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Abstract

Sparse distribution of depth soundings in the ocean make it necessary to infer depth in the gaps using alternate information

such as satellite-derived gravity and a mapping from gravity to depth. We design and train a neural network on a collection

of 50 million depth soundings to predict bathymetry globally using gravity anomalies. We find the best result is achieved by

pre-filtering depth and gravity in accordance with isostatic admittance theory described in previous predicted depth studies.

When training the model, if the training and testing split is a random partition at the same resolution as the data, the training

and testing sets will not be independent, and model misfit results will be too optimistic. We solve this problem by partitioning

the training and testing set with geographic bins. Our final predicted depth model improves on old predicted depth model rms

by 16%, from 165 m to 138 m. Among constrained grid cells, 80% of the predicted values are within 128 m of the true value.

Improvements to this model will continue with additional depth measurements, but higher resolution predictions, being limited

by upward continuation of gravity, shouldn’t be attempted with this method.

1



manuscript submitted to Earth and Space Science

Global predicted bathymetry using neural networks1

Hugh Harper1, David T. Sandwell12

1Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA3

Key Points:4

• We present a new method for global bathymetry prediction using a machine learn-5

ing algorithm.6

• The new predicted depth model improves on the reference model by all error met-7

rics.8
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Abstract9

Sparse distribution of depth soundings in the ocean make it necessary to infer depth in10

the gaps using alternate information such as satellite-derived gravity and a mapping from11

gravity to depth. We design and train a neural network on a collection of 50 million depth12

soundings to predict bathymetry globally using gravity anomalies. We find the best re-13

sult is achieved by pre-filtering depth and gravity in accordance with isostatic admittance14

theory described in previous predicted depth studies. When training the model, if the15

training and testing split is a random partition at the same resolution as the data, the16

training and testing sets will not be independent, and model misfit results will be too17

optimistic. We solve this problem by partitioning the training and testing set with ge-18

ographic bins. Our final predicted depth model improves on old predicted depth model19

rms by 16%, from 165 m to 138 m. Among constrained grid cells, 80% of the predicted20

values are within 128 m of the true value. Improvements to this model will continue with21

additional depth measurements, but higher resolution predictions, being limited by up-22

ward continuation of gravity, shouldn’t be attempted with this method.23

Plain Language Summary24

Only a fraction of the seafloor has been mapped by shipboard means. In the un-25

mapped regions of the ocean, we must estimate the depth of the seafloor using informa-26

tion from the earth’s gravity field. Typical models of predicted depth determine the lin-27

ear relationship of gravity and depth in some region, and regional predictions are com-28

bined to make global predicted depth maps. Here, we describe a new method for pre-29

dicting depth from globally using gravity, decades of shipboard depth measurements, and30

a neural network regression. Ultimately, our model shows a clear improvement over the31

reference model.32

1 Introduction33

Less than 25% of the ocean floor has been mapped at 15 arcsecond resolution (GEBCO34

compilation group, 2023), and at 1 arcminute resolution, this figure is still less than 30%.35

From efforts such as the Seabed 2030 project (Mayer et al., 2018), coverage in publicly-36

available compilations has improved in recent years, but the distribution of shipboard37

depth measurements remains heterogeneous and sparse, providing nearly complete high38

resolution coverage in some coastal areas but leaving unmapped gaps the size of west-39

ern US states in remote regions (Figure 1a). While there is no substitute for shipboard40

surveys to recover high resolution bathymetry, we can make a good guess of the seafloor41

depth, at a limited resolution, in these gaps using gravity field data derived from satel-42

lite altimeters (e.g. Smith & Sandwell, 1994).43

Satellite measurements have provided a wealth of information on the gravity field44

with global coverage, at a resolution of 12 km and accuracy nearing 1 mgal (Sandwell45

et al., 2021). A new generation of swath altimeters will improve the resolution of the grav-46

ity field may improve the accuracy beyond 1 mgal. Since gravity anomaly and depth are47

correlated within certain wavelength bands (Smith, 1998), we can infer depth from grav-48

ity. Within a restricted region, depths may be directly inverted from gravity measure-49

ments (e.g. Parker, 1972), but this requires a priori knowledge of crustal density other50

geologic quantities such as the degree of isostatic compensation (Watts, 2001). There51

are limitations to this method preventing its application at very large scales. How ex-52

actly one should combine sparse depth measurements with global gravity measurements53

to generate global predicted depths is not trivial.54

Smith and Sandwell (1994) developed (and revised in Smith and Sandwell (1997))55

an algorithm for this purpose with tremendous success. The procedure uses admittance56

theory to design filters for bathymetry and gravity to linearize their relationship. The57
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filtering steps remove most assumptions of isostatic compensation. After filtering, they58

determine the local slope of the bathymetry-gravity relationship on a coarse grid–full de-59

tails may be found in Smith and Sandwell (1994)–and the predicted bathymetry is the60

product of the filtered gravity and slope. This paper terms the post-filtering process the61

“inverse Nettleton,” referring to Nettleton (1939) to describe the process of selecting a62

best-fitting slope to describe the relationship of gravity anomaly and topography. As such,63

we will refer to this method as the Nettleton method. The quality of the estimation has64

improved with increasingly precise gravity recovery (number of measurements, orbits,65

instrument quality, processing techniques) and the greater quantity of shipboard mea-66

surements, especially in the so-called gaps. The most recent iteration of this prediction67

is described in detail by Tozer et al. (2019). While the predicted depth product has been68

widely adopted, some of the details in the prediction method may not be optimal and69

leave room for improvement.70

There has been recent interest in using modern methods from machine learning to71

improve upon the prediction of bathymetry. For example (Annan & Wan, 2022) and (Wan72

et al., 2023) have used neural networks with various architectures to predict absolute depth73

from gravity and gravity-related quantities (e.g. deflections of the vertical, gravity gra-74

dients). An investigation by (Moran et al., 2022) tested many machine learning algorithms75

in an attempt to predict depth from a set of geophysical and oceanographic features. These76

models are all limited to a particular study area–training and predictions are restricted77

to selected regions. The present study is an attempt to update the global predicted depth78

grid, and our goal is to replace the Nettleton method of depth estimation with a new ap-79

proach using techniques from machine learning. Specifically, we will train a deep neu-80

ral network (DNN) to predict depth using a publicly-available collection of depth mea-81

surements. We distinguish our method from previous predicted bathymetry studies in82

a few key ways: we attempt a global prediction; we predict depth in a certain waveband83

rather than the absolute depth; and we split training and testing data in a unique way.84

2 Methods85

2.1 Data preparation and feature generation86

We begin with the collection of shipboard depth measurements. The collection is87

based on the collection used in the SRTM15+V2 product (Tozer et al., 2019), and a de-88

scription of the data sources is found in that study and Becker et al. (2009). Since Tozer89

et al. (2019), data from 905 cruises (retrieved from NCEI) have been added to the col-90

lection. Data have been manually edited to remove erroneous measurements. For our91

purposes, data provenance is treated equally, and data are not distinguished by cruise92

ID or instrument type (multibeam or single-beam). Raw shipboard data are reduced by93

a median filter to 15 arcsecond resolution. These data are combined and blockmedian-94

reduced to 1 arcminute resolution on a spherical Mercator projected grid, spanning -80.738◦95

to 80.738◦ latitude. The result is a collection of 52,253,670 records of type [longitude,96

latitude, depth] (or [ϕ, θ, d]).97

We can use the coordinates ϕ, θ of any constrained depth record to sample the global98

gravity anomaly grid (Figure 1c) (Sandwell et al., 2021). Since the constrained depth99

cells are co-registered with the gravity grid, sampling is trivial, but sampling may also100

be done via interpolation. The result is records of type [ϕ, θ, d, g]. From these records,101

the target quantity we wish to predict is depth, and the features we may use to train the102

prediction are ϕ, θ, and g. We could use other geophysical or geographical grids as fea-103

tures, since they can be sampled by longitude and latitude. We will explore such addi-104

tional features in the discussion.105

That longitude is cyclical is not captured by the simple numerical value, so we de-106

compose the longitude, ϕ, to sin
(

ϕπ
180

)
and cos

(
ϕπ
180

)
, or ϕs, ϕc. With this treatment of107

–3–
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Figure 1. An overview of the datasets in map view. (a) Distribution of shipboard depth mea-

surements in the global oceans based on publicly-available data. (b) Zoomed-in view of depth

measurements in the South China Sea, colored by absolute depth. (c) Free air gravity anomaly

for the same region as (b). (d) High-pass filtered depths and (e) filtered gravity anomaly–filtering

described in the text.
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Figure 2. Schematic of the neural network architecture. A feature vector with normalized

inputs is transformed by successive hidden layers to predict depth.

longitude, we avoid a discontinuity at the Greenwich Meridian in the predicted depth108

grid. Following this amendment, our feature vector is [ϕs, ϕc, θ, g].109

2.1.1 Filtering depth and gravity110

Since gravity and bathymetry are only correlated over certain wavelengths (Smith,111

1998), it would be less-than-optimal to try and predict the absolute depth. Here we use112

the filtering steps established by Smith and Sandwell (1994). The depth measurements113

are gridded on a 1 arcminute spherical Mercator grid using continuous splines in tension114

(Smith & Wessel, 1990), and this grid is separated into low- and high-frequency com-115

ponents with a Gaussian filter with 0.5 gain at 160 km (eq. 9, (Smith & Sandwell, 1994)).116

The low-pass depth grid is saved. The high-pass depth is then low-pass filtered with 0.5117

gain at 16 km, resulting in a 160 km - 16 km band-pass depth grid–we will call this h.118

The constrained points of this depth grid are extracted (Figure 1d). We are losing some119

high-frequency information this way in order to match the spectral content of the grav-120

ity. The gravity anomaly is high-pass filtered in the same way as the depth measurements.121

Finally, the high-pass filtered gravity anomaly is downward-continued to the low-pass122

filtered depth using a depth-dependent Wiener filter (eq. 11, (Smith & Sandwell, 1994))–123

we will call this g∗ (Figure 1e). We will examine the effects of omitting this pre-processing124

step in the discussion.125

2.2 Data splitting126

We must split our dataset into training, validation, and testing sets. If we are to127

simply select 20% for testing and validation at random, then we will find that almost128

any given record in the testing or validation set is within 1 arc minute of a record in the129

training set. Marks et al. (2010), analyzing predicted depths generated by the Nettle-130

ton procedure, showed the prediction error increases with distance from constrained nodes.131

How strong this effect is depends on the roughness of the seafloor, but it appears the er-132

rors become decorrelated beyond a certain distance (15-30 km). In other words, records133

that are sufficiently close in position are not independent (Figure 3b). In practice, the134

training loss and validation (and testing) loss will be nearly identical, and we will not135

have a good idea of when the model is overfitting during training or how the model gen-136

eralizes to the unmapped gaps.137

By splitting the data into longitude, latitude bins and randomly selecting bins for138

testing and validation, we can reduce the dependence of the datasets (Figure 3c). We139

use a bin size of 30 arc minutes (∼ 50 km at the equator) to group records, and then140

randomly select those bins for training, validation, and testing. This bin size could be141

made larger or smaller, or it could be made to vary based on prior knowledge of seafloor142

roughness, but it’s important not to tune the bin size by model loss performance. The143

–5–
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Figure 3. An example of partitioning the data. Same map area shown in Figure 1b-e. (a)

The collection of depth measurements. The data must be partitioned into a training, testing, and

validation set. (b) Randomly withholding 20% of the data, sampled uniformly. Withheld data

are shown in red. Using this partition scheme, almost any withheld point has a nearly identical

point in the training set, so the sets are not independent. (c) Sampling the data after binning

into groups of 30 arc minutes. Withheld data are shown in red.

training, validation, and testing datasets comprise 31,320,896, 10,460,197, and 10,472,576144

records respectively.145

2.3 Model architecture and training146

We use the TensorFlow software library to design and train the neural network (Abadi147

et al., 2015). The neural network comprises only successive densely-connected layers us-148

ing a ReLU activation function (Figure 2). Input features are normalized by the mean149

and variance of their distribution in the training dataset. We use eight successive dense150

layers with 256 neurons per layer, and a final linear output layer. Model architecture can151

be tweaked ad nauseum, so we cannot claim this is a strictly optimal configuration, but152

this particular arrangement was selected because we found it performed as well as a wider153

but shallower model (e.g., 4 layers of 1024 neurons each) while using far fewer param-154

eters (4e5 vs. 3e6).155

We choose mean squared error (MSE) as the loss function. Each dense layer is reg-156

ularized with L2 regularization (λ = 0.01). We use the Adam optimizer (Kingma & Ba,157

2017) with a learning rate of 0.001. Model training proceeds until the validation loss is158

no longer decreasing.159

2.4 Inference: generating the global predicted grid160

The end goal of this model is a global grid of predicted depths. After the model161

is trained, predictions of h are generated on a 1 arcminute spherical mercator grid (on-162

shore values are masked). The long wavelength depth, saved from the filtering step, are163

added to the predicted depth, h, to give absolute depth, d. Finally, for distribution, the164

predicted depth grid is “polished” with the constrained depth measurements, but this165

step is omitted in the following discussion and analysis.166
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3 Results167

3.1 Base model168

Using the feature vector [ϕs, ϕc, θ, g
∗] to predict h, we achieve a training RMSE of169

85 m, validation RMSE of 108 m, and testing RMSE of 109 m. Loss values are useful170

for comparing one trained model against another, but they are imperfect when compar-171

ing to the Nettleton method. Since no “testing” data is withheld from the Nettleton method172

(i.e., the prediction is tuned on all available data), we must caution the comparison of173

RMSE between the two methods. With that in mind, the RMSE of the Nettleton pre-174

diction and h is about 143 m. We will look more carefully at model misfit in the discus-175

sion.176

3.1.1 Modeling without filtering depths and gravity177

For comparison, a model trained without filtering depths and gravity anomaly per-178

forms much worse and offers no improvement over the Nettleton method. For this model,179

we achieve a training RMSE of 140 m, validation RMSE of 173 m, and testing RMSE180

of 175 m. This poor performance may be because the distribution of depth is more vari-181

able with location. For example, where the regional depth is 6000 m, the mean depth182

will be near 6000 m, and similar for a regional depth of 1000 m. By high-pass filtering183

the depth, the overall variance of the data are reduced. Omitting the low-pass filter at184

16 km also contributes to the worse performance. The Nettleton method RMSE above185

is for the band-pass filtered data, h. If the short wavelengths are included, the Nettle-186

ton RMSE is about 165 m.187

Alternatively, we can high-pass filter depth and gravity but omit the low-pass fil-188

ter at 16 km–in fact, we may desire to do this so we don’t lose short-wavelength details.189

For this model, we achieve a training RMSE of 124 m, validation RMSE of 141 m, and190

testing RMSE of 142 m. We can’t compare these directly to the base model since the191

target quantities are different. Instead we can evaluate the RMSE of the base model pre-192

diction and the high-pass depth. In this case, testing RMSE values are nearly identical193

for the two models, suggesting the trained models are similar and the greater loss reflects194

the greater variance of the target data.195

3.2 Added features196

It would seem that adding features from other global grids would be an easy way197

to decrease model loss and improve performance. For example, the spreading rate at the198

time crust is created is known to affect the roughness of bathymetry (Small & Sandwell,199

1994). Crustal age and sediment cover will also influence the correlation of gravity and200

bathymetry (Smith & Sandwell, 1994). We use ϕ, θ to sample grids of crustal age, paleo-201

spreading rate (Seton et al., 2020), and sediment thickness (Whittaker et al., 2013), add202

these to the feature vector, and train a new model. In practice, there are problems with203

using these features.204

Firstly, these grids have many regions of missing data, and the missing values must205

be handled somehow. Since a key purpose of this model is prediction on a global grid,206

grid cells with missing values can’t simply be thrown out. We tested different schemes207

to replacing missing values: replacement with the mean feature value; replacement with208

mean feature value plus an additional boolean feature indicating replacement; and fill-209

ing missing values with nearest neighbor interpolation of the feature grid. In our attempts210

to use crustal age, paleo-spreading rate, and sediment thickness as features, validation211

and testing loss are not improved (nor are they improved by any one such feature), and212

in fact model loss is worse with the additional features. In addition, at inference time,213

sharp discontinuities in the feature grids get mapped to the prediction grid creating un-214

wanted artifacts.215

–7–
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Figure 4. Model-predicted depths with long-wavelength depth added. The same map area

shown in Figure 1b-e. (a) Nettleton method; (b) Raw DNN-predicted grid; (c) DNN-predicted

grid, low-pass filtered at 12 km. (d) Example of the “orange peel” texture in the Nettleton pre-

diction, boxed region in (a). (e) Example of “hallucinations” in DNN prediction, boxed region in

(b).

Other gravity-related quantities such as deflection of the vertical and vertical grav-216

ity gradient (VGG) may be good features to use, but they may only be redundant. We217

found that adding VGG as a feature (Sandwell et al., 2021) improves model training RMSE218

only slightly, and it slightly worsens validation and testing RMSE. This model has a train-219

ing RMSE of 85 m, a validation RMSE of 109 m, and a testing RMSE of 110 m. Since220

there is no improvement on the base model, we will consider that the preferred model221

and refer to it as simply the “DNN” model in the following discussion.222

4 Discussion223

4.1 Generating a predicted depth grid224

After training, we generate model predicted depths on a global 1 min mercator grid.225

One problem that results is short wavelength artifacts or “hallucinations” (Figure 4e).226

These hallucinations typically occur with wavelengths shorter than the 16 km wavelength227

filter that was applied to the original gravity and bathymetry, so they must be a prod-228

uct of the DNN training. We can reduce these with regularization during training, but229

not completely nor in a deterministic way. For the distributed predicted depth grid, we230

apply a low pass filter with 0.5 gain at 16 km to remove these hallucinations. This post-231

inference filtering method does not weaken model results. In fact, error metrics are very232

slightly improved, and the prediction RMSE of h after filtering is 107 m for the testing233

dataset. We use the predictions on the filtered grid in the following discussion.234

–8–
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4.2 Comparison to Nettleton model235

While not quantitative, it’s important to visually inspect the DNN predicted depth236

grid and make comparisons to the Nettleton grid (Figure 4). The most obvious quali-237

tative difference is in continental margin areas or areas of relatively smooth seafloor. In238

these areas, the Nettleton predicted bathymetry has a rough “orange peel” texture (Fig-239

ure 4d), an artifact of downward continuation of noisy gravity data. This type of seafloor240

is smoother in the DNN prediction.241

Using all available depth measurements (not partitioned for training/testing), we242

compare the error distribution of the Nettleton method and the DNN method. These243

results are shown in Figure 5. For the Nettleton method, the predicted depth is within244

68 m for 50% of points and within 168 m for 80% of points. For the DNN method, these245

percentiles are 45 m and 128 m, respectively. Additionally, the mean error has been re-246

duced from 13 m for the Nettleton to 3 m for the DNN, indicating a less-biased estimate.247

Figure 5b shows the distribution of absolute model error in the southern oceans. Over-248

all, the spatial patterns of misfit are similar for the two models. At this scale, the no-249

ticeable differences are found nearer to land–e.g., the West Antarctic Peninsula, Chile,250

Australia–where the DNN model shows clear improvements over the Nettleton.251

4.2.1 BODC data252

Because the Nettleton prediction is tuned using all available data, we don’t have253

a concrete idea of how well it generalizes to unseen areas of seafloor. It is useful to re-254

serve a dataset that is not used in either model’s construction. To compare the perfor-255

mance of the Nettleton and the DNN model, we used a collection of depth measurements256

from 279 cruises from the British Oceanographic Data Centre (BODC) that are not yet257

incorporated into the prediction model. The raw data are decimated to 15 sec, and mea-258

surements that overlap with data already in the prediction dataset are removed. We did259

not thoroughly inspect the BODC data for erroneous measurements, so measurements260

that differ from either predicted grid by more than 2000 m are removed. In total, there261

are 6,242,414 points. The Nettleton prediction has an RMSE of 150 m for the BODC262

dataset. The final DNN model has an RMSE of 104 m.263

If we restrict the analysis spatially to the highest concentration of measurements264

(80% of the data are around the British Isles), the Nettleton RMSE is 73 m and the DNN265

model RMSE is 62 m–much lower than testing RMSE (Figure 6). This almost certainly266

reflects the proximity of these data to those in our training set. However, we see from267

the error distribution that the slight bias in the Nettleton prediction is not present in268

the DNN prediction.269

4.3 Potential for improvements270

Our model is a simple implementation of a neural network to predict depth glob-271

ally, and we have shown its clear improvement over the Nettleton method. Yet, there272

are many possible directions for improvement depending on one’s objectives. Expansion273

of the training dataset, modifications of model architecture, or a multi-regional approach274

to the problem all offer potential to improve on our model.275

If coverage of publicly available bathymetry compilations continues to improve as276

it has in recent years–and it likely will (Mayer et al., 2018)–model predictions will clearly277

improve (this would be true of any model). Low-resolution data in remote regions, which278

can be collected by autonomous vehicles, will likely offer the greatest benefit in our model279

approach.280

We haven’t made use of high-resolution multibeam data in our model, and we do281

not aim to predict features at such resolution. Upward continuation of gravity anoma-282

–9–
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Figure 5. Comparison of Nettleton and DNN models by prediction error. (a) Distribution of

prediction error for all 1 arc minute data (N=52,253,670). (b) Average absolute difference (pre-

diction - measurement) for Nettleton (upper) and DNN (lower) models.
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Figure 6. Nettleton and DNN model predictions for withheld BODC data. (a) Depth mea-

surements in the full dataset shown in black, measurements from the disjoint BODC dataset

shown in red. Misfit of BODC data for (b) Nettleton predicted depth and (c) neural network

predicted depth. (d) Distribution of BODC data misfit for Nettleton predicted depth and neural

network predicted depth.
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lies limits the resolution of gravity from satellite altimetry to a length scale of about π283

times the regional depth (e.g. Smith & Sandwell, 2004), so it is not possible to realis-284

tically predict depth from only gravity (and its derivatives) at such scales. An approach285

using convolutional neural networks, as demonstrated by Annan and Wan (2022), may286

successfully learn from higher resolution bathymetry in regional settings.287

A prediction model trained on regional data will, everything else equal, perform288

better in that region than a model trained on global data. Moran et al. (2022) identi-289

fied regions where various learning algorithms might preferentially excel. This suggests290

a global model should alternatively be constructed from a suite of regional models. A291

particular case where such a multi-regional model would excel is in predicting higher res-292

olution depth in areas where that is realistic. Susa (2022) showed such an approach to293

predicting depth in near-coastal regions. In this setting, altimetric ranging and gravity294

accuracy suffer from land contamination (Raney & Phalippou, 2011), and visible spec-295

tra may be correlated with bathymetry, making this an ideal case for alternative depth296

prediction.297

5 Conclusions298

1. Using a large collection of depth measurements and satellite-derived gravity anoma-299

lies, we trained a deep neural network to predict seafloor depth.300

2. We find that applying filters (described by Smith and Sandwell (1994)) to bathymetry301

and gravity before training is necessary for a good result, and conforms the data302

more closely with the assumption of identical distributions.303

3. When dealing with sparse heterogeneous sampling, the training-testing split must304

be treated carefully. If the training and testing split is a random partition at the305

same resolution as the data, the training and testing sets are not independent, and306

model misfit results will be too optimistic.307

4. Adding features sampled from geologic grids–crustal age, paleo-spreading rate, sed-308

iment thickness–do not improve model results.309

5. Our preferred DNN-predicted model improves on the results of the Nettleton pro-310

cedure, lowering the prediction RMSE from 165 m to 138 m.311

6. While improvements will be made with additional depth measurement data, higher312

resolution predictions are limited by the upward continuation of gravity, so likely313

shouldn’t be attempted with this method.314

Open Research Section315

Jupyter notebooks and data files to reproduce the predicted depth model, as well316

as the final predicted depth model used in the analysis, are available at https://doi317

.org/10.5281/zenodo.8029925 (Harper & Sandwell, 2023).318
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Abstract9

Sparse distribution of depth soundings in the ocean make it necessary to infer depth in10

the gaps using alternate information such as satellite-derived gravity and a mapping from11

gravity to depth. We design and train a neural network on a collection of 50 million depth12

soundings to predict bathymetry globally using gravity anomalies. We find the best re-13

sult is achieved by pre-filtering depth and gravity in accordance with isostatic admittance14

theory described in previous predicted depth studies. When training the model, if the15

training and testing split is a random partition at the same resolution as the data, the16

training and testing sets will not be independent, and model misfit results will be too17

optimistic. We solve this problem by partitioning the training and testing set with ge-18

ographic bins. Our final predicted depth model improves on old predicted depth model19

rms by 16%, from 165 m to 138 m. Among constrained grid cells, 80% of the predicted20

values are within 128 m of the true value. Improvements to this model will continue with21

additional depth measurements, but higher resolution predictions, being limited by up-22

ward continuation of gravity, shouldn’t be attempted with this method.23

Plain Language Summary24

Only a fraction of the seafloor has been mapped by shipboard means. In the un-25

mapped regions of the ocean, we must estimate the depth of the seafloor using informa-26

tion from the earth’s gravity field. Typical models of predicted depth determine the lin-27

ear relationship of gravity and depth in some region, and regional predictions are com-28

bined to make global predicted depth maps. Here, we describe a new method for pre-29

dicting depth from globally using gravity, decades of shipboard depth measurements, and30

a neural network regression. Ultimately, our model shows a clear improvement over the31

reference model.32

1 Introduction33

Less than 25% of the ocean floor has been mapped at 15 arcsecond resolution (GEBCO34

compilation group, 2023), and at 1 arcminute resolution, this figure is still less than 30%.35

From efforts such as the Seabed 2030 project (Mayer et al., 2018), coverage in publicly-36

available compilations has improved in recent years, but the distribution of shipboard37

depth measurements remains heterogeneous and sparse, providing nearly complete high38

resolution coverage in some coastal areas but leaving unmapped gaps the size of west-39

ern US states in remote regions (Figure 1a). While there is no substitute for shipboard40

surveys to recover high resolution bathymetry, we can make a good guess of the seafloor41

depth, at a limited resolution, in these gaps using gravity field data derived from satel-42

lite altimeters (e.g. Smith & Sandwell, 1994).43

Satellite measurements have provided a wealth of information on the gravity field44

with global coverage, at a resolution of 12 km and accuracy nearing 1 mgal (Sandwell45

et al., 2021). A new generation of swath altimeters will improve the resolution of the grav-46

ity field may improve the accuracy beyond 1 mgal. Since gravity anomaly and depth are47

correlated within certain wavelength bands (Smith, 1998), we can infer depth from grav-48

ity. Within a restricted region, depths may be directly inverted from gravity measure-49

ments (e.g. Parker, 1972), but this requires a priori knowledge of crustal density other50

geologic quantities such as the degree of isostatic compensation (Watts, 2001). There51

are limitations to this method preventing its application at very large scales. How ex-52

actly one should combine sparse depth measurements with global gravity measurements53

to generate global predicted depths is not trivial.54

Smith and Sandwell (1994) developed (and revised in Smith and Sandwell (1997))55

an algorithm for this purpose with tremendous success. The procedure uses admittance56

theory to design filters for bathymetry and gravity to linearize their relationship. The57
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filtering steps remove most assumptions of isostatic compensation. After filtering, they58

determine the local slope of the bathymetry-gravity relationship on a coarse grid–full de-59

tails may be found in Smith and Sandwell (1994)–and the predicted bathymetry is the60

product of the filtered gravity and slope. This paper terms the post-filtering process the61

“inverse Nettleton,” referring to Nettleton (1939) to describe the process of selecting a62

best-fitting slope to describe the relationship of gravity anomaly and topography. As such,63

we will refer to this method as the Nettleton method. The quality of the estimation has64

improved with increasingly precise gravity recovery (number of measurements, orbits,65

instrument quality, processing techniques) and the greater quantity of shipboard mea-66

surements, especially in the so-called gaps. The most recent iteration of this prediction67

is described in detail by Tozer et al. (2019). While the predicted depth product has been68

widely adopted, some of the details in the prediction method may not be optimal and69

leave room for improvement.70

There has been recent interest in using modern methods from machine learning to71

improve upon the prediction of bathymetry. For example (Annan & Wan, 2022) and (Wan72

et al., 2023) have used neural networks with various architectures to predict absolute depth73

from gravity and gravity-related quantities (e.g. deflections of the vertical, gravity gra-74

dients). An investigation by (Moran et al., 2022) tested many machine learning algorithms75

in an attempt to predict depth from a set of geophysical and oceanographic features. These76

models are all limited to a particular study area–training and predictions are restricted77

to selected regions. The present study is an attempt to update the global predicted depth78

grid, and our goal is to replace the Nettleton method of depth estimation with a new ap-79

proach using techniques from machine learning. Specifically, we will train a deep neu-80

ral network (DNN) to predict depth using a publicly-available collection of depth mea-81

surements. We distinguish our method from previous predicted bathymetry studies in82

a few key ways: we attempt a global prediction; we predict depth in a certain waveband83

rather than the absolute depth; and we split training and testing data in a unique way.84

2 Methods85

2.1 Data preparation and feature generation86

We begin with the collection of shipboard depth measurements. The collection is87

based on the collection used in the SRTM15+V2 product (Tozer et al., 2019), and a de-88

scription of the data sources is found in that study and Becker et al. (2009). Since Tozer89

et al. (2019), data from 905 cruises (retrieved from NCEI) have been added to the col-90

lection. Data have been manually edited to remove erroneous measurements. For our91

purposes, data provenance is treated equally, and data are not distinguished by cruise92

ID or instrument type (multibeam or single-beam). Raw shipboard data are reduced by93

a median filter to 15 arcsecond resolution. These data are combined and blockmedian-94

reduced to 1 arcminute resolution on a spherical Mercator projected grid, spanning -80.738◦95

to 80.738◦ latitude. The result is a collection of 52,253,670 records of type [longitude,96

latitude, depth] (or [ϕ, θ, d]).97

We can use the coordinates ϕ, θ of any constrained depth record to sample the global98

gravity anomaly grid (Figure 1c) (Sandwell et al., 2021). Since the constrained depth99

cells are co-registered with the gravity grid, sampling is trivial, but sampling may also100

be done via interpolation. The result is records of type [ϕ, θ, d, g]. From these records,101

the target quantity we wish to predict is depth, and the features we may use to train the102

prediction are ϕ, θ, and g. We could use other geophysical or geographical grids as fea-103

tures, since they can be sampled by longitude and latitude. We will explore such addi-104

tional features in the discussion.105

That longitude is cyclical is not captured by the simple numerical value, so we de-106

compose the longitude, ϕ, to sin
(

ϕπ
180

)
and cos

(
ϕπ
180

)
, or ϕs, ϕc. With this treatment of107
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Figure 1. An overview of the datasets in map view. (a) Distribution of shipboard depth mea-

surements in the global oceans based on publicly-available data. (b) Zoomed-in view of depth

measurements in the South China Sea, colored by absolute depth. (c) Free air gravity anomaly

for the same region as (b). (d) High-pass filtered depths and (e) filtered gravity anomaly–filtering

described in the text.
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Figure 2. Schematic of the neural network architecture. A feature vector with normalized

inputs is transformed by successive hidden layers to predict depth.

longitude, we avoid a discontinuity at the Greenwich Meridian in the predicted depth108

grid. Following this amendment, our feature vector is [ϕs, ϕc, θ, g].109

2.1.1 Filtering depth and gravity110

Since gravity and bathymetry are only correlated over certain wavelengths (Smith,111

1998), it would be less-than-optimal to try and predict the absolute depth. Here we use112

the filtering steps established by Smith and Sandwell (1994). The depth measurements113

are gridded on a 1 arcminute spherical Mercator grid using continuous splines in tension114

(Smith & Wessel, 1990), and this grid is separated into low- and high-frequency com-115

ponents with a Gaussian filter with 0.5 gain at 160 km (eq. 9, (Smith & Sandwell, 1994)).116

The low-pass depth grid is saved. The high-pass depth is then low-pass filtered with 0.5117

gain at 16 km, resulting in a 160 km - 16 km band-pass depth grid–we will call this h.118

The constrained points of this depth grid are extracted (Figure 1d). We are losing some119

high-frequency information this way in order to match the spectral content of the grav-120

ity. The gravity anomaly is high-pass filtered in the same way as the depth measurements.121

Finally, the high-pass filtered gravity anomaly is downward-continued to the low-pass122

filtered depth using a depth-dependent Wiener filter (eq. 11, (Smith & Sandwell, 1994))–123

we will call this g∗ (Figure 1e). We will examine the effects of omitting this pre-processing124

step in the discussion.125

2.2 Data splitting126

We must split our dataset into training, validation, and testing sets. If we are to127

simply select 20% for testing and validation at random, then we will find that almost128

any given record in the testing or validation set is within 1 arc minute of a record in the129

training set. Marks et al. (2010), analyzing predicted depths generated by the Nettle-130

ton procedure, showed the prediction error increases with distance from constrained nodes.131

How strong this effect is depends on the roughness of the seafloor, but it appears the er-132

rors become decorrelated beyond a certain distance (15-30 km). In other words, records133

that are sufficiently close in position are not independent (Figure 3b). In practice, the134

training loss and validation (and testing) loss will be nearly identical, and we will not135

have a good idea of when the model is overfitting during training or how the model gen-136

eralizes to the unmapped gaps.137

By splitting the data into longitude, latitude bins and randomly selecting bins for138

testing and validation, we can reduce the dependence of the datasets (Figure 3c). We139

use a bin size of 30 arc minutes (∼ 50 km at the equator) to group records, and then140

randomly select those bins for training, validation, and testing. This bin size could be141

made larger or smaller, or it could be made to vary based on prior knowledge of seafloor142

roughness, but it’s important not to tune the bin size by model loss performance. The143
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Figure 3. An example of partitioning the data. Same map area shown in Figure 1b-e. (a)

The collection of depth measurements. The data must be partitioned into a training, testing, and

validation set. (b) Randomly withholding 20% of the data, sampled uniformly. Withheld data

are shown in red. Using this partition scheme, almost any withheld point has a nearly identical

point in the training set, so the sets are not independent. (c) Sampling the data after binning

into groups of 30 arc minutes. Withheld data are shown in red.

training, validation, and testing datasets comprise 31,320,896, 10,460,197, and 10,472,576144

records respectively.145

2.3 Model architecture and training146

We use the TensorFlow software library to design and train the neural network (Abadi147

et al., 2015). The neural network comprises only successive densely-connected layers us-148

ing a ReLU activation function (Figure 2). Input features are normalized by the mean149

and variance of their distribution in the training dataset. We use eight successive dense150

layers with 256 neurons per layer, and a final linear output layer. Model architecture can151

be tweaked ad nauseum, so we cannot claim this is a strictly optimal configuration, but152

this particular arrangement was selected because we found it performed as well as a wider153

but shallower model (e.g., 4 layers of 1024 neurons each) while using far fewer param-154

eters (4e5 vs. 3e6).155

We choose mean squared error (MSE) as the loss function. Each dense layer is reg-156

ularized with L2 regularization (λ = 0.01). We use the Adam optimizer (Kingma & Ba,157

2017) with a learning rate of 0.001. Model training proceeds until the validation loss is158

no longer decreasing.159

2.4 Inference: generating the global predicted grid160

The end goal of this model is a global grid of predicted depths. After the model161

is trained, predictions of h are generated on a 1 arcminute spherical mercator grid (on-162

shore values are masked). The long wavelength depth, saved from the filtering step, are163

added to the predicted depth, h, to give absolute depth, d. Finally, for distribution, the164

predicted depth grid is “polished” with the constrained depth measurements, but this165

step is omitted in the following discussion and analysis.166
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3 Results167

3.1 Base model168

Using the feature vector [ϕs, ϕc, θ, g
∗] to predict h, we achieve a training RMSE of169

85 m, validation RMSE of 108 m, and testing RMSE of 109 m. Loss values are useful170

for comparing one trained model against another, but they are imperfect when compar-171

ing to the Nettleton method. Since no “testing” data is withheld from the Nettleton method172

(i.e., the prediction is tuned on all available data), we must caution the comparison of173

RMSE between the two methods. With that in mind, the RMSE of the Nettleton pre-174

diction and h is about 143 m. We will look more carefully at model misfit in the discus-175

sion.176

3.1.1 Modeling without filtering depths and gravity177

For comparison, a model trained without filtering depths and gravity anomaly per-178

forms much worse and offers no improvement over the Nettleton method. For this model,179

we achieve a training RMSE of 140 m, validation RMSE of 173 m, and testing RMSE180

of 175 m. This poor performance may be because the distribution of depth is more vari-181

able with location. For example, where the regional depth is 6000 m, the mean depth182

will be near 6000 m, and similar for a regional depth of 1000 m. By high-pass filtering183

the depth, the overall variance of the data are reduced. Omitting the low-pass filter at184

16 km also contributes to the worse performance. The Nettleton method RMSE above185

is for the band-pass filtered data, h. If the short wavelengths are included, the Nettle-186

ton RMSE is about 165 m.187

Alternatively, we can high-pass filter depth and gravity but omit the low-pass fil-188

ter at 16 km–in fact, we may desire to do this so we don’t lose short-wavelength details.189

For this model, we achieve a training RMSE of 124 m, validation RMSE of 141 m, and190

testing RMSE of 142 m. We can’t compare these directly to the base model since the191

target quantities are different. Instead we can evaluate the RMSE of the base model pre-192

diction and the high-pass depth. In this case, testing RMSE values are nearly identical193

for the two models, suggesting the trained models are similar and the greater loss reflects194

the greater variance of the target data.195

3.2 Added features196

It would seem that adding features from other global grids would be an easy way197

to decrease model loss and improve performance. For example, the spreading rate at the198

time crust is created is known to affect the roughness of bathymetry (Small & Sandwell,199

1994). Crustal age and sediment cover will also influence the correlation of gravity and200

bathymetry (Smith & Sandwell, 1994). We use ϕ, θ to sample grids of crustal age, paleo-201

spreading rate (Seton et al., 2020), and sediment thickness (Whittaker et al., 2013), add202

these to the feature vector, and train a new model. In practice, there are problems with203

using these features.204

Firstly, these grids have many regions of missing data, and the missing values must205

be handled somehow. Since a key purpose of this model is prediction on a global grid,206

grid cells with missing values can’t simply be thrown out. We tested different schemes207

to replacing missing values: replacement with the mean feature value; replacement with208

mean feature value plus an additional boolean feature indicating replacement; and fill-209

ing missing values with nearest neighbor interpolation of the feature grid. In our attempts210

to use crustal age, paleo-spreading rate, and sediment thickness as features, validation211

and testing loss are not improved (nor are they improved by any one such feature), and212

in fact model loss is worse with the additional features. In addition, at inference time,213

sharp discontinuities in the feature grids get mapped to the prediction grid creating un-214

wanted artifacts.215
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Figure 4. Model-predicted depths with long-wavelength depth added. The same map area

shown in Figure 1b-e. (a) Nettleton method; (b) Raw DNN-predicted grid; (c) DNN-predicted

grid, low-pass filtered at 12 km. (d) Example of the “orange peel” texture in the Nettleton pre-

diction, boxed region in (a). (e) Example of “hallucinations” in DNN prediction, boxed region in

(b).

Other gravity-related quantities such as deflection of the vertical and vertical grav-216

ity gradient (VGG) may be good features to use, but they may only be redundant. We217

found that adding VGG as a feature (Sandwell et al., 2021) improves model training RMSE218

only slightly, and it slightly worsens validation and testing RMSE. This model has a train-219

ing RMSE of 85 m, a validation RMSE of 109 m, and a testing RMSE of 110 m. Since220

there is no improvement on the base model, we will consider that the preferred model221

and refer to it as simply the “DNN” model in the following discussion.222

4 Discussion223

4.1 Generating a predicted depth grid224

After training, we generate model predicted depths on a global 1 min mercator grid.225

One problem that results is short wavelength artifacts or “hallucinations” (Figure 4e).226

These hallucinations typically occur with wavelengths shorter than the 16 km wavelength227

filter that was applied to the original gravity and bathymetry, so they must be a prod-228

uct of the DNN training. We can reduce these with regularization during training, but229

not completely nor in a deterministic way. For the distributed predicted depth grid, we230

apply a low pass filter with 0.5 gain at 16 km to remove these hallucinations. This post-231

inference filtering method does not weaken model results. In fact, error metrics are very232

slightly improved, and the prediction RMSE of h after filtering is 107 m for the testing233

dataset. We use the predictions on the filtered grid in the following discussion.234
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4.2 Comparison to Nettleton model235

While not quantitative, it’s important to visually inspect the DNN predicted depth236

grid and make comparisons to the Nettleton grid (Figure 4). The most obvious quali-237

tative difference is in continental margin areas or areas of relatively smooth seafloor. In238

these areas, the Nettleton predicted bathymetry has a rough “orange peel” texture (Fig-239

ure 4d), an artifact of downward continuation of noisy gravity data. This type of seafloor240

is smoother in the DNN prediction.241

Using all available depth measurements (not partitioned for training/testing), we242

compare the error distribution of the Nettleton method and the DNN method. These243

results are shown in Figure 5. For the Nettleton method, the predicted depth is within244

68 m for 50% of points and within 168 m for 80% of points. For the DNN method, these245

percentiles are 45 m and 128 m, respectively. Additionally, the mean error has been re-246

duced from 13 m for the Nettleton to 3 m for the DNN, indicating a less-biased estimate.247

Figure 5b shows the distribution of absolute model error in the southern oceans. Over-248

all, the spatial patterns of misfit are similar for the two models. At this scale, the no-249

ticeable differences are found nearer to land–e.g., the West Antarctic Peninsula, Chile,250

Australia–where the DNN model shows clear improvements over the Nettleton.251

4.2.1 BODC data252

Because the Nettleton prediction is tuned using all available data, we don’t have253

a concrete idea of how well it generalizes to unseen areas of seafloor. It is useful to re-254

serve a dataset that is not used in either model’s construction. To compare the perfor-255

mance of the Nettleton and the DNN model, we used a collection of depth measurements256

from 279 cruises from the British Oceanographic Data Centre (BODC) that are not yet257

incorporated into the prediction model. The raw data are decimated to 15 sec, and mea-258

surements that overlap with data already in the prediction dataset are removed. We did259

not thoroughly inspect the BODC data for erroneous measurements, so measurements260

that differ from either predicted grid by more than 2000 m are removed. In total, there261

are 6,242,414 points. The Nettleton prediction has an RMSE of 150 m for the BODC262

dataset. The final DNN model has an RMSE of 104 m.263

If we restrict the analysis spatially to the highest concentration of measurements264

(80% of the data are around the British Isles), the Nettleton RMSE is 73 m and the DNN265

model RMSE is 62 m–much lower than testing RMSE (Figure 6). This almost certainly266

reflects the proximity of these data to those in our training set. However, we see from267

the error distribution that the slight bias in the Nettleton prediction is not present in268

the DNN prediction.269

4.3 Potential for improvements270

Our model is a simple implementation of a neural network to predict depth glob-271

ally, and we have shown its clear improvement over the Nettleton method. Yet, there272

are many possible directions for improvement depending on one’s objectives. Expansion273

of the training dataset, modifications of model architecture, or a multi-regional approach274

to the problem all offer potential to improve on our model.275

If coverage of publicly available bathymetry compilations continues to improve as276

it has in recent years–and it likely will (Mayer et al., 2018)–model predictions will clearly277

improve (this would be true of any model). Low-resolution data in remote regions, which278

can be collected by autonomous vehicles, will likely offer the greatest benefit in our model279

approach.280

We haven’t made use of high-resolution multibeam data in our model, and we do281

not aim to predict features at such resolution. Upward continuation of gravity anoma-282
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Figure 5. Comparison of Nettleton and DNN models by prediction error. (a) Distribution of

prediction error for all 1 arc minute data (N=52,253,670). (b) Average absolute difference (pre-

diction - measurement) for Nettleton (upper) and DNN (lower) models.
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Figure 6. Nettleton and DNN model predictions for withheld BODC data. (a) Depth mea-

surements in the full dataset shown in black, measurements from the disjoint BODC dataset

shown in red. Misfit of BODC data for (b) Nettleton predicted depth and (c) neural network

predicted depth. (d) Distribution of BODC data misfit for Nettleton predicted depth and neural

network predicted depth.
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lies limits the resolution of gravity from satellite altimetry to a length scale of about π283

times the regional depth (e.g. Smith & Sandwell, 2004), so it is not possible to realis-284

tically predict depth from only gravity (and its derivatives) at such scales. An approach285

using convolutional neural networks, as demonstrated by Annan and Wan (2022), may286

successfully learn from higher resolution bathymetry in regional settings.287

A prediction model trained on regional data will, everything else equal, perform288

better in that region than a model trained on global data. Moran et al. (2022) identi-289

fied regions where various learning algorithms might preferentially excel. This suggests290

a global model should alternatively be constructed from a suite of regional models. A291

particular case where such a multi-regional model would excel is in predicting higher res-292

olution depth in areas where that is realistic. Susa (2022) showed such an approach to293

predicting depth in near-coastal regions. In this setting, altimetric ranging and gravity294

accuracy suffer from land contamination (Raney & Phalippou, 2011), and visible spec-295

tra may be correlated with bathymetry, making this an ideal case for alternative depth296

prediction.297

5 Conclusions298

1. Using a large collection of depth measurements and satellite-derived gravity anoma-299

lies, we trained a deep neural network to predict seafloor depth.300

2. We find that applying filters (described by Smith and Sandwell (1994)) to bathymetry301

and gravity before training is necessary for a good result, and conforms the data302

more closely with the assumption of identical distributions.303

3. When dealing with sparse heterogeneous sampling, the training-testing split must304

be treated carefully. If the training and testing split is a random partition at the305

same resolution as the data, the training and testing sets are not independent, and306

model misfit results will be too optimistic.307

4. Adding features sampled from geologic grids–crustal age, paleo-spreading rate, sed-308

iment thickness–do not improve model results.309

5. Our preferred DNN-predicted model improves on the results of the Nettleton pro-310

cedure, lowering the prediction RMSE from 165 m to 138 m.311

6. While improvements will be made with additional depth measurement data, higher312

resolution predictions are limited by the upward continuation of gravity, so likely313

shouldn’t be attempted with this method.314

Open Research Section315

Jupyter notebooks and data files to reproduce the predicted depth model, as well316

as the final predicted depth model used in the analysis, are available at https://doi317

.org/10.5281/zenodo.8029925 (Harper & Sandwell, 2023).318
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