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Abstract

Scale analysis based on coarse-graining has been proposed recently as an alternative to Fourier analysis. It requires interpolation

to a regular mesh for data from unstructured-mesh models. We propose an alternative coarse-graining method which relies on

implicit filters using powers of discrete Laplacians. This method can work on arbitrary (structured or unstructured) meshes

and is applicable to the direct output of unstructured-mesh models. Illustrations and details are provided for discrete fields

placed at vertices of triangular meshes. The placement on triangles is also briefly discussed.
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Abstract11

Scale analysis based on coarse-graining has been proposed recently as an alternative to12

Fourier analysis. It requires interpolation to a regular mesh for data from unstructured-13

mesh models. We propose an alternative coarse-graining method which relies on implicit14

filters using powers of discrete Laplacians. This method can work on arbitrary (struc-15

tured or unstructured) meshes and is applicable to the direct output of unstructured-16

mesh models. Illustrations and details are provided for discrete fields placed at vertices17

of triangular meshes. The placement on triangles is also briefly discussed.18

Plain Language Summary19

When studying ocean flows scientists are interested in how flow energy is distributed20

over scales. Ocean circulation models simulate these flows on computational meshes, and21

some models use highly variable meshes, such as unstructured triangular meshes. To elim-22

inate the effect of mesh inhomogeneity, the output of such models is first interpolated23

to a regular quadrilateral mesh, which creates uncertainties. The method we propose does24

not require this interpolation and can be applied to the output of such models directly.25

1 Introduction26

The analysis of energy distribution over spatial scales, as well as the related anal-27

yses for energy generation, dissipation and transfer between scales are canonical tools28

in the study of eddy-driven flows. Typically, such analyses are conducted with the help29

of the Fourier transform. However, recently, an approach based on convolution, or coars-30

ening has been proposed (Aluie et al. (2018); Sadek & Aluie (2018)). It not only pro-31

vides energy distribution across scales but also gives the spatial distribution of energy32

at different scales. Additionally, this approach can be applied to flow domains of arbi-33

trary shapes. Although the number of applications using this approach is still relatively34

limited compared to those utilizing Fourier spectra, they have demonstrated its useful-35

ness.36

Some new-generation ocean circulation models such as FESOM2 (Danilov et al.37

(2017)), MPAS-O (Ringler et al. (2013)) and ICON-o (Korn (2017)) are formulated on38

unstructured triangular meshes, or their dual, quasi-hexagonal meshes. Scale or spec-39

tral analysis of fields simulated on such meshes typically requires interpolation to reg-40

ular quadrilateral grids. Similar difficulties arise even with models using regular meshes41

on the sphere, as these meshes are rarely uniform, except in case where a relatively small42

region is explored and mesh non-uniformity can be ignored.43

This paper proposes an approach to scale analysis based on implicit filters. In essence,44

it is inspired by the work of Guedot et al. (2015), which utilizes implicit filters based on45

powers of the Laplacian operator is extended here to incorporate scale analysis through46

successive coarsening. An important aspect is that implicit filters based on Laplacians47

can be easily adapted to unstructured meshes in a manner similar to that described by48

Guedot et al. (2015) for the vertex-based data. However, some modifications are required49

for other data placements. It is crucial to note that discrete Laplacians may have spu-50

rious eigenvalues when data are placed at the centers of triangles or mid-edges (Klemp51

(2017), Danilov & Kutsenko (2019)), which will be discussed further. The concept of us-52

ing implicit filters is not new. Its brief review can be found in Grooms et al. (2021) and53

is not repeated here. There is also a certain similarity to explicit approaches in Grooms54

et al. (2021) and Defferrard et al. (2020), where the idea to represent filter operators as55

series in powers of discrete Laplacians is exploited. In all these cases, only nearest data56

points are needed for computations, making it convenient for parallel applications. Al-57

though implicit filters involve using iterative solvers, the procedure is highly paralleliz-58

able and, hopefully, more stable than explicit methods on general unstructured meshes59
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where local mesh inhomogeneity may pose challenges. Furthermore, the discrete Laplace60

operators can be implemented in full spherical geometry as used in models. For vector-61

valued data (horizontal velocities), vector Laplacians can be used either in a vector-invariant62

form or with metric terms, as will be discussed in some detail in this study.63

To start with, we explain the method using the one-dimensional case (Section 2).64

The extension necessary for horizontal fields is given in Section 3. The detail depends65

on the placement of discrete data and whether one deals with scalars or vectors. While66

our main focus is on the placement in FESOM, we also briefly discuss other placements.67

The analysis is applied to synthetic two dimensional fields to illustrate technical aspects.68

The results are also compared to those obtained with the coarsening method proposed69

by Aluie et al. (2018). The final sections of the paper present discussions and conclu-70

sions.71

2 Elementary theory72

The consideration presented here has very much in common with that in Guedot
et al. (2015) and Sadek & Aluie (2018), because it incorporates elements from both ap-
proaches. Let ϕ(x) be a scalar field, with x lying in some domain D. We are interested
in the distribution of the second moment (or variance if mean is removed) of this field
over spatial scales. A coarse-graining approach, similar in spirit to that of Aluie et al.
(2018) and Sadek & Aluie (2018) will be applied, but relying on implicit filters. The coars-
ened field ϕℓ(x) will be found by solving

(1 + γ(−ℓ2∆)n)ϕℓ = ϕ. (1)

Here, ∆ is the Laplacian, the smoothing scale is parameterized by ℓ, and γ is a param-73

eter that tunes the relation of ℓ to wavenumbers, as will be explained further. The in-74

teger n defines the order of the implicit filter, which is second-order for n = 1 (in ter-75

minology of Guedot et al. (2015)), and order 2n in a general case. Equation (1) is com-76

plemented by boundary conditions on the boundary ∂D of the computational domain77

D, which will be discussed below.78

A discrete Laplacian operator can be constructed independent of the type of the79

computational mesh and mesh geometry (flat or spherical), which makes the procedure80

suited for scale analysis on unstructured meshes.81

2.1 1D case82

In order to clarify some details of the method, we begin with the one-dimensional83

case assuming periodic boundary conditions to facilitate Fourier analysis. We assume84

n = 1 here, and explain later why larger n could be desirable.85

In the Fourier space,

ϕ̂ℓ(k) = Ĝℓ(k)ϕ̂(k) =
ϕ̂(k)

1 + γℓ2k2
,

where k is the wavenumber, the hat denotes Fourier transformed quantities and Ĝℓ(k)
is the Fourier transform of the convolution kernel. The same notation k will be used for
the absolute value of the wave vector in the discussion of energy spectra below in this
section. Let Ek be the Fourier energy spectrum of the field ϕ such that the mean energy
over D is obtained by summation over positive k,

E =

∫ ∞

0

Ekdk,
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where the integral is a replacement for the sum over Fourier modes. The area-mean en-
ergy of the coarse grained field, to be denoted by Eℓ, will be expressed as

Eℓ =

∫ ∞

0

|Ĝℓ|2Ekdk =

∫ ∞

0

Ekdk

(1 + γℓ2k2)2
.

Clearly, E0 = E. We can introduce

ε(ℓ) = −∂Eℓ/∂ℓ = −
∫ ∞

0

∂|Ĝℓ|2

∂ℓ
Ekdk =

4γ

ℓ2

∫ ∞

0

k2ℓ2Ekℓdk

(1 + γk2ℓ2)3
. (2)

The quantity ε(ℓ) can be considered as energy distribution over scales ℓ because

E =

∫ ∞

0

ε(ℓ)dℓ, Eℓ =

∫ ∞

0

|Ĝℓ|2Ekdk =

∫ ∞

l

ε(ℓ)dℓ = E −
∫ l

0

ε(ℓ′)dℓ′,

and εdℓ can be interpreted as the energy stored between the scales ℓ and ℓ+dℓ. This86

interpretation is not perfect because, in contrast to the Fourier spectrum, the contribu-87

tions from different ℓ are not orthogonal, but it can still be useful in practice.88

We will introduce one more derived quantity, proposed in Aluie et al. (2018) and
Sadek & Aluie (2018). It can be more convenient as it presents a closer analogy to the
Fourier spectrum. We define kℓ = 1/ℓ and introduce

E(kℓ) = ∂Eℓ/∂kℓ =

∫ ∞

0

∂|Ĝℓ|2

∂kℓ
Ekdk =

∫ ∞

0

4γk2/k2ℓ
(1 + γk2/k2ℓ )

3
Ek

dk

kℓ
. (3)

The bar is used to distinguish this quantity from the Fourier energy spectrum. The form-89

factor ∂|Ĝℓ|2/∂kℓ is a function of wavenumber k and has a peak at some k. It therefore90

picks up the energy Ek in the vicinity of that peak wavenumber and ensures that E(kℓ)91

is an approximate representation of Ek. It remains to be seen what is the correspondence92

between the peak wavenumber k and kℓ, or the peak wavelength λ = 2π/k and ℓ, and93

when E(kℓ) represents Ek sufficiently accurately. These questions will be addressed in94

the following sections.95

2.2 Comparison with explicit convolution kernels96

A box convolution kernel with width ℓ in the k-space is

Ĝl(k) =
sin(kℓ/2)

(kℓ/2)
.

As z = kℓ → 0, Ĝl(k) ≈ 1−z2/24. We may require that all second-order kernels have
such behavior in the vicinity of zero wavenumbers. For a Gaussian filter this requirement
will lead to

Ĝl(k) = exp(−k2ℓ2/24).

For the second order implicit filter this will lead to γ = 1/24, giving

Ĝl(k) =
1

1 + k2ℓ2/24
.

97

The left panel of Fig. 1 depicts these kernels as a function of z = kℓ = k/kℓ. Note98

that the box kernel shows the sharpest behavior in the vicinity of zero, and the implicit99

second order filter is the most flat. The right panel shows the behavior of the dimension-100

less form-factor kℓ∂|Ĝℓ(k)|2/∂kℓ = −z∂z|Ĝℓ(z)|2. The maxima are reached at z =
√
12 ≈101

3.46 for the Gaussian and implicit second-order filter, and z ≈ 3.52 for the box filter.102

Taking the approximation k/kℓ ≈ 3.5 we obtain ℓ = (3.5/2π)λ ≈ 0.55λ. As expected,103

–4–
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Figure 1. Convolution kernels (left) and the dimensionless form-factor kℓ∂|Ĝℓ(k)|2/∂kℓ (right)

as functions of z = k/kℓ. Shown are the box kernel (light gray), Gaussian kernel (gray), im-

plicit second-order kernel with γ = 1/24 (black) and implicit fourth-order kernel (n = 2) with

γ = 1/288 (dashed).

the scale ℓ is about half of a wavelength, and a more accurate statement has hardly a104

lot of sense since Ek is a function of k, and the peak of the integrand in (3) for given kℓ105

will occur for somewhat different k than the peak of the form-factor.106

2.3 Limitations107

In order to see how E(kℓ) is related to the Fourier spectrum we assume that

Ek = Ck−α, k ∈ (kmin, kmax),

and zero otherwise. In this case,

E(kℓ) = 4Cγk−α
ℓ

∫ zmax

zmin

z2−αdz

(1 + γz2)3
. (4)

Here zmin = kmin/kℓ = kminℓ and zmax = kmax/kℓ = kmaxℓ. The integrand in (4) does108

not depend on the scale ℓ, and if not for the variable integration limits, we would have109

concluded that E(kℓ) has the same spectral slope as Ek just with a slightly different am-110

plitude factor. However, the limits are functions of kℓ. In practical applications with dis-111

crete data, kmin = 2π/Lx and kmax = π/h, where Lx and h are respectively the do-112

main size and mesh cell size.113

If γ1/2ℓ > h/π, which is generally the case, γ1/2zmax > 1. Since the integrand114

in (4) vanishes rapidly for γ1/2z > 1, the precise value of the upper limit will have only115

a small effect. The effect of the lower limit depends on the slope α via the numerator116

of the integrand. If α ≥ 2, the integrand takes the largest values at the lower limit, mean-117

ing that the integral in (4) becomes sensitive to its lower limit, and that E(kℓ) will dif-118

fer from Ek for small kℓ. The integral will be entirely determined by the behavior at the119

lower limit for α > 3. Such slopes cannot be diagnosed with second-order filters, which120

will return E(kℓ) ∼ k−3
ℓ . Sadek & Aluie (2018) give an illustration of such a satura-121

tion effect for slopes steeper than −3.122

Note that even if the Fourier energy spectra are sufficiently flat (e.g. with α = 5/3),123

the integral in (4) can still be sensitive to the lower limit because z2−α varies too slowly.124

In a more general situation, when Ek has a local spectral peak at intermediate scales,125
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the position of a local peak in E(kℓ) could be aliased because the form-factor is rather126

broad for the second-order filters (see Fig. 1, right panel).127

This is the reason why it is advisable to use higher orders n in (1). Indeed, the ex-
pression (4) for arbitrary n transforms to

E(kl) = 4nγCk−α
ℓ

∫ zmax

zmin

z2n−αdz

(1 + γz2n)3
. (5)

For n = 2, i.e., for the biharmonic filter, one will need to take γ = 1/288 to have the128

same position of the peak in the form-factor as in the second-order case with γ = 1/24129

because the peak is always at 2γz2n = 1. This case is depicted in Fig. 1 with the dashed130

line, and the right panel illustrates that the peak becomes sharper than for the second-131

order filters. Importantly, the form-factor remains closer to zero at small wavenumers132

and is well-suited for a practically interesting range of slopes α ≤ 3. The relation be-133

tween the Fourier spectrum and the scale spectrum becomes more local. Sadek & Aluie134

(2018) discuss the construction of high-order explicit convolution kernels and illustrate135

the improvements in the performance of the scale analyses with high-order kernels. We136

present similar illustrations for the biharmonic case later.137

Note that one is free in the selection of parameter γ. For practical purposes it might138

be convenient to take γ = 1/2, in which case the peak is at k = kℓ and ℓ acquires the139

sense of inverse wavenumber.140

2.4 Modifications in the discrete case141

The eigenvalue of the discrete Laplacian is an approximation to −k2 of the con-142

tinuous case. In the one-dimensional case the simplest numerical implementation of the143

Laplacian operator on a regular mesh (Lϕ)j = (ϕj−1 + ϕj+1 − 2ϕj)/h
2, where j is the144

cell index and h the cell size, leads to the Fourier symbol Lk = −(4/h2) sin2(kh/2). For145

the largest resolvable wavenumber k = π/h, the ratio of discrete to continuous Fourier146

symbols is −Lk/k
2 = (4/h2) sin2(π/2)(h/π)2 = 4/π2, which is not negligible.147

We explore the consequences of this difference, by writing

Ĝℓ(k) =
1

1 + γ(−βLk)n
,

where the scale parameter β = β(kℓ) is introduced formally instead of ℓ2 = 1/k2ℓ . In
this case the form-factor is

∂Ĝ2
ℓ/∂kℓ =

−2nγ(−βLk)
n

(1 + γ(−βLk)n)3
1

β

∂β

∂kℓ
.

Considering the form-factor as a function of wavenumber k, we find that it reaches max-
imum at

−2γβLk = 1. (6)

We take γ = 1/2 everywhere further to simplify this condition.148

There are two obvious options. We can modify the scale parameter β taking β =149

βM = −1/Lkℓ
, which is similar to the correction used by Guedot et al. (2015). In this150

case the form-factor peaks at k = kℓ = 1/ℓ, so that kℓ acquires the sense of the stan-151

dard wavenumber, which lies in the range from 2π/Lx to π/h. The drawback of this choice152

is that β−1∂β/∂kℓ ∼ cos(kℓh/2)/ sin(kℓh/2), which tends to zero at kℓ = π/h, artifi-153

cially damping the scale spectrum near the cutoff wavenumber π/h.154

The other choice is to leave β = 1/k2ℓ . In this case the position of the peak of the155

form-factor is at −Lk = k2ℓ . The relationship between k and kℓ depends on the eigen-156

–6–
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value of discrete Laplacian. For the standard 1D Laplacian we find sin(kh/2) = kℓh/2.157

The peak at k = π/h corresponds to kℓ = 2/h and the peak at k = π/(2h) corre-158

sponds to kℓ =
√
2/h. The latter values are already close, and the correspondence be-159

tween the peak k and kℓ is recovered for smaller wavenumbers.160

As is seen, both choices introduce certain complications at grid scales. However,161

discrete operators in ocean circulation models also contain errors at grid scales, so that162

the scale spectra at such scales are of limited interest. If one considers wavenumbers smaller163

than π/(2h), both choices of β and respective scale spectra become close. One can also164

ignore the distinction between kℓ and the peak k in this range if β = 1/k2ℓ , and this choice165

of β becomes a simpler option. We will, nevertheless, keep the option β = βM below166

for completeness. Guedot et al. (2015) use the 1D Laplacian eigenvalue above also on167

unstructured meshes, identifying h with the length of the side of a triangle, but we opt168

for a slightly different value, see below. Since h is variable on unstructured meshes, βM
169

(if used) should be included between divergence and gradient in the scalar Laplacian,170

and similarly in the vector Laplacian.171

For the comparison with the box filter, we recall that the peak of the form-factor172

is at kℓbox ≈ 3.5, which means that ℓbox ≈ 3.5/kℓ in terms of kℓ used further for im-173

plicit filters.174

3 Unstructured meshes175

Laplace operators on unstructured triangular meshes depend on the placement of176

discrete degrees of freedom. Some of them are reviewed by Klemp (2017) and Danilov177

& Kutsenko (2019). As applied to the existing unstructured-mesh global ocean circu-178

lation models, one needs to distinguish between the cases of vertex, cell and mid-edge179

placement, and the cases of scalar and vector operators. The main focus below will be180

on the FESOM discretization which places scalars at vertices and horizontal velocities181

on triangles. Although horizontal velocities in FESOM are placed on triangles, in the182

default implementation we seek coarse grained velocities at vertex locations because this183

leads to matrices with a twice smaller dimension. One may, nevertheless, need the na-184

tive placement to analyze dissipation spectra, but we do not consider it in detail here,185

limiting ourselves only to the case of scalars placed on triangles. The particular feature186

of this case is that the Laplacians either contain spurious eigenvalues or a non-trivial ker-187

nel. We mention that the cell placement of scalars on hexagonal meshes in MPAS-Ocean188

differs from the vertex placement of FESOM only in the detail of control volumes, and189

that scalars are placed on triangles in ICON-o. Normal component of velocities are placed190

at mid-edges in MPAS-O and ICON-o. In these cases vector-invariant forms of vector191

Laplacians are appropriate, which will not be analysed in detail here.192

The discretization of Laplacians on unstructured meshes can be obtained by finite193

volume (as in Guedot et al. (2015)) and finite element methods, and we briefly describe194

both for the vertex case. The discretization of vector Laplacian for FESOM which works195

with the full horizontal velocity vector (quasi B grid) can be done similarly to scalars,196

but with the addition of metric terms as discussed below. Using the vector invariant form197

of the vector Laplacian will not lead to advantages for quasi B grid.198

3.1 Scalars, vertex placement199

One can use either the finite volume or finite element method. They lead to slightly
different discretizations on non-uniform meshes. In the first case, which is also the choice
in Guedot et al. (2015),

Av(Dϕℓ)v =
∑

v′∈N(v)

ϕv′ − ϕv

lvv′
βvv′nvv′ · svv′ , (7)

–7–
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Figure 2. Finite-volume computations of Laplacians for the vertex (left) and cell (right)

quantities. In the vertex case, nvv′ is the unit vector in the direction of edge, and svv′ = sl + sr,

where sl and sr are the left and right vectors from the mid-edge to cell centers rotated to outer

normal directions. In the cell case, ncc′ is the unit vector along the line connecting cell centers

and scc′ is the edge vector rotated toward the outer normal.

where the index v enumerates vertices, N(v) is the set of neighboring vertices, lvv′ is the200

length of the edge between vertices, nvv′ is the unit vector from v to v′, svv′ is the bound-201

ary segment vector and Av the area of scalar median-dual control volume containing ver-202

tex v, see Fig. 2. We included the scale factor βvv′ as an edge-based quantity. It can be203

either βM
vv′ (see below) or 1/k2ℓ , in which case it can be taken as a factor before the sum.204

The quantity svv′ is a combination of two contributions obtained by rotating vectors con-205

necting mid-edge to cell centroids in the case of FESOM (median-dual control volume),206

as illustrated in Fig. 2, but it would be related to a single segment on Voronoi (hexag-207

onal) meshes. The operator D is the discrete Laplacian (modified by the scale factor).208

Because of Av on the left hand side D is not symmetric (with respect to v and v′), but209

the right hand side of (7) gives a symmetric operator. This is why (1) has to be discretized210

in area-weighted sense (see below).211

Assuming ϕℓ, ϕ ∼ eik·x, where k = (k, l) is the wave vector and x the coordi-
nate vector, and further assuming that the mesh consists of equilateral triangles with
the side a and height h = a

√
3/2, with one side oriented along the x-direction, we ob-

tain the Fourier symbol of the vertex Laplacian (for βvv′ = 1)

Lk = (1/h2)[cos(ka) + cos(ka/2 + lh) + cos(−ka+ lh)− 3].

The Fourier symbol depends on the wave vector orientation. The boundary of the first212

Brillouin zone is closest to k = 0 in six directions (one is k = 0), and in such direc-213

tions Lk = LK = −(4/h2) sin2(Kh/2), where K = |k| (see Danilov (2022)). This ex-214

pression is similar to the one discussed for the one-dimensional case, with the difference215

that h is not the length of the triangle side, but the triangle height. We take βM
vv′ = −Lkℓ

,216

where Lkℓ
= LK |K=kℓ

, and express the height assuming regular meshes, h =
√
3lvv′/2.217

The wavenumber kℓ is the absolute value of two-dimensional wave vector and should be218

taken between 2π/Lx and π/h.219

–8–
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We will suppress the subscript ℓ in ϕℓ further for compactness. The discrete ver-
sion of equation (1) for n = 1 becomes

Svv′ϕv′ = Avϕv,

where summation over repeating index v′ is implied. The system matrix is

Svv′ = AvIvv′ + (1/2)AvDvv′

with Ivv′ the identity matrix and Dvv′ the matrix of the operator in (7).220

Taken in this form, Svv′ is a positive symmetric matrix, and solution for ϕ can be221

obtained by the conjugate gradient method.222

At this place we turn to the question of boundary conditions. The procedure of con-223

structing the Laplacian, described above, implies that the component of gradients that224

are normal to domain boundaries are thought to be zero, i.e. we are dealing with the case225

of zero von Neumann boundary conditions. One can also use the Dirichlet boundary con-226

ditions requiring that ϕ = ϕ at boundary points, but it will introduce small scales at227

the boundary. If these conditions are selected, the simplest way to implement them con-228

sists in leaving only the diagonal entries due to AvIvv′ in row v of Svv′ if v is at the bound-229

ary. Note that the symmetry of Svv′ will be destroyed. One more choice is to extend the230

mesh into land and set ϕ to zero there, which might reduce the sensitivity to boundary231

conditions. We use von Neumann boundary conditions in all cases below, but the ques-232

tion of optimal boundary conditions requires further attention.233

In the case of a biharmonic filter the matrix of the biharmonic operator can be ob-
tained by applying the procedure used for D twice,

Svv′′ = AvIvv′′ + (1/2)AvDvv′Dv′v′′ ,

with summation over v′ implied. Although Dv′v′′ includes division over Av′ , the com-234

bination AvDvv′Dv′v′′ is symmetric.235

Equation (1) can also be discretized with the help of the finite element method. Al-
though it leads to a similar expression for scalars, it is our preferred approach because
it is also more useful for vector Laplacians as concerns the metric terms. Consider first
the case n = 1. We obtain the weak formulation of (1) by multiplying it with some suf-
ficiently smooth function w(x), integrating over the domain D and transforming the Lapla-
cian term by integration by parts,∫

D

(wϕ+ (1/2)β∇w · ∇ϕ)dS =

∫
D

wϕdS.

Here the boundary term appearing after the integration by parts is set to zero, which
corresponds to natural boundary conditions, similarly to the finite-volume derivation.
We write the discrete fields as series ϕ =

∑
v′ ϕv′Nv′(x) and ϕ =

∑
v′ ϕv′Nv′(x), where

Nv(x) is a piecewise linear basis function. This function equals 1 at xv, decays to 0 at
vertices connected to v by edges, and is zero outside the stencil of nearest triangles. To
obtain continuous Galerkin approximation we require that the weak equation above is
valid if w is any of the Nv,

(Mvv′ + (1/2)Dvv′)ϕv′ = Mvv′ϕv′ ,

where Mvv′ =
∫
NvNv′dS is the mass matrix and Dvv′ =

∫
β∇Nv · ∇Nv′dS. The di-236

agonally lumped approximation of mass matrix is ML
vv′ = AvIvv′ . If this approxima-237

tion is applied, we get the same final discretization on uniform equilateral meshes as for238

the finite volume method except for the treatment of β. Since computation of integrals239

are done on triangles (mesh cells), the scaling parameter is treated as a cell quantity if240
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the modified option is used. Gradients of linear basis functions are constant on trian-241

gles, and their integration is just multiplication with triangle area. The height of trian-242

gle in Lkℓ
on cell c is conveniently expressed in terms of triangle area as h = 31/4

√
Ac243

if the modified scaling parameter is used. Once again, we have symmetric matrices. The244

implementation of biharmonic operator leads to D(ML)−1D. An alternative approximate245

implementation is to eliminate weighting with triangular areas in D, add the factor 1/2246

in D to compensate for the difference between triangle area and the area associated to247

a vertex, and replace M with the identity matrix I. It is used in our examples below as248

it implies slightly less work.249

3.2 Spherical geometry and vertex-based vector Laplacians250

FESOM uses longitude-latitude coordinates in spherical geometry (for detail, see251

Danilov et al. (2017)). The cosine of latitude is approximated by a constant on trian-252

gles and local distances on each triangle are calculated in a local Cartesian frame, with253

x and y aligned with local zonal and meridional directions. The areas of triangles are254

computed assuming that triangles are flat, and areas of scalar control volumes are ob-255

tained by taking 1/3 of the area of all triangles joining at a given vertex. This way of256

treating spherical geometry is fully compatible with the finite element computations de-257

scribed in the previous section. For the finite volume treatment, the length of edges is258

determined using the cosine at mid-edges.259

Although horizontal (zonal and meridional) velocities in FESOM are placed at tri-260

angles, in the present implementation the filtered velocities are calculated at vertices be-261

cause there are twice fewer vertices than triangles, and matrices to be iteratively inverted262

have twice lower dimension.263

Let u = (u, v) be the filtered horizontal velocity, and u = (u, v) the original ve-
locity (we suppress the ℓ subscript here too). We will use index v for vertex-based ve-
locities, and index c for cell-based original velocities. The weak equation will take the
form ∫

D

(w · u+ (1/2)β∇w : ∇u)dS =

∫
D

w · udS,

where now w is the vector-valued smooth function. Writing u =
∑

v′ uv′Nv′(x), u =∑
c ucMc(x), where Mc is the indicator function equal 1 on triangle c and 0 outside it,

and requiring that the weak equation is valid for w = wvNv for any vertex v, we ob-
tain the set of discrete equations. However, because the unit zonal and meridional vec-
tors are varying, there will be additional metric terms in the expression for velocity gra-
dient,

∇u =

(
∂xu−mv ∂xv +mu

∂yu ∂yv

)
,

and similarly in the expression for the gradient of test function w. Here, m = tanθ/Re,
with θ the latitude and Re earth’s radius. Combining all metric terms, we will get the
following x and y equations

(Mvv′ + (1/2)Dvv′)uv′ + Tvv′vv′ = Rvcuc, (8)

(Mvv′ + (1/2)Dvv′)vv′ − Tvv′uv′ = Rvcvc, (9)

where Tvv′ =
∫
(−∂xNv+∂xNv′)βmdS is the operator accounting for metric terms and264

Rvc =
∫
NvMcdS is the right hand side operator which is the projection operator onto265

the space of piecewise linear functions. Summation is implied over repeating indices in266

matrix-vector products.267

The metric terms couple equations for u and v, and the dimension of system ma-268

trix becomes twice larger than for scalar fields. While it can still be solved, the metric269

terms can be accounted approximately if wavelengths 2π/kℓ are not very large by putting270
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them on the right hand side and estimating them from the solution for the nearest avail-271

able kℓ. For the largest kℓ they can be estimated using the original field. On basin scales,272

this approximation is not necessarily sufficient and the full system has to be solved.273

3.3 Scalars, cell placement274

The smallest-stencil Laplacian in this case is obtained using the finite volume method
and is written similarly to (7)

Ac(Dϕ)c =
∑

c′∈N(c)

ϕc′ − ϕc

lcc′
βcc′ncc′ · scc′ . (10)

Here summation is over the neighbors of cell (triangle) c, which are the cells that have275

common edges with c (see Fig. 2), lcc′ is the distance between the cell centers, Ac is the276

cell area, ncc′ is the unit vector in the direction from c to c′ and scc′ is the cell side vec-277

tor rotated to the direction of the outer normal. For meshes used in discretizations of278

C-grid type, the c points are associated with circumcenters. In this case the vectors ncc′279

and scc′ have the same direction, and this expression presents the divergence of gradi-280

ent. If c is associated with cell centroids, on distorted meshes one accounts only for the281

component of gradient in the direction of ncc′ while full gradient is formally needed (dis-282

cretization (7) has similar limitations). More precise computations are of course possi-283

ble, but they will not be considered here. Although such details introduce some uncer-284

tainty in the analysis, they will basically affect only grid scales.285

To estimate the eigenvalues of this Laplacian, we use a uniform equilateral mesh,
setting βcc′ = 1 in (10). In order to find the eigenvalues we first note that for any two
neighboring triangles the orientation of stencils of neighbors depends on the orientation
of triangles themselves. For this reason, an elementary Fourier harmonic is described by
two amplitudes and the Fourier symbol becomes a 2 by 2 matrix (see e.g. Klemp (2017),
Danilov & Kutsenko (2019)), with two eigenvalues

Lk = (4/a2)(−3± |V |), V = e−2ilh/3 + eika/2+ilh/3 + e−ika/2+ilh/3.

The plus sign corresponds to the physical eigenvalue which tends to −k2−l2 in the limit286

of small wavenumbers. The minus sign corresponds to a numerical eigenvalue which is287

anomalously high in absolute value (it tends to −24/a2 in the limit of small wavenum-288

bers).289

In the direction k = 0, |V |2 = 5+4 cos(Kh), which corresponds to a more accu-290

rate behavior than in the vertex case above, giving the physical Lk equal to −6/h2 in-291

stead of −π2/h2 at the largest wavenumber. The eigenvector of the numerical eigenvalue292

corresponds to a grid-scale pattern that may potentially be present because of a slight293

difference in differential operators on differently oriented triangles. However, even if data294

contain some contributions that project on the numerical mode, these contributions will295

be strongly damped in the filtered fields if the implicit filter is used. In contrast, the pres-296

ence of spurious eigenvalues could be problematic for explicit filters based on series in297

Laplacians.298

An alternative approach is to use a discrete Laplacian that is based on a wider sten-299

cil. An obvious choice is to reconstruct full gradient vectors on triangles based on the300

values on three neighboring triangles. Gradients are then averaged to edges, and their301

divergence gives a Laplacian (see, e.g. Danilov & Kutsenko (2019)). It turns out that302

such a discrete Laplacian has the same physical eigenvalue as the vertex Laplacian above,303

i.e. it is less accurate. Its numerical eigenvalue is zero. This Laplacian would be less use-304

ful for implicit filter applications because it will preserve grid-scale noise in coarse-grained305

fields. A combination of this Laplacian with the smallest-stencil Laplacian can be a way306

to reduce spurious eigenvalue for applications with explicit filters.307
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3.4 Other discretizations308

The scalar Laplacian (10) can be applied to the components of cell horizontal ve-
locity in plane geometry. Metric terms need to be added in spherical geometry, we do
not discuss them here. The vector-invariant form of the vector Laplacian,

∆u = ∇∇ · u− curl curlu

would allow one to avoid the question on metric terms. It depends on computations of309

the divergence and inner curl. For cell velocities a natural way would be to compute the310

divergence and curl at vertex control volumes using the divergence and circulation the-311

orems because velocities are known at boundaries of such control volumes. This would312

lead to an analog of the wider-stencil Laplacian discussed in the previous section, which313

is not necessarily optimal because of its large kernel.314

C-grid types of discretizations used in MPAS-O and ICON-o will rely on the vector-315

invariant forms of vector Laplacians. These Laplacians have large spurious eigenvalues316

(see e.g. Klemp (2017) and Danilov & Kutsenko (2019)), but for the reasons mentioned317

above, this is rather an advantage.318

3.5 Comments on solving procedure319

As recommended by Guedot et al. (2015), instead of solving

Sϕ = ϕ,

where ϕ and ϕ are the vectors of discrete values, one works with perturbations ϕ′ =
ϕ− ϕ, with the result

Sϕ′ = ϕ− Sϕ.

In this case the right hand side has emphasis on small scales, and ϕ′ is the fine-scale con-320

tribution that has to be removed from the original data. This is expected to improve the321

convergence, which is more difficult for large scales. It indeed leads to some improvements322

in our case, however the main issue is that conditioning of S worsens as kℓ decreases.323

Also, as explained by Guedot et al. (2015), one will split the operators when n >
2. For example,

I+ γ(D)3 = (I+ γ1/3D)(I− γ1/3D+ γ2/3D2),

and
I+ γ(D)4 = (I+ (4γ)1/4D+ γ1/2D2)(I− (4γ)1/4D+ γ1/2D2),

and so on (γ = 1/2). In principle, using tri-harmonic and bi-biharmonic operators only324

doubles the work of iterative solvers once matrices of harmonic and biharmonic opera-325

tors D and D2 are available. While biharmonic operator should be sufficient in most cases326

for general conclusion about energy spectra, one may opt for higher-order in the case when327

precise position of spectral peaks has to be estimated.328

4 Illustrations329

For illustrations here we first generate a scalar field ϕ(x) on a regular quadrilat-330

eral mesh covering a square domain with size Lx = 1024 km. The initial mesh has the331

resolution a = 4 km (the side of quadrilateral cell). The field ϕ is initially specified at332

vertices of this mesh by taking random values uniformly distributed around zero. It is333

Fourier transformed, and each wave component is divided by K(α+1)/2, where K is the334

absolute value of the wave vector. After that, the inverse Fourier transform is carried335

out. In this way, fields with Fourier power spectra EK ∼ K−α are created, and α =336
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2 is used below. The Fourier amplitudes are additionally modified to add peaks in Fourier337

power spectra in section 4.2.338

One triangular mesh is obtained by bisecting the quadrilateral cells of the primary339

mesh. The other one is an equilateral mesh with triangle side a. The third mesh is an340

unstructured mesh with the triangle sides varying between a and 2a. These meshes will341

be denoted further as Q, E and U. One more unstructured mesh with resolution simi-342

lar to U, but covering a circular area, will be used for tests in spherical geometry. The343

largest resolvable wavenumber is defined by the small side of triangles on mesh Q, the344

height of triangle on mesh E and the height of largest triangles on mesh U. The initial345

field on mesh Q is the constructed one, and it is linearly interpolated to meshes E and346

U, respectively. Except for Fig. 3, we use the modified β. We take γ = 1/2 which en-347

sures that kℓ corresponds to the ordinary wavenumber and ℓ has the sense of inverse wavenum-348

ber. A conjugate gradient solver is used in all cases. In all figures showing spectral den-349

sity, the vertical axis is in units of the field squared times km/cycle, and wavenumbers350

on the horizontal axis are in cycle/km.351

4.1 Uniform and distorted triangular meshes352

Two panels of Fig. 3 present the computed scale spectra on triangular meshes Q,353

E, and U using harmonic (right) and bi-harmonic (left) filter for realizations of field ϕ354

with the power density slope α = 2. Here, the scaling factor β = 1/k2ℓ . The Fourier355

spectrum is in red, it contains fluctuations because it is the spectrum of a realization.356

Different realizations are used in the left and right panels. The thin dashed line corre-357

sponds to the slope of −2, and blue, solid black and green lines give scale spectra on meshes358

Q, E, and U respectively. The horizontal axis correspond to K for the Fourier spectrum359

and kℓ for the scale spectra. The kℓ values are sampled up to π/h, where h is the smaller360

side of triangle on mesh Q or the height of the smallest triangle on other two meshes.361

Since β = 1/k2ℓ , in this case we should stop at 2/h, comparing the value of scale spec-362

trum at this kℓ to the value of Fourier spectrum at K = π/h.363

As expected, for the original data (blue curves) the bi-harmonic filter ensures a closer364

agreement between the scale and Fourier spectra. As already mentioned, the biharmonic365

filter can also be used for sufficiently steep spectra (formally α ≤ 5), while the use of366

harmonic filter is limited to α ≤ 3. We checked this, but do not demonstrate it here.367

The scale spectra on meshes E and U (solid black and green curves) deviate from368

the scale spectrum on mesh Q for large kℓ. This is the consequence of using interpolated369

data on these meshes which have smaller variance on grid scales (note that E and Q curves370

are very close). The effect is stronger for U mesh because it contains larger triangles and371

for the biharmonic case (left panel) because of the narrower form-factor. For the har-372

monic filter, the effect is partly masked by excessively broad form-factor which picks up373

the contributions from smaller wavenumbers.374

The scale spectra tend to bend down compared to the Fourier spectrum on the side375

of smallest wavenumbers, which is presumably because a part of form-factor curve is cut376

on the left. Similar tendency on the side of large wavenumbers is partly related to the377

difference between K and kℓ in this case.378

Apart from effects caused by interpolation, the scale spectra are insensitive to the379

mesh type, which proves that the method can work on different meshes, including un-380

structured meshes. The scale spectra are always smoother than the realization of the Fourier381

spectrum, as they correspond to the integration over some range of Fourier wavenum-382

bers in the vicinity of kℓ, which smooths the fluctuations of the Fourier spectrum. On383

a practical side this means that one may need less averaging over field realizations as com-384

pared to the Fourier spectrum.385
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Figure 3. Scale spectra compared to Fourier spectra computed with Laplacian smoothing

(right) and biharmonic smoothing (left). Shown are the Fourier spectrum (red), the scale spec-

trum on a uniform triangular mesh obtained by bisecting quadrilateral cells (blue, mesh Q), on

a regular equilateral mesh (solid black, mesh E) and on an irregular unstructured mesh (green,

mesh U). The wavenumber is in cycle/km, the horizontal axis corresponds to K for the Fourier

spectrum and to kℓ = 1/ℓ for scale spectra.

For unstructured meshes, the largest resolved wavenumber is formally set by the386

the height of the largest triangles. However, if such triangles cover only a small part of387

domain, the contribution from small triangles will still dominate. This is why we use the388

same largest kℓ for E and U meshes in practice. It is expected that the computed scale389

spectrum will bend down if kℓ is taken beyond the range, indicating where one has to390

stop.391

4.2 Peak detection392

All further examples use the modified β, so that the correspondence between the393

wavenumbers K and kℓ is maintained. Fields with peaks in the Fourier spectrum have394

been constructed following the same procedure as above, but applying additional fac-395

tors to the amplitudes of Fourier harmonics. Figure 4 displays two examples illustrat-396

ing possible behavior. We use mesh Q and the biharmonic filter. In the left panel, the397

peak in the Fourier spectrum is accurately recovered in the scale spectrum. In contrast,398

the close peaks in the scale spectrum in the right panel are not detected, and the peak399

around kℓ ≈ 0.2 cycle/km is nearly missed. The success in the first case is because the400

Fourier spectrum decays sufficiently fast on both sides of the peak and there are no other401

close peaks. The form-factor responsible for the correspondence between the Fourier and402

scale spectra is still not sharp enough for the field used in the right panel, even for the403

biharmonic filter, and higher-order filters have to be used if finding exact position of peaks404

is of utmost importance.405
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Figure 4. Spectral peak detection by scale spectra based on biharmonic smoothing. The

Fourier spectra are in red, the scale spectra are in blue. Peaks can be missed or masked if they

are narrow and/or there are neighboring intervals with high spectral density.

4.3 Harmonic filter vs explicit box-type filter406

We use a box-type filter with the kernel

G(x) = A(1− tanh(c(|x| − 1.75/kℓ)/a)), (11)

where A is the normalization constant selected so as to ensure that
∫
G(x)dx = 1, a407

is the (fixed) mesh cell size, c = 1.3 is a numerical factor controlling the sharpness of408

the box filter transition, and 1.75/kℓ is equivalent to the scale ℓbox/2 of the box filter,409

as discussed above. Figure 5 compares the scale spectrum obtained by explicit coarse-410

graining with this box-type filter (blue line), with the scale spectrum obtained by Lapla-411

cian smoothing (solid black line) on mesh Q. Both methods lead to nearly the same spec-412

tra, with the largest differences on the side of large wavenumbers. The selection of pa-413

rameter c was experimental. Decreasing it increases the discrepancy between the two curves,414

which is still smaller than the deviation from the Fourier spectrum. If c is increased, the415

box filter transition becomes sharper, but this leads to some unevenness of the spectrum416

on the side of largest wavenumbers. We conclude that both methods agree, as expected,417

and that the attribution ℓbox = 3.5/kℓ works well. The excessive decay at the spectral418

end (kℓ ≥ 0.5 cycle/km) shown by solid black line is the consequence of using the mod-419

ified β in the analysis.420

4.4 Spherical geometry421

An unstructured variable-resolution mesh covering a circular area with diameter422

1024 km is created. The sides of triangles vary between a = 4 km and 2a. The real-423

ization of ϕ(x) with −2 power spectrum is linearly interpolated on this mesh. The mesh424

coordinates are then approximately transformed to longitude and latitude by multiply-425

ing the coordinates with 180/(πRe). The sphere is then rotated in the meridional direc-426

tion by π/6, π/3 and 5π/12 to produce three variants of the same mesh having various427
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Figure 5. Scale spectra obtained by explicit coarse-graining with box filter (11) (blue) com-

pared to scale spectra computed with Laplacian smoothing (solid black). The Fourier spectrum is

in red, and the dashed line corresponds to the slope of −2.

longitude and latitude coordinates, as shown in Fig. 6. We apply the coarse-graining based428

on the biharmonic filter to these three meshes. Although they correspond to the same429

original mesh and data, they have different coordinates on the sphere and the cosine of430

latitude varies much stronger on the higher-latitude mesh than on the other two meshes.431

However, the computed scale spectra, shown in Fig. 7, are indistinguishable. This in-432

dicates that the approximation of cosine by a constant value on triangles is sufficient.433

By using a circular mesh in this example we illustrate that the smoothing procedure can434

work in a domain of arbitrary shape.435

4.5 Kinetic energy spectra in spherical geometry436

For this test case, a realization of scalar field ϕ(x) with power spectrum with a −4437

slope was created on mesh Q. This field was interpreted as a streamfunction and used438

to compute a velocity field. The mesh coordinates were transformed to longitude and439

latitude by multiplying them by 180/(πRe). Then the mesh was moved along the zeroth440

meridian so that its south-west corner is at (0◦, 75◦). The mesh becomes stretched zon-441

ally if viewed in longitude-latitude coordinates on the sphere. Velocities are computed442

at the centers of triangles by computing derivatives of streamfunction given at vertices.443

We solved the full system of equations (8,9), building matrices with twice the dimension444

of the scalar problem. Figure 8 shows the scale spectrum for kinetic energy computed445

with the harmonic filter (blue curve). For comparison, the black curve shows the spec-446

trum computed by solving two problems for velocity components with metric terms ig-447

nored. As is seen, the differences start to form at the large scale, and they might be larger448

if the size of the domain is larger. In the example used, solving (8,9) takes nearly the449

same computational time as solving two smaller-size problems for velocity components450

separately, but requires more storage.451
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Figure 6. Three variants of the same realization of ϕ and mesh in longitude-latitude coordi-

nates (axes in degrees).

5 Discussions452

In this work we present an elementary theory of scale analysis based on implicit453

filters that use powers of Laplacian. Since discrete Laplacian can be written for any mesh454

type, the procedure is sufficiently general. Our focus was on triangular meshes, but the455

definition such as (7) are valid for arbitrary meshes456

Discrete Laplacians deviate from their continuous counterparts on grid scales and457

may have spurious modes in a general case. We used only the simplest optionsfor dis-458

crete Laplacians and explored in some detail the case of vertex placement. The devia-459

tion of eigenvalues of discrete Laplacians from the continuous case creates some difficul-460

ties in the interpretation of scale spectra near the spectral end. Using the modified scale461

factor similar to Guedot et al. (2015) allows one to keep the correspondence between kℓ =462

1/ℓ and the standard wavenumber, but creates an artificial spectral decay, as seen in Figs.463

5, 7 and 8. If the original definition β = 1/k2ℓ = ℓ2 is retained, the direct correspon-464

dence between K and kℓ is violated near the spectral end. While these difficulties are465

not important in many practical cases, one may be interested in studying energy pileup466

at grid scales, where the method based on implicit smoothing should be used with care.467

More accurate discrete Laplacians will reduce these difficulties. The construction468

of such Laplacians for general unstructured meshes is, however, not straightforward, and469

remapping between K and kℓ can be an easier way if β = 1/k2ℓ is used. In fact, one does470

not necessarily need the exact correspondence between the Fourier and scale spectra, in471

practice it would be sufficient just to compare spectra in terms of kℓ. Note that simi-472

lar complications may accompany the use of box-type filters if ℓbox/2 becomes close to473

the width of transition part (see (11)).474

Although our examples include only energy spectra, the procedure is applicable for475

cross-spectra of two fields. Our main focus was on scale spectra E(kℓ),which are simi-476

lar to the Fourier spectra, but the scale spectrum ϵ(ℓ) also deserves attention and might477

be similarly informative in practice.478
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Figure 7. Scale spectra computed for three meshes in Fig. 6 using the biharmonic filter. The

spectrum for the high-latitude variant is in green, and two other cases are under it. The red line

corresponds to the Fourier spectrum on the parent regular quadrilateral mesh, and the dashed

line gives the slope −2.

The convergence of conjugate gradient solver slows down as kℓ is approaching kmin,479

and this slowdown becomes stronger when mesh resolution is increased. The biharmonic480

filter requires many more solver iterations than the harmonic one in this case and the481

solver should also be run with smaller tolerance in this case. The convergence can be im-482

proved through the use of preconditioners. Guedot et al. (2015) used diagonal precon-483

ditioning, but it does not provide a substantial improvement for small kℓ in our case. In484

test implementation (in Matlab), the incomplete Cholesky preconditioner was efficient485

on regular meshes for the harmonic filter in essentially reducing the number of iterations486

(but not the execution time), however there are difficulties with using it on unstructured487

meshes or with the biharmonic filter. It remains to be seen which preconditioners and488

solution methods will be able to improve the performance for general meshes.489

Meshes with 1M wet vertices (the size of a typical quarter degree global mesh) can490

be treated in a serial way, requiring about 5 min for the construction of scale spectrum.491

A parallel implementation is needed for larger meshes. Both online and offline versions492

can be of interest. The online computations are straightforward for harmonic filters be-493

cause they can rely on the existing solvers for the implicit sea surface height in FESOM494

and some other models. For biharmonic filters, the implementation in matrix form will495

require increasing halos to include neighbors of neighbors. A matrix-free form does not496

require the increased halos, but might complicate the design of preconditioners. Respec-497

tive development is a subject of ongoing work.498

We did not try the higher-order filters (tri-harmonic, bi-biharmonic or higher) in499

this work. They might be needed to compute spectra that contain peaks. Technically,500

once discrete harmonic and biharmonic operators are available, any higher-order implicit501

filters can be realized as a sequence of more elementary inversions that use harmonic and502

biharmonic operators. Practical implementation, convergence issues and the selection503

of the filter order need additional studies.504
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Figure 8. Scale spectra of kinetic energy computed using the biharmonic filter. The mesh

is approximately between 75 and 85 degrees of latitude. The spectrum calculated taking into

consideration all metric terms is represented in blue, while the spectrum without considering

the metric terms is shown in black. The red line corresponds to the Fourier power spectrum of

streamfunction multiplied with K2, and the dashed line indicates the slope −2.

We experimented only with vertex placements for coarse-grained quantities, mostly505

because we intended to minimize the work in this study which explores and explains the506

concept. The cell (triangle) and edge placement will be addressed in future. In partic-507

ular, for FESOM, which places horizontal velocities on triangles, the analysis of kinetic508

energy dissipation calls for computation on the original locations. Indeed, the projec-509

tion of horizontal viscosity term from triangles to vertices may eliminate a significant part510

of small-scale dissipation, and computations on native locations will be made available511

in the future. The placement of coarse-grained velocities on triangles will lead to ma-512

trices with a twice larger dimension compared to the vertex case and a substantial in-513

crease in the required numerical work.514

Finally, as mentioned before, one of the advantages of the coarse-graining approach515

lies in the availability of spatial distributions of energy (or other quantities). These dis-516

tributions allow one to learn not only which scales contain most of the energy, but also517

where this energy is mainly located. This aspect was not addressed in this work, which518

relies on synthetic data, but it can present even larger interest than spectra in practi-519

cal cases.520

6 Conclusions521

We propose to use implicit filters to extend the concept of scale analysis based on522

coarse-graining to general unstructured meshes. The procedure is based on the discretiza-523

tions of Laplacian operators and can provide filters of high-order if higher degrees of Lapla-524

cian are used. The discretization can be applied to scalar and vector data, both in flat525

and spherical geometry.526
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We demonstrated the effectiveness of the implicit coarse-graining approach through527

several examples, highlighting the similarity between scale spectra and standard Fourier528

spectra, as well as its ability to operate on diverse mesh types.529

We acknowledge that numerous details regarding the extension of this approach530

to alternative data placements still need to be tested, which is the subject of ongoing re-531

search.532

7 Data availability statement533

Matlab scripts used for computations in this work and data used to draw the fig-534

ures can be found in Danilov et al. (2023). An accelerated Python version is under de-535

velopment and will be presented separately.536
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Abstract11

Scale analysis based on coarse-graining has been proposed recently as an alternative to12

Fourier analysis. It requires interpolation to a regular mesh for data from unstructured-13

mesh models. We propose an alternative coarse-graining method which relies on implicit14

filters using powers of discrete Laplacians. This method can work on arbitrary (struc-15

tured or unstructured) meshes and is applicable to the direct output of unstructured-16

mesh models. Illustrations and details are provided for discrete fields placed at vertices17

of triangular meshes. The placement on triangles is also briefly discussed.18

Plain Language Summary19

When studying ocean flows scientists are interested in how flow energy is distributed20

over scales. Ocean circulation models simulate these flows on computational meshes, and21

some models use highly variable meshes, such as unstructured triangular meshes. To elim-22

inate the effect of mesh inhomogeneity, the output of such models is first interpolated23

to a regular quadrilateral mesh, which creates uncertainties. The method we propose does24

not require this interpolation and can be applied to the output of such models directly.25

1 Introduction26

The analysis of energy distribution over spatial scales, as well as the related anal-27

yses for energy generation, dissipation and transfer between scales are canonical tools28

in the study of eddy-driven flows. Typically, such analyses are conducted with the help29

of the Fourier transform. However, recently, an approach based on convolution, or coars-30

ening has been proposed (Aluie et al. (2018); Sadek & Aluie (2018)). It not only pro-31

vides energy distribution across scales but also gives the spatial distribution of energy32

at different scales. Additionally, this approach can be applied to flow domains of arbi-33

trary shapes. Although the number of applications using this approach is still relatively34

limited compared to those utilizing Fourier spectra, they have demonstrated its useful-35

ness.36

Some new-generation ocean circulation models such as FESOM2 (Danilov et al.37

(2017)), MPAS-O (Ringler et al. (2013)) and ICON-o (Korn (2017)) are formulated on38

unstructured triangular meshes, or their dual, quasi-hexagonal meshes. Scale or spec-39

tral analysis of fields simulated on such meshes typically requires interpolation to reg-40

ular quadrilateral grids. Similar difficulties arise even with models using regular meshes41

on the sphere, as these meshes are rarely uniform, except in case where a relatively small42

region is explored and mesh non-uniformity can be ignored.43

This paper proposes an approach to scale analysis based on implicit filters. In essence,44

it is inspired by the work of Guedot et al. (2015), which utilizes implicit filters based on45

powers of the Laplacian operator is extended here to incorporate scale analysis through46

successive coarsening. An important aspect is that implicit filters based on Laplacians47

can be easily adapted to unstructured meshes in a manner similar to that described by48

Guedot et al. (2015) for the vertex-based data. However, some modifications are required49

for other data placements. It is crucial to note that discrete Laplacians may have spu-50

rious eigenvalues when data are placed at the centers of triangles or mid-edges (Klemp51

(2017), Danilov & Kutsenko (2019)), which will be discussed further. The concept of us-52

ing implicit filters is not new. Its brief review can be found in Grooms et al. (2021) and53

is not repeated here. There is also a certain similarity to explicit approaches in Grooms54

et al. (2021) and Defferrard et al. (2020), where the idea to represent filter operators as55

series in powers of discrete Laplacians is exploited. In all these cases, only nearest data56

points are needed for computations, making it convenient for parallel applications. Al-57

though implicit filters involve using iterative solvers, the procedure is highly paralleliz-58

able and, hopefully, more stable than explicit methods on general unstructured meshes59
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where local mesh inhomogeneity may pose challenges. Furthermore, the discrete Laplace60

operators can be implemented in full spherical geometry as used in models. For vector-61

valued data (horizontal velocities), vector Laplacians can be used either in a vector-invariant62

form or with metric terms, as will be discussed in some detail in this study.63

To start with, we explain the method using the one-dimensional case (Section 2).64

The extension necessary for horizontal fields is given in Section 3. The detail depends65

on the placement of discrete data and whether one deals with scalars or vectors. While66

our main focus is on the placement in FESOM, we also briefly discuss other placements.67

The analysis is applied to synthetic two dimensional fields to illustrate technical aspects.68

The results are also compared to those obtained with the coarsening method proposed69

by Aluie et al. (2018). The final sections of the paper present discussions and conclu-70

sions.71

2 Elementary theory72

The consideration presented here has very much in common with that in Guedot
et al. (2015) and Sadek & Aluie (2018), because it incorporates elements from both ap-
proaches. Let ϕ(x) be a scalar field, with x lying in some domain D. We are interested
in the distribution of the second moment (or variance if mean is removed) of this field
over spatial scales. A coarse-graining approach, similar in spirit to that of Aluie et al.
(2018) and Sadek & Aluie (2018) will be applied, but relying on implicit filters. The coars-
ened field ϕℓ(x) will be found by solving

(1 + γ(−ℓ2∆)n)ϕℓ = ϕ. (1)

Here, ∆ is the Laplacian, the smoothing scale is parameterized by ℓ, and γ is a param-73

eter that tunes the relation of ℓ to wavenumbers, as will be explained further. The in-74

teger n defines the order of the implicit filter, which is second-order for n = 1 (in ter-75

minology of Guedot et al. (2015)), and order 2n in a general case. Equation (1) is com-76

plemented by boundary conditions on the boundary ∂D of the computational domain77

D, which will be discussed below.78

A discrete Laplacian operator can be constructed independent of the type of the79

computational mesh and mesh geometry (flat or spherical), which makes the procedure80

suited for scale analysis on unstructured meshes.81

2.1 1D case82

In order to clarify some details of the method, we begin with the one-dimensional83

case assuming periodic boundary conditions to facilitate Fourier analysis. We assume84

n = 1 here, and explain later why larger n could be desirable.85

In the Fourier space,

ϕ̂ℓ(k) = Ĝℓ(k)ϕ̂(k) =
ϕ̂(k)

1 + γℓ2k2
,

where k is the wavenumber, the hat denotes Fourier transformed quantities and Ĝℓ(k)
is the Fourier transform of the convolution kernel. The same notation k will be used for
the absolute value of the wave vector in the discussion of energy spectra below in this
section. Let Ek be the Fourier energy spectrum of the field ϕ such that the mean energy
over D is obtained by summation over positive k,

E =

∫ ∞

0

Ekdk,
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where the integral is a replacement for the sum over Fourier modes. The area-mean en-
ergy of the coarse grained field, to be denoted by Eℓ, will be expressed as

Eℓ =

∫ ∞

0

|Ĝℓ|2Ekdk =

∫ ∞

0

Ekdk

(1 + γℓ2k2)2
.

Clearly, E0 = E. We can introduce

ε(ℓ) = −∂Eℓ/∂ℓ = −
∫ ∞

0

∂|Ĝℓ|2

∂ℓ
Ekdk =

4γ

ℓ2

∫ ∞

0

k2ℓ2Ekℓdk

(1 + γk2ℓ2)3
. (2)

The quantity ε(ℓ) can be considered as energy distribution over scales ℓ because

E =

∫ ∞

0

ε(ℓ)dℓ, Eℓ =

∫ ∞

0

|Ĝℓ|2Ekdk =

∫ ∞

l

ε(ℓ)dℓ = E −
∫ l

0

ε(ℓ′)dℓ′,

and εdℓ can be interpreted as the energy stored between the scales ℓ and ℓ+dℓ. This86

interpretation is not perfect because, in contrast to the Fourier spectrum, the contribu-87

tions from different ℓ are not orthogonal, but it can still be useful in practice.88

We will introduce one more derived quantity, proposed in Aluie et al. (2018) and
Sadek & Aluie (2018). It can be more convenient as it presents a closer analogy to the
Fourier spectrum. We define kℓ = 1/ℓ and introduce

E(kℓ) = ∂Eℓ/∂kℓ =

∫ ∞

0

∂|Ĝℓ|2

∂kℓ
Ekdk =

∫ ∞

0

4γk2/k2ℓ
(1 + γk2/k2ℓ )

3
Ek

dk

kℓ
. (3)

The bar is used to distinguish this quantity from the Fourier energy spectrum. The form-89

factor ∂|Ĝℓ|2/∂kℓ is a function of wavenumber k and has a peak at some k. It therefore90

picks up the energy Ek in the vicinity of that peak wavenumber and ensures that E(kℓ)91

is an approximate representation of Ek. It remains to be seen what is the correspondence92

between the peak wavenumber k and kℓ, or the peak wavelength λ = 2π/k and ℓ, and93

when E(kℓ) represents Ek sufficiently accurately. These questions will be addressed in94

the following sections.95

2.2 Comparison with explicit convolution kernels96

A box convolution kernel with width ℓ in the k-space is

Ĝl(k) =
sin(kℓ/2)

(kℓ/2)
.

As z = kℓ → 0, Ĝl(k) ≈ 1−z2/24. We may require that all second-order kernels have
such behavior in the vicinity of zero wavenumbers. For a Gaussian filter this requirement
will lead to

Ĝl(k) = exp(−k2ℓ2/24).

For the second order implicit filter this will lead to γ = 1/24, giving

Ĝl(k) =
1

1 + k2ℓ2/24
.

97

The left panel of Fig. 1 depicts these kernels as a function of z = kℓ = k/kℓ. Note98

that the box kernel shows the sharpest behavior in the vicinity of zero, and the implicit99

second order filter is the most flat. The right panel shows the behavior of the dimension-100

less form-factor kℓ∂|Ĝℓ(k)|2/∂kℓ = −z∂z|Ĝℓ(z)|2. The maxima are reached at z =
√
12 ≈101

3.46 for the Gaussian and implicit second-order filter, and z ≈ 3.52 for the box filter.102

Taking the approximation k/kℓ ≈ 3.5 we obtain ℓ = (3.5/2π)λ ≈ 0.55λ. As expected,103
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Figure 1. Convolution kernels (left) and the dimensionless form-factor kℓ∂|Ĝℓ(k)|2/∂kℓ (right)

as functions of z = k/kℓ. Shown are the box kernel (light gray), Gaussian kernel (gray), im-

plicit second-order kernel with γ = 1/24 (black) and implicit fourth-order kernel (n = 2) with

γ = 1/288 (dashed).

the scale ℓ is about half of a wavelength, and a more accurate statement has hardly a104

lot of sense since Ek is a function of k, and the peak of the integrand in (3) for given kℓ105

will occur for somewhat different k than the peak of the form-factor.106

2.3 Limitations107

In order to see how E(kℓ) is related to the Fourier spectrum we assume that

Ek = Ck−α, k ∈ (kmin, kmax),

and zero otherwise. In this case,

E(kℓ) = 4Cγk−α
ℓ

∫ zmax

zmin

z2−αdz

(1 + γz2)3
. (4)

Here zmin = kmin/kℓ = kminℓ and zmax = kmax/kℓ = kmaxℓ. The integrand in (4) does108

not depend on the scale ℓ, and if not for the variable integration limits, we would have109

concluded that E(kℓ) has the same spectral slope as Ek just with a slightly different am-110

plitude factor. However, the limits are functions of kℓ. In practical applications with dis-111

crete data, kmin = 2π/Lx and kmax = π/h, where Lx and h are respectively the do-112

main size and mesh cell size.113

If γ1/2ℓ > h/π, which is generally the case, γ1/2zmax > 1. Since the integrand114

in (4) vanishes rapidly for γ1/2z > 1, the precise value of the upper limit will have only115

a small effect. The effect of the lower limit depends on the slope α via the numerator116

of the integrand. If α ≥ 2, the integrand takes the largest values at the lower limit, mean-117

ing that the integral in (4) becomes sensitive to its lower limit, and that E(kℓ) will dif-118

fer from Ek for small kℓ. The integral will be entirely determined by the behavior at the119

lower limit for α > 3. Such slopes cannot be diagnosed with second-order filters, which120

will return E(kℓ) ∼ k−3
ℓ . Sadek & Aluie (2018) give an illustration of such a satura-121

tion effect for slopes steeper than −3.122

Note that even if the Fourier energy spectra are sufficiently flat (e.g. with α = 5/3),123

the integral in (4) can still be sensitive to the lower limit because z2−α varies too slowly.124

In a more general situation, when Ek has a local spectral peak at intermediate scales,125

–5–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

the position of a local peak in E(kℓ) could be aliased because the form-factor is rather126

broad for the second-order filters (see Fig. 1, right panel).127

This is the reason why it is advisable to use higher orders n in (1). Indeed, the ex-
pression (4) for arbitrary n transforms to

E(kl) = 4nγCk−α
ℓ

∫ zmax

zmin

z2n−αdz

(1 + γz2n)3
. (5)

For n = 2, i.e., for the biharmonic filter, one will need to take γ = 1/288 to have the128

same position of the peak in the form-factor as in the second-order case with γ = 1/24129

because the peak is always at 2γz2n = 1. This case is depicted in Fig. 1 with the dashed130

line, and the right panel illustrates that the peak becomes sharper than for the second-131

order filters. Importantly, the form-factor remains closer to zero at small wavenumers132

and is well-suited for a practically interesting range of slopes α ≤ 3. The relation be-133

tween the Fourier spectrum and the scale spectrum becomes more local. Sadek & Aluie134

(2018) discuss the construction of high-order explicit convolution kernels and illustrate135

the improvements in the performance of the scale analyses with high-order kernels. We136

present similar illustrations for the biharmonic case later.137

Note that one is free in the selection of parameter γ. For practical purposes it might138

be convenient to take γ = 1/2, in which case the peak is at k = kℓ and ℓ acquires the139

sense of inverse wavenumber.140

2.4 Modifications in the discrete case141

The eigenvalue of the discrete Laplacian is an approximation to −k2 of the con-142

tinuous case. In the one-dimensional case the simplest numerical implementation of the143

Laplacian operator on a regular mesh (Lϕ)j = (ϕj−1 + ϕj+1 − 2ϕj)/h
2, where j is the144

cell index and h the cell size, leads to the Fourier symbol Lk = −(4/h2) sin2(kh/2). For145

the largest resolvable wavenumber k = π/h, the ratio of discrete to continuous Fourier146

symbols is −Lk/k
2 = (4/h2) sin2(π/2)(h/π)2 = 4/π2, which is not negligible.147

We explore the consequences of this difference, by writing

Ĝℓ(k) =
1

1 + γ(−βLk)n
,

where the scale parameter β = β(kℓ) is introduced formally instead of ℓ2 = 1/k2ℓ . In
this case the form-factor is

∂Ĝ2
ℓ/∂kℓ =

−2nγ(−βLk)
n

(1 + γ(−βLk)n)3
1

β

∂β

∂kℓ
.

Considering the form-factor as a function of wavenumber k, we find that it reaches max-
imum at

−2γβLk = 1. (6)

We take γ = 1/2 everywhere further to simplify this condition.148

There are two obvious options. We can modify the scale parameter β taking β =149

βM = −1/Lkℓ
, which is similar to the correction used by Guedot et al. (2015). In this150

case the form-factor peaks at k = kℓ = 1/ℓ, so that kℓ acquires the sense of the stan-151

dard wavenumber, which lies in the range from 2π/Lx to π/h. The drawback of this choice152

is that β−1∂β/∂kℓ ∼ cos(kℓh/2)/ sin(kℓh/2), which tends to zero at kℓ = π/h, artifi-153

cially damping the scale spectrum near the cutoff wavenumber π/h.154

The other choice is to leave β = 1/k2ℓ . In this case the position of the peak of the155

form-factor is at −Lk = k2ℓ . The relationship between k and kℓ depends on the eigen-156
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value of discrete Laplacian. For the standard 1D Laplacian we find sin(kh/2) = kℓh/2.157

The peak at k = π/h corresponds to kℓ = 2/h and the peak at k = π/(2h) corre-158

sponds to kℓ =
√
2/h. The latter values are already close, and the correspondence be-159

tween the peak k and kℓ is recovered for smaller wavenumbers.160

As is seen, both choices introduce certain complications at grid scales. However,161

discrete operators in ocean circulation models also contain errors at grid scales, so that162

the scale spectra at such scales are of limited interest. If one considers wavenumbers smaller163

than π/(2h), both choices of β and respective scale spectra become close. One can also164

ignore the distinction between kℓ and the peak k in this range if β = 1/k2ℓ , and this choice165

of β becomes a simpler option. We will, nevertheless, keep the option β = βM below166

for completeness. Guedot et al. (2015) use the 1D Laplacian eigenvalue above also on167

unstructured meshes, identifying h with the length of the side of a triangle, but we opt168

for a slightly different value, see below. Since h is variable on unstructured meshes, βM
169

(if used) should be included between divergence and gradient in the scalar Laplacian,170

and similarly in the vector Laplacian.171

For the comparison with the box filter, we recall that the peak of the form-factor172

is at kℓbox ≈ 3.5, which means that ℓbox ≈ 3.5/kℓ in terms of kℓ used further for im-173

plicit filters.174

3 Unstructured meshes175

Laplace operators on unstructured triangular meshes depend on the placement of176

discrete degrees of freedom. Some of them are reviewed by Klemp (2017) and Danilov177

& Kutsenko (2019). As applied to the existing unstructured-mesh global ocean circu-178

lation models, one needs to distinguish between the cases of vertex, cell and mid-edge179

placement, and the cases of scalar and vector operators. The main focus below will be180

on the FESOM discretization which places scalars at vertices and horizontal velocities181

on triangles. Although horizontal velocities in FESOM are placed on triangles, in the182

default implementation we seek coarse grained velocities at vertex locations because this183

leads to matrices with a twice smaller dimension. One may, nevertheless, need the na-184

tive placement to analyze dissipation spectra, but we do not consider it in detail here,185

limiting ourselves only to the case of scalars placed on triangles. The particular feature186

of this case is that the Laplacians either contain spurious eigenvalues or a non-trivial ker-187

nel. We mention that the cell placement of scalars on hexagonal meshes in MPAS-Ocean188

differs from the vertex placement of FESOM only in the detail of control volumes, and189

that scalars are placed on triangles in ICON-o. Normal component of velocities are placed190

at mid-edges in MPAS-O and ICON-o. In these cases vector-invariant forms of vector191

Laplacians are appropriate, which will not be analysed in detail here.192

The discretization of Laplacians on unstructured meshes can be obtained by finite193

volume (as in Guedot et al. (2015)) and finite element methods, and we briefly describe194

both for the vertex case. The discretization of vector Laplacian for FESOM which works195

with the full horizontal velocity vector (quasi B grid) can be done similarly to scalars,196

but with the addition of metric terms as discussed below. Using the vector invariant form197

of the vector Laplacian will not lead to advantages for quasi B grid.198

3.1 Scalars, vertex placement199

One can use either the finite volume or finite element method. They lead to slightly
different discretizations on non-uniform meshes. In the first case, which is also the choice
in Guedot et al. (2015),

Av(Dϕℓ)v =
∑

v′∈N(v)

ϕv′ − ϕv

lvv′
βvv′nvv′ · svv′ , (7)
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Figure 2. Finite-volume computations of Laplacians for the vertex (left) and cell (right)

quantities. In the vertex case, nvv′ is the unit vector in the direction of edge, and svv′ = sl + sr,

where sl and sr are the left and right vectors from the mid-edge to cell centers rotated to outer

normal directions. In the cell case, ncc′ is the unit vector along the line connecting cell centers

and scc′ is the edge vector rotated toward the outer normal.

where the index v enumerates vertices, N(v) is the set of neighboring vertices, lvv′ is the200

length of the edge between vertices, nvv′ is the unit vector from v to v′, svv′ is the bound-201

ary segment vector and Av the area of scalar median-dual control volume containing ver-202

tex v, see Fig. 2. We included the scale factor βvv′ as an edge-based quantity. It can be203

either βM
vv′ (see below) or 1/k2ℓ , in which case it can be taken as a factor before the sum.204

The quantity svv′ is a combination of two contributions obtained by rotating vectors con-205

necting mid-edge to cell centroids in the case of FESOM (median-dual control volume),206

as illustrated in Fig. 2, but it would be related to a single segment on Voronoi (hexag-207

onal) meshes. The operator D is the discrete Laplacian (modified by the scale factor).208

Because of Av on the left hand side D is not symmetric (with respect to v and v′), but209

the right hand side of (7) gives a symmetric operator. This is why (1) has to be discretized210

in area-weighted sense (see below).211

Assuming ϕℓ, ϕ ∼ eik·x, where k = (k, l) is the wave vector and x the coordi-
nate vector, and further assuming that the mesh consists of equilateral triangles with
the side a and height h = a

√
3/2, with one side oriented along the x-direction, we ob-

tain the Fourier symbol of the vertex Laplacian (for βvv′ = 1)

Lk = (1/h2)[cos(ka) + cos(ka/2 + lh) + cos(−ka+ lh)− 3].

The Fourier symbol depends on the wave vector orientation. The boundary of the first212

Brillouin zone is closest to k = 0 in six directions (one is k = 0), and in such direc-213

tions Lk = LK = −(4/h2) sin2(Kh/2), where K = |k| (see Danilov (2022)). This ex-214

pression is similar to the one discussed for the one-dimensional case, with the difference215

that h is not the length of the triangle side, but the triangle height. We take βM
vv′ = −Lkℓ

,216

where Lkℓ
= LK |K=kℓ

, and express the height assuming regular meshes, h =
√
3lvv′/2.217

The wavenumber kℓ is the absolute value of two-dimensional wave vector and should be218

taken between 2π/Lx and π/h.219
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We will suppress the subscript ℓ in ϕℓ further for compactness. The discrete ver-
sion of equation (1) for n = 1 becomes

Svv′ϕv′ = Avϕv,

where summation over repeating index v′ is implied. The system matrix is

Svv′ = AvIvv′ + (1/2)AvDvv′

with Ivv′ the identity matrix and Dvv′ the matrix of the operator in (7).220

Taken in this form, Svv′ is a positive symmetric matrix, and solution for ϕ can be221

obtained by the conjugate gradient method.222

At this place we turn to the question of boundary conditions. The procedure of con-223

structing the Laplacian, described above, implies that the component of gradients that224

are normal to domain boundaries are thought to be zero, i.e. we are dealing with the case225

of zero von Neumann boundary conditions. One can also use the Dirichlet boundary con-226

ditions requiring that ϕ = ϕ at boundary points, but it will introduce small scales at227

the boundary. If these conditions are selected, the simplest way to implement them con-228

sists in leaving only the diagonal entries due to AvIvv′ in row v of Svv′ if v is at the bound-229

ary. Note that the symmetry of Svv′ will be destroyed. One more choice is to extend the230

mesh into land and set ϕ to zero there, which might reduce the sensitivity to boundary231

conditions. We use von Neumann boundary conditions in all cases below, but the ques-232

tion of optimal boundary conditions requires further attention.233

In the case of a biharmonic filter the matrix of the biharmonic operator can be ob-
tained by applying the procedure used for D twice,

Svv′′ = AvIvv′′ + (1/2)AvDvv′Dv′v′′ ,

with summation over v′ implied. Although Dv′v′′ includes division over Av′ , the com-234

bination AvDvv′Dv′v′′ is symmetric.235

Equation (1) can also be discretized with the help of the finite element method. Al-
though it leads to a similar expression for scalars, it is our preferred approach because
it is also more useful for vector Laplacians as concerns the metric terms. Consider first
the case n = 1. We obtain the weak formulation of (1) by multiplying it with some suf-
ficiently smooth function w(x), integrating over the domain D and transforming the Lapla-
cian term by integration by parts,∫

D

(wϕ+ (1/2)β∇w · ∇ϕ)dS =

∫
D

wϕdS.

Here the boundary term appearing after the integration by parts is set to zero, which
corresponds to natural boundary conditions, similarly to the finite-volume derivation.
We write the discrete fields as series ϕ =

∑
v′ ϕv′Nv′(x) and ϕ =

∑
v′ ϕv′Nv′(x), where

Nv(x) is a piecewise linear basis function. This function equals 1 at xv, decays to 0 at
vertices connected to v by edges, and is zero outside the stencil of nearest triangles. To
obtain continuous Galerkin approximation we require that the weak equation above is
valid if w is any of the Nv,

(Mvv′ + (1/2)Dvv′)ϕv′ = Mvv′ϕv′ ,

where Mvv′ =
∫
NvNv′dS is the mass matrix and Dvv′ =

∫
β∇Nv · ∇Nv′dS. The di-236

agonally lumped approximation of mass matrix is ML
vv′ = AvIvv′ . If this approxima-237

tion is applied, we get the same final discretization on uniform equilateral meshes as for238

the finite volume method except for the treatment of β. Since computation of integrals239

are done on triangles (mesh cells), the scaling parameter is treated as a cell quantity if240
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the modified option is used. Gradients of linear basis functions are constant on trian-241

gles, and their integration is just multiplication with triangle area. The height of trian-242

gle in Lkℓ
on cell c is conveniently expressed in terms of triangle area as h = 31/4

√
Ac243

if the modified scaling parameter is used. Once again, we have symmetric matrices. The244

implementation of biharmonic operator leads to D(ML)−1D. An alternative approximate245

implementation is to eliminate weighting with triangular areas in D, add the factor 1/2246

in D to compensate for the difference between triangle area and the area associated to247

a vertex, and replace M with the identity matrix I. It is used in our examples below as248

it implies slightly less work.249

3.2 Spherical geometry and vertex-based vector Laplacians250

FESOM uses longitude-latitude coordinates in spherical geometry (for detail, see251

Danilov et al. (2017)). The cosine of latitude is approximated by a constant on trian-252

gles and local distances on each triangle are calculated in a local Cartesian frame, with253

x and y aligned with local zonal and meridional directions. The areas of triangles are254

computed assuming that triangles are flat, and areas of scalar control volumes are ob-255

tained by taking 1/3 of the area of all triangles joining at a given vertex. This way of256

treating spherical geometry is fully compatible with the finite element computations de-257

scribed in the previous section. For the finite volume treatment, the length of edges is258

determined using the cosine at mid-edges.259

Although horizontal (zonal and meridional) velocities in FESOM are placed at tri-260

angles, in the present implementation the filtered velocities are calculated at vertices be-261

cause there are twice fewer vertices than triangles, and matrices to be iteratively inverted262

have twice lower dimension.263

Let u = (u, v) be the filtered horizontal velocity, and u = (u, v) the original ve-
locity (we suppress the ℓ subscript here too). We will use index v for vertex-based ve-
locities, and index c for cell-based original velocities. The weak equation will take the
form ∫

D

(w · u+ (1/2)β∇w : ∇u)dS =

∫
D

w · udS,

where now w is the vector-valued smooth function. Writing u =
∑

v′ uv′Nv′(x), u =∑
c ucMc(x), where Mc is the indicator function equal 1 on triangle c and 0 outside it,

and requiring that the weak equation is valid for w = wvNv for any vertex v, we ob-
tain the set of discrete equations. However, because the unit zonal and meridional vec-
tors are varying, there will be additional metric terms in the expression for velocity gra-
dient,

∇u =

(
∂xu−mv ∂xv +mu

∂yu ∂yv

)
,

and similarly in the expression for the gradient of test function w. Here, m = tanθ/Re,
with θ the latitude and Re earth’s radius. Combining all metric terms, we will get the
following x and y equations

(Mvv′ + (1/2)Dvv′)uv′ + Tvv′vv′ = Rvcuc, (8)

(Mvv′ + (1/2)Dvv′)vv′ − Tvv′uv′ = Rvcvc, (9)

where Tvv′ =
∫
(−∂xNv+∂xNv′)βmdS is the operator accounting for metric terms and264

Rvc =
∫
NvMcdS is the right hand side operator which is the projection operator onto265

the space of piecewise linear functions. Summation is implied over repeating indices in266

matrix-vector products.267

The metric terms couple equations for u and v, and the dimension of system ma-268

trix becomes twice larger than for scalar fields. While it can still be solved, the metric269

terms can be accounted approximately if wavelengths 2π/kℓ are not very large by putting270
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them on the right hand side and estimating them from the solution for the nearest avail-271

able kℓ. For the largest kℓ they can be estimated using the original field. On basin scales,272

this approximation is not necessarily sufficient and the full system has to be solved.273

3.3 Scalars, cell placement274

The smallest-stencil Laplacian in this case is obtained using the finite volume method
and is written similarly to (7)

Ac(Dϕ)c =
∑

c′∈N(c)

ϕc′ − ϕc

lcc′
βcc′ncc′ · scc′ . (10)

Here summation is over the neighbors of cell (triangle) c, which are the cells that have275

common edges with c (see Fig. 2), lcc′ is the distance between the cell centers, Ac is the276

cell area, ncc′ is the unit vector in the direction from c to c′ and scc′ is the cell side vec-277

tor rotated to the direction of the outer normal. For meshes used in discretizations of278

C-grid type, the c points are associated with circumcenters. In this case the vectors ncc′279

and scc′ have the same direction, and this expression presents the divergence of gradi-280

ent. If c is associated with cell centroids, on distorted meshes one accounts only for the281

component of gradient in the direction of ncc′ while full gradient is formally needed (dis-282

cretization (7) has similar limitations). More precise computations are of course possi-283

ble, but they will not be considered here. Although such details introduce some uncer-284

tainty in the analysis, they will basically affect only grid scales.285

To estimate the eigenvalues of this Laplacian, we use a uniform equilateral mesh,
setting βcc′ = 1 in (10). In order to find the eigenvalues we first note that for any two
neighboring triangles the orientation of stencils of neighbors depends on the orientation
of triangles themselves. For this reason, an elementary Fourier harmonic is described by
two amplitudes and the Fourier symbol becomes a 2 by 2 matrix (see e.g. Klemp (2017),
Danilov & Kutsenko (2019)), with two eigenvalues

Lk = (4/a2)(−3± |V |), V = e−2ilh/3 + eika/2+ilh/3 + e−ika/2+ilh/3.

The plus sign corresponds to the physical eigenvalue which tends to −k2−l2 in the limit286

of small wavenumbers. The minus sign corresponds to a numerical eigenvalue which is287

anomalously high in absolute value (it tends to −24/a2 in the limit of small wavenum-288

bers).289

In the direction k = 0, |V |2 = 5+4 cos(Kh), which corresponds to a more accu-290

rate behavior than in the vertex case above, giving the physical Lk equal to −6/h2 in-291

stead of −π2/h2 at the largest wavenumber. The eigenvector of the numerical eigenvalue292

corresponds to a grid-scale pattern that may potentially be present because of a slight293

difference in differential operators on differently oriented triangles. However, even if data294

contain some contributions that project on the numerical mode, these contributions will295

be strongly damped in the filtered fields if the implicit filter is used. In contrast, the pres-296

ence of spurious eigenvalues could be problematic for explicit filters based on series in297

Laplacians.298

An alternative approach is to use a discrete Laplacian that is based on a wider sten-299

cil. An obvious choice is to reconstruct full gradient vectors on triangles based on the300

values on three neighboring triangles. Gradients are then averaged to edges, and their301

divergence gives a Laplacian (see, e.g. Danilov & Kutsenko (2019)). It turns out that302

such a discrete Laplacian has the same physical eigenvalue as the vertex Laplacian above,303

i.e. it is less accurate. Its numerical eigenvalue is zero. This Laplacian would be less use-304

ful for implicit filter applications because it will preserve grid-scale noise in coarse-grained305

fields. A combination of this Laplacian with the smallest-stencil Laplacian can be a way306

to reduce spurious eigenvalue for applications with explicit filters.307
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3.4 Other discretizations308

The scalar Laplacian (10) can be applied to the components of cell horizontal ve-
locity in plane geometry. Metric terms need to be added in spherical geometry, we do
not discuss them here. The vector-invariant form of the vector Laplacian,

∆u = ∇∇ · u− curl curlu

would allow one to avoid the question on metric terms. It depends on computations of309

the divergence and inner curl. For cell velocities a natural way would be to compute the310

divergence and curl at vertex control volumes using the divergence and circulation the-311

orems because velocities are known at boundaries of such control volumes. This would312

lead to an analog of the wider-stencil Laplacian discussed in the previous section, which313

is not necessarily optimal because of its large kernel.314

C-grid types of discretizations used in MPAS-O and ICON-o will rely on the vector-315

invariant forms of vector Laplacians. These Laplacians have large spurious eigenvalues316

(see e.g. Klemp (2017) and Danilov & Kutsenko (2019)), but for the reasons mentioned317

above, this is rather an advantage.318

3.5 Comments on solving procedure319

As recommended by Guedot et al. (2015), instead of solving

Sϕ = ϕ,

where ϕ and ϕ are the vectors of discrete values, one works with perturbations ϕ′ =
ϕ− ϕ, with the result

Sϕ′ = ϕ− Sϕ.

In this case the right hand side has emphasis on small scales, and ϕ′ is the fine-scale con-320

tribution that has to be removed from the original data. This is expected to improve the321

convergence, which is more difficult for large scales. It indeed leads to some improvements322

in our case, however the main issue is that conditioning of S worsens as kℓ decreases.323

Also, as explained by Guedot et al. (2015), one will split the operators when n >
2. For example,

I+ γ(D)3 = (I+ γ1/3D)(I− γ1/3D+ γ2/3D2),

and
I+ γ(D)4 = (I+ (4γ)1/4D+ γ1/2D2)(I− (4γ)1/4D+ γ1/2D2),

and so on (γ = 1/2). In principle, using tri-harmonic and bi-biharmonic operators only324

doubles the work of iterative solvers once matrices of harmonic and biharmonic opera-325

tors D and D2 are available. While biharmonic operator should be sufficient in most cases326

for general conclusion about energy spectra, one may opt for higher-order in the case when327

precise position of spectral peaks has to be estimated.328

4 Illustrations329

For illustrations here we first generate a scalar field ϕ(x) on a regular quadrilat-330

eral mesh covering a square domain with size Lx = 1024 km. The initial mesh has the331

resolution a = 4 km (the side of quadrilateral cell). The field ϕ is initially specified at332

vertices of this mesh by taking random values uniformly distributed around zero. It is333

Fourier transformed, and each wave component is divided by K(α+1)/2, where K is the334

absolute value of the wave vector. After that, the inverse Fourier transform is carried335

out. In this way, fields with Fourier power spectra EK ∼ K−α are created, and α =336
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2 is used below. The Fourier amplitudes are additionally modified to add peaks in Fourier337

power spectra in section 4.2.338

One triangular mesh is obtained by bisecting the quadrilateral cells of the primary339

mesh. The other one is an equilateral mesh with triangle side a. The third mesh is an340

unstructured mesh with the triangle sides varying between a and 2a. These meshes will341

be denoted further as Q, E and U. One more unstructured mesh with resolution simi-342

lar to U, but covering a circular area, will be used for tests in spherical geometry. The343

largest resolvable wavenumber is defined by the small side of triangles on mesh Q, the344

height of triangle on mesh E and the height of largest triangles on mesh U. The initial345

field on mesh Q is the constructed one, and it is linearly interpolated to meshes E and346

U, respectively. Except for Fig. 3, we use the modified β. We take γ = 1/2 which en-347

sures that kℓ corresponds to the ordinary wavenumber and ℓ has the sense of inverse wavenum-348

ber. A conjugate gradient solver is used in all cases. In all figures showing spectral den-349

sity, the vertical axis is in units of the field squared times km/cycle, and wavenumbers350

on the horizontal axis are in cycle/km.351

4.1 Uniform and distorted triangular meshes352

Two panels of Fig. 3 present the computed scale spectra on triangular meshes Q,353

E, and U using harmonic (right) and bi-harmonic (left) filter for realizations of field ϕ354

with the power density slope α = 2. Here, the scaling factor β = 1/k2ℓ . The Fourier355

spectrum is in red, it contains fluctuations because it is the spectrum of a realization.356

Different realizations are used in the left and right panels. The thin dashed line corre-357

sponds to the slope of −2, and blue, solid black and green lines give scale spectra on meshes358

Q, E, and U respectively. The horizontal axis correspond to K for the Fourier spectrum359

and kℓ for the scale spectra. The kℓ values are sampled up to π/h, where h is the smaller360

side of triangle on mesh Q or the height of the smallest triangle on other two meshes.361

Since β = 1/k2ℓ , in this case we should stop at 2/h, comparing the value of scale spec-362

trum at this kℓ to the value of Fourier spectrum at K = π/h.363

As expected, for the original data (blue curves) the bi-harmonic filter ensures a closer364

agreement between the scale and Fourier spectra. As already mentioned, the biharmonic365

filter can also be used for sufficiently steep spectra (formally α ≤ 5), while the use of366

harmonic filter is limited to α ≤ 3. We checked this, but do not demonstrate it here.367

The scale spectra on meshes E and U (solid black and green curves) deviate from368

the scale spectrum on mesh Q for large kℓ. This is the consequence of using interpolated369

data on these meshes which have smaller variance on grid scales (note that E and Q curves370

are very close). The effect is stronger for U mesh because it contains larger triangles and371

for the biharmonic case (left panel) because of the narrower form-factor. For the har-372

monic filter, the effect is partly masked by excessively broad form-factor which picks up373

the contributions from smaller wavenumbers.374

The scale spectra tend to bend down compared to the Fourier spectrum on the side375

of smallest wavenumbers, which is presumably because a part of form-factor curve is cut376

on the left. Similar tendency on the side of large wavenumbers is partly related to the377

difference between K and kℓ in this case.378

Apart from effects caused by interpolation, the scale spectra are insensitive to the379

mesh type, which proves that the method can work on different meshes, including un-380

structured meshes. The scale spectra are always smoother than the realization of the Fourier381

spectrum, as they correspond to the integration over some range of Fourier wavenum-382

bers in the vicinity of kℓ, which smooths the fluctuations of the Fourier spectrum. On383

a practical side this means that one may need less averaging over field realizations as com-384

pared to the Fourier spectrum.385
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Figure 3. Scale spectra compared to Fourier spectra computed with Laplacian smoothing

(right) and biharmonic smoothing (left). Shown are the Fourier spectrum (red), the scale spec-

trum on a uniform triangular mesh obtained by bisecting quadrilateral cells (blue, mesh Q), on

a regular equilateral mesh (solid black, mesh E) and on an irregular unstructured mesh (green,

mesh U). The wavenumber is in cycle/km, the horizontal axis corresponds to K for the Fourier

spectrum and to kℓ = 1/ℓ for scale spectra.

For unstructured meshes, the largest resolved wavenumber is formally set by the386

the height of the largest triangles. However, if such triangles cover only a small part of387

domain, the contribution from small triangles will still dominate. This is why we use the388

same largest kℓ for E and U meshes in practice. It is expected that the computed scale389

spectrum will bend down if kℓ is taken beyond the range, indicating where one has to390

stop.391

4.2 Peak detection392

All further examples use the modified β, so that the correspondence between the393

wavenumbers K and kℓ is maintained. Fields with peaks in the Fourier spectrum have394

been constructed following the same procedure as above, but applying additional fac-395

tors to the amplitudes of Fourier harmonics. Figure 4 displays two examples illustrat-396

ing possible behavior. We use mesh Q and the biharmonic filter. In the left panel, the397

peak in the Fourier spectrum is accurately recovered in the scale spectrum. In contrast,398

the close peaks in the scale spectrum in the right panel are not detected, and the peak399

around kℓ ≈ 0.2 cycle/km is nearly missed. The success in the first case is because the400

Fourier spectrum decays sufficiently fast on both sides of the peak and there are no other401

close peaks. The form-factor responsible for the correspondence between the Fourier and402

scale spectra is still not sharp enough for the field used in the right panel, even for the403

biharmonic filter, and higher-order filters have to be used if finding exact position of peaks404

is of utmost importance.405

–14–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 4. Spectral peak detection by scale spectra based on biharmonic smoothing. The

Fourier spectra are in red, the scale spectra are in blue. Peaks can be missed or masked if they

are narrow and/or there are neighboring intervals with high spectral density.

4.3 Harmonic filter vs explicit box-type filter406

We use a box-type filter with the kernel

G(x) = A(1− tanh(c(|x| − 1.75/kℓ)/a)), (11)

where A is the normalization constant selected so as to ensure that
∫
G(x)dx = 1, a407

is the (fixed) mesh cell size, c = 1.3 is a numerical factor controlling the sharpness of408

the box filter transition, and 1.75/kℓ is equivalent to the scale ℓbox/2 of the box filter,409

as discussed above. Figure 5 compares the scale spectrum obtained by explicit coarse-410

graining with this box-type filter (blue line), with the scale spectrum obtained by Lapla-411

cian smoothing (solid black line) on mesh Q. Both methods lead to nearly the same spec-412

tra, with the largest differences on the side of large wavenumbers. The selection of pa-413

rameter c was experimental. Decreasing it increases the discrepancy between the two curves,414

which is still smaller than the deviation from the Fourier spectrum. If c is increased, the415

box filter transition becomes sharper, but this leads to some unevenness of the spectrum416

on the side of largest wavenumbers. We conclude that both methods agree, as expected,417

and that the attribution ℓbox = 3.5/kℓ works well. The excessive decay at the spectral418

end (kℓ ≥ 0.5 cycle/km) shown by solid black line is the consequence of using the mod-419

ified β in the analysis.420

4.4 Spherical geometry421

An unstructured variable-resolution mesh covering a circular area with diameter422

1024 km is created. The sides of triangles vary between a = 4 km and 2a. The real-423

ization of ϕ(x) with −2 power spectrum is linearly interpolated on this mesh. The mesh424

coordinates are then approximately transformed to longitude and latitude by multiply-425

ing the coordinates with 180/(πRe). The sphere is then rotated in the meridional direc-426

tion by π/6, π/3 and 5π/12 to produce three variants of the same mesh having various427
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Figure 5. Scale spectra obtained by explicit coarse-graining with box filter (11) (blue) com-

pared to scale spectra computed with Laplacian smoothing (solid black). The Fourier spectrum is

in red, and the dashed line corresponds to the slope of −2.

longitude and latitude coordinates, as shown in Fig. 6. We apply the coarse-graining based428

on the biharmonic filter to these three meshes. Although they correspond to the same429

original mesh and data, they have different coordinates on the sphere and the cosine of430

latitude varies much stronger on the higher-latitude mesh than on the other two meshes.431

However, the computed scale spectra, shown in Fig. 7, are indistinguishable. This in-432

dicates that the approximation of cosine by a constant value on triangles is sufficient.433

By using a circular mesh in this example we illustrate that the smoothing procedure can434

work in a domain of arbitrary shape.435

4.5 Kinetic energy spectra in spherical geometry436

For this test case, a realization of scalar field ϕ(x) with power spectrum with a −4437

slope was created on mesh Q. This field was interpreted as a streamfunction and used438

to compute a velocity field. The mesh coordinates were transformed to longitude and439

latitude by multiplying them by 180/(πRe). Then the mesh was moved along the zeroth440

meridian so that its south-west corner is at (0◦, 75◦). The mesh becomes stretched zon-441

ally if viewed in longitude-latitude coordinates on the sphere. Velocities are computed442

at the centers of triangles by computing derivatives of streamfunction given at vertices.443

We solved the full system of equations (8,9), building matrices with twice the dimension444

of the scalar problem. Figure 8 shows the scale spectrum for kinetic energy computed445

with the harmonic filter (blue curve). For comparison, the black curve shows the spec-446

trum computed by solving two problems for velocity components with metric terms ig-447

nored. As is seen, the differences start to form at the large scale, and they might be larger448

if the size of the domain is larger. In the example used, solving (8,9) takes nearly the449

same computational time as solving two smaller-size problems for velocity components450

separately, but requires more storage.451
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Figure 6. Three variants of the same realization of ϕ and mesh in longitude-latitude coordi-

nates (axes in degrees).

5 Discussions452

In this work we present an elementary theory of scale analysis based on implicit453

filters that use powers of Laplacian. Since discrete Laplacian can be written for any mesh454

type, the procedure is sufficiently general. Our focus was on triangular meshes, but the455

definition such as (7) are valid for arbitrary meshes456

Discrete Laplacians deviate from their continuous counterparts on grid scales and457

may have spurious modes in a general case. We used only the simplest optionsfor dis-458

crete Laplacians and explored in some detail the case of vertex placement. The devia-459

tion of eigenvalues of discrete Laplacians from the continuous case creates some difficul-460

ties in the interpretation of scale spectra near the spectral end. Using the modified scale461

factor similar to Guedot et al. (2015) allows one to keep the correspondence between kℓ =462

1/ℓ and the standard wavenumber, but creates an artificial spectral decay, as seen in Figs.463

5, 7 and 8. If the original definition β = 1/k2ℓ = ℓ2 is retained, the direct correspon-464

dence between K and kℓ is violated near the spectral end. While these difficulties are465

not important in many practical cases, one may be interested in studying energy pileup466

at grid scales, where the method based on implicit smoothing should be used with care.467

More accurate discrete Laplacians will reduce these difficulties. The construction468

of such Laplacians for general unstructured meshes is, however, not straightforward, and469

remapping between K and kℓ can be an easier way if β = 1/k2ℓ is used. In fact, one does470

not necessarily need the exact correspondence between the Fourier and scale spectra, in471

practice it would be sufficient just to compare spectra in terms of kℓ. Note that simi-472

lar complications may accompany the use of box-type filters if ℓbox/2 becomes close to473

the width of transition part (see (11)).474

Although our examples include only energy spectra, the procedure is applicable for475

cross-spectra of two fields. Our main focus was on scale spectra E(kℓ),which are simi-476

lar to the Fourier spectra, but the scale spectrum ϵ(ℓ) also deserves attention and might477

be similarly informative in practice.478
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Figure 7. Scale spectra computed for three meshes in Fig. 6 using the biharmonic filter. The

spectrum for the high-latitude variant is in green, and two other cases are under it. The red line

corresponds to the Fourier spectrum on the parent regular quadrilateral mesh, and the dashed

line gives the slope −2.

The convergence of conjugate gradient solver slows down as kℓ is approaching kmin,479

and this slowdown becomes stronger when mesh resolution is increased. The biharmonic480

filter requires many more solver iterations than the harmonic one in this case and the481

solver should also be run with smaller tolerance in this case. The convergence can be im-482

proved through the use of preconditioners. Guedot et al. (2015) used diagonal precon-483

ditioning, but it does not provide a substantial improvement for small kℓ in our case. In484

test implementation (in Matlab), the incomplete Cholesky preconditioner was efficient485

on regular meshes for the harmonic filter in essentially reducing the number of iterations486

(but not the execution time), however there are difficulties with using it on unstructured487

meshes or with the biharmonic filter. It remains to be seen which preconditioners and488

solution methods will be able to improve the performance for general meshes.489

Meshes with 1M wet vertices (the size of a typical quarter degree global mesh) can490

be treated in a serial way, requiring about 5 min for the construction of scale spectrum.491

A parallel implementation is needed for larger meshes. Both online and offline versions492

can be of interest. The online computations are straightforward for harmonic filters be-493

cause they can rely on the existing solvers for the implicit sea surface height in FESOM494

and some other models. For biharmonic filters, the implementation in matrix form will495

require increasing halos to include neighbors of neighbors. A matrix-free form does not496

require the increased halos, but might complicate the design of preconditioners. Respec-497

tive development is a subject of ongoing work.498

We did not try the higher-order filters (tri-harmonic, bi-biharmonic or higher) in499

this work. They might be needed to compute spectra that contain peaks. Technically,500

once discrete harmonic and biharmonic operators are available, any higher-order implicit501

filters can be realized as a sequence of more elementary inversions that use harmonic and502

biharmonic operators. Practical implementation, convergence issues and the selection503

of the filter order need additional studies.504
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Figure 8. Scale spectra of kinetic energy computed using the biharmonic filter. The mesh

is approximately between 75 and 85 degrees of latitude. The spectrum calculated taking into

consideration all metric terms is represented in blue, while the spectrum without considering

the metric terms is shown in black. The red line corresponds to the Fourier power spectrum of

streamfunction multiplied with K2, and the dashed line indicates the slope −2.

We experimented only with vertex placements for coarse-grained quantities, mostly505

because we intended to minimize the work in this study which explores and explains the506

concept. The cell (triangle) and edge placement will be addressed in future. In partic-507

ular, for FESOM, which places horizontal velocities on triangles, the analysis of kinetic508

energy dissipation calls for computation on the original locations. Indeed, the projec-509

tion of horizontal viscosity term from triangles to vertices may eliminate a significant part510

of small-scale dissipation, and computations on native locations will be made available511

in the future. The placement of coarse-grained velocities on triangles will lead to ma-512

trices with a twice larger dimension compared to the vertex case and a substantial in-513

crease in the required numerical work.514

Finally, as mentioned before, one of the advantages of the coarse-graining approach515

lies in the availability of spatial distributions of energy (or other quantities). These dis-516

tributions allow one to learn not only which scales contain most of the energy, but also517

where this energy is mainly located. This aspect was not addressed in this work, which518

relies on synthetic data, but it can present even larger interest than spectra in practi-519

cal cases.520

6 Conclusions521

We propose to use implicit filters to extend the concept of scale analysis based on522

coarse-graining to general unstructured meshes. The procedure is based on the discretiza-523

tions of Laplacian operators and can provide filters of high-order if higher degrees of Lapla-524

cian are used. The discretization can be applied to scalar and vector data, both in flat525

and spherical geometry.526
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We demonstrated the effectiveness of the implicit coarse-graining approach through527

several examples, highlighting the similarity between scale spectra and standard Fourier528

spectra, as well as its ability to operate on diverse mesh types.529

We acknowledge that numerous details regarding the extension of this approach530

to alternative data placements still need to be tested, which is the subject of ongoing re-531

search.532

7 Data availability statement533

Matlab scripts used for computations in this work and data used to draw the fig-534

ures can be found in Danilov et al. (2023). An accelerated Python version is under de-535

velopment and will be presented separately.536
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