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Key Points:7

• We develop seasonal IDAF models at every pixel location in Switzerland.8

• We use all the non-zero precipitation data and model the intensities using the ex-9

tended generalized Pareto distribution.10

• We highlight the complexity of modeling areal precipitation in mountainous re-11

gions12
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Abstract13

Intensity-Duration-Area-Frequency (IDAF) models provide the mathematical link be-14

tween precipitation intensities (I), durations (D), areas (A), and frequency of occurrence15

(F). They play a critical role in hydrological design, areal rainfall hazard quantification,16

storm characterization, and early warning system development. IDAF models extend the17

conventional Intensity-Duration-Frequency (IDF) models by accounting for the spatial18

extent of precipitation(i.e., the area). In this study, we develop IDAF models using the19

entire non-zero precipitation intensities, not only the extremes. We use the extended gen-20

eralized Pareto distribution (EGPD) to model the precipitation intensities. To build the21

IDAF models, we adopt a data-driven approach that allows the linkage of EGPD param-22

eters with duration and area, based on empirically determined parametric relationships.23

The inference of model parameters is done using a global maximum likelihood estima-24

tion, and uncertainties are assessed by the bootstrap method. The study area is Switzer-25

land, a topographically complex region of 42,000 km2 with regional precipitation vari-26

ability and clear seasonality. The study utilizes 17 years of data from CombiPrecip, a27

radar-reanalysis product developed by geostatistically merging radar and rain gauge data28

in an operational setting. We build the IDAF models for the spatiotemporal range of 129

to 72 hours and 1 to 1,089 km2 at each pixel in the study area. To the best of our knowl-30

edge, our study is the first attempt to use the EGPD in IDAF curve modeling. It dis-31

cusses the use and limitations of CombiPrecip in extreme value analysis and highlights32

the challenges of modeling areal precipitation in a complex topographical environment.33

1 Introduction34

In the face of escalating threats posed by climate change and increasingly volatile35

weather patterns, understanding and predicting extreme precipitation is necessary, now36

more than ever, in safeguarding communities and infrastructure. One of the key factors37

driving flood generation is the spatial aggregate of precipitation over a given area, rather38

than just the precipitation at a specific point location. This is because watersheds and39

river basins integrate the precipitation falling over their respective areas, leading to the40

accumulation of runoff and subsequent flood generation. Additionally, extreme precip-41

itation events, manifesting at varying scales, contribute differently to flood dynamics.42

Short and small-scale intense precipitation may induce rapid, localized flash flooding,43

whereas longer and larger-scale precipitation events can lead to sustained fluvial flood-44

ing (Sikorska et al., 2015). However, the interactions and synergies between these scales45

are crucial in shaping the overall flood risk landscape. As a consequence, it is vital to46

consider multiple spatiotemporal scales in the modeling of extreme precipitation. This47

will enhance our ability to better predict and manage the impacts on communities and48

infrastructure, ensuring their resilience in an ever-changing climate.49

Intensity Duration Area Frequency (IDAF) curves summarize the main statistical50

characteristics of extreme precipitation (return level, return period, duration, and area.)51

They provide the mathematical link between precipitation intensities (I), durations (D),52

areas (A), and frequency of occurrence (F). They are useful tools for engineers and hy-53

drologists in hydrological design (see Bertini et al., 2020, for example), quantification of54

areal rainfall hazard (Overeem et al., 2010; Panthou et al., 2014; Mélèse et al., 2019; Zhao55

et al., 2023), storm characterization (Ramos et al., 2005; Ceresetti et al., 2012; Blanchet56

& Mélèse, 2020), and development of early warning systems (Panziera et al., 2016). IDAF57

models extend the well-known Intensity Duration Frequency curves (IDF) by incorpo-58

rating the spatial extent of precipitation (i.e., the area).59

IDAF curves are commonly built by coupling IDF models and a coefficient, the areal60

reduction factor (ARF) that transforms point rainfall of a given duration and return pe-61

riod to areal return levels of the corresponding duration and return period. Applications62

of the ARF-based IDAF models can be found in the literature, for example, De Michele63
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et al. (2001) derived an ARF formulation based on the concept of dynamic scaling of rain-64

fall and used it to model IDAF curves in Milan. Later, Ceresetti et al. (2012) used the65

ARF of De Michele et al. (2001) to model IDAF curves for storm severity assessment in66

southern France. Panthou et al. (2014) also used the same ARF formulation to charac-67

terize areal rainfall in West Africa. Ramos et al. (2005) used an empirical ARF formu-68

lation to model IDAF curves for storm severity assessment in Marseille. Bertini et al.69

(2020) used another empirical ARF formulation to build IDAF curves and used it to de-70

sign a dam in Italy. Mélèse et al. (2019) and Blanchet and Mélèse (2020) used an exten-71

sion of the ARF formulation of De Michele et al. (2001) to build IDAF curves respec-72

tively for areal hazards and storm severity assessment in southern France. The exten-73

sion was to cope with the significant spatiotemporal variability in the mountainous area74

Beyond the ARF-based IDAF curves modeling approach, Overeem et al. (2010) pro-75

posed a purely data-driven approach to model IDAF curves. This involves modeling the76

parameters of the statistical distribution of the precipitation intensities as a function of77

duration and area. The type of relationship is empirically determined from the data, with78

no underlying physical hypothesis such as spatial correlation as done in Rodriguez-Iturbe79

and Mejía (1974) or scaling (as done in De Michele et al., 2001). As highlighted by Mélèse80

et al. (2019), this approach has the advantage of being flexible and applicable in cases81

where the assumptions of the analytical ARF formulations cannot be verified.82

In spite of the chosen method of building the IDAF curves, whether ARF-based83

or purely data-driven, the previously cited works have one thing in common; the pre-84

cipitation data they used and by extension, the underlying parametric distribution. To85

elaborate more, all the authors used only extreme data in the form of block maxima and,86

as the distribution, the generalized extreme value (GEV) distribution (Overeem et al.,87

2010; Ceresetti et al., 2012; Panthou et al., 2014) or its special case, the Gumbel distri-88

bution (Nhat et al., 2007; Mélèse et al., 2019; Blanchet & Mélèse, 2020; Bertini et al.,89

2020), or log-normal distribution (De Michele et al., 2011). A rare application of gen-90

eralized Pareto distribution (GPD) for threshold excesses is found in Zhao et al. (2023)91

for IDAF curve modeling. A major drawback of such approaches is the inefficient use92

of the data since only one value is retained in a block (usually the maximum in a year)93

or the excesses of a threshold (a tiny fraction of the data), and all the other data in the94

block is discarded. This can result in significant uncertainty in estimation, especially in95

cases where the length of the data series is not sufficiently long. The problem of short96

record length is more apparent with radar and radar reanalysis products, which are usu-97

ally used in IDAF curve modeling (Overeem et al., 2010; Mélèse et al., 2019; Blanchet98

& Mélèse, 2020; Zhao et al., 2023), due to the required spatial information they provide.99

To address this issue, our approach here is to make efficient use of information by100

including all the non-zero precipitation intensities, instead of only the block maxima, in101

modeling the IDAF curves. We then use the extended generalized Pareto distribution102

(EGPD) of Naveau et al. (2016) as the parametric model for the intensities. This dis-103

tribution is compliant with extreme value theory in both tails (an advantage over the104

gamma distribution), it models the entire distribution of non-zero precipitation and does105

not require the choice of the threshold as in the generalized Pareto distribution (GPD).106

It has been shown in many applications to be able to adequately model precipitation (Naveau107

et al., 2016; Evin et al., 2018; Le Gall et al., 2022; Haruna et al., 2022, 2023). In par-108

ticular, Haruna et al. (2023) showed that it is possible to model IDF curves (without Area)109

with the EGPD, and we intend to extend their work to model IDAF curves with the EGPD.110

To our knowledge, this is the first time the EGPD has been used in modeling IDAF curves.111

Modeling IDAF curves using all the non-zero data has two potential advantages.112

First, by using all the non-zero data, estimation uncertainty is expected to reduce, re-113

sulting in more accurate predictions. Secondly, in addition to having IDAF curves, we114

will have robust marginal distributions for the entire non-zero precipitation that can be115
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used in stochastic weather generators for simulations, or verification of weather and cli-116

mate models.117

We apply the model in Switzerland, a topographically complex location with sea-118

sonality, regional variability, and multiple precipitation regimes. Following the work of119

Mélèse et al. (2019) which underscores the complex spatiotemporal variability of precip-120

itation in mountainous areas, we use the more flexible data-driven method of Overeem121

et al. (2010) to model the IDAF curves.122

The data and study area are presented in Section 2. The EGPD, the methodology123

for building the IDAF curves, and the method for uncertainty assessment are explained124

in Section 3. Results on the goodness of fit of the model and areal rainfall hazard assess-125

ment in the study area are presented and discussed in Section 4. Finally, conclusions and126

perspectives are given in Section 5127

2 Study area and Data128

2.1 Study Area129

Dole

Plaine Morte

Weissfluhgipfel

Lema

Albis

Figure 1. Map of Switzerland, the study area. The background color denotes the eleva-
tion (meters) above mean sea level. The Radar symbols show the location of the five radars in
Switzerland, with their names in the white boxes. The name of some cities is shown in black and
the name of some mountains and regions are shown in red. The colored embedded squares show
exemplarily the extent of 7 out of the 10 square windows used for data aggregation. They cover
areas of 25, 49, 169, 289, 529, 729, and 1089 km2, from the innermost to the outermost. The red
colored circles show the location of 79 rain gauges used for evaluation of the gridded product
(CPC).

Our study focuses on Switzerland, a country covering 41,285 km2. Despite its small130

size, Switzerland exhibits a complex topography, ranging in elevation from 191 to 4,127131

m above mean sea level. Figure 1 shows the map of the study area. Approximately 30%132

of the land is situated above 1,500 m elevation, resulting in pronounced spatial variabil-133
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ity in both the intensity and occurrence of precipitation. The climate of Switzerland is134

influenced by multiple factors, such as the Alps, the Atlantic Ocean, and the Mediter-135

ranean Sea, and these contribute to the seasonal and spatial variability of precipitation,136

as documented in previous studies (Sodemann & Zubler, 2009; Giannakaki & Martius,137

2015; Scherrer et al., 2016). Precipitation patterns show distinct regional differences, with138

the highest annual sums exceeding 2,000 mm in the Alps, the Jura region (northwest),139

and the Ticino region (south of the Alps). Conversely, the inner valleys such as the Rhône140

and Inn receive the lowest annual precipitation, less than 700 mm. Summer is the pri-141

mary season for precipitation throughout Switzerland, except in Ticino, where autumn142

dominates. Conversely, winter experiences the least amount of precipitation across all143

regions. In terms of heavy precipitation, defined as the average seasonal maxima, the spa-144

tial distribution varies according to accumulation duration (Panziera et al., 2018). For145

short-duration accumulations (e.g., 1 hr), the heaviest precipitation occurs in summer146

across the entire country, with maximum intensities reaching up to 30 mm/hr in Ticino,147

Jura, and the northern rim. For longer accumulations (1 day and more), Ticino receives148

the most intense precipitation, with autumn experiencing a maximum 24 hr total exceed-149

ing 130 mm. In other regions, heavy precipitation predominantly occurs during summer.150

2.2 CombiPrecip151

CombiPrecip (CPC) is a radar-reanalysis product resulting from the geostatisti-152

cal merging of radar and rain gauge in an operational setting (Sideris et al., 2014a). It153

combines the high accuracy of rain gauge with the high spatial coverage of radar. The154

geostatistical merging is through co-kriging with external drift, where the rain gauge data155

is treated as the primary source, and the radar data as the external drift. Information156

from the rain gauge comes from more than 250 automatic stations at 10 minutes reso-157

lution, and that from the radar comes from five polarimetric C-band Doppler radars that158

are suitably located to provide the reliable coverage required in the topographically com-159

plex area (see Figure 1). Since CPC is produced operationally, only rain gauge data within160

Switzerland are used in the algorithm, As a result, an algorithm for the treatment of ex-161

trapolation is used in which some radar pixels outside the Switzerland border are used162

as virtual rain gauges in the merging. Additionally, a convection control scheme is im-163

plemented to overcome the limited representativeness of rain gauges during convection164

events, especially in summer see Sideris et al. (2014b, for details)165

The data from both the rain gauge and radar are subjected to substantial quality166

control before being employed in the CPC algorithm. The gauge data is checked to en-167

sure that recorded values are within climatologically physical limits, they are consistent168

with those from nearby gauges, they satisfy inter-parameter consistency, and variabil-169

ity tests (MeteoSwiss, 2017). Treatment of the radar data (Germann et al., 2006) involves170

clutter elimination through a robust algorithm designed for this purpose, visibility cor-171

rection resulting from orthographic shielding, correction for vertical profile of reflectiv-172

ity, and bias correction. This is in addition to an automatic hardware calibration of the173

radars to check the stability/accuracy of the components and a tailored operational scan174

strategy (20 elevation sweeps every five minutes) crucial in mountainous regions such as175

Switzerland (Germann et al., 2015).176

CPC is available at hourly temporal resolution and a spatial grid of 1 km by 1 km177

and extends 100-150 km beyond the borders of Switzerland. It has been available since178

2005, and 17 years of data is available for this study, from 1st January 2005 to 31st De-179

cember 2021. It has been used in several applications in Switzerland for extreme value180

analysis (Panziera et al., 2016), climatological studies (Panziera et al., 2018), meteoro-181

logical forcing of hydrological model (Andres et al., 2016), and has been evaluated in sev-182

eral aspects (Gabella et al., 2017; Panziera et al., 2018; Gugerli et al., 2020). Known lim-183

itations of CPC involve the limited length of the data, non-homogeneity of the series due184

to radar upgrades and evolution of the number of radars, and conditional bias (MeteoSwiss,185
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2017). Despite these limitations, it is the only sub-daily gridded data available in the study186

area, and producing a gridded product is beyond the scope of the present study. We note187

that these limitations are not unique to CPC alone, but common to other radar and radar-188

reanalysis products, and notwithstanding, they have been used in IDAF modeling e.g.189

Overeem et al. (2010); Mélèse et al. (2019); Blanchet and Mélèse (2020), or extreme value190

analysis (Durrans et al., 2002; Allen & DeGaetano, 2005; Wright et al., 2014; Gouden-191

hoofdt et al., 2017; Panziera et al., 2018). This is due to the detailed spatial represen-192

tativeness they provide, especially in mountainous areas, which is practically unobtain-193

able with rain gauge networks alone.194

3 Methodology195

3.1 Marginal Distribution for Non-Zero Precipitation Intensities196

We use the three-parameter EGPD of Naveau et al. (2016) as the marginal distri-197

bution for the non-zero rainfall intensities in the IDAF model. The model is an exten-198

sion of the classical GPD (which applies only to the excesses of a chosen threshold) to199

model the entire distribution of precipitation intensities (the low, medium, and extremes).200

The first advantage of EGPD is that since it is an extension of GPD, it is compliant with201

extreme value theory, so it behaves like the GPD in the upper tail of the distribution,202

i.e. the same shape parameter see Tencaliec et al. (2020) for demonstration. Secondly,203

since it makes use of all the non-zero precipitation data, one does not need to worry about204

the delicate issue of threshold selection that is known with the GPD. Finally, it mod-205

els the whole range of non-zero precipitation, which has several practical applications206

in cases where the interest is not only in the largest values but in the medium and low207

values as well (e.g. in simulation frameworks or climatological studies).208

We define the random variable I to represent non-zero rainfall intensities. We as-209

sume that it follows the EGPD whose cumulative distribution function (CDF) is defined210

as:211

F (i) = P(I ≤ i) =

[
Hξ

(
i

σ

)]κ
, (1)

with212

Hξ

(
i

σ

)
=

{
1− (1 + ξ i

σ )
−1/ξ
+ if ξ ̸= 0

1− exp (− i
σ ) if ξ = 0

, (2)

and the probability density function (PDF) is given as213

f(i) =
∂

∂i
F (i) =


κ
σ

[
1− (1 + ξ i

σ )
−1/ξ
+

]κ−1

(1 + ξ i
σ )

−1/ξ−1
+ ξ ̸= 0,

κ
σ

(
1− e−

i
σ

)κ−1

e−
i
σ ξ = 0.

, (3)

where a+ = max(a, 0), σ > 0 is the scale parameter, and ξ ≥ 0 is the shape pa-214

rameter that controls the upper tail of the distribution. The flexibility parameter, κ >215

0 controls the lower tail. With the addition of only one parameter, κ, compared to the216

GPD, the distribution is able to model the full range of non-zero precipitation see ap-217

plications in Evin et al. (2018); Le Gall et al. (2022); Haruna et al. (2022, 2023).218
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3.2 Space-time aggregation of the data219

The total area of Switzerland is 41,285 km2, and so we have hourly time series of220

precipitation at 41,285 CPC pixels, each of size 1 km2. We take each time series and strat-221

ify it into four seasons, with winter (Dec-Jan-Feb), spring (Mar-Apr-May), summer (Jun-222

Jul-Aug), and autumn (Sep-Oct-Nov). This seasonal approach is done to account for the223

pronounced seasonality in the study area, as done in several studies in the same area (Molnar224

& Burlando, 2008; Fukutome et al., 2015; Panziera et al., 2018; Evin et al., 2018; Haruna225

et al., 2022, 2023).226

To produce the areal precipitation for use in modeling the IDAF relationships, we227

aggregate the data into 9 additional spatial scales (area) that includes 9, 25, 49, 81, 169,228

289, 529, 729 and 1,089 km2, . The area corresponds to squares of sides 3, 5, 7, 9, 13,229

17, 23, 27, and 33 km, which are illustrated in Figure 1. This leads to a total of 10 se-230

ries of areal precipitation with area ranging from 1 to 1,089 km2 centered around each231

pixel in the study domain. Since CPC is available beyond the borders, it allows us to232

have spatially aggregated rainfall everywhere in Switzerland (including the pixels close233

to the border). We comment here that the choice of the squared area is for simplicity234

and convenience since the CPC data is originally in this geometry. Other choices are pos-235

sible such as circular or elliptical shapes as discussed in Mélèse et al. (2019).236

Next, to build the time series for higher accumulation durations, we use a moving237

window to aggregate the hourly areal precipitation series into 9 additional durations, that238

include 2, 3, 6, 10, 12, 16, 24, 48 and 72 hr. We consider durations up to 72 hr (3 days)239

because according to Froidevaux et al. (2015), while studying catchments larger than 10240

km2, these time scales are the most relevant for flood-triggering precipitation accumu-241

lations in Switzerland. The intermediate durations are meant to ensure a good spread242

on a logarithmic scale. We also apply temporal declustering to reduce serial dependence243

in the time series as done in several studies (e.g. Naveau et al., 2016; Le Gall et al., 2022;244

Haruna et al., 2022, 2023). To achieve this, we retain every 3rd observation in the 1 hr245

time series, and every 4th, 5th, 8th, 10th, 12th, 16th, 24th, 48th, 72nd, respectively in each246

time series of 2, 3, 6, 10, 12, 16, 24, 48, and 72 hr. A ratio plot (not shown) of the max-247

imum intensity with and without declustering over all pixels revealed a median value be-248

tween 0.8 and 0.95, without any systematic evolution with duration and season. This249

indicates that in certain cases, the highest intensities in each duration were left out as250

a result of the declustering process. However, given that we are using all the non-zero251

precipitation intensities, retaining the aggregated time series from the moving window252

would result in significant serial dependence in the time series. A plot of the lag-1 auto-253

correlation after declustering (Figure not shown) showed a large reduction in the auto-254

correlation especially in summer and the transition seasons, whereas it remains relatively255

high (median of 0.44) in winter, especially for the 1 hr series. Nonetheless, we retain the256

declustering steps to decrease the potential of omitting the highest intensities.257

At the end of the aggregation, we have a total of 100 time series of areal precip-258

itation at each pixel, each for a pair (D,A). Unlike in the case where only block max-259

ima will be used for modeling the IDAF relationships, here, we retain and use all the non-260

zero precipitation intensities in modeling the IDAF relationships. Although we have the261

areal precipitation at all the pixels, for computational reasons (an average of 260,000 non-262

zero observations in summer, at each pixel location), we fit the IDAF model only at a263

subset of the pixels, by considering every second and third pixel along the latitude and264

longitude respectively. This results in a total of 7,056 pixels.265

3.3 EGPD-IDAF Model266

Our assumption is that the random variable of non-zero precipitation intensities267

for any duration D and area A, I(D,A) follows the EGPD, i.e.:268
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I(D,A) ∼ EGPD[κ(D,A), σ(D,A), ξ(D,A)], (4)

where κ(D,A) > 0, σ(D,A) > 0 and ξ(D,A) ≥ 0 are the three EGPD parame-269

ters for the duration D and area A.270

Let FD,A(i) be the CDF of I(D,A), such that FD,A(i) = P (ID,A < i), then IDAF271

curve, which is the T -year return level over duration D and area A is defined by the quan-272

tile function of FD,A, i.e.:273

i(T,D,A) =
σ(D,A)

ξ(D,A)


(
1−

[
1− 1

T × δ(D,A)

] 1
κ(D,A)

)−ξ(D,A)

− 1

 , (5)

where κ(D,A) > 0, σ(D,A) > 0 and ξ(D,A) ≥ 0 are the three EGPD parame-274

ters for the duration D and area A. T is the return period in years, δ(D,A) is the av-275

erage number of non-zero precipitation intensities for duration D and area A per year.276

We estimate δD,A based on the long-term average of the non-zero precipitation inten-277

sities per year.278

As already highlighted in Section 1, we use the data-driven approach of Overeem279

et al. (2010) to model the IDAF relationships. The approach involves empirically find-280

ing the appropriate regression model to explain the relationship between each of the three281

EGPD parameters as a function of duration and area. We will now explain our method-282

ology to determine the appropriate regression model.283

We begin by considering each pixel and fitting EGPD separately to the 100 aggre-284

gated time series of scales (D, A) at that pixel location. We then examine how the three285

EGPD parameters change with A and D. To model the relationships, we test various286

regression models using A, D, their transformations; log(A), log(D),
√
A,

√
D, as well287

as some interactions terms. To avoid having a different regression model at each pixel,288

we compare competing models regionally by assessing their predictive performance in289

cross-validation. In the end, we retain the following regression models for the EGPD pa-290

rameters:291

log[κ(D,A)] = β0,κ + β1,κA+ β2,κD + β3,κ log(A) + β4,κ

√
D + β5,κ

√
D log(A) + β6,κD log(A)

log[σ(D,A)] = β0,σ + β1,σA+ β2,σD + β3,σ log(A) + β4,σ

√
D + β5,σ

√
D log(A) + β6,σD log(A)

ξ(D,A) = β0,ξ + β1,ξD + β2,ξ log(A) + β3,ξ

√
D + β4,ξ

√
D log(A) + β5,ξD log(A),

(6)

where D is in hours and A is in km2. βi,∗ for i = 0, 1, ..6 are the regression co-292

efficients. The scale (σ) and flexibility parameter (κ) both have a log link transforma-293

tion because of their positive support. They both have seven regression parameters (βi294

for i = 0, 1, ..6)). The shape parameter ξ has six parameters, making a total of 20 pa-295

rameters for the complete EGPD-IDAF model for each season and pixel location. We296

note here that while the number of parameters might appear large, the model is still par-297

simonious compared to fitting EGPD separately for each time series of (D, A), which298

amounts to a total of 300 parameters (three (3) EGPD parameters for the 100-time se-299

ries in our case). In the result Section we will show additional performance comparisons300

between the 20-parameter EGPD-IDAF model, and the 300-parameter base model. In301

addition to this, the relative complexity of the model (in terms of parameterization), high-302

lights the inherent difficulty of modeling areal precipitation in mountainous regions, where303

areal rainfall is less homogeneous in space compared to relatively flat regions. A simi-304

lar attempt to model IDAF curves in southern France (Massif Central) by Mélèse et al.305

(2019) highlights similar complexity.306
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Figure 2. a) Conceptual illustration of IDAF curves in 3-dimension. IDF curves for A = 81
km2 (shown in panel b) are obtained by cutting a plane on the IDAF curves in panel a at A = 81
km2 (red-colored broken lines). The IAF curves on panel c) are obtained by cutting a plane at D

= 6 hr on panel a (blue-colored broken lines).

To conclude this section, we illustrate a conceptual plot of IDAF curves in Figure307

2. A plot of IDAF curves is 3-dimensional (Figure 2a ), with Intensity (I) along the ver-308

tical axis, duration (D) along the horizontal axis, and area (A) along the third axis which309

is perpendicular to the other two axes. For each specific return period (e.g. 2-year, 10-310

year, or 50-year), a curve is shown to visualize how the intensity changes across A and311

D. However, a much simpler approach is to decouple the 3-dimensional plot into two sub-312

plots, each in 2-dimension. The first one shows how the intensities of specific return pe-313

riods change across durations for a fixed area, i.e. IDF curves (Figure 2b), and the sec-314

ond one, a plot of Intensity-Area-Frequency (IAF) curves, shows how the intensities change315

across areas for a fixed duration (Figure 2c).316

3.4 Model Estimation317

Let us call θ the vector of 20 regression parameters of the EGPD-IDAF model to318

be estimated at a given pixel location. We estimate θ by maximizing the censored log-319

likelihood of the EGPD-IDAF model l(θ), which is given by:320

l(θ) =
∑
A

∑
D

∑
j:i(D,A,j)<C(D,A)

log{FD,A [C(D,A)]}+
∑
A

∑
D

∑
j:i(D,A,j)≥C(D,A)

log{fD,A [i(D,A, j)]},

(7)

where θ is the vector of the 20 regression parameters to be estimated. FD,A and321

fD,A are the CDF and PDF of the EGPD associated with (D, A), i(D,A,j) is the precip-322

itation intensity for (D, A) and time step j. C(D,A) ≥ 0 is the left censoring thresh-323

old applied to the data of (D, A). The log-likelihood is finally expressed in Equation 8324

as:325
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l(θ) =
∑
A

∑
D

∑
j:i(D,A,j)<C(D,A)

κ(D,A) log

[
1−

(
1 +

ξ(D,A)C(D,A)

σ(D,A)

)− 1
ξ(D,A)

]
+

∑
A

∑
D

∑
j:i(D,A,j)≥C(D,A)

log κ(D,A)−
∑
A

∑
D

∑
j:i(D,A,j)≥C(D,A)

log σ(D,A)−

∑
A

∑
D

∑
j:i(D,A,j)≥C(D,A)

[
1 +

ξ(D,A)i(D,A, j)

σ(D,A)

][1+ 1
ξ(D,A) ]

+

∑
A

∑
D

∑
j:i(D,A,j)≥C(D,A)

[
1−

((
1 +

ξ(D,A)i(D,A, j)

σ(D,A)

)− 1
ξ(D,A)

)][κ(D,A)−1]

,

(8)

where κ(D,A) > 0, σ(D,A) > 0 and ξ(D,A) ≥ 0, are the EGPD parameters326

for (D, A) and the other variables retain their earlier definitions.327

The use of the censored likelihood (Equation 8) is mainly to improve the param-328

eter estimation by reducing the influence of the small intensities (Naveau et al., 2016).329

Without censoring, the smaller intensities influence the parameter estimation, thereby330

resulting in a gross overestimation of the upper tail shape parameter (ξ). In the equa-331

tion, both the data above and below the censoring threshold C contribute to the like-332

lihood, albeit in two different ways. The data above C is believed to be observed and333

so the density function f (Equation 3) is applied to them. For the data below C, it is334

assumed that their precise magnitude is not known, although they have been observed.335

All that is known is that they are less than C, and so the distribution function F (Equa-336

tion 1) is applied. The need for the censored likelihood is likely due to the insufficient337

flexibility of the three-parameter EGPD model to adequately model the left tail of the338

distribution or the associated uncertainty in the instrumental recording of very small in-339

tensities. A usual censoring approach is to apply a uniform censoring threshold (e.g. 2340

mm for all the daily data, or 0.5 mm for all the hourly intensities), but as highlighted341

by Haruna et al. (2023), this is not usually sufficient, and so, an appropriate censoring342

threshold has to be obtained for each time series. We follow their footstep and estimate343

a threshold, for each time series of (D, A) that minimizes the squared error between the344

modeled and empirical quantiles (see Equation 10). This approach usually results in an345

adequate fit of the model. . We comment that the censoring only applies during infer-346

ence, afterwards, the model is applied to all the non-zero precipitation intensities, even347

to the data below the threshold. Additionally, all the goodness of fit criteria is computed348

on the whole non-zero precipitation, and not only the data above the censoring thresh-349

old.350

Furthermore, Equation 7 is based on the independence likelihood, which assumes351

independence in the data. This assumption is unlikely to hold given that we have three352

levels of dependence in the data; serial dependence within time series of the same (D,353

A), dependence between time series of different durations (e.g. time series of 1 hr and354

1 km2, versus time series of 2 hr and 1 km2), and lastly the dependence between time355

series of different spatial scales (e.g. time series of 1 hr and 1 km2, versus time series of356

1 hr and 3 km2). Despite these, since our target is on the marginal (univariate) return357

levels, the violation of the independence assumption is unlikely to induce bias in our es-358

timates (Sebille et al., 2017). Additionally, within the framework of modeling IDF curves359

using generalized extreme value (GEV) distribution, Jurado et al. (2020) showed that360

little gain in performance is achieved by explicitly modeling the dependence between the361

data of different durations, in addition to the added complexity. Since their application362

is with GEV rather than EGPD, an interesting perspective is to investigate this effect363

with the EGPD. Here we retain the independence assumption to avoid additional com-364

plexity to our model which already has 20 free parameters. . Finally, to avoid underes-365
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timating uncertainties in our model, which is one of the main consequences of the inde-366

pendence assumption, we resort to block-bootstrapping for uncertainty assessment (see367

Section 3.5).368

3.5 Uncertainty Assessment369

In order to assess uncertainty in the EGPD-IDAF model, we use the block boot-370

strap approach (Kunsch, 1989). The principle of the block bootstrap involves dividing371

the time series into blocks of consecutive observations. Resamples are then generated by372

randomly selecting blocks with replacements and concatenating them to create a boot-373

strap sample. By preserving the block structure, the block bootstrap can capture the374

dependence structure of the original data. This approach is suitable for uncertainty es-375

timation in our case, where we made the independence assumption in the likelihood es-376

timation of the parameters. The block bootstrap method was used for uncertainty es-377

timation by Overeem et al. (2010) in IDAF curves modeling, and by Overeem et al. (2009);378

Haruna et al. (2023) in IDF curves modeling.379

To apply the block bootstrap approach, we take the seasonal time series at each380

pixel and estimate the uncertainty by following the outlined steps below:381

1. Aggregate the time series into the 10 durations and 10 areas, resulting in a total382

of 100 time series, each for a pair of duration and area (D, A). Decluster each of383

the series according to the declustering procedure explained in Section 3.4. We384

call this sample Morig.385

2. Randomly select blocks of size 2 weeks with replacement, G times, to form the re-386

sampled time series (Mboot). Both Morig and Mboot have the same dimensions. The387

block bootstrapping ensures that we keep the data of the different durations D388

and areas A together, and hence the dependence structure. We use a block size389

of 2 weeks, beyond which the autocorrelation in the data does not decrease, as done390

in Haruna et al. (2023) for the same study area in the case of IDF curve model-391

ing.392

3. Fit the EGPD-IDAF model to the data in Mboot and estimate the intended return393

levels.394

4. Repeat steps 2 to 3 a total of 300 times to obtain the bootstrap distribution of395

the return levels. Finally, compute the 95% Confidence Interval (CI) of the return396

levels by the percentile method. This is done by taking the empirical 0.025 and397

0.975 quantiles of the bootstrap distribution of the return levels obtained in step398

4.399

As a measure of model precision, we compute the normalized width of the 95% CI400

of a T -year return level estimate (Shehu & Haberlandt, 2023). For a given pixel loca-401

tion s, it is computed from:402

n95CIwidth ,s =
rT,97.5% − rT,2.5%

r̄T,
(9)

where rT,p% is the p% quantile of the 300 bootstrap estimates of the T -year return403

level (rT ) and r̄T denotes the average of the 300 estimates. The normalization is to en-404

able the comparison of uncertainty width across intensities of different scales and return405

periods.406

3.6 Goodness of fit of the EGPD IDAF model407

To assess the goodness of fit of the EGPD-IDAF model, we compute the normal-408

ized root-mean-square error (NRMSE) and the normalized bias (NBias) at each pixel s409
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and spatiotemporal scale (D, A). To focus on the high intensities, the criteria are com-410

puted only on the exceedances above a 1-year return level, computed using the Weibull411

plotting position, defined as j
n+1 with j being the rank (from largest to smallest) and412

n is the sample size. The normalization allows comparison of the score across intensi-413

ties of different spatiotemporal scales (D, A). For a given pixel s, the two criteria are414

given as:415

NRMSEs =

{
1
ns

∑ns

j=1

(
r̂s,Tj

− rs,Tj

)2}1/2

rs
(10)

NBiass =
1
ns

∑ns

j=1

(
r̂s,Tj

− rs,Tj

)
rs

(11)

where ns is the sample size, rs,Tj is the jth largest empirical quantile with return416

period Tj = ns+1
j×δ , δ is the average number of non-zero precipitations for (D, A) per417

year, r̂s,Tj
is the corresponding Tj return level estimated from the EGPD-IDAF model.418

The denominator is the average of the exceedances419

NRMSE measures the accuracy of a given model in predicting the empirical quan-420

tiles. A good model should have NRMSE = 0, and the smaller the score, the better the421

model. NBias measures the ability of the model to avoid systematic underestimation (NBias422

< 0) or overestimation (NBias > 0) of the empirical quantiles. NBias = 0 means an un-423

biased model.424

3.7 Cross validation425

A natural question to ask is whether the EGPD-IDAF model which links the EGPD426

parameters with duration and area is a better model, in terms of some performance in-427

dicators, compared to fitting the EGPD model separately to each time series of spatiotem-428

poral scale (D, A). The two models will henceforth be referred to as the global model429

and the base model, respectively. To answer this, we compare the two models in a split-430

sample cross-validation framework. We will start by describing the cross-validation frame-431

work, and then introduce the criteria for measuring the performance.432

In the split sampling cross-validation, we consider each pixel and divide the time433

series into two subsamples of the same length but on different randomly chosen years.434

We consider the first sub-sample, aggregate the data into the 10 durations and 10 ar-435

eas, and fit the two competing models, i.e., the base model and the global model. We436

then assess how the two models perform on the second sub-sample (validation sample).437

A good predictive model should perform well in the data not used in training it. We do438

the same on the second sub-sample (use it as the training sample, and the first sub-sample439

as the validation sample). Since the split sampling is done randomly, we repeat the pro-440

cedure 40 times to address sampling bias. We apply the same procedure to all the pix-441

els in the study area. We then select the method that has the best regional performance442

(average of the scores over all the pixels.)443

We use some well-chosen predictive performance criteria to measure the performance444

of the models. The criteria have seen wide applications in the literature (see Garavaglia445

et al., 2011; Renard et al., 2013; Blanchet et al., 2015; Evin et al., 2016; Haruna et al.,446

2022, 2023). We give a brief overview of the criteria, while details can be found in the447

cited references.448

• Robustness: The Robustness criteria, SPAN, measures the ability of a model to449

give similar estimates of a high return level when data from two different calibra-450
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tion periods are used to train the model (Garavaglia et al., 2011). At a given pixel451

(s) and for a spatiotemporal scale (D, A), SPAN is computed as:452

SPANs,T =
2
∣∣∣r̂(1)s,T − r̂

(2)
s,T

∣∣∣(
r̂
(1)
s,T + r̂

(2)
s,T

) (12)

where r̂
(1)
s,T and r̂

(2)
s,T are the T -year return levels estimated from sub-sample 1 and453

2 respectively at pixel s. A SPAN of 0.5 means that the absolute difference be-454

tween the two return levels is half of their average.455

A regional value of SPAN, over Switzerland, is computed as SPANreg,T = 1 −456

1
N

∑N
s=1 SPANs,T , where N = 7, 056 is the total number of pixels. A perfectly457

robust model should have SPANreg,T = 1.458

• Reliability in predicting the maximum value: At a given pixel (s) and for a given459

spatiotemporal scale (D, A), the reliability of the model fitted on sub-sample 1460

in predicting the maxima in sub-sample 2 and vice versa is measured by the FF461

criteria as follows:462

FF(12)
s =

[
F̂
(1)

s

(
max(2)s

)]n(2)
s

(13)

where FF(12)
s is the cross-validation criteria computed at pixel s, by predicting the463

probability of the maximum value in sub-sample 2, of sample size n
(2)
s using the464

model fitted on the sub-sample 1. FF(21)
s is computed symmetrically.465

As noted by Renard et al. (2013) and Blanchet et al. (2015), if the fitted model466

is a good estimate of the true distribution of the data, FF(12)
s should be a real-467

ization of a uniform distribution. Hence, the difference in the area, noted diff ,468

between a theoretical uniform distribution and that of the N = 7, 056 values of469

FF(12)
s (computed over the N pixels), should be close to zero. FFreg at the regional470

scale, given as 1 − diff , should therefore take a value of 1 for a reliable model471

and 0 for a completely unreliable model; the lower the value the less reliable the472

model is.473

• The reliability/accuracy over the entire observations: While the previous reliabil-474

ity score (FF), and SPAN focus on extremes only, it is important that the model475

is also reliable in the bulk of the distribution, especially given that we use the EGPD.476

To measure the reliability of a model in predicting all the observations in cross-477

validation, we use the normalized root mean square error (NRMSE_CV), which478

is expressed as:479

NRMSE_CV(12)
s =

{
1

n
(2)
s

∑n(2)
s

j=1

(
r
(2)
s,Tj

− r̂
(1)
s,Tj

)2}1/2

r
(2)
s

(14)

where NRMSE_CV12
s is the score computed at pixel s, n(2)

s is the sample size of480

the second sub-sample, r(2)s,Tj
is the empirical quantile with return period Tj =

ns+1
j×δ ,481

δ is the average number of non-zero precipitations for (D, A) per year in sub-sample482

2, r̂(1)s,Tj
is the corresponding Tj return level estimated from the model fitted on483

sub-sample 1. The denominator is the mean of non-zero precipitation in sub-sample484

2 at pixel s computed as 1

n
(2)
s

∑n(2)
s

j=1 r
(2)
s,Tj

.485

Similar to the other criteria, the regional score for each spatiotemporal scale (D,A),486

computed over the N pixels, is given as NRMSE_CV
(12)
reg = 1− 1

N

∑N
s=1 NRMSE_CV(12)

s .487

The other score, NRMSE_CV
(21)
reg is computed symmetrically. NRMSE_CVreg =488

1 indicates a perfectly accurate model (the model accurately predicts the empir-489

ical return levels).490
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4 Results and Discussion491

4.1 Evaluation of CPC data492

We begin by checking how the statistics from the CPC data compares with those493

from the rain gauge through a point-to-pixel comparison. This involves comparing the494

time series from a gauge to the time series from a CPC pixel at the location of the gauge.495

We consider 79 stations, with no missing data from 2005 to 2020 (the period of overlap496

of both datasets), and in each case, the data from the gauge is considered the "truth".497

The location of the stations is shown in Figure A3. We comment here that the compar-498

ison is not entirely independent since most of the stations (69 out of the 79) are already499

utilized for correcting the radar data to produce CPC. However, since some differences500

remain between the two, it would be interesting to see how the statistics from CPC com-501

pare to those from the rain gauge before using them in modeling the IDAF relationships.502

The difference arises mainly due to the nugget effect in the variogram model, the inher-503

ent scale differences between radar and rain gauge measurements, and the convection con-504

trol scheme in summer (Sideris et al., 2014a).505

The comparison is in two steps, in the first step, we compare the two time series506

using some chosen criteria and in the second step, we fit EGPD to both time series and507

compare the 20-year return level estimate. The result of the comparison is presented in508

the following subsections.509

4.1.1 Comparison on the empirical values510

i) Criteria on all observations511

Following the work of Zambrano-Bigiarini et al. (2017), we use the three sub-components512

of the Kling-Gupta-Efficiency (KGE) criterion (Kling et al., 2012) to compare the two513

datasets (see Equation A1 in Appendix A). The first is the bias (the tendency of CPC514

to under or overestimate the gauge data). The second is the variability ratio, which mea-515

sures the under or over-dispersion of CPC data compared to the gauge. The third com-516

ponent measures the linear correlation between the two time series. For a perfect match517

between the gauge and CPC, all the criteria should be equal to 1. The criteria are com-518

puted based on all the data, including zeros.519

The boxplot of the correlation coefficient is shown in Figure 3a for the four seasons520

and eight aggregation durations (1, 2, 3, 6, 12, 24, 48, and 72 hr). Generally, there is a521

good temporal correlation between the two data sets for all seasons and durations (me-522

dian > 0.9). For all seasons, the correlation increases with the aggregation duration. Sum-523

mer generally exhibits the lowest correlation irrespective of the duration, due to the lo-524

calized and isolated nature of convective events that are likely to be missed by the rain525

gauge. The bias and variability scores are given in Appendix A. There is generally a526

tendency toward overestimation of the data (Figure A1a by the CPC for all seasons (me-527

dian > 0), again the bias is more pronounced in summer compared to the other seasons.528

Lastly, the dispersion bias (Figure A1b is generally negative with a median of 5% for all529

seasons530

ii) Criteria on extremes531

Next, we evaluate the ability of CPC to correctly detect extreme precipitation as532

measured by the gauge. Extremes here are defined as the exceedances of a 2-year return533

level within the 16 year record. We compute three criteria similar to Panziera et al. (2018).534

The first criterion measures the bias in extreme precipitation totals. The second crite-535

rion computes the probability of detecting extremes (POD), i.e., the ability of CPC to536

classify events as extremes, given that they are also extremes according to the gauge. Lastly,537

we compute the false alarm ratio (FAR), which measures the rate at which CPC clas-538

sifies events as extremes when they are not extremes according to the gauge. For a per-539
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Figure 3. Boxplots of linear correlation (a) and probability of detection (POD) (b) for the
four seasons. Each boxplot contains 79 points, 1 point for each pair of rain gauge and the under-
lying CPC pixel.

fect agreement, bias should be equal to 0, POD should be equal to 1, and FAR should540

be equal to 0.541

Figure 3b shows the seasonal POD scores. The median of the score ranges from542

0.7 to 0.99, which means that 70% to 99% of the gauge extreme events are correctly clas-543

sified as extremes by the CPC. Again, summer shows the lowest values compared to the544

other seasons.The seasonal boxplots of FAR are shown in Appendix A (Figure A2b) and545

the median FAR decreases with duration, which shows the agreement improves as the546

intensities are aggregated to higher durations. The median of the bias in the extremes547

precipitation totals (Figure A2a is less than 5% for all cases. Summer in this case has548

the lowest bias but shows the most spread in the case of short durations.549

4.1.2 Comparison of return level estimates550

In the final phase, we compare the 20-year return level estimates from the two datasets.551

We fit EGPD to each dataset and estimate the 20-year return level. Figure 4 shows the552

relative bias in the 20-year return level estimates. A positive bias indicates that the CPC553

estimates are higher than the gauge estimate. In general, the bias for durations greater554

than 6 hr is close to zero. For the 1 hr duration, however, there is a tendency to have555

lower estimates with CPC for all seasons, except summer which shows the opposite.556

The map of the relative bias, as well as correlation coefficient (r), POD, and bias557

in total precipitation (β), is shown in Figure A3. It can be observed that in general, there558

is no distinct spatial pattern, except for β, which shows overestimation in the north and559

underestimation in the south in all seasons except summer. In addition, three more sta-560

tions show a quite large disagreement with the CPC data. They are located at La Dole561

(elevation 1669 m), Col Du Grand Saint-Bernard (2472 m), and Säntis (2501 m) in the562

west, southwest, and northeast respectively. MeteoSwiss indicates that rain gauge mea-563

surements at these stations are subjected to large uncertainties since the stations are not564

shielded (e.g. influence of wind and snow drift) (MeteoSwiss, 2023).565

In conclusion, the result shown in these sections is aimed at checking how the statis-566

tics of CPC data compares with those from the rain gauge and to understand which di-567
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Figure 4. Boxplots of relative bias in a 20-yr return level estimate for the four seasons. Each
boxplot contains 79 points, 1 point for each pair of rain gauge and the underlying CPC pixel.

rection they take before using the in modeling the IDAF relationships. Despite the no-568

ticeable disagreements, there is generally, a good agreement between the two datasets,569

given the inherent uncertainties in both databases (gauge versus radar reanalysis). As570

mentioned before, although CPC is corrected using the rain gauge data, some differences571

remain, mainly due to the nugget effect in the variogram model, the convection control572

scheme in summer (Sideris et al., 2014a), and the measurement scale difference between573

radar and raingauge. As emphasized in Section 2.2, it is beyond the scope of this study574

to develop a new gridded dataset for this topographically complex study area. CPC presents575

the only dataset at the sub-daily temporal resolution in the study area, and it brings the576

required spatial information needed for modeling IDAF, which cannot be obtained from577

rain gauges due to their limited spatial representativity. In the remainder of the article,578

only CPC is used to build the IDAF models.579

4.2 EGPD parameters as a function of Duration and Area580

The purpose of this section is to show the complex relationship that exists between581

the EGPD parameters and duration D, and area A. Moreover, it aims to showcase that582

the EGPD-IDAF model is flexible enough to adequately capture this complexity.583

As an illustration, we focus on a single pixel located at an elevation of 1,351 m in584

Adelboden, west of the Bernese Alps (see Figure 1). The estimated EGPD parameters585

as a function of D and A for the four seasons are shown in Figure 5. In each panel. the586

lines represent the modeled relationship using the EGPD-IDAF model, and the points587

show the parameter estimates using the base model. It can be observed from the figure588

that there is a clear season-dependent relationship of the parameters with D and A. We589

will focus on winter and summer since the other two seasons present behavior in between590

the two.591

Starting with the top row, the flexibility parameter κ that controls the bulk and592

lower tail of the distribution shows a clear relationship with both D and A. For large593

A, it shows a positive monotonic relationship with D, while for small A, it shows a non-594

monotonic relationship, decreasing and then increasing with D. This non-monotonic re-595

lationship with D was also observed by Haruna et al. (2023) while modeling IDF curves596

in the study area using rain gauge data. Next, looking at the middle row, the scale pa-597
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Figure 5. EGPD parameters as a function of duration D and area A at a pixel located in
Adelboden (elevation of 1354 m, see Figure 1), for the four seasons (columns). The first row is
for κ(D,A), the second row is for σ(D,A), and the last row is for ξ(D,A). In each panel. the
lines represent the modeled relationship using the EGPD-IDAF model, and the points show the
parameter estimates using the base model. The lines and points are colored by duration.

rameter σ decreases with an increase in D for all A in both seasons. It however shows598

a non-monotonic relationship with A, which also varies with D. Finally, in the bottom599

row, the upper tail shape parameter ξ shows a season-dependent relationship with D and600

A. The strongest relationship is observed in summer, where it decreases with both D601

and A. While it shows exponential tail (ξ ≈ 0) for D > 24 hr irrespective of A, it shows602

a heavy tail (ξ > 0.1) for D = 1 hr even at A = 1089 km2. In winter, however, it shows603

an exponential tail for all D and A.604

We highlight here that the pattern of relationship observed at this pixel location605

is not general all over Switzerland, and our aim is just to illustrate the complexity of the606

relationship by focusing on this pixel. For instance, for some locations, σ can show a positive-607

monotonic relationship with A for all D. The shape parameter ξ can remain positive for608

all D and A in winter, increases with D, or increases with A. This intricate relationship609

of the parameters with D and A underscores the difficulty and complexity of modeling610

relationships of areal precipitation in topographically complex locations, due to the re-611

gional heterogeneity of the rainfall process. Despite this, as seen in Figure 5, the pro-612

posed regression models in Equation 6 are flexible enough to capture the observed trends613

in the points corresponding to the base model estimates. In the next section, we will present614

the results of the goodness of fit of the EGPD-IDAF model at all the pixel locations in615

Switzerland.616
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Figure 6. Goodness of fit of the EGPD-IDAF model computed on extremes, defined as the
exceedances of a 1-year return level for each (D, A). a) Boxplots of (1-NRMSE). Note that the
vertical axis is cut at zero although negative values exist. The negative values account for less
than 0.06 % of the scores b ) NBias for the four seasons. Each boxplot contains 7,056 by 10
points, 1 point each for a pixel and a spatiotemporal scale (D, A).

4.3 Goodness of fit of the EGPD-IDAF model for extremes617

We fitted the 20-parameter EGPD-IDAF at each pixel and for each of the four sea-618

sons and assessed the goodness of fit of the model using NRMSE and NBias (see Sec-619

tion 3.6). To assess the model’s performance on the extreme values, we computed the620

two criteria on extremes only, defined as the exceedances of a 1-year return level. The621

normalization allows comparison of the score across intensities of different spatiotempo-622

ral scales (D, A). Figure 6 shows the results for the two criteria. In both figures, each623

of the four panels shows the score for a given season. The results are shown as a func-624

tion of area (A), and so each boxplot contains the results of 7,056 pixels for the 10 ag-625

gregation durations of a given A. Figure 6a shows the result for 1 - NRMSE and so the626

ideal score is 1. For all seasons, the median of the score is greater than 0.8 and the score627

gets better as A increases, possibly because as we aggregate the process over larger spa-628

tial domains, the variability decreases and the fit of the model gets better. While the score629

is relatively the same across seasons, summer shows slightly lower scores for smaller A630

(as seen from the width of the boxplot). These smaller scales in summer largely corre-631

spond to those experiencing more intense and skewed rainfall due the convective events.632

As such the shape parameter is heavy, and so the fit becomes more difficult. In Figure633

6b, the median of the NBias remains close to zero which means that the model does not634

consistently overestimate or under-estimate the empirical quantiles. As with the other635

score, the variability around zero decreases as A increases.636

These two scores show that the model is able to adequately reproduce the areal pre-637

cipitation across durations in the study area. It shows good predictive performance as638

judged by the NRMSE, and doesn’t show a systematic tendency to overestimate or un-639

derestimate the empirical values (NBias).640
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Figure 7. Boxplots of the cross-validation criteria for the four seasons. Each boxplot contains
2 × 100 × 40 points for NRMSE_CV and FF ( 2 regional scores (i.e. FF

(12)
reg and FF

(21)
reg ) for

each pair of (D, A), and 40 resamplings). In the case of SPAN20, each boxplot contains 100 × 40
points (1 regional score for each pair of (D, A) and 40 resamplings)

4.4 Comparison of the EGPD-IDAF model with the base model641

4.4.1 Cross validation results642

The result of the split sampling cross-validation for the comparison of the EGPD-643

IDAF model (global model) and the base model is shown in Figure 7. This Figure shows644

the three cross-validation scores (NRMSE_CV, FF, and SPAN20), one panel for each645

criterion. As a reminder, the 20-parameter global model allows the linkage of the EGPD646

parameters with duration and area, the base model fits a separate EGPD model to each647

of the 100-time series of spatiotemporal scales (D, A). The best model in each case has648

a score of 1. Starting with the first panel from the left, NRMSE_CV is nearly the same649

for both models, which means that both models have the same accuracy in predicting650

the whole non-zero precipitation. Next, the FF criterion also shows similar performance651

by the two models. A noticeable exception is in summer, where the global model shows652

better performance. Hence, according to this criterion, while the models have similar re-653

liability in predicting the maximum value, the global model is slightly better in summer.654

Finally, SPAN20 shows that a better performance is obtained with the global model for655

all seasons compared to the base model. This means that the global model gives a more656

stable estimate of a 20-year return level when the calibration sample is changed. Finally,657

the heat maps in Figure B1 show the median scores for each (D, A) pair. Poor scores658

are typically obtained for short spatiotemporal scales.659

In summary, both models have similar reliability in their predictive ability (NRMSE_CV660

and FF), however, the global model is more robust in 20-year return level estimations661

(SPAN20). The robustness of the global model can be explained by the fact that the model662

is trained with much more data (all the 100-time series are pooled in the parameter es-663

timation), compared to the base model.664

4.4.2 Uncertainty665

Since the two models have similar predictive performance, we also go a step fur-666

ther to compare the models in terms of their uncertainty estimates. While a good model667

should give correct predictions, the uncertainty of the prediction should not be too large.668

Figure 8 shows the n95CIwidth(%)) (Equation 9) of a 50-year return level estimate with669
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Figure 8. Boxplots of n95CIwidth(%) for a 50-year return level estimate using the base model
and the global model. Each boxplot contains 7,056×10 points (7,056 pixels, 10 durations)

both the global and base model. The smaller the score, the better the preciseness of the670

model (less uncertainty). Each panel in this Figure shows the result for a given season.671

The results are shown as a function of area (A), and so each boxplot contains the results672

of 7,056 pixels for the 10 aggregation durations of a given A. For all seasons, the global673

model has the smallest values of the n95CIwidth as seen from the median and width of674

the boxplots. The lower values of the global model mean less uncertainty compared to675

the base model, which can be explained by the fact that the global model is trained with676

more data, and this translates to less uncertainty (narrower confidence intervals). Two677

more comments can be made from Figure 8. First, for all seasons, the uncertainty de-678

creases with A, which can be a result of the smoothing effect due to spatial averaging.679

Secondly, some inter-seasonal differences are noticeable, with summer (winter) having680

the highest (lowest) uncertainty. A possible explanation is that since more extremes are681

observed in summer (especially at sub-daily time scales), the uncertainty is expected to682

be larger. For a given return period, the magnitude of the return levels in summer at683

the small scale is larger compared to the other seasons, and so will the uncertainty.684

To conclude, the results shown so far demonstrate that the modeled EGPD-IDAF685

can be used in the study area. It has adequate goodness of fit, is reliable and robust in686

prediction, and has relatively low uncertainty in estimation. With this validation, we will687

now proceed to showcase examples of IDAF curves constructed from the EGPD-IDAF688

model at some pixel locations in the next section.689

4.5 IDAF curves690

Figure 9 shows an application of the EGPD-IDAF model to build summer IDF and691

IAF curves at the pixel located in Adelboden. This pixel has been introduced in Section692

4.2 and is shown in Figure 1. Starting with the top row (Figure 9a), IDF curves are shown693

in the case of four aggregation areas i.e A = 1, 25, 529, and 1,089 km2 (1 column each).694

In each column, the colored lines represent the T -year return level estimate using the EGPD-695

IDAF model across duration for T = 2, 10, and 20 years. The corresponding empirical696
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Figure 9. Application of the fitted EGPD-IDAF model at a pixel location in Adelboden for
the summer season. The top row (a) shows some IDF curves for four spatial scales (one per col-
umn). The bottom row (b) shows the IAF curves for four temporal scales (one per column). The
lines and the points show the modeled and empirical levels respectively, colored by their return
periods. The colored envelopes are the 95% confidence intervals of the model estimates obtained
by block bootstrap. The 50-year empirical values are not shown due to the short record length of
the data

levels, computed using the Weibull plotting position, are shown by the colored points.697

It can be seen that the EGPD-IDAF model correctly predicts the observation as they698

are within the 95% CI (shown by the colored envelopes). We also see that the uncertainty699

(indicated by the width of the bounds) is higher for shorter durations. Finally, irrespec-700

tive of the spatial scale (A), the return levels decrease as the duration increases.701

The second row (Figure 9b) shows the IAF curves for four temporal scales, D =702

1, 3, 24, and 72 hr. While the model shows an adequate performance for longer dura-703

tions (D ≥ 24 hr), the fit is less good in the case of shorter durations, especially for higher704

return periods. Looking at the IAF curves for short durations, we see that the return705

levels tend to decrease with an increase in the spatial scale. For longer durations, how-706

ever, the return levels have nearly the same magnitude (flat IAF curves) irrespective of707

the spatial scale. A possible explanation is that at short durations, the rainfall events708

are more localized (typical of convective events) and so the magnitude decreases due to709

spatial averaging. For longer durations, however, the rainfall is more homogeneous in space710

(typical of frontal events), with no significant variations in rainfall intensity, leading to711

similar marginal distributions for the considered areal rainfall.712

To explore the regional and seasonal variability of the IDAF relationships, Figure713

10 shows the autumnal IDF curves (top row) and IAF curves (bottom row) at a loca-714

tion in Sion, in the inner valleys, southwestern Switzerland. This location is at a rela-715

tively low elevation of 482 m and experiences low-intensity rainfall due to the shielding716

effect of the Alps on both sides. Remarkably, the IDF and IAF curves at this pixel lo-717

cation exhibit a distinctive behavior, diverging from the conventional trend of decreas-718

ing return levels with increasing spatial scales. The IAF curves (bottom row) highlight719
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this feature. It can be seen that the IAF curves for 1 hr are nearly flat, and the IAF curves720

for D ≥ 24 hr have positive slopes. A plausible explanation of this behavior is that rain-721

fall, of short and long duration, is less intense at the pixel location compared to its neigh-722

borhood locations, which are at a higher altitude (see Figure 6 to 8 of Panziera et al. (2018)).723

As a consequence, more intense rainfall is observed as the rainfall is spatially aggregated724

around the pixel location. Figure 1 shows that a spatial window of 1,089 km2, centered725

around the pixel (elevation of 480 m), extends well beyond the valley into the Bernese726

alpine slopes (elevation up to 2,400 m). This seasonal and regional variability highlights727

the complexity of modeling areal precipitation in the study area due to the complex to-728

pography.729
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Figure 10. Same as Figure 10 but for autumn at a location in Sion in the Canton of Valais
(see Figure 1).

4.6 Areal rainfall hazard in Switzerland730

In this last section, we use the EGPD-IDAF model to assess areal rainfall hazards731

in the study area. We investigate the 20-year return level for two spatiotemporal scales,732

specifically the scales (D = 1 hr, A = 1 km2) and (D = 24 hr, A = 1,089 km2). The cor-733

responding maps of the seasonal 20-year return level are shown in Figure 11a and Fig-734

ure 11b respectively. For the scale (D = 1 hr, A = 1 km2), we observe that the highest735

return levels occur during the summer months, while the lowest values are observed in736

winter. This can be attributed to the prevalence of convective rainfall during summer.737

We also see significant regional variability across all seasons, particularly during sum-738

mer. The Ticino region in the south of the Alps, the Bernese Alps in the north, and the739

Jura Mountains consistently exhibit the highest return levels. Conversely, the inner val-740

leys in Valais and Grisson, due to their location between mountains, depict the lowest741

values as they are shielded from both directions.742

Moving to the scale (D = 24 hr, A = 1,089 km2), we see a shift in the seasonal and743

regional variability of the 20-year return level. The black colored square shows the spa-744

tial coverage of A = 1,089 km2, centered around a pixel in Adelboden. The map in Fig-745

ure 11b shows that the largest values are observed in Ticino, regardless of the season.746
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Figure 11. Map of seasonal 20-year return level obtained with the EGPD-IDAF model for
the spatiotemporal scales a) (D = 1 hr, A = 1 km2) and b) (D = 24 hr, A = 1,089 km2). The
black-colored square in b) shows exemplarily the maximum extent of the square window used for
data aggregation, i.e. 1089 km2.

The Ticino region consistently exhibits the highest levels of extreme precipitation in Switzer-747

land. In the north of the Alps, the plateau displays lower levels compared to the pre-Alps748

(along the Glarus Alps). These results emphasize the influence of spatiotemporal scale749

on the seasonality and regional patterns of rainfall hazard in Switzerland. Smaller scales750

show a higher hazard during summer, while larger scales demonstrate a higher hazard751

during autumn, particularly in the Ticino region. It is important to note that the Ti-752

cino region consistently remains at a higher hazard of extreme precipitation, irrespec-753

tive of the scale. Conversely, the inner valleys in Valais and Grisson exhibit lower sus-754

ceptibility to extreme precipitation events.755

In conclusion, this result provides insights into the seasonal and regional patterns756

of rainfall hazards in Switzerland, highlighting the importance of considering spatiotem-757

poral scales when assessing extreme precipitation hazards. It is important to note that758

while this assessment focuses on the hazard of extreme precipitation, it is essential to759

consider other factors such as exposure and vulnerabilities at specific locations to fully760

evaluate the overall risk.761

5 Conclusions762

This paper focused on modeling the relationship of extreme precipitation across763

duration and area through Intensity-Duration-Frequency (IDAF) curves in Switzerland.764

We proposed a novel approach to model IDAF curves, by using all the non-zero (low,765

medium, and extremes) precipitation data, instead of only the extremes. To build the766

IDAF curves, we used the EGPD as the parametric distribution for the precipitation in-767

tensities. The EGPD has the key advantage of adequately modeling the entire distribu-768

tion of non-zero precipitation while being compliant with extreme value theory in both769

tails. We followed the footsteps of Overeem et al. (2010) to model the IDAF curves through770

a data-driven approach. This approach involves modeling the EGPD parameters as a771
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function of area and duration, with the form of the relationship being empirically deter-772

mined from the data. We used 17 years of data from the radar-reanalysis product, CombiPrecip773

(CPC) (Sideris et al., 2014a) to build the EGPD-IDAF model at each pixel location in774

the study area.775

We used the model to assess areal rainfall hazards for some spatiotemporal scales776

in Switzerland. More than any region, the results showed that Ticino, located south of777

the Alps, is the most exposed to extreme precipitation for all the scales considered. Over-778

all, the result provided insights into the seasonal and regional patterns of rainfall haz-779

ards in Switzerland, highlighting the importance of considering multiple spatiotempo-780

ral scales when assessing extreme precipitation hazards. We comment here that although781

we used the EGPD-IDAF model for areal rainfall hazard assessment, it can be used in782

several applications, such as the design of hydraulic structures (Bertini et al., 2020), or783

the determination of thresholds for use in early-warning systems (Panziera et al., 2016).784

Another potential application is that since the EGPD models the whole distribution of785

non-zero precipitation, not only the upper tail, it can be used as a marginal distribution786

in stochastic weather generators for areal rainfall generation. The model will provide for787

a robust marginal distribution, given the quantity of data used to train it.788

Additional results through a point-to-pixel comparison showed that both CPC and789

rain gauge data provided similar return level estimates, especially for longer durations.790

While this can be seen as a sort of validation of the CPC in extreme value analysis, the791

inferred return levels have to be interpreted with caution, mainly due to the limited length792

of the data. Notwithstanding, our work still provided a framework for further analysis793

in the presence of longer time series, e.g. from simulated series using weather genera-794

tors. Another limitation concerning the use of EGPD is that the data has to be tempo-795

rally declustered to reduce the serial dependence in the time series. For example, for du-796

rations higher than 10 hr (see Section 3.2) the temporal declustering means the data are797

taken in blocks. This can undoubtedly lead to the omission of high-intensity events that798

might result in the underestimation of the return levels. Potential methods to correct799

this have to be explored, since existing methods, to our knowledge, are for annual max-800

ima series (e.g. Hershfield, 1962; Blanchet et al., 2016).801

Some perspectives for the present work involve using splines to model the relation-802

ships in the EGPD-IDAF model rather than regression forms. A possibility is to use Gen-803

eralized Additive Models (GAMs) as implemented in Youngman (2020), or its extension804

that uses censored likelihood as used in Haruna et al. (2022). While splines can be promis-805

ing due to their flexibility, a likely drawback is the enormous computational time required806

for inference of the model when using the EGPD, which uses all non-zero data. Our ex-807

perience in Haruna et al. (2022) shows that the model requires significant time before808

convergence. The problem will be more complicated in this case where 100 time series809

is used and for more than 7,000 pixels. Another avenue for further research involves de-810

veloping an Areal-Reduction-Factor (ARF)-based IDAF model and comparing it with811

the data-driven approach used in this model. While empirical (e.g. Mineo et al., 2018)812

and analytical (e.g. De Michele et al., 2001) ARF formulations exist in the literature (see813

Svensson & Jones, 2010, for a review), our suggestion is to empirically develop an ARF814

model that works in the study area. This is because previous research by Mélèse et al.815

(2019) showed that in mountainous regions, ARF formulations can exhibit unusual be-816

havior (e.g. increasing value of ARF with an increase in Area, or ARF > 1). Further-817

more, from an inference point of view, it will be interesting to explicitly account for de-818

pendence in the likelihood of the EGPD model (Equation 8). Beyond addressing the po-819

tential of likelihood misspecification, it will allow the possibility to estimate the condi-820

tional probability of observing an extreme event of a particular spatiotemporal scale, given821

that an extreme of another scale has been observed. This kind of information is invalu-822

able in practice for risk management and planning.823
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Finally, an avenue for further research is to make an objective comparison of the824

performance of the EGPD and other distributions, such as GEV or GPD, or the recently825

proposed meta-statistical extreme value (MEV) distribution (Marani & Ignaccolo, 2015)826

in modeling IDAF relationships. The MEV distribution, in particular, has become in-827

creasingly popular in hydrological applications (e.g. Schellander et al., 2019; Gründe-828

mann et al., 2023) because it does not require the asymptotic assumption, and it uses829

more data compared to GEV and GPD. The evaluation framework and criteria used in830

this thesis (see Section 3.7) can be applied to compare these distributions. Additionally,831

the criterion proposed by Gründemann et al. (2023) to measure the heaviness of the tail832

of the distribution can also be computed. This will allow a thorough evaluation of the833

advantages and potential drawbacks of using the EGPD when the interest is only in the834

extremes. In any case, the EGPD has an edge over the GPD/GEV/MEV distributions835

since it models the entire non-zero precipitation (low, medium, and extremes), while the836

latter distributions only model the extremes.837
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Appendix A Comparison of CPC to raingauge data848

The Kling-Gupta Efficiency (KGE) (Kling et al., 2012) is computed from:849

KGE = 1−
√

(r − 1)
2
+ (β − 1)

2
+ (γ − 1)

2 (A1)

Where r =
Cov(iCPC ,iGauge)

σ2
CPCσ2

Gauge
is the Pearson correlation coefficient between the CPC850

data (iCPC ) and the station data (iGauge), Cov is the co-variance between the two time851

series and σ denotes the standard deviation. β = µCPC

µGauge
, evaluates the bias between852

the two time series, with µ being the mean. γ = CVCPC

CVGauge
is the variability ratio, that853

is the ratio between the coefficient of variations of the two time series.854
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Figure A1. a): Boxplots of bias (β) for the four seasons. b): Boxplots of variability ratio
(γ) for the four seasons. Each boxplot contains 79 points, 1 point for each pair of gauge and the
underlying CPC pixel.
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Figure A2. a): Boxplots of the bias in extreme precipitation totals for the four seasons. b):
Boxplots of the false alarm ratio (FAR) for the four seasons. Each boxplot contains 79 points, 1
point for each pair of gauges and the underlying CPC pixel.
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Figure A3. Map of Switzerland showing the location of the 79 stations used for compar-
ing CPC against rain gauge time series. The locations shown by the circles are those managed
by MeteoSwiss, while those shown by the triangles are managed by the canton of Lucerne. The
shapes are colored according to the value of the criterion. From top left in clockwise direction:
linear correlation (r), probability of detection (POD), bias (β) relative bias in a 20-yr return level
estimate
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Appendix B Cross validation criteria for various spatiotemporal scales855
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Figure B1. a): Seasonal heat maps of the median score over 80 values (2 × 40 resamplings)
for various spatiotemporal scales (D, A). Top left: NRMSE_CV, top right: the FF criterion.
The bottom panel shows the same maps for the case of SPAN20 over 40 resamplings.
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