern

Ocean (DASSO) in assimilating SIC through optimizing the localization and observation error estimate, and two assimilation

experiments were conducted from 1979 to 2018. By comparing the results with the sea ice extent of the Southern Ocean and

the sea ice thickness in the Weddell Sea, it becomes evident that the experiment with optimizations outperforms that without

optimizations due to achieving more reasonable error estimates. Investigating uncertainties of the SIV anomaly modeling reveals

the nonnegligible role played by the sea ice-ocean interaction during the SIC assimilation, implying the necessity of assimilating

more oceanic and sea-ice observations.
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Key points: 12 

• Refining localization and observation error estimate raises the Antarctic sea 13 
ice modeling obtained by assimilating sea ice concentration 14 

• Assimilating sea ice concentration can constrain the modeling of Antarctic 15 
sea ice volume except for its modeling uncertainty 16 

• More oceanic and sea-ice observations are required for the reconstruction of 17 
Antarctic sea ice 18 
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Abstract 19 

Given the role played by the historical and extensive coverage of sea ice concentration 20 
(SIC) observations in reconstructing the long-term variability of Antarctic sea ice, and the 21 
limited attention given to model-dependent parameters in current sea ice data assimilation studies, 22 
this study focuses on enhancing the performance of the Data Assimilation System for the 23 
Southern Ocean (DASSO) in assimilating SIC through optimizing the localization and 24 
observation error estimate, and two assimilation experiments were conducted from 1979 to 2018. 25 
By comparing the results with the sea ice extent of the Southern Ocean and the sea ice thickness 26 
in the Weddell Sea, it becomes evident that the experiment with optimizations outperforms that 27 
without optimizations due to achieving more reasonable error estimates. Investigating 28 
uncertainties of the SIV anomaly modeling reveals the nonnegligible role played by the sea 29 
ice-ocean interaction during the SIC assimilation, implying the necessity of assimilating more 30 
oceanic and sea-ice observations. 31 

Plain Language Summary 32 

Antarctic sea ice is essential for the Earth's system, but its variability is challenging to 33 
understand due to limited observations and model limitations. Data assimilation, a method 34 
combining observations and simulations, can help address these challenges. To better incorporate 35 
long historical sea ice concentration (SIC) observations, we improved the Data Assimilation 36 
System for the Southern Ocean (DASSO) by refining the model-dependent parameters of 37 
assimilation in this study. We conducted experiments from 1979 to 2018 and compared two 38 
experiments with and without optimizations. The results demonstrate the reliability and 39 
superiority of the experiment with optimizations compared to that without optimizations in 40 
comparison with sea ice extent in the Southern Ocean and sea ice thickness derived from the 41 
upward-looking sonar in the Weddell Sea. Further analysis shows that the relationship between 42 
sea ice and the ocean plays a nonnegligible role in assimilating SIC, which reflects the need to 43 
assimilate more oceanic and sea-ice observations to improve the Antarctic sea ice simulation. 44 
Our studies can contribute to the more reasonable reconstruction of the long-term variability of 45 
Antarctic sea ice, which benefits a better understanding of Antarctic sea ice variabilities. 46 
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1 Introduction 47 

The understanding of Antarctic sea ice variability holds significant scientific and 48 
socioeconomic importance, owing to the crucial role that Antarctic sea ice plays in the Earth 49 
system (Turner & Comiso, 2017). Nonetheless, the present sparsity of sea ice observations poses 50 
a challenge in achieving a comprehensive understanding of the Antarctic sea ice system (e.g., J. 51 
Wang, Min, et al., 2022; Worby et al., 2008), and numerical models currently exhibit notable 52 
limitations in adequately capturing the variations in Antarctic sea ice (e.g., Shu et al., 2020; 53 
Tsujino et al., 2020). Consequently, data assimilation has emerged as a valuable approach, as it 54 
synergistically combines information from both observations and simulations. This integrative 55 
approach facilitates a more profound investigation into the complexities of Antarctic sea ice 56 
variability and represents a critical step towards enhancing the accuracy of Antarctic sea ice 57 
prediction.  58 

Given the limited availability of Antarctic sea ice observations and the challenges 59 
associated with data acquisition, substantial efforts have been dedicated to constraining the 60 
Antarctic sea ice system through assimilating long historical sea ice concentration (SIC) data 61 
using assimilation algorithms of varying complexities (e.g., Massonnet et al., 2013; Mazloff et 62 
al., 2010; J. Zhang & Rothrock, 2003). Previous studies have demonstrated the enhancement of 63 
Antarctic sea ice simulation achieved through SIC assimilation, leading to the widespread use of 64 
corresponding sea ice reanalyses. However, recent evaluations, which take into account the 65 
emergence of additional Antarctic sea ice observations, reveal that significant uncertainties 66 
persist to some extent in these reanalyses (e.g., Nie et al., 2022; Shi et al., 2021). While 67 
assimilating more sea ice observations has the potential to further improve the simulation of 68 
Antarctic sea ice (e.g., Luo et al., 2021; Massonnet et al., 2014), the historical and extensive 69 
coverage of SIC observations makes them indispensable for reconstructing the long-term 70 
variability of Antarctic sea ice. 71 

In theory, the truth of data assimilation is defined in the space of the model (Lewis et al., 72 
2006), which consequently renders several parameters of data assimilation reliant on the model’s 73 
intrinsic characteristics during practical application. However, current studies on sea ice data 74 
assimilation, including our previous study (Luo et al., 2021), frequently overlook these 75 
model-dependent parameters to a certain degree. For instance, the implementation of localization 76 
in ensemble-based data assimilation aims to diminish spurious correlations across extensive 77 
spatial distances, and the localization radius should be varied with background error covariance 78 
matrices produced by different models. Regrettably, current practices in sea ice data assimilation 79 
commonly rely on fixed localization radius derived from empirical insights. In addition, 80 
observation errors utilized in data assimilation consist of both measurement errors and 81 
representation errors. Representation errors arise from physical processes and scales that are 82 
observable through measurements but not adequately resolved by numerical models (Oke & 83 
Sakov, 2008). For instance, fine structures of sea ice, such as sea ice leads and edges, 84 
significantly impact the state of sea ice (Maykut, 1978). However, the coarse resolution of 85 
current sea ice models impedes their ability to effectively capture these intricate features, thereby 86 
introducing representation errors. Unfortunately, in current sea ice data assimilation, observation 87 
errors tend to focus primarily on accounting for measurement errors while ignoring the 88 
contribution of representation errors to some degree. 89 
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Therefore, the question remains as to whether calibrating model-dependent parameters in 90 
data assimilation can enhance the performance of sea ice data assimilation. In this study, we 91 
further refine the existing Data Assimilation System for the Southern Ocean (DASSO) and 92 
investigate the impact of these optimizations on the assimilation of SIC observations. 93 

2 Methodology 94 

2.1 Description on DASSO 95 

DASSO has been developed by utilizing the Massachusetts Institute of Technology 96 
general circulation model (MITgcm, Marshall et al., 1997) and the Parallel Data Assimilation 97 
Framework (PDAF, Nerger & Hiller, 2013). The model configuration is identical to that used by 98 
Verdy and Mazloff (2017). At present, DASSO successfully assimilates SIC and sea ice 99 
thickness (SIT) observations (Luo et al., 2021), employing the Local Error Subspace Transform 100 
Kalman Filter (LESTKF, Nerger et al., 2012). Another recent breakthrough in DASSO pertains 101 
to the development of a multivariate balanced atmospheric ensemble forcing (Luo et al., 2023), 102 
which not only enhances the accuracy of simulations but also leads to a more reasonable 103 
estimation of simulation uncertainties, serving as the cornerstone for further optimization of 104 
DASSO. 105 

2.2 Optimization of DASSO 106 

To optimize the localization radius and the estimate of observation error variance 107 
employed in DASSO, an ensemble simulation from 1979 to 2018 is conducted without data 108 
assimilation. This ensemble simulation is forced by the abovementioned multivariate balanced 109 
atmospheric ensemble forcing, and its initial condition is perturbed using second-order exact 110 
sampling (Pham, 2001) based on daily output from a free run of 3 months before 1 January 1979. 111 

In this study, the localization radius is determined as the correlation length scale that best 112 
fits the Gaspari and Cohn function (Gaspari & Cohn, 1999), and the correlation length scale is 113 
estimated based on the ensemble mean of SIC which is sampled every 5 longitudes and 1 latitude 114 
intervals in the region south of 48°S. Figure 1a illustrates the latitude-dependent variation of the 115 
localization radius for DASSO. The localization radius decreases consistently with latitude, 116 
which aligns with the variation of the Rossby deformation radius. Notably, the localization 117 
radius drops rapidly from 1633.1 km at 48°S to 698.7 km at 59°S, while it changes relatively 118 
slow south of 59°S, with the localization radius maintaining around 668.5 km. Additionally, 119 
zonal uncertainties in the localization radius are smaller south of 59°S and larger north of 59°S, 120 
suggesting that the difference in localization radius among sectors of the Southern Ocean also 121 
varies with latitude. More importantly, the mean change in the localization radius with latitude 122 
(64.9 km/degree) is larger than that with longitude (39.7 km/degree), indicating a weaker 123 
relationship between the localization radius and longitude. In light of these findings, the variation 124 
of the localization radius with latitude is considered in the DASSO through a Gaussian function. 125 

Given the role that representation errors of observation play in sea ice data assimilation, 126 
an ensemble-based method originally proposed by Rodwell et al. (2016) for the reliability budget 127 
is employed to estimate the variances of observation error in SIC, which takes into account both 128 
the measurement error and representation error and is determined by the following equation: 129 
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𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 1𝑁 − 1 𝑦 − �̅� − 1𝑁 − 1 𝑁 𝑦 − �̅�  

− 𝑚 + 1𝑚 − 1 𝑚𝑁 𝑥 − �̅�  

where the overbar indicate the ensemble mean. In the equation, 𝑦 represents the observation, 130 
while 𝑥 represents the simulation. The superscripts 𝑖 and 𝑗 serve as indices denoting time and 131 
ensemble members, respectively. Additionally, 𝑁 and 𝑀 correspond to the number of time and 132 
the ensemble size, respectively. The terms on the right-hand side of the equation represent the 133 
mean-squared departure of the ensemble mean relative to the observation, bias, and ensemble 134 
variance, respectively. Figure 1b shows the spatial distribution of the variance of SIC 135 
observation error for DASSO, and this variance is a combined outcome of both the measurement 136 
error and representation error. A prominent saddle-like pattern is evident in the meridional 137 
direction, with larger variances at the edges and coastal regions of Antarctica, while relatively 138 
smaller variances prevail within the intermediate areas. Notably, differences in the distribution of 139 
observation error variance can be found among sectors of the Southern Ocean, such as the larger 140 
variance in the Weddell Sea near the north of the Antarctic Peninsula which is not found in other 141 
regions at the same latitude, indicating the necessity of adopting the observation error variance 142 
with spatial distribution. Furthermore, it is worth mentioning that the observation error variance 143 
estimated in this study is greater than that derived from the uncertainties provided by the 144 
observation data itself (Fig. S1), implying the importance of representation error for DASSO. 145 

2.3 Experiment design 146 

While SIT observations can be assimilated into DASSO, this study specifically focuses 147 
on assimilating SIC observations. The rationale behind this choice is based on the historical and 148 
extensive coverage of SIC observations, which meet the requirements for reconstructing the 149 
long-term variability of Antarctic sea ice. Therefore, SIC observations released by the Ocean and 150 
Sea Ice Satellite Application Facility (OSISAF), namely OSI-450 and OSI-430-b, are assimilated 151 
in two sets of experiments with 15 ensemble members in this study. The experiment period spans 152 
from 1 January 1979 to 31 December 2018. One experiment (denoted Assim) following Luo et al. 153 
(2021), adopts the fixed localization radius (i.e., 100 km) and observation error (i.e., 0.25), with 154 
the forgetting factor set at 0.5. While the other experiment (denoted Assim_opt) employed 155 
optimized localization radius and observation error variance as detailed in Sect. 2.2, alongside a 156 
forgetting factor of 0.95. It should be pointed out that as the forgetting factor decreases, the 157 
background error covariance is inflated, and the analysis heads to the observation. 158 

In the evaluation process, the Southern Ocean SIC observation (OSI-450-a) and SIT 159 
derived from upward-looking sonar in the Weddell Sea serve as reference datasets. To ensure a 160 
robust evaluation, the results of the assimilation experiments for the first 12 months are excluded, 161 
and then the remaining results are interpolated to the corresponding observation locations for 162 
comparisons. Besides, all data are converted to monthly mean values and a 13-month moving 163 
mean is applied to monthly anomalies to focus on the low-frequency variability of Antarctic sea 164 
ice. 165 
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3 Results 166 

Figure 2a depicts the temporal evolution of sea ice extent (SIE) climatology in the 167 
Southern Ocean. The observed SIE climatology exhibits a gradual increase from February to 168 
September, followed by a rapid decrease from September to February, revealing the asymmetric 169 
seasonal evolution of Antarctic SIE. Both experiments effectively capture this asymmetrical 170 
evolution of the SIE climatology and fall within the range of observation uncertainties. 171 
Compared with Assim_opt, the evolution of SIE climatology in Assim seems to more closely 172 
align with the observation, which can potentially be attributed to the utilization of the small 173 
observation error in Assim. The difference in SIE climatology between the simulation and the 174 
observation is presented in Fig. 2b. In both experiments, compared to the observation, the SIE 175 
climatology of the Southern Ocean is underestimated from December to March while 176 
overestimated from April to November, implying a common characteristic shared by the model 177 
utilized in this study. And it is noteworthy that differences in SIE climatology are more 178 
pronounced in Assim_opt compared to Assim, however, these disparities in Assim_opt remain 179 
within the range of observation uncertainties, thus affirming the reliability of Assim_opt. 180 
Furthermore, although significant regional variability is known to exist in the Antarctic sea ice 181 
(Liu et al., 2004), the difference in SIE climatology between the simulation and the observation 182 
in all sectors of the Southern Ocean continues to follow a similar pattern to that of the Southern 183 
Ocean as a whole. The only exception is April in the Ross Sea, where the difference between 184 
simulation and observation exceeds the range of observational uncertainties. 185 

Figure 3a showcases the temporal evolution of the SIE anomaly in the Southern Ocean. 186 
Alongside the evident interannual fluctuations, the observed SIE anomaly also experiences an 187 
upward trend before November 2014, followed by a rapid decline until March 2017. The 188 
assimilation experiments successfully reproduce these observed variabilities, with Assim 189 
outperforming Assim_opt. The performance of the experiments, however, undergoes a reversal 190 
when considering the uncertainties associated with the simulations. The observation falls within 191 
the range of uncertainties in Assim_opt, while the uncertainties of Assim are hardly 192 
distinguishable in Fig. 3a. Further quantitative analysis of SIE anomaly simulations also supports 193 
these findings. Although the root mean squared error (RMSE) of Assim (121501 km2) is less 194 
than that of Assim_opt (232031 km2), the ensemble spread in Assim_opt (232,493 km2) is 195 
comparable to its RMSE, and the ensemble spread in Assim (7269 km2) is much less than its 196 
RMSE. Similar phenomena happen across the sectors of the Southern Ocean (Tab. S1). These 197 
results suggest that the performance achieved in Assim is primarily attributed to the small 198 
forgetting factor, whereas that achieved in Assim_opt can be largely attributed to the more 199 
reasonable error estimates. 200 

To investigate the impact of optimizations on the simulation of unobserved variables, SIT 201 
comparison is conducted between simulations and observations obtained from the 202 
upward-looking sonar (ULS) in the Weddell Sea (Fig. 3b). While the correlation coefficients are 203 
significant in both experiments, the correlation in Assim_opt is notably greater than that in 204 
Assim. Considering the RMSE, although the simulation of thin ice is better than that of thick ice 205 
in both experiments, Assim_opt outperforms Assim. When it comes to the relationship between 206 
RSME and the uncertainty of observation, the advantage of Assim_opt over Assim is further 207 
amplified. The RMSE of Assim_opt consistently remains close to the uncertainty of observation, 208 
regardless of whether it is thin ice or thick ice. Conversely, for thin ice, the RMSE of Assim is 209 
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comparable to the uncertainty of observation, while for thick ice, it significantly exceeds the 210 
uncertainty of observation. 211 

Given the evident disparity in SIT simulation between Assim and Assim_opt, Figure 4a 212 
solely presents the temporal evolution of the sea ice volume (SIV) anomaly in the Southern 213 
Ocean provided by Assim_opt. The long-term variation of the SIV anomaly exhibits similarities 214 
to that of the SIE anomaly, which underscores the constraint of assimilating only SIC on the 215 
simulation of Antarctic sea ice. Notably, the SIV anomaly displays fewer high-frequency 216 
fluctuations compared to the SIE anomaly, indicating a longer-term memory effect of the SIV 217 
anomaly. Furthermore, the ensemble spread of SIV anomaly demonstrates noticeable changes 218 
between the 1990s and 2000s. It is larger until the late 1990s but smaller from the early 2000s 219 
onwards. Intriguingly, the ensemble spread of the SIE anomaly does not exhibit similar 220 
variations. Considering that atmospheric ensemble forcing and sea ice have already been 221 
constrained by atmospheric reanalysis and sea ice observation to some extent respectively, it 222 
becomes imperative to examine the relationship between sea ice and the ocean. Due to the 223 
important role of salinity in the high-latitude ocean, Figure 4b illustrates the correlation between 224 
SIV anomaly and the area-weighted mean Sea Surface Salinity (SSS) anomaly in the Southern 225 
Ocean (i.e., south of 55°S) for different decades. A significant positive correlation is discernible 226 
in the 1980s and 1990s, while an insignificant correlation is observed in the 2000s and 2010s, 227 
which aligns with the changes observed in the trend of SIE anomaly (Fig. S2). Moreover, based 228 
on the SIT budget provided MITgcm, a similar phenomenon can be found in the correlation 229 
between the change rates of SIV anomaly caused by the oceanic heat flux and the overall change 230 
rates of SIV anomaly. In the 1980s, the correlation stands at 0.46, while in the 1990s it slightly 231 
decreases to 0.31. In contrast, the ratio plummets significantly in the 2000s to 0.07 and further 232 
declines to -0.05 in the 2010s (Fig. 4b). These indicate the presence of decadal variability in the 233 
strength of sea ice-ocean interaction. Consequently, the larger ensemble spread of SIV anomaly 234 
in the 1980s and 1990s can, to some extent, be regarded as the joint result of the strong 235 
interaction between sea ice and the ocean and the ocean state not being properly constrained. 236 

4 Conclusion and discussion 237 

Recent studies have revealed the presence of significant uncertainties in certain aspects of 238 
Antarctic sea ice reanalyses obtained from the assimilation of SIC observations (e.g., Nie et al., 239 
2022; Shi et al., 2021). However, the wealth of historical SIC observations, coupled with their 240 
extensive spatial coverage, renders them indispensable for the reconstruction of long-term 241 
Antarctic sea ice variability. Although prior studies on ocean data assimilation have already 242 
demonstrated the significance of optimizing model-dependent parameters for assimilating 243 
oceanic observations (e.g., Y. Wang et al., 2017; S. Zhang et al., 2005), limited attention has 244 
been given to this aspect in current sea ice data assimilation studies. As a result, the question of 245 
whether optimizing model-dependent parameters can enhance the effectiveness of assimilating 246 
SIC observations remains unanswered. In light of this, we have conducted further refinements to 247 
the model-dependent parameters of DASSO, including the development of a latitude-dependent 248 
localization scheme and the estimation of observation error variance of SIC which takes into 249 
account both measurement errors and representation errors. To assess the impact of these 250 
optimizations on the assimilation of SIC observations, we have conducted two sets of 251 
assimilation experiments, whose period spans from 1979 to 2018. 252 
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In the deterministic evaluation of SIE simulation, both the experiment with optimizations 253 
and that without optimizations falls within the range of observation uncertainties, indicating the 254 
reliability of the experiment with optimizations. In the probabilistic evaluation of SIE simulation, 255 
the experiment with optimizations significantly outperforms that without optimizations, which is 256 
owed to the more reasonable error estimation achieved through the optimizations. When 257 
examining the simulation of SIT derived from ULS in the Weddell Sea, the experiment with 258 
optimizations also exceeds that without optimizations in both the deterministic and probabilistic 259 
evaluations. This emphasizes the critical role of reasonable error estimation in adjusting 260 
unobserved variables during the assimilation process. Hence, our attention has been shifted 261 
towards the temporal evolution of SIV anomaly in the Southern Ocean provided by the 262 
experiment with optimizations. Intriguingly, while the evolution of SIV anomaly closely 263 
resembles that of SIE anomaly, the evolution of the ensemble spread of SIV anomaly displays 264 
noticeable deviations from that of SIE anomaly. This discrepancy may arise from the combined 265 
influence of decadal variations in sea ice-ocean interaction and the inadequately constrained state 266 
of the ocean. 267 

Given the long memory exhibited by the SIV anomaly (Fig. 4a), it becomes paramount to 268 
explore viable approaches for reconstructing the long-term variability of Antarctic SIV 269 
reasonably. According to this study, two potential avenues are proposed to achieve this goal. 270 
Firstly, assimilating oceanic observations holds promise for advancing the reconstruction of both 271 
past and future states of Antarctic SIV, since the evident correlation between sea ice and the 272 
ocean in the 1980s and 1990s (Fig. 4b), as well as the occurrence of record-low SIE events in 273 
recent years (Liu et al., 2023; J. Wang, Luo, et al., 2022; L. Zhang et al., 2022). Secondly, the 274 
subpar performance in the simulation of thick ice (Fig. 3b) underscores the importance of 275 
assimilating additional SIT observations, especially those pertaining to thick ice such as SIT 276 
derived from ICESat/ICESat-2 and CryoSat-2 (Kacimi & Kwok, 2020; Xu et al., 2021). 277 
Furthermore, the assimilation of other types of sea ice observations, such as sea ice drift, could 278 
provide valuable insights for improving the simulation of Antarctic SIT (e.g., Massonnet et al., 279 
2014; Mu et al., 2020). Moving forward, we will focus on refining the DASSO in these two 280 
aspects, and remain hopeful that the reanalysis generated by DASSO will contribute to solving 281 
Antarctica’s sea-ice puzzle (e.g., Turner & Comiso, 2017). 282 
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List of Figures 382 

Figure 1. Optimizations of DASSO. Panel (a) illustrates the variation of the localization 383 
radius with latitude. The diamond symbol and the thin lines on either side of it represent 384 
the zonal mean of the localization radius and twice the standard deviation of changes in the 385 
localization radius at the corresponding latitude. The fitting of these diamonds is depicted 386 
by the red curve, which represents a Gaussian function. Panel (b) showcases the variance of 387 
SIC observation error for DASSO. The Southern Ocean is divided into five sectors: the 388 
Weddell Sea (60°W~20°E), the Indian Ocean (20°E~90°E), the Pacific Ocean (90°E~160°E), 389 
the Ross Sea (160°E~130°W), and the Amundsen–Bellingshausen Sea (130°W~60°W). 390 

Figure 2. The simulation of SIE climatology. Panel (a) illustrates the temporal evolution of 391 
SIE climatology in both observations and simulations. The blue, red, and yellow curves 392 
represent the observation, the ensemble mean of Assim, and the ensemble mean of 393 
Assim_opt, respectively. Additionally, the blue bar indicates twice the standard deviation of 394 
changes in the observed SIE over the corresponding period. Panel (b) presents the 395 
difference in SIE climatology between the simulation and the observation. Within each cell, 396 
the lower (upper) section on the main diagonal indicates the difference in SIE climatology 397 
between observation and Assim (Assim_opt). The presence of a cross denotes that the 398 
simulation error exceeds the uncertainties associated with the observations. 399 

Figure 3. The simulation of SIE anomaly in the Southern Ocean and SIT in the Weddell 400 
Sea. Panel (a) illustrates the temporal evolution of SIE anomaly in both observations and 401 
simulations. The curves in blue, red, and yellow correspond to the observation, the 402 
ensemble mean of Assim, and the ensemble mean of Assim_opt, respectively. The shading 403 
emphasizes twice the ensemble spread of the corresponding simulation. Panel (b) provides 404 
the statistical analysis of SIT simulations compared to observations obtained from ULS in 405 
the Weddell Sea. The circle and diamond symbols represent Assim and Assim_opt, 406 
respectively. The size of the symbol indicates the observed SIT with a larger (smaller) 407 
symbol representing SIT greater (less) than 1m. Additionally, the color illustrates the 408 
correlation between the simulation and observation. 409 

Figure 4. The SIV anomaly in the Southern Ocean and the potential contributors to 410 
changes in the SIV uncertainties in Assim_opt. Panel (a) demonstrates the temporal 411 
evolution of the ensemble mean of SIV anomaly, with the shading representing twice the 412 
ensemble spread. Panel (b) depicts the correlation between SIV anomaly and the 413 
area-weighted mean SSS anomaly in the Southern Ocean (i.e., south of 55°S) (represented 414 
by the blue), as well as the correlation between the change rate of SIV anomaly and the 415 
change rate of SIV anomaly induced by oceanic heat flux (represented by the red), within 416 
the Southern Ocean over various decades. The colored bars indicate the correlation passing 417 
the F-test at a 99% significant level. 418 
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Figure 2. The simulation of SIE climatology. Panel (a) illustrates the temporal evolution of SIE climatology in both 428 
observations and simulations. The blue, red, and yellow curves represent the observation, the ensemble mean of 429 
Assim, and the ensemble mean of Assim_opt, respectively. Additionally, the blue bar indicates twice the standard 430 
deviation of changes in the observed SIE over the corresponding period. Panel (b) presents the difference in SIE 431 
climatology between the simulation and the observation. Within each cell, the lower (upper) section on the main 432 
diagonal indicates the difference in SIE climatology between observation and Assim (Assim_opt). The presence of a 433 
cross denotes that the simulation error exceeds the uncertainties associated with the observations. 434 
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Figure 3. The simulation of SIE anomaly in the Southern Ocean and SIT in the Weddell Sea. Panel (a) illustrates the 436 
temporal evolution of SIE anomaly in both observations and simulations. The curves in blue, red, and yellow 437 
correspond to the observation, the ensemble mean of Assim, and the ensemble mean of Assim_opt, respectively. 438 
The shading emphasizes twice the ensemble spread of the corresponding simulation. Panel (b) provides the 439 
statistical analysis of SIT simulations compared to observations obtained from ULS in the Weddell Sea. The circle 440 
and diamond symbols represent Assim and Assim_opt, respectively. The size of the symbol indicates the observed 441 
SIT with a larger (smaller) symbol representing SIT greater (less) than 1m. Additionally, the color illustrates the 442 
correlation between the simulation and observation. 443 
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Figure 4. The SIV anomaly in the Southern Ocean and the potential contributors to changes in the SIV uncertainties 445 
in Assim_opt. Panel (a) demonstrates the temporal evolution of the ensemble mean of SIV anomaly, with the 446 
shading representing twice the ensemble spread. Panel (b) depicts the correlation between SIV anomaly and the 447 
area-weighted mean SSS anomaly in the Southern Ocean (i.e., south of 55°S) (represented by the blue), as well as 448 
the correlation between the change rate of SIV anomaly and the change rate of SIV anomaly induced by oceanic 449 
heat flux (represented by the red), within the Southern Ocean over various decades. The colored bars indicate the 450 
correlation passing the F-test at a 99% significant level. 451 


