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Abstract

An ensemble of forecasts is necessary to identify the uncertainty in predicting a non-linear system like climate. While ensemble

averages are often used to represent the mean state and diagnose physical mechanisms, they can lead to information loss and

inaccurate assessment of the model’s characteristics. We highlight an intriguing case in the seasonal hindcasts of the Climate

Forecast System version-2. While all ensemble members often agree on the sign of predicted El Nino Southern Oscillation

(ENSO) for a particular season, non-ENSO climate forcings, although present in individual members, are disparate. As a

result, an ensemble mean retains ENSO anomalies while diminishing non-ENSO signals. This difference between ENSO and

non-ENSO predictions and a more decisive impact of ENSO on seasonal climate increases the ensemble mean ENSO-Indian

Summer Monsoon Rainfall correlation. Thus, a model’s teleconnection skills, which often help interpret physical mechanisms,

should be studied using individual members rather than ensemble averages.
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Key Points:11

• In CFSv2, the consensus on ENSO forcing sign among ensemble members effectively12

represents ENSO’s influence in the ensemble mean.13

• Non-ENSO climate forcings, despite being present in individual members, vary con-14

siderably, attenuating non-ENSO signals in the ensemble mean.15

• Hence, the ensemble mean shows a strong ENSO-ISMR correlation, while individual16

ensemble members do not exhibit the same relationship.17
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Abstract18

An ensemble of forecasts is necessary to identify the uncertainty in predicting a non-linear19

system like climate. While ensemble averages are often used to represent the mean state and20

diagnose physical mechanisms, they can lead to information loss and inaccurate assessment21

of the model’s characteristics. We highlight an intriguing case in the seasonal hindcasts of22

the Climate Forecast System version-2. While all ensemble members often agree on the sign23

of predicted El Nino Southern Oscillation (ENSO) for a particular season, non-ENSO climate24

forcings, although present in individual members, are disparate. As a result, an ensemble25

mean retains ENSO anomalies while diminishing non-ENSO signals. This difference between26

ENSO and non-ENSO predictions and a more decisive impact of ENSO on seasonal climate27

increases the ensemble mean ENSO-Indian Summer Monsoon Rainfall correlation. Thus,28

a model’s teleconnection skills, which often help interpret physical mechanisms, should be29

studied using individual members rather than ensemble averages.30

Plain Language Summary31

When it comes to predicting a chaotic system like climate, we generate a set of fore-32

casts known as an ensemble. Each forecast in the ensemble starts from slightly different33

initial conditions. To evaluate the performance of the climate model, we often calculate the34

average of the ensemble. But only looking at the ensemble average can sometimes over-35

look important information and make our evaluations of the climate model less accurate.36

Here, we presented one such example where the ensemble mean fails to represent the true37

characteristic of the model. Previous studies reported that the year-to-year variations of38

the Indian summer monsoon rainfall in many climate models are heavily influenced by the39

climate of the central and eastern Pacific oceans. However, our analysis reveals that this40

relationship stems from the methodology used to compute ensemble mean rather than be-41

ing an inherent characteristic of the model. Hence, our study highlights the importance of42

examining individual ensemble members to evaluate the models’ forecasting abilities.43
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1 Introduction44

Ensemble forecasting has become widely adopted for predicting inherently chaotic and45

non-linear systems like weather and climate (Molteni et al., 1996; Palmer, 2000). This46

approach involves running a numerical prediction model multiple times with different initial47

conditions or numerical atmospheric representations to address forecast uncertainty (Palmer,48

2000; Leutbecher & Palmer, 2008; Weisheimer et al., 2011). Moreover, ensemble averages49

of forecasts are commonly used to address systematic model errors and represent forecasts50

as anomalies. This approach relies on the forecast value for a specific start time, lead51

time, and target period. However, there can be challenges if a forecast ensemble mean is52

needed for start times that are not included in the hindcasts or if the number of hindcasts53

is considerably smaller than the variance of the forecast anomaly (Tippett et al., 2018).54

Despite these challenges, numerous studies have extensively utilized this method to evaluate55

the model’s teleconnection patterns and forecast skill in simulating Indian summer monsoon56

rainfall (ISMR).57

The year-to-year variation of ISMR is primarily influenced by low-frequency varia-58

tions in tropical sea surface temperatures (Charney & Shukla, 1981), particularly El Nino59

Southern Oscillation (ENSO) (Rasmusson & Carpenter, 1983; J. Shukla & Wallace, 1983).60

However, the impact of these SST variations on monsoons can vary due to the inherent61

chaotic nature of the climate system. Hence, the generation of ensemble forecasts becomes62

imperative to estimate the uncertainty associated with the ISMR predictions and to evaluate63

the model performance in predicting monsoons. Many of the climate models like ECMWF-64

SYSTEM4, North American Multi-Model Intercomparison Project (NMME), and CMIP65

models heavily rely on ENSO for ISMR prediction (Kim et al., 2012; Pillai et al., 2021; He66

et al., 2022; Rajendran et al., 2022). Interestingly, some models exhibit an ENSO-ISMR67

relationship that is nearly twice as strong as observed (Singh et al., 2019). For example,68

many coupled models of CMIP5 show a similar strong association, which attributes it to the69

westward shift of the anomalous low-level anticyclonic circulation over the tropical Indian70
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Ocean and western subtropical northwest Pacific. This shift causes an advection of dry71

air from the extratropics to the Indian region, causing a stronger ENSO-ISMR relationship72

(Ramu et al., 2018). The NCEP Climate Forecast system version-2 (CFSv2) model also73

demonstrates an overestimation of this relationship (George et al., 2016; Chattopadhyay et74

al., 2016), potentially due to an underestimation of synoptic activity over the Bay of Bengal75

in August, which amplifies the impact of ENSO on ISMR in the model (Das et al., 2022).76

Furthermore, the ENSO-ISMR relationship in the CFSv2 might also be influenced by SST77

biases in the equatorial central Pacific and Indian oceans (R. P. Shukla & Huang, 2016).78

Another study highlighted that the observed fluctuation in the ENSO-ISMR correlation over79

a longer period could also be ascribed to sampling variability (Cash et al., 2017; Gershunov80

et al., 2001). This finding is shown using a large ECMWF Ensemble Prediction System81

ensemble. Several studies also examine the impact of another variability on ISMR in the82

CFSv2. One of these studies suggests that the model has a problem capturing the air-sea in-83

teraction over the Indian Ocean and low-level winds over the Indian region (Krishnamurthy,84

2018). Additionally, another study by (Sabeerali et al., 2019) indicates that CFSv2 has poor85

predictive skills in forecasting the teleconnection between the Atlantic zonal mode and ISM.86

Although the above studies analyzed the model’s teleconnection patterns using the87

ensemble average of the forecast, relying solely on this approach could lead to the loss88

of valuable information embedded within the individual ensemble forecasts. Hence, our89

objective is to investigate whether the ensemble mean of the forecasts reflects the true90

behavior of the model or displays distinct characteristics when compared to the individual91

ensemble members. We also want to ascertain whether the model errors discussed earlier92

are a consequence of inherent limitations in the model or are influenced by the methodology93

employed to analyze the teleconnection patterns.94
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2 Model Description, Experimental Design, and Observational Data sets95

We utilize the National Centers for Environmental Prediction (NCEP) CFSv2 model,96

which is fully coupled and includes the NCEP GFS (Global forecast system) for the atmo-97

spheric component, Geophysical Fluid Dynamics Laboratory Modular Ocean Model version98

4 for the ocean model, a two-layer sea ice model, and a four-layer Noah land surface model99

(Saha et al., 2014). GFS has a horizontal resolution of 0.91◦and 64 vertical levels. The100

model simulation is performed at the computing platform of Council for Scientific and In-101

dustrial Research (CSIR) Fourth Paradigm Institute, Bengaluru, following the experimental102

setup used by Rajendran et al. (2021) and Singhai et al. (2023). The model is integrated for103

nine months using five different initial conditions for the period of 1979–2016. The initial104

conditions include 00UTC of 21 April (member 1), 26 April (member 2), 1 May (member105

3), 6 May (member 4), and 11 May (member 5). This is referred to as “Model 1” or M1 in106

this study. Additionally, to verify the M1 results, the study also analyzes 124 nine months107

of reforecast (referred to as “Model 2” or M2) initialized from CFS-based initial conditions108

every fifth day from 1 January to 31 May, with four reforecasts per day (00, 06, 12, 18 UTC)109

from 1982 to 2010 (Saha et al., 2010).110

The objective of this study is to investigate the difference in the model’s characteristics111

in individual ensemble members and their mean. We treat each of the initial conditions112

reforecasts as a distinct entity to obtain the characteristic of individual members (Eall).113

Conversely, we calculate the ensemble mean using the following approach:114

By assuming the linear superposition of different forcings, such as ENSO, IOD, and115

ATL, on ISMR, we can express ISMR (P) as follows:116

P = C0 +

n∑
j=1

Cjfj (1)117

where fj is the jth forcing and Cj are constants. The term C0 can be neglected with the118

removal of the climatological values.119
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If there are m members of an ensemble prediction system, the above equation applies120

separately to each of the ensemble members. Thus, the ensemble mean (EM ) for ISMR can121

be computed in the following way.122

P̄ =

n∑
j=1

Cj f̄j (2)123

Here, Cj remains unchanged as it represents the model’s characteristics, while f̄j represents124

the ensemble mean forcing and is computed by averaging the values across each ensemble125

member, as shown below.126

f̄j =
1

m

m∑
i=1

fi127

For model validation against observations, we use the June-September (JJAS) averaged128

Extended reconstructed sea surface temperature (ER-SST) version 5 data to derive the129

ENSO index (Huang et al., 2017). The India Meteorological Department (IMD) monthly130

mean gridded rainfall dataset with a spatial resolution of 1◦×1◦ is used to calculate ISMR131

(Rajeevan et al., 2006). JJAS average GPCP (Global Precipitation Climatology Project)132

data is also utilized to depict changes in precipitation over land and ocean (Huffman et al.,133

2009).134

Index calculation135

The area-averaged rainfall over the region (7.5◦–27.5◦N, 70◦–90◦E) during the boreal136

summer monsoon season is used to define ISMR (Parthasarathy et al., 1994). For ISMR137

computation, only land grid points are considered. The ENSO index is the area-average138

SST anomaly over the Nino 3.4 region (5◦S–5◦N, 170◦W–120◦W). SST anomaly greater139

(less) than 0.5◦C (-0.5◦C) is classified as El Nino (La Nina). The ATL is defined as the140

averaged SST anomaly over a region (20◦S–Eq, 30◦W–20◦E) (Kucharski et al., 2008, 2007).141

The positive (negative) phases of ATL are identified when the JJAS averaged values exceed142

one (less than minus one) standard deviation.143
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Likelihood histogram144

The likelihood histogram displays the distribution of ensemble members exhibiting co-145

herent behavior, with a threshold of 0◦C for both the ENSO and ATL indices. For a partic-146

ular year, we determine the maximum number of ensemble members showing the same sign147

of anomaly (>0 or <0). For instance, years where all five ensemble members showed either148

a positive or negative ENSO index, are grouped in bin 5, while the 4 and 3 contained years149

with fewer coherent members.150

3 Results151

ENSO has a strong relationship with ISMR, with a correlation coefficient of −0.58, as152

shown in Fig 1a. However, the majority of the climate models, including CFSv2, overes-153

timate the impact of ENSO on boreal summer monsoon rainfall, as reported in previous154

studies (Kim et al., 2012; R. P. Shukla & Huang, 2016; He et al., 2022; Rajendran et al.,155

2022). These studies often use the ensemble average method to examine the teleconnec-156

tion patterns in the seasonal and sub-seasonal prediction systems. Although this method157

effectively reduces the random variations or “noise” inherent in ensemble forecasts, it also158

results in the loss of important information. For instance, Figure 1a depicts the relationship159

between ENSO and ISMR for the CFSv2 models 1 (M1) and 2 (M2). This association is160

shown using both individual (Eall, yellow bars) and the mean of ensemble members (EM ,161

red bars). It should be noted that there is a significant difference in the ENSO-ISMR rela-162

tionship computed from these two methods for both M1 and M2. The correlation coefficient163

(CC) for the Eall (CCM1 = −0.55 and CCM2 = −0.58) is comparable to that seen in the ob-164

servation (CC=−0.58). However, the relationship is greatly overestimated for EM , resulting165

in a high correlation coefficient of −0.7 (M1) and −0.88 (M2). Furthermore, despite model166

M2 having a significantly larger number of ensemble members compared to model M1, there167

is a greater disparity in the correlation coefficient between EM and Eall for M2 than for168

M1. This suggests that the strong relationship between ENSO and ISMR in the CFSv2169
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model, as reported by previous literature, is not a characteristic inherent to the model but170

stems from the ensemble average method. In addition, it is worth noting that our primary171

finding remains robust and consistent regardless of the number of ensemble members used172

in models M1 and M2. This highlights the reliability of our results, despite the potential173

impact of the number of ensemble members on the efficacy of the ensemble average method174

(Atger, 1999).175
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Figure 1. (a) The bar plot illustrates the relationship between ENSO and ISMR

for the observation, as well as the CFSv2 models M1 (with 5 ensemble members) and

M2 (with 124 ensemble members). This relationship is depicted using both individual

members (Eall) and the ensemble mean (EM) of the CFSv2 seasonal hindcasts. (b-

h) The spatial composite of the correlation coefficient between the ENSO index and

precipitation over the South Asian region. Panel (b) represents the observation, panel

(c) shows the ensemble mean (EM), and panels (d-h) present the correlation for all

five individual ensemble members of model M1 (21 April (Mem 1), 26 April (Mem 2),

1 May (Mem 3), 6 May (Mem 4), and 11 May (Mem 5)). The inset value in (b-h) is

for the correlation coefficient (CC) between ISMR and ENSO index for 1979-2016.

Figure 1b-h displays the spatial patterns showing the response of ENSO to ISMR for176

observation (Fig. 1b), ensemble mean (Fig. 1c), and the individual ensemble members (Fig.177

1d-h) of model M1. Negative values of the correlation coefficient mark the entire Indian178

region in all three cases. However, these values are significantly higher for the ensemble mean179
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than for observation and other ensemble members. The negative values in the ensemble180

mean mainly concentrate on the western ghats and northern parts of the Indian region,181

particularly over the Indo-Gangetic belt (Fig 1c). The reason for such high negative values182

in the ensemble mean can be understood by examining the behavior of individual ensemble183

members. It is worth noting that the response of ENSO to ISMR varies significantly among184

ensemble members, ranging from −0.37 to −0.62. Member 1 displays the weakest ENSO185

response to ISMR with a CC of −0.37. In contrast, other members show a considerably186

strong relationship, albeit weaker than the ensemble mean. In addition, the negative CC187

among the ensembles, particularly for members 2, 4, and 5, are heterogeneously clustered188

over northern India. As a result, when the ensemble average is computed, the negative189

values are superimposed in a manner that causes the ENSO-ISMR relationship to be higher190

in the ensemble mean than in the individual members.191

−0.8 −0.6 −0.4 −0.2 0.0
ENSO-ISMR CC

0

1

2

3

PD
F

(a)
Obs
EM
Mem 1
Mem 2
Mem 3
Mem 4
Mem 5

<5 5
No. of ma(. members 

w th same s gn

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

EN
SO

-IS
M

R 
CC

(b)
Eall members

EM

Figure 2. (a) The probability density function (PDF) of the correlation coefficient

(CC) between ENSO forcing and Indian summer monsoon rainfall (ISMR). This anal-

ysis is based on a 38-year sample extracted from a total of 190 individual ensemble

members. This process is randomized and repeated over 1000 iterations. Additionally,

the CC values for the observation, the ensemble mean, and all five individual ensemble

members (21 April (Mem 1), 26 April (Mem 2), 1 May (Mem 3), 6 May (Mem 4),

and 11 May (Mem 5)) for the period of 1979–2016 are also indicated as markers. (b)

The bar plot shows the ENSO-ISMR relationship when all 5 and less than 5 ensem-

ble members exhibit the same sign of ENSO anomalies. The year distribution of the

cases where there are 5 and <5 members having the same sign of ENSO anomalies

are shown in Figure 3.
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Figure 2a shows the probability distribution of the potential ENSO-ISMR correlation192

coefficients, generated by randomly selecting 38 years from the ensemble forecast of 190193

years (38 years × five initial conditions). This process is randomized and repeated over 1000194

times. Interestingly, the maximum likelihood of getting the correlation coefficient between195

ENSO-ISMR is −0.55 (mode), which is similar to the correlation corresponding to the196

observation and individual ensemble members. Additionally, four out of the five ensemble197

members are clustered around the mode value. The probability of getting the correlation198

coefficient of the ensemble mean (CC=−0.7) is much lower than that of CC computed199

using individual ensemble members (CC=−0.55). Once again, this finding confirms that200

the strong relationship between ENSO and ISMR observed in EM is not an intrinsic feature201

of the CFSv2 model.202

3 4 5
No. of max. members

 with same sign

0.0

0.2

0.4

0.6

0.8

Fr
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n 
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rs

(a) N34

3 4 5
No. of max. members

 with same sign

0.0

0.2

0.4

0.6

0.8 (b) ATL

Figure 3. The histograms show the distribution of the maximum number of ensemble

members exhibiting the same signs of an anomaly for (a) ENSO Index (N34) and (b)

Atlantic tropical variability (ATL).

To investigate the differing response of ENSO on ISMR between the ensemble mean and203

individual ensemble members, we generate a histogram in Figure 3a to examine the behavior204

of each individual member under ENSO forcing. Additionally, since external forcings such205

as ATL can suppress the influence of ENSO on ISMR (Kucharski et al., 2008), the histogram206
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for ATL is also shown in Fig 3b. Our analysis shows that there is a high probability (around207

66%) of obtaining the same sign of anomaly (either N34>0 or N34<0) by all five ensembles208

under ENSO forcing. Our analysis shows that there is a high probability (around 66%) of209

obtaining the same signs of anomaly (either N34>0 or N34<0) for each year across all five210

ensemble members under ENSO forcing. This leads to the ENSO forcing dominating the211

ensemble mean over individual members. As a result, the ENSO-ISMR relationship in the212

ensemble mean is majorly determined by these five coherent members (CC5=−0.77, Figure213

2c). This leads to the retainment of the ENSO forcing in the ensemble mean, leading to a214

pronounced ENSO-ISMR relationship. This relationship in the ensemble mean is majorly215

determined by the years where all five ensemble members exhibit the coherent anomaly216

signs (CC5=−0.77, Figure 2c). In contrast, the contribution of members showing incoherent217

behavior (<5) is negligible (CC<5 = −0.08, Figure 2b). Notably, we also observe that the218

ENSO-ISMR relationship derived from the ensemble mean of the incoherent member (<5)219

is weaker than that computed from individual members (Fig 2b). This can be due to the220

cancellation of the ENSO forcing caused by the varying responses of ENSO among different221

ensemble members. On the other hand, for non-ENSO forcing, such as ATL, the likelihood222

of all five ensemble members exhibiting the same sign is much lower than ENSO forcing223

(Fig 3b). This may be due to non-linear processes over the Atlantic Oceans, contributing to224

the model’s differing behavior among ensembles. Hence, in the case of non-ENSO forcing,225

even though it exists in individual members, it shows significant variability, resulting in the226

weakening of non-ENSO signals in the ensemble mean.227

External climatic forcings such as ENSO and ATL tend to perturb the surface pres-228

sure patterns surrounding the Indian region, leading to modifications in the incoming and229

outgoing moisture fluxes (Chakraborty & Singhai, 2021). These fluxes, primarily from the230

Arabian Sea (FW ) and the Bay of Bengal (FE), play a vital role in driving atmospheric231

convection over India during the boreal summer monsoon. Figure 4 shows a scatter plot232

that facilitates the examination of potential disparities in the responses of ENSO and ATL233

to moisture fluxes between individual members and the ensemble mean. To accomplish this,234

–11–
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Figure 4. The scatter plots show the relationship between the ENSO index and

moisture flux over the Bay of Bengal (FE) when there is a maximum of (a) five and

(b) less than five ensemble members with the same signs of ENSO anomaly. Similarly,

in plots (c, d), we examine the relationship between ATL forcing and moisture flux over

the Arabian Sea (FW ) for these two cases. To quantify the impact of ATL, we regress

out the impact of ENSO from total moisture fluxes (explained in Supplementary Note

1).

we focus on dominant moisture fluxes such as FE , which plays a crucial role in regulating235

ENSO-driven rainfall in the model (Supplementary Figure 1), also shown by Singhai et al.236

(2023) through analysis of individual ensemble members. Additionally, we examine the role237

of FW , the primary factor driving rainfall during ATL events (Supplementary Figure 2).238

We then segregate the forcing and moisture fluxes based on years where five and less than239

five members show the same sign of forcings (same way as in Figure 3). We notice that the240

correlation between ENSO and FE is higher in years when all members are coherent in sign241

(CC=0.84) than in fewer coherent members (CC=0.42). Hence, the impact of FE on the242

ensemble mean is maintained when all members exhibit consistent signs, while its influence243

diminishes when there are fewer members with coherent signs. Furthermore, as depicted in244

Figure 4b, it is evident that the variability of ENSO forcing is significantly reduced when245

fewer than five ensemble members exhibit the same sign, in contrast to the case when all246

five members have coherent signs. It is due to the opposite signs of ENSO forcing in the in-247

dividual ensemble members, which tend to cancel out each other, resulting in the decreased248

variability of ENSO in the <5 case. As depicted in Figure 3b, the number of members249

with coherent signs is lower for ATL than for ENSO. As a result, the impact of ATL in250

the ensemble mean is reduced compared to ENSO. This reduction in ATL forcing leads to251

a weaker response, as shown in Fig 4c and 4d. Moreover, similar to ENSO, the impact of252

–12–
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ATL forcing on FW is more pronounced when all members have the same anomaly sign, as253

opposed to when there are fewer coherent sign members. This emphasizes that disparity in254

the impact of ENSO and ATL forcing on moisture fluxes between the ensemble mean and255

individual ensemble members is primarily influenced by the maximum number of ensemble256

members exhibiting a consistent sign of forcing.257

El Nino La Nina WATL CATL

−2

−1

0

1

2

IS
M
R 
an

om
.

Eall members

EM

Figure 5. The box plot shows the ISMR response to positive and negative phases of

ENSO (El Nino and La Nina) and ATL (Warm-ATL and Cold ATL) forcing.

Figure 5 illustrates the response of rainfall to positive and negative phases of ENSO258

and ATL in both the ensemble mean and individual ensemble members. The relationship259

between El Nino (La Nina) events and ISMR is observed to be different in the ensemble260

mean compared to the individual members, with almost all El Nino (La Nina) events leading261

to a decrease (increase) in ISMR in the former, but this is not the case in the latter. This262

difference is attributed to the high ENSO-ISMR relationship observed in the ensemble mean,263

which is a result of a maximum number of members exhibiting the coherent sign (as shown264

in Figure 3a). This finding also suggests that the model simulates the mean response of265

positive and negative ENSO phases to ISMR correctly. This response is largely governed266

by the climate of the Bay of Bengal (Singhai et al. (2023), Figure 4a). Conversely, similar267

to ENSO events, the rainfall variability sharply decreases in the ensemble mean compared268
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to the individual ensemble member during ATL events. This could be attributed to the269

suppressed effect of ATL forcing due to the negation of forcing caused by members having270

opposite anomaly signs. To summarize, the stronger relationship between ENSO and ISMR271

observed in the ensemble mean is primarily influenced by the agreement among ensemble272

members with the same ENSO anomaly sign. Nevertheless, the non-ENSO climate forcings273

present in individual members display substantial variability, leading to a reduction in the274

strength of non-ENSO signals within the ensemble mean.275

4 Summary and discussions276

The primary aim of this study is to address the critical issue of imprudent usage of277

the ensemble mean approach for evaluating the forecasting skills of climate models. It is278

observed that relying solely on the ensemble mean method neglects the valuable information279

embedded within individual ensemble members, potentially leading to erroneous evaluations280

of the model’s teleconnection patterns. Our study highlights a notable case of a strong281

ENSO-ISMR relationship in the CFSv2 seasonal hindcasts. Previous studies have reported282

that the CFSv2 model, like many other climate forecast models, is subject to the strong283

influence of ENSO on ISMR (Kim et al., 2012; R. P. Shukla & Huang, 2016; He et al.,284

2022; Rajendran et al., 2022). Our analysis, however, suggests that this pronounced ENSO-285

ISMR relationship is primarily observed in the ensemble mean, while it is not apparent in286

the individual ensemble members. Hence, we aim to discern the underlying mechanisms287

contributing to the distinctive response of ENSO to ISMR in the ensemble mean versus288

individual ensemble members.289

This observed discrepancy between the ensemble mean and individual ensemble mem-290

bers attributes to a change in the nature of forcing and its associated response during the291

computation of the ensemble mean. In particular, the strong relationship between ENSO292

and ISMR observe in the ensemble mean primarily stems from the consensus among en-293

semble members regarding the sign of ENSO anomaly. This retains the influence of ENSO294
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in the ensemble mean. Conversely, the significant variability of the non-ENSO forcings in295

individual members diminishes the strength of non-ENSO signals within the ensemble mean.296

Our study highlights the significance of examining individual ensemble members rather297

than solely relying on the ensemble mean in order to gain a comprehensive understanding298

of a climate model’s characteristics and forecasting abilities. Specifically, we find that the299

prevalent issue of a strong ENSO-ISMR relationship in many climates models may not300

necessarily stem from a fundamental lacuna within the model but rather arises from the301

methodology employed in calculating the ensemble mean.302
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Key Points:11

• In CFSv2, the consensus on ENSO forcing sign among ensemble members effectively12

represents ENSO’s influence in the ensemble mean.13

• Non-ENSO climate forcings, despite being present in individual members, vary con-14

siderably, attenuating non-ENSO signals in the ensemble mean.15

• Hence, the ensemble mean shows a strong ENSO-ISMR correlation, while individual16

ensemble members do not exhibit the same relationship.17
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Abstract18

An ensemble of forecasts is necessary to identify the uncertainty in predicting a non-linear19

system like climate. While ensemble averages are often used to represent the mean state and20

diagnose physical mechanisms, they can lead to information loss and inaccurate assessment21

of the model’s characteristics. We highlight an intriguing case in the seasonal hindcasts of22

the Climate Forecast System version-2. While all ensemble members often agree on the sign23

of predicted El Nino Southern Oscillation (ENSO) for a particular season, non-ENSO climate24

forcings, although present in individual members, are disparate. As a result, an ensemble25

mean retains ENSO anomalies while diminishing non-ENSO signals. This difference between26

ENSO and non-ENSO predictions and a more decisive impact of ENSO on seasonal climate27

increases the ensemble mean ENSO-Indian Summer Monsoon Rainfall correlation. Thus,28

a model’s teleconnection skills, which often help interpret physical mechanisms, should be29

studied using individual members rather than ensemble averages.30

Plain Language Summary31

When it comes to predicting a chaotic system like climate, we generate a set of fore-32

casts known as an ensemble. Each forecast in the ensemble starts from slightly different33

initial conditions. To evaluate the performance of the climate model, we often calculate the34

average of the ensemble. But only looking at the ensemble average can sometimes over-35

look important information and make our evaluations of the climate model less accurate.36

Here, we presented one such example where the ensemble mean fails to represent the true37

characteristic of the model. Previous studies reported that the year-to-year variations of38

the Indian summer monsoon rainfall in many climate models are heavily influenced by the39

climate of the central and eastern Pacific oceans. However, our analysis reveals that this40

relationship stems from the methodology used to compute ensemble mean rather than be-41

ing an inherent characteristic of the model. Hence, our study highlights the importance of42

examining individual ensemble members to evaluate the models’ forecasting abilities.43
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1 Introduction44

Ensemble forecasting has become widely adopted for predicting inherently chaotic and45

non-linear systems like weather and climate (Molteni et al., 1996; Palmer, 2000). This46

approach involves running a numerical prediction model multiple times with different initial47

conditions or numerical atmospheric representations to address forecast uncertainty (Palmer,48

2000; Leutbecher & Palmer, 2008; Weisheimer et al., 2011). Moreover, ensemble averages49

of forecasts are commonly used to address systematic model errors and represent forecasts50

as anomalies. This approach relies on the forecast value for a specific start time, lead51

time, and target period. However, there can be challenges if a forecast ensemble mean is52

needed for start times that are not included in the hindcasts or if the number of hindcasts53

is considerably smaller than the variance of the forecast anomaly (Tippett et al., 2018).54

Despite these challenges, numerous studies have extensively utilized this method to evaluate55

the model’s teleconnection patterns and forecast skill in simulating Indian summer monsoon56

rainfall (ISMR).57

The year-to-year variation of ISMR is primarily influenced by low-frequency varia-58

tions in tropical sea surface temperatures (Charney & Shukla, 1981), particularly El Nino59

Southern Oscillation (ENSO) (Rasmusson & Carpenter, 1983; J. Shukla & Wallace, 1983).60

However, the impact of these SST variations on monsoons can vary due to the inherent61

chaotic nature of the climate system. Hence, the generation of ensemble forecasts becomes62

imperative to estimate the uncertainty associated with the ISMR predictions and to evaluate63

the model performance in predicting monsoons. Many of the climate models like ECMWF-64

SYSTEM4, North American Multi-Model Intercomparison Project (NMME), and CMIP65

models heavily rely on ENSO for ISMR prediction (Kim et al., 2012; Pillai et al., 2021; He66

et al., 2022; Rajendran et al., 2022). Interestingly, some models exhibit an ENSO-ISMR67

relationship that is nearly twice as strong as observed (Singh et al., 2019). For example,68

many coupled models of CMIP5 show a similar strong association, which attributes it to the69

westward shift of the anomalous low-level anticyclonic circulation over the tropical Indian70
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Ocean and western subtropical northwest Pacific. This shift causes an advection of dry71

air from the extratropics to the Indian region, causing a stronger ENSO-ISMR relationship72

(Ramu et al., 2018). The NCEP Climate Forecast system version-2 (CFSv2) model also73

demonstrates an overestimation of this relationship (George et al., 2016; Chattopadhyay et74

al., 2016), potentially due to an underestimation of synoptic activity over the Bay of Bengal75

in August, which amplifies the impact of ENSO on ISMR in the model (Das et al., 2022).76

Furthermore, the ENSO-ISMR relationship in the CFSv2 might also be influenced by SST77

biases in the equatorial central Pacific and Indian oceans (R. P. Shukla & Huang, 2016).78

Another study highlighted that the observed fluctuation in the ENSO-ISMR correlation over79

a longer period could also be ascribed to sampling variability (Cash et al., 2017; Gershunov80

et al., 2001). This finding is shown using a large ECMWF Ensemble Prediction System81

ensemble. Several studies also examine the impact of another variability on ISMR in the82

CFSv2. One of these studies suggests that the model has a problem capturing the air-sea in-83

teraction over the Indian Ocean and low-level winds over the Indian region (Krishnamurthy,84

2018). Additionally, another study by (Sabeerali et al., 2019) indicates that CFSv2 has poor85

predictive skills in forecasting the teleconnection between the Atlantic zonal mode and ISM.86

Although the above studies analyzed the model’s teleconnection patterns using the87

ensemble average of the forecast, relying solely on this approach could lead to the loss88

of valuable information embedded within the individual ensemble forecasts. Hence, our89

objective is to investigate whether the ensemble mean of the forecasts reflects the true90

behavior of the model or displays distinct characteristics when compared to the individual91

ensemble members. We also want to ascertain whether the model errors discussed earlier92

are a consequence of inherent limitations in the model or are influenced by the methodology93

employed to analyze the teleconnection patterns.94
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2 Model Description, Experimental Design, and Observational Data sets95

We utilize the National Centers for Environmental Prediction (NCEP) CFSv2 model,96

which is fully coupled and includes the NCEP GFS (Global forecast system) for the atmo-97

spheric component, Geophysical Fluid Dynamics Laboratory Modular Ocean Model version98

4 for the ocean model, a two-layer sea ice model, and a four-layer Noah land surface model99

(Saha et al., 2014). GFS has a horizontal resolution of 0.91◦and 64 vertical levels. The100

model simulation is performed at the computing platform of Council for Scientific and In-101

dustrial Research (CSIR) Fourth Paradigm Institute, Bengaluru, following the experimental102

setup used by Rajendran et al. (2021) and Singhai et al. (2023). The model is integrated for103

nine months using five different initial conditions for the period of 1979–2016. The initial104

conditions include 00UTC of 21 April (member 1), 26 April (member 2), 1 May (member105

3), 6 May (member 4), and 11 May (member 5). This is referred to as “Model 1” or M1 in106

this study. Additionally, to verify the M1 results, the study also analyzes 124 nine months107

of reforecast (referred to as “Model 2” or M2) initialized from CFS-based initial conditions108

every fifth day from 1 January to 31 May, with four reforecasts per day (00, 06, 12, 18 UTC)109

from 1982 to 2010 (Saha et al., 2010).110

The objective of this study is to investigate the difference in the model’s characteristics111

in individual ensemble members and their mean. We treat each of the initial conditions112

reforecasts as a distinct entity to obtain the characteristic of individual members (Eall).113

Conversely, we calculate the ensemble mean using the following approach:114

By assuming the linear superposition of different forcings, such as ENSO, IOD, and115

ATL, on ISMR, we can express ISMR (P) as follows:116

P = C0 +

n∑
j=1

Cjfj (1)117

where fj is the jth forcing and Cj are constants. The term C0 can be neglected with the118

removal of the climatological values.119
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If there are m members of an ensemble prediction system, the above equation applies120

separately to each of the ensemble members. Thus, the ensemble mean (EM ) for ISMR can121

be computed in the following way.122

P̄ =

n∑
j=1

Cj f̄j (2)123

Here, Cj remains unchanged as it represents the model’s characteristics, while f̄j represents124

the ensemble mean forcing and is computed by averaging the values across each ensemble125

member, as shown below.126

f̄j =
1

m

m∑
i=1

fi127

For model validation against observations, we use the June-September (JJAS) averaged128

Extended reconstructed sea surface temperature (ER-SST) version 5 data to derive the129

ENSO index (Huang et al., 2017). The India Meteorological Department (IMD) monthly130

mean gridded rainfall dataset with a spatial resolution of 1◦×1◦ is used to calculate ISMR131

(Rajeevan et al., 2006). JJAS average GPCP (Global Precipitation Climatology Project)132

data is also utilized to depict changes in precipitation over land and ocean (Huffman et al.,133

2009).134

Index calculation135

The area-averaged rainfall over the region (7.5◦–27.5◦N, 70◦–90◦E) during the boreal136

summer monsoon season is used to define ISMR (Parthasarathy et al., 1994). For ISMR137

computation, only land grid points are considered. The ENSO index is the area-average138

SST anomaly over the Nino 3.4 region (5◦S–5◦N, 170◦W–120◦W). SST anomaly greater139

(less) than 0.5◦C (-0.5◦C) is classified as El Nino (La Nina). The ATL is defined as the140

averaged SST anomaly over a region (20◦S–Eq, 30◦W–20◦E) (Kucharski et al., 2008, 2007).141

The positive (negative) phases of ATL are identified when the JJAS averaged values exceed142

one (less than minus one) standard deviation.143
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Likelihood histogram144

The likelihood histogram displays the distribution of ensemble members exhibiting co-145

herent behavior, with a threshold of 0◦C for both the ENSO and ATL indices. For a partic-146

ular year, we determine the maximum number of ensemble members showing the same sign147

of anomaly (>0 or <0). For instance, years where all five ensemble members showed either148

a positive or negative ENSO index, are grouped in bin 5, while the 4 and 3 contained years149

with fewer coherent members.150

3 Results151

ENSO has a strong relationship with ISMR, with a correlation coefficient of −0.58, as152

shown in Fig 1a. However, the majority of the climate models, including CFSv2, overes-153

timate the impact of ENSO on boreal summer monsoon rainfall, as reported in previous154

studies (Kim et al., 2012; R. P. Shukla & Huang, 2016; He et al., 2022; Rajendran et al.,155

2022). These studies often use the ensemble average method to examine the teleconnec-156

tion patterns in the seasonal and sub-seasonal prediction systems. Although this method157

effectively reduces the random variations or “noise” inherent in ensemble forecasts, it also158

results in the loss of important information. For instance, Figure 1a depicts the relationship159

between ENSO and ISMR for the CFSv2 models 1 (M1) and 2 (M2). This association is160

shown using both individual (Eall, yellow bars) and the mean of ensemble members (EM ,161

red bars). It should be noted that there is a significant difference in the ENSO-ISMR rela-162

tionship computed from these two methods for both M1 and M2. The correlation coefficient163

(CC) for the Eall (CCM1 = −0.55 and CCM2 = −0.58) is comparable to that seen in the ob-164

servation (CC=−0.58). However, the relationship is greatly overestimated for EM , resulting165

in a high correlation coefficient of −0.7 (M1) and −0.88 (M2). Furthermore, despite model166

M2 having a significantly larger number of ensemble members compared to model M1, there167

is a greater disparity in the correlation coefficient between EM and Eall for M2 than for168

M1. This suggests that the strong relationship between ENSO and ISMR in the CFSv2169

–7–



manuscript submitted to Geophysical Research Letters

model, as reported by previous literature, is not a characteristic inherent to the model but170

stems from the ensemble average method. In addition, it is worth noting that our primary171

finding remains robust and consistent regardless of the number of ensemble members used172

in models M1 and M2. This highlights the reliability of our results, despite the potential173

impact of the number of ensemble members on the efficacy of the ensemble average method174

(Atger, 1999).175
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Figure 1. (a) The bar plot illustrates the relationship between ENSO and ISMR

for the observation, as well as the CFSv2 models M1 (with 5 ensemble members) and

M2 (with 124 ensemble members). This relationship is depicted using both individual

members (Eall) and the ensemble mean (EM) of the CFSv2 seasonal hindcasts. (b-

h) The spatial composite of the correlation coefficient between the ENSO index and

precipitation over the South Asian region. Panel (b) represents the observation, panel

(c) shows the ensemble mean (EM), and panels (d-h) present the correlation for all

five individual ensemble members of model M1 (21 April (Mem 1), 26 April (Mem 2),

1 May (Mem 3), 6 May (Mem 4), and 11 May (Mem 5)). The inset value in (b-h) is

for the correlation coefficient (CC) between ISMR and ENSO index for 1979-2016.

Figure 1b-h displays the spatial patterns showing the response of ENSO to ISMR for176

observation (Fig. 1b), ensemble mean (Fig. 1c), and the individual ensemble members (Fig.177

1d-h) of model M1. Negative values of the correlation coefficient mark the entire Indian178

region in all three cases. However, these values are significantly higher for the ensemble mean179

–8–



manuscript submitted to Geophysical Research Letters

than for observation and other ensemble members. The negative values in the ensemble180

mean mainly concentrate on the western ghats and northern parts of the Indian region,181

particularly over the Indo-Gangetic belt (Fig 1c). The reason for such high negative values182

in the ensemble mean can be understood by examining the behavior of individual ensemble183

members. It is worth noting that the response of ENSO to ISMR varies significantly among184

ensemble members, ranging from −0.37 to −0.62. Member 1 displays the weakest ENSO185

response to ISMR with a CC of −0.37. In contrast, other members show a considerably186

strong relationship, albeit weaker than the ensemble mean. In addition, the negative CC187

among the ensembles, particularly for members 2, 4, and 5, are heterogeneously clustered188

over northern India. As a result, when the ensemble average is computed, the negative189

values are superimposed in a manner that causes the ENSO-ISMR relationship to be higher190

in the ensemble mean than in the individual members.191
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Figure 2. (a) The probability density function (PDF) of the correlation coefficient

(CC) between ENSO forcing and Indian summer monsoon rainfall (ISMR). This anal-

ysis is based on a 38-year sample extracted from a total of 190 individual ensemble

members. This process is randomized and repeated over 1000 iterations. Additionally,

the CC values for the observation, the ensemble mean, and all five individual ensemble

members (21 April (Mem 1), 26 April (Mem 2), 1 May (Mem 3), 6 May (Mem 4),

and 11 May (Mem 5)) for the period of 1979–2016 are also indicated as markers. (b)

The bar plot shows the ENSO-ISMR relationship when all 5 and less than 5 ensem-

ble members exhibit the same sign of ENSO anomalies. The year distribution of the

cases where there are 5 and <5 members having the same sign of ENSO anomalies

are shown in Figure 3.
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Figure 2a shows the probability distribution of the potential ENSO-ISMR correlation192

coefficients, generated by randomly selecting 38 years from the ensemble forecast of 190193

years (38 years × five initial conditions). This process is randomized and repeated over 1000194

times. Interestingly, the maximum likelihood of getting the correlation coefficient between195

ENSO-ISMR is −0.55 (mode), which is similar to the correlation corresponding to the196

observation and individual ensemble members. Additionally, four out of the five ensemble197

members are clustered around the mode value. The probability of getting the correlation198

coefficient of the ensemble mean (CC=−0.7) is much lower than that of CC computed199

using individual ensemble members (CC=−0.55). Once again, this finding confirms that200

the strong relationship between ENSO and ISMR observed in EM is not an intrinsic feature201

of the CFSv2 model.202

3 4 5
No. of max. members

 with same sign

0.0

0.2

0.4

0.6

0.8

Fr
ac
tio

n 
of
 y
ea

rs

(a) N34

3 4 5
No. of max. members

 with same sign

0.0

0.2

0.4

0.6

0.8 (b) ATL

Figure 3. The histograms show the distribution of the maximum number of ensemble

members exhibiting the same signs of an anomaly for (a) ENSO Index (N34) and (b)

Atlantic tropical variability (ATL).

To investigate the differing response of ENSO on ISMR between the ensemble mean and203

individual ensemble members, we generate a histogram in Figure 3a to examine the behavior204

of each individual member under ENSO forcing. Additionally, since external forcings such205

as ATL can suppress the influence of ENSO on ISMR (Kucharski et al., 2008), the histogram206
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for ATL is also shown in Fig 3b. Our analysis shows that there is a high probability (around207

66%) of obtaining the same sign of anomaly (either N34>0 or N34<0) by all five ensembles208

under ENSO forcing. Our analysis shows that there is a high probability (around 66%) of209

obtaining the same signs of anomaly (either N34>0 or N34<0) for each year across all five210

ensemble members under ENSO forcing. This leads to the ENSO forcing dominating the211

ensemble mean over individual members. As a result, the ENSO-ISMR relationship in the212

ensemble mean is majorly determined by these five coherent members (CC5=−0.77, Figure213

2c). This leads to the retainment of the ENSO forcing in the ensemble mean, leading to a214

pronounced ENSO-ISMR relationship. This relationship in the ensemble mean is majorly215

determined by the years where all five ensemble members exhibit the coherent anomaly216

signs (CC5=−0.77, Figure 2c). In contrast, the contribution of members showing incoherent217

behavior (<5) is negligible (CC<5 = −0.08, Figure 2b). Notably, we also observe that the218

ENSO-ISMR relationship derived from the ensemble mean of the incoherent member (<5)219

is weaker than that computed from individual members (Fig 2b). This can be due to the220

cancellation of the ENSO forcing caused by the varying responses of ENSO among different221

ensemble members. On the other hand, for non-ENSO forcing, such as ATL, the likelihood222

of all five ensemble members exhibiting the same sign is much lower than ENSO forcing223

(Fig 3b). This may be due to non-linear processes over the Atlantic Oceans, contributing to224

the model’s differing behavior among ensembles. Hence, in the case of non-ENSO forcing,225

even though it exists in individual members, it shows significant variability, resulting in the226

weakening of non-ENSO signals in the ensemble mean.227

External climatic forcings such as ENSO and ATL tend to perturb the surface pres-228

sure patterns surrounding the Indian region, leading to modifications in the incoming and229

outgoing moisture fluxes (Chakraborty & Singhai, 2021). These fluxes, primarily from the230

Arabian Sea (FW ) and the Bay of Bengal (FE), play a vital role in driving atmospheric231

convection over India during the boreal summer monsoon. Figure 4 shows a scatter plot232

that facilitates the examination of potential disparities in the responses of ENSO and ATL233

to moisture fluxes between individual members and the ensemble mean. To accomplish this,234
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Figure 4. The scatter plots show the relationship between the ENSO index and

moisture flux over the Bay of Bengal (FE) when there is a maximum of (a) five and

(b) less than five ensemble members with the same signs of ENSO anomaly. Similarly,

in plots (c, d), we examine the relationship between ATL forcing and moisture flux over

the Arabian Sea (FW ) for these two cases. To quantify the impact of ATL, we regress

out the impact of ENSO from total moisture fluxes (explained in Supplementary Note

1).

we focus on dominant moisture fluxes such as FE , which plays a crucial role in regulating235

ENSO-driven rainfall in the model (Supplementary Figure 1), also shown by Singhai et al.236

(2023) through analysis of individual ensemble members. Additionally, we examine the role237

of FW , the primary factor driving rainfall during ATL events (Supplementary Figure 2).238

We then segregate the forcing and moisture fluxes based on years where five and less than239

five members show the same sign of forcings (same way as in Figure 3). We notice that the240

correlation between ENSO and FE is higher in years when all members are coherent in sign241

(CC=0.84) than in fewer coherent members (CC=0.42). Hence, the impact of FE on the242

ensemble mean is maintained when all members exhibit consistent signs, while its influence243

diminishes when there are fewer members with coherent signs. Furthermore, as depicted in244

Figure 4b, it is evident that the variability of ENSO forcing is significantly reduced when245

fewer than five ensemble members exhibit the same sign, in contrast to the case when all246

five members have coherent signs. It is due to the opposite signs of ENSO forcing in the in-247

dividual ensemble members, which tend to cancel out each other, resulting in the decreased248

variability of ENSO in the <5 case. As depicted in Figure 3b, the number of members249

with coherent signs is lower for ATL than for ENSO. As a result, the impact of ATL in250

the ensemble mean is reduced compared to ENSO. This reduction in ATL forcing leads to251

a weaker response, as shown in Fig 4c and 4d. Moreover, similar to ENSO, the impact of252
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ATL forcing on FW is more pronounced when all members have the same anomaly sign, as253

opposed to when there are fewer coherent sign members. This emphasizes that disparity in254

the impact of ENSO and ATL forcing on moisture fluxes between the ensemble mean and255

individual ensemble members is primarily influenced by the maximum number of ensemble256

members exhibiting a consistent sign of forcing.257
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Figure 5. The box plot shows the ISMR response to positive and negative phases of

ENSO (El Nino and La Nina) and ATL (Warm-ATL and Cold ATL) forcing.

Figure 5 illustrates the response of rainfall to positive and negative phases of ENSO258

and ATL in both the ensemble mean and individual ensemble members. The relationship259

between El Nino (La Nina) events and ISMR is observed to be different in the ensemble260

mean compared to the individual members, with almost all El Nino (La Nina) events leading261

to a decrease (increase) in ISMR in the former, but this is not the case in the latter. This262

difference is attributed to the high ENSO-ISMR relationship observed in the ensemble mean,263

which is a result of a maximum number of members exhibiting the coherent sign (as shown264

in Figure 3a). This finding also suggests that the model simulates the mean response of265

positive and negative ENSO phases to ISMR correctly. This response is largely governed266

by the climate of the Bay of Bengal (Singhai et al. (2023), Figure 4a). Conversely, similar267

to ENSO events, the rainfall variability sharply decreases in the ensemble mean compared268
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to the individual ensemble member during ATL events. This could be attributed to the269

suppressed effect of ATL forcing due to the negation of forcing caused by members having270

opposite anomaly signs. To summarize, the stronger relationship between ENSO and ISMR271

observed in the ensemble mean is primarily influenced by the agreement among ensemble272

members with the same ENSO anomaly sign. Nevertheless, the non-ENSO climate forcings273

present in individual members display substantial variability, leading to a reduction in the274

strength of non-ENSO signals within the ensemble mean.275

4 Summary and discussions276

The primary aim of this study is to address the critical issue of imprudent usage of277

the ensemble mean approach for evaluating the forecasting skills of climate models. It is278

observed that relying solely on the ensemble mean method neglects the valuable information279

embedded within individual ensemble members, potentially leading to erroneous evaluations280

of the model’s teleconnection patterns. Our study highlights a notable case of a strong281

ENSO-ISMR relationship in the CFSv2 seasonal hindcasts. Previous studies have reported282

that the CFSv2 model, like many other climate forecast models, is subject to the strong283

influence of ENSO on ISMR (Kim et al., 2012; R. P. Shukla & Huang, 2016; He et al.,284

2022; Rajendran et al., 2022). Our analysis, however, suggests that this pronounced ENSO-285

ISMR relationship is primarily observed in the ensemble mean, while it is not apparent in286

the individual ensemble members. Hence, we aim to discern the underlying mechanisms287

contributing to the distinctive response of ENSO to ISMR in the ensemble mean versus288

individual ensemble members.289

This observed discrepancy between the ensemble mean and individual ensemble mem-290

bers attributes to a change in the nature of forcing and its associated response during the291

computation of the ensemble mean. In particular, the strong relationship between ENSO292

and ISMR observe in the ensemble mean primarily stems from the consensus among en-293

semble members regarding the sign of ENSO anomaly. This retains the influence of ENSO294
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in the ensemble mean. Conversely, the significant variability of the non-ENSO forcings in295

individual members diminishes the strength of non-ENSO signals within the ensemble mean.296

Our study highlights the significance of examining individual ensemble members rather297

than solely relying on the ensemble mean in order to gain a comprehensive understanding298

of a climate model’s characteristics and forecasting abilities. Specifically, we find that the299

prevalent issue of a strong ENSO-ISMR relationship in many climates models may not300

necessarily stem from a fundamental lacuna within the model but rather arises from the301

methodology employed in calculating the ensemble mean.302
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1 Supplementary Note 1

1.1 Moisture flux computation

The variability of ISMR is influenced by external climatic forcing, which alters the surface pressure gradient surrounding the

Indian region and thus modifies the boundary moisture fluxes. The incoming moisture flux over the Arabian Sea (FW ) and the

outflux over the Bay of Bengal (FE) plays significant in controlling moisture convergence over the Indian region. We compute5

the vertically integrated moisture flux at the western (70◦E) and eastern (90◦E) boundaries using the following method:

F =

Ptop∫
Psfc

(qu) dp/g

Here, the q and u vectors represent the specific humidity (kg/kg) and winds vector (m/s) at the respective boundaries. The

integration is performed from the surface (Psfc) to the top of the atmosphere (Ptop), which is set to 100 hPa. All variables are

detrended, and departures from the monthly mean are considered over the entire period.10

1.2 ENSO and Non-ENSO components

To determine the impact of tropical variability apart from ENSO, we remove the linear dependence of ENSO from all variables.

This involves computing the residual time series of all variables, such as ISMR and moisture flux.

Res(t) =M(t)−ENSO(t), (1)

ENSO(t) = b.Nino34(t), (2)15

where Res(t) is residual at time t, M(t) and ENSO(t) are variables and ENSO time series, respectively. Equation 2 uses the

least-squares linear fit to obtain the value of b. This method helps us examine ATL’s role in modulating the Indian monsoon, as

shown in Figures ?? and ??. It is important to note that we have not regressed the impact of ENSO on SST representing ATL,

as it follows a standard definition.
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Supplementary Figure 1. The scatter plot shows the relationship between the ENSO index and moisture flux over the Arabian Sea (FW )

when there is a maximum of (a) five and (b) less than five ensemble members with the same signs of ENSO anomaly.
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Supplementary Figure 2. The scatter plot shows the relationship between the ATL forcing and moisture flux over the Bay of Bengal (FE)

when there is a maximum of (a) five and (b) less than five ensemble members with the same signs of ATL anomaly.
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