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Abstract

The two most important wave modes responsible for energetic electron scattering to the Earth’s ionosphere are electromagnetic

ion cyclotron (EMIC) waves and whistler-mode waves. In this study, we report direct observations of energetic electron (from

50 keV to 2.5 MeV) scattering driven by the combined effect of whistler-mode and EMIC waves using ELFIN measurements.

We analyze several events exhibiting such properties, and show that electron resonant interactions with whistler-mode waves

may enhance relativistic electron precipitation by EMIC waves. During a prototypical event which benefits from conjugate

THEMIS measurements, we demonstrate that below the minimum resonance energy (Emin) of EMIC waves, the whistler-mode

wave may both scatter electrons into the loss-cone and also accelerate them to higher energy (1-3 MeV). These accelerated

electrons above Emin resonate with EMIC waves that, in turn, quickly scatter those electrons into the loss-cone. This enhances

relativistic electron precipitation beyond what EMIC waves alone could achieve.
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Key Points:10

• We report observations of energetic electron precipitation likely driven by concur-11

rent whistle-mode and EMIC waves12

• The combined scattering of whistler-mode and EMIC waves leads to electron pre-13

cipitation over a wide energy range of 50 keVs to a few MeVs14

• This study highlights the importance of nonlinear effects for explaining the ob-15

served energetic electron fluxes in the inner magnetosphere16
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Abstract17

The two most important wave modes responsible for energetic electron scattering18

to the Earth’s ionosphere are electromagnetic ion cyclotron (EMIC) waves and whistler-19

mode waves. In this study, we report the direct observations of energetic electron (from20

50 keV to 2.5 MeV) scattering driven by the combined effect of whistler-mode and EMIC21

waves using ELFIN measurements. We analyze several events exhibiting such proper-22

ties, and show that electron resonant interactions with whistler-mode waves may enhance23

relativistic electron precipitation by EMIC waves. During a prototypical event which ben-24

efits from conjugate THEMIS measurements, we demonstrate that below the minimum25

resonance energy (Emin) of EMIC waves, the whistler-mode wave may both scatter elec-26

trons into the loss-cone and also accelerate them to higher energy (1-3 MeV). These ac-27

celerated electrons above Emin resonate with EMIC waves that, in turn, quickly scat-28

ter those electrons into the loss-cone. This enhances relativistic electron precipitation29

beyond what EMIC waves alone could achieve.30

Plain Language Summary31

Energetic electron precipitation into the upper atmosphere is an important loss pro-32

cess of the Earth’s inner magnetosphere. Whistler-mode and electromagnetic ion cyclotron33

(EMIC) waves are the two most important wave modes responsible for energetic elec-34

tron scattering to the Earth’s ionosphere through wave-particle interaction. Although35

these wave modes typically drive electron losses of different energy ranges (above 1 MeV36

for EMIC waves and tens to hundreds of keV for whistler-mode waves), the loss mech-37

anism due to the combined effects of EMIC and whistler-mode waves is not well-understood.38

We report the first direct observation of energetic electron scattering driven by the com-39

bined effect of whistler-mode and EMIC waves. Our results from equatorial and low-altitude40

observations, and from a data-driven test particle simulation explain the wide energy range41

of electron precipitation from tens of keVs to a few MeVs due to the combined whistler-42

mode and EMIC waves effect.43

1 Introduction44

Electromagnetic ion cyclotron (EMIC) and whistler-mode waves are the two main45

wave modes responsible for energetic electron scattering and precipitation from the Earth’s46

radiation belts into the atmosphere (see reviews by Millan & Thorne, 2007; Li & Hud-47

son, 2019; Thorne et al., 2021). EMIC waves are mostly responsible for the precipita-48

tion of relativistic (> 1MeV) electrons (e.g., Usanova et al., 2014; Blum et al., 2015; Sh-49

prits et al., 2016, 2017; Ni et al., 2015; Grach & Demekhov, 2020; Bashir & Ilie, 2018,50

2021; Bashir et al., 2022b; Capannolo et al., 2018, 2022), whereas whistler-mode waves51

are very effective in precipitating sub-MeV electrons (see, e.g., reviews by Shprits et al.,52

2008; Ni et al., 2016; Artemyev et al., 2016; Thorne et al., 2021). Resonant scattering53

of relativistic (> 1MeV) electrons by whistler-mode waves is most effective at higher elec-54

tron pitch-angles, which may not result in precipitation (e.g., Summers & Omura, 2007).55

However, the combined effect of EMIC and whistler-mode waves may enable a rapid de-56

crease of relativistic electron fluxes: whistler-mode waves scatter electrons at higher pitch-57

angles toward the lower pitch-angle range, where resonance with EMIC waves may quickly58

scatter these electrons into the loss-cone (e.g., Mourenas et al., 2016; Zhang et al., 2017;59

Bashir et al., 2022a). Therefore, relativistic electron losses by combined EMIC and whistler-60

mode wave scattering may critically control the radiation belt dynamics (Drozdov et al.,61

2020). However, in contrast to electron resonance with EMIC waves providing only pitch-62

angle scattering (e.g., Summers & Thorne, 2003), resonance with whistler-mode waves63

can result in both pitch-angle and energy (acceleration) scattering (e.g., Summers, 2005;64

Glauert & Horne, 2005). If such acceleration is sufficiently fast and efficient, EMIC waves65

may scatter the newly formed relativistic electron population, those accelerated by whistler-66
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mode waves, into the loss cone (see discussion in Bashir et al., 2022a). Such precipita-67

tion may not require preexisting relativistic electron fluxes, and would not lead to the68

decrease of preexisting, e.g., previously stably trapped, relativistic electron fluxes. This69

study combines near-equatorial wave measurements and low-altitude electron precipi-70

tation measurements to provide direct evidence for this process in the radiation belts.71

To provide a new population of relativistic electrons for subsequent EMIC-driven72

scattering, electron acceleration by whistler-mode waves should be sufficiently fast. The73

quasi-linear diffusion rates for average wave intensities show that pitch-angle scattering74

by EMIC waves is much faster than acceleration by whistler-mode waves (see, e.g., Glauert75

& Horne, 2005; Summers et al., 2007b). However, very intense whistler-mode waves may76

resonate with electrons nonlinearly and lead to the rapid formation of relativistic elec-77

trons via phase trapping into the turning acceleration (see Omura et al., 2007; Summers78

& Omura, 2007; Hsieh & Omura, 2017; Hsieh et al., 2020; Bashir et al., 2022a). The rate79

of this acceleration mechanism may approach the rate of pitch-angle diffusion by EMIC80

waves, and thus can potentially provide rapid electron acceleration and subsequent losses.81

In contrast to the simple phase trapping acceleration associated with pitch-angle increase82

(e.g., Bortnik et al., 2008; Vainchtein et al., 2018), turning acceleration will lead to a pitch-83

angle decrease with energy increase (Omura et al., 2007), i.e., accelerated particles are84

transported toward the loss-cone where EMIC waves will scatter them. Thus, addition-85

ally to the analysis of electron precipitation events with the combined effect of EMIC86

and whistler-mode waves, we will focus on a case study with equatorial observations of87

very intense whistler-mode waves simultaneously observed with EMIC waves.88

We use equatorial wave measurements from THEMIS (Angelopoulos, 2008) and low-89

altitude precipitation measurements from ELFIN (Angelopoulos et al., 2020) to inves-90

tigate the effect of electron resonant acceleration by whistler-mode waves and the sub-91

sequent scattering into the atmosphere by EMIC waves. Section 2 provides an overview92

of four ELFIN events exhibiting clear signatures of the combined operation of whistler-93

mode and EMIC waves, Section 3 describes in detail one event benefiting from ELFIN94

and THEMIS conjunction observations whereas Section 4 discusses possible mechanisms95

responsible for the enhanced precipitation of relativistic electrons in the simultaneous96

presence of EMIC and whistler-mode waves. Section 5 summarizes our main findings.97

2 ELFIN Observations of Relativistic Electron Precipitation98

We use data from the ELFIN-A CubeSat which is equipped with energetic elec-99

tron detector measuring 50 keV to 6 MeV electrons with an energy resolution of ∆E/E <100

40% and covering the full (180◦) pitch angle twice over a 3 s spin period. Because of its101

high energy resolution, ELFIN can distinguish precipitation events driven by whistler-102

mode waves or by EMIC waves (Grach et al., 2022; An et al., 2022; Tsai et al., 2022; Zhang103

et al., 2022; Angelopoulos et al., 2023). Thus, we focus on putative combined precipi-104

tation events which demonstrate properties of both whistler-mode and EMIC wave-driven105

precipitation.106

Figure 1 shows four ELFIN orbits with signatures of electron precipitation due to107

EMIC and whistler-mode waves. The typical minimum resonance energy for EMIC waves108

is ∼ 0.5−1MeV (Summers et al., 2007a; Kersten et al., 2014), so only the part of pre-109

cipitation above a certain energy should be interpreted as evidence of EMIC-driven pre-110

cipitation (see the detailed analysis of such events in Angelopoulos et al., 2023). Typ-111

ical minimum resonance energy for whistler-mode waves (low band chorus waves) is be-112

low 10keV (Ni et al., 2012), whereas the scattering rate of electrons by whistler-mode113

waves decreases with increasing energy (Summers et al., 2007a). Thus, ELFIN observa-114

tions of precipitation bursts with precipitating-to-trapped flux ratio maximizing at low115

energies should be interpreted as evidence of whistler-mode wave-driven precipitation116

(see the detailed analysis of such events in Tsai et al., 2022; Zhang et al., 2022). Mid-117
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Figure 1. Four events of ELFIN observations of electron precipitation: top panels (a) show

locally trapped (i.e., outside the local loss cone, or near-perpendicular) electron fluxes jperp;

middle panels (b) show precipitating (down-going)-to-trapped flux ratio (jdown/jperp); bottom

panels (c) show energy spectra of precipitating electrons during subintervals (shown by arrow

and corresponding panel inserts) with relativistic and subrelativistic electron precipitation bursts

exhibiting EMIC-only and EMIC & whistler-mode wave signatures. Bottom panels also include

the average background fluxes before (pre ⟨jdown⟩) and after (post ⟨jdown⟩) each subinterval.

dle panels of Figure 1 show that precipitation events contain both spin-scale bursts with118

EMIC-driven precipitation only (jdown/jperp maximizing at relativistic energies) and bursts119

with combined whistler-mode and EMIC effects (jdown/jperp is high over the entire en-120

ergy range). Therefore, we may interpret these events as short-time-scale whistler-driven121

precipitation bursts embedded within large-time-scale EMIC-driven precipitation. The122

scale difference is likely due to the different spatial scales of equatorial generation regions123

of EMIC waves (thousands of km, see Blum et al., 2016, 2017; Angelopoulos et al., 2023)124

and whistler-mode waves (hundreds of km, see Agapitov et al., 2017). Note that the pre-125

cipitating flux levels during precipitation bursts are much higher than the background126

precipitating fluxes levels i.e., indeed these observations allow us to compare the efficiency127

of EMIC-only versus EMIC and whistler-mode burst-driven precipitation with no con-128

tribution from background waves. The bottom panels of Figure 1 demonstrate that in129

the presence of whistler-mode waves, not only precipitation of sub-relativistic electrons130

(< 500keV) is enhanced, which should be directly scattered by whistler-mode waves,131

but precipitation of relativistic electrons (likely scattered by EMIC waves) is also enhanced.132

3 Event with ELFIN/THEMIS Observations of EMIC and Whistler133

Waves134

This section describes an event with ELFIN-A measurements similar to those shown135

in Figure 1, but with conjugate, near-equatorial wave measurements by THEMIS. Fig-136

ure 2 shows the ELFIN-A measurements which were collected on 29 April 2021, at L-137

shell ∼ 5 near the dawn sector of the southern hemisphere. At ∼ 04:10:40 UT, precip-138

itating (down-going) fluxes (Jdown) of 300 keV to 2.5 MeV electrons suddenly increase139

–4–
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Figure 2. Overview of ELFIN-A observations (left panels): locally trapped fluxes (jperp),

precipitating or down-going fluxes (jdown), precipitating-to-trapped flux ratio (jdown/jperp),

1D spectra jdown and jperp at five energy channels (520 keV-2121 keV). L, MLT, and MLAT of

ELFIN-A are marked at the bottom. The right panel depicts the average precipitating fluxes as a

function of energy due to combined EMIC and whistler-mode waves (solid-blue curve) and EMIC

waves only (dashed-red curve) for the sub-interval (as shown by down-to-perpendicular flux ratio

inserted spectrogram similar to Figure 1 bottom panels)

with the highest precipitating to trapped flux ratio above 1 MeV. The locally trapped140

(near-perpendicular) electron fluxes (Jperp) show enhancement over a wide range of L-141

shells (4-6.5), exhibiting low precipitating to trapped flux ratio (Jdown/Jperp is mostly142

less than 0.1) except for a few spins around 04:10:40 UT where this ratio can be greater143

than 0.5. The most intense burst of precipitation shows Jdown/Jperp enhancement max-144

imizing at relativistic energies ∼ 1MeV (the typical range of EMIC-driven precipitation),145

but extending down to 50keV (the typical range of whistler-wave-driven precipitation).146

Note that the enhanced relativistic electron precipitation lasts longer than the enhance-147

ment of < 500 keV precipitation (which only lasts for a single spin). This is indicative148

of a short whistler-mode burst embedded within a large-scale EMIC generation region.149

During this event, ELFIN magnetically mapped close to the near-equatorial THEMIS-150

E spacecraft (Angelopoulos, 2008), which, at the time, was moving from lower L to higher151

L, observed the pertinent EMIC and whistler-mode waves and measured the properties152

of the cold plasma, and magnetic fields. We use magnetic field data from Flux Gate Mag-153

netometer (FGM)(Auster et al., 2008). During fast mode, FGM measures waveforms at154

a time resolution of 1/16 s, sufficient to resolve the EMIC wave frequency range. Mea-155

surements of the THEMIS Search Coil Magnetometer (Le Contel et al., 2008) well cover156

the whistler-mode frequency range. The cold plasma density is inferred from the space-157

craft potential (Nishimura et al., 2013) measured by THEMIS Electric Field Instrument158

(Bonnell et al., 2008).159

Supplementary Figure S1 shows that during this event, THEMIS-E observed whistler-160

mode waves around and outside of the plasmapause, identified as a strong plasma fre-161

quency (plasma density) gradient. At the plasmapause, THEMIS-E also observed He+162

band EMIC waves (field-aligned, left-hand polarized waves). The ratio of plasma to elec-163

tron cyclotron frequency, fpe/fce,eq, varies from ∼ 20 to 5 across the plasmapause. Note164
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Figure 3. Illustrative electron trajectories from our simulations. Panels (a,b) depict the tem-

poral (in units of ct/LRE) evolution of the electron’s energy and pitch angle for whistler-mode

waves only (blue curve) and for the combined effect (magenta curve) of whistler-mode and EMIC

waves. The loss-cone (assumed to be 4.5 ◦) is shaded in grey in Panel (b). Panel (c) shows the

same trajectories on an energy, pitch-angle plane, with resonance curves for whistler-mode (blue

curves) and EMIC (red lines) waves overlaid, and the range of EMIC resonance energies is shown

by a thick red curve. The blue dots show electron trajectory (starting at an initial energy of

400keV and an equatorial pitch angle of 10 ◦, represented by the triangle) directly scattered by

whistler waves into loss-cone; the other electron trajectory (magenta dots), with an initial en-

ergy of 500 keV and an equatorial pitch angle of 20 ◦, show that the electron gets accelerated by

whistler waves and then quickly scattered into loss-cone by EMIC waves.

that the projection of ELFIN to the equatorial plane is subject to uncertainties of em-165

pirical magnetic field models. Thus, this THEMIS-ELFIN conjunction is only approx-166

imate. ELFIN observations of relativistic electron precipitation burst and THEMIS ob-167

servations of EMIC waves are within the ∆L = ±1, ∆MLT = 2 of each other. These168

ranges are comparable to the spatial scale of the typical EMIC wave source region (Blum169

et al., 2016, 2017), whereas an ∼ 40min time difference between THEMIS and ELFIN170

observations is within the lifetime of EMIC wave source region (Engebretson et al., 2015;171

Blum et al., 2020). Whistler mode waves are observed by all three THEMIS probes dur-172

ing the entire ∼ 2 hour interval within the ∆MLT ∼ 2 domain. However, we should173

note that the EMIC burst is observed by THEMIS E only, whereas A and D located ±1.5RE174

away from E do not detect these EMIC bursts. Thus, we cannot exclude the possibil-175

ity of a small-scale EMIC source region (e.g., Frey et al., 2004). But ELFIN observations176

of relativistic electron precipitation without ∼ 50keV precipitation (two spins before the177

main precipitation burst, see the inserted panel in Fig. 2) confirm that there was scat-178

tering by equatorial EMIC waves, which may relate to THEMIS-E observations.179

4 Discussion180

Figures 1, 2 show that the presence of whistler-mode waves may enhance the pre-181

cipitation of relativistic electrons. One possible mechanism of such enhancement is that182

intense whistler-mode waves drive electron acceleration (e.g., turning acceleration, see183

Omura et al., 2007; Summers & Omura, 2007), and the accelerated electrons supplement184

the population that are to be scattered by EMIC waves (Bashir et al., 2022a). In order185

to verify this scenario, we perform simple test particle simulations. The simulation is based186
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on Hamiltonian equations for a monochromatic wave (see Vainchtein et al., 2018; Arte-187

myev et al., 2021), and this simplification (constant wave frequency) may reduce the ef-188

ficiency of wave-particle resonant interactions (see discussion of frequency drift contri-189

bution in Demekhov et al., 2006; Katoh & Omura, 2007; Hiraga & Omura, 2020).190

We consider the precipitation event of Figure 2, for which we have near-equatorial191

observations of waves (see the supplementary information). For the whistler wave, we192

use the frequency fwh/fce,eq = 0.3 & 0.4, the observed wave amplitude at Bw,wh =193

500 pT ·Λ(λ), the whistler wave latitudinal profile modeled as Λ(λ) = 0.5·(1 + tanh(λ/δλ1)) exp
(
−(λ/δλ2)

2
)

194

and δλ1,2 = 1◦, 40◦ (e.g., we assume wave generation at the equator and damping at195

high latitudes, see details of this empirical wave model in Agapitov et al., 2018). For the196

ducted whistler case, we have used Λ(λ) → 1. We also include wave field modulation197

by assuming whistler-mode waves propagate in wave packets: Bw,wh → Bw,wh · Φ(l)198

with Φ(l) = exp(−0.25 · (sin(ϕ/(2πl))2)), where ϕ is the wave phase and l = 300 de-199

termines the wave-packet size (we use the longest wave packets from observations, see200

statistics in Zhang et al., 2019, 2021).201

For the He+ band EMIC wave, we use the most intense wave from observations,202

with an amplitude of Bw,EMIC = 500 pT, at a fixed frequency fEMIC/fcp,eq = 0.2.203

Plasma composition is assumed to be 20% helium and 80% cold protons (Lee et al., 2012;204

Lee & Angelopoulos, 2014), and latitudinal distribution of EMIC waves as Bw,EMIC →205

Bw,EMIC · Λ(λ) with Λ(λ) = 0.5(tanh(λ/δλ1) − tanh((λ − δλ2)/δλ1)) with δλ1,2 =206

1◦, 15◦, i.e., there is no EMIC wave around and above the helium resonance latitude that207

is around ∼ 25◦ for the selected wave frequency. For this study, we used the field-aligned208

cold plasma dispersion relation for both whistler and EMIC waves (Stix, 1962), with fpe/fce,eq =209

20, and L = 4.5. The time is normalized to a typical scale R/c∼ 0.1 s as R=4.5 RE ,210

where RE is the radius of the Earth and c is the speed of light and simulation in time211

units is run for 200 seconds (see figure S4 for more details).212

Figure 3 shows two loss mechanisms of energetic electrons with+ initial pitch-angles213

that are not in resonance with EMIC waves: (1) electrons directly scattered into the loss-214

cone by whistler-mode waves (blue trajectory) or (2) electrons phase trapped and ac-215

celerated by whistler-mode waves to energies sufficiently high for resonance with EMIC216

waves, and then scattered into loss-cone by EMIC waves (magenta trajectory). Resonance217

with whistler-mode waves moves electrons along the resonance curves (Summers et al.,218

1998), and thus we are interested in those that will cross the region (above the Emin shown219

by thick red curve) of electron resonant interaction with EMIC waves (the latter inter-220

actions, primarily resulting in pitch-angle scattering, occur along the thin horizontal red221

lines). For moderate electron energies, phase trapping results in energy and pitch-angle222

increase (e.g., Bortnik et al., 2008; Vainchtein et al., 2018), and thus resonance curves223

move away from the loss-cone. However, when the electron energy reaches γ > fce/f ,224

its pitch-angle starts to decrease during the phase trapping (so-called turning acceler-225

ation Omura et al., 2007; Bashir et al., 2022a). This effect bends the resonance curves226

back toward smaller pitch-angles. It thus allows the accelerated electron to escape from227

the trapping at an energy and pitch-angle where resonance with EMIC waves can oc-228

cur. Supplementary information provides more examples of such a double resonance ef-229

fect (trapping acceleration by whistler-mode waves followed by scattering into the loss-230

cone by EMIC waves).231

The model results suggest the following scenario for the formation of the observed232

electron precipitation spectrum: The source size of EMIC waves is usually sufficiently233

large (Blum et al., 2016, 2017) to provide relativistic electron precipitation within an ∼234

1RE region near the equator (Capannolo et al., 2019), which corresponds to several spins235

of ELFIN observations at low altitudes (see several examples of ELFIN observed EMIC-236

driven precipitation in, e.g., Grach et al., 2021; An et al., 2022; Angelopoulos et al., 2023).237

Therefore, the relativistic electron precipitation within 04:10:35-04:10:50 UT should be238

attributed to EMIC waves. At the beginning of this subinterval, there is no strong sub-239

–7–



manuscript submitted to Geophysical Research Letters

MeV precipitation (see jprec/jtrap in Figure 2) which we assert is indicative of an ab-240

sence of strong whistler-mode waves. We interpret the following burst of < 1MeV pre-241

cipitation around 04:10:45 UT as due to a whistler-mode wave burst (the short duration242

of the precipitation burst should be attributed to the small scale of whistler-mode wave243

source region near the equator, see Agapitov et al., 2017). This whistler-mode wave burst244

is sufficiently strong to provide electron acceleration, and thus efficiently increase > 1MeV245

electron fluxes that are further precipitated by EMIC waves (see an increase of jtrap as-246

sociated with jprec increase in Figure 2). However, we shall caution that due to large un-247

certainties of ELFIN/THEMIS mapping and the time/spatial separation of precipita-248

tion events and THEMIS wave measurements, this interpretation is presently a reason-249

able hypothesis supported by the limited dataset examined, and needs to be confirmed250

by further multi-point and statistical analysis in the future. Moreover, we used a rather251

simplified wave model that may not describe all important details of wave-particle non-252

linear resonances. Therefore, results shown in Figure 3 should be considered as an in-253

dication that the combined whistler-mode and EMIC resonant interactions with electrons254

may explain the enhanced relativistic electron precipitation observed in Figures 1, 2; but255

much more sophisticated and detailed simulations are needed to confirm this scenario256

and assess the overall efficiency of the proposed combined precipitation mechanism.257

5 Conclusions258

This letter reports the observation of relativistic electron precipitation driven by259

the scattering of EMIC waves with the effect of precipitation enhancement by concur-260

rent whistler-mode waves. For five events, ELFIN observed electron precipitation at 300keV-261

2.5 MeV, and precipitating fluxes which were higher during subintervals containing both262

EMIC and whistler-driven precipitation, compared to subintervals of EMIC-driven pre-263

cipitation alone. We propose the scenario of electron acceleration (via the nonlinear res-264

onant acceleration, e.g., phase trapping and turning acceleration) by whistler-mode waves265

up to relativistic energies and subsequent scattering of this accelerated electron popu-266

lation by EMIC waves. Simplified test particle simulations confirm that this scenario in-267

deed can work. Our results suggest that nonlinear resonant acceleration (Omura et al.,268

2007, 2015) may significantly contribute to electron precipitation events observed at low269

altitudes.270
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