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Core ideas: 1 

1. Due to the presence of air in dry fractured soils, fractures of large aperture act as capillary 2 

barriers to water flow. 3 

2.  If the capillary barriers are overcome, fractures become fast-flowing paths for water to 4 

travel downward. 5 

3. A model for flow in fractured soils based on Richards’ equation in the soil and 6 

instantaneous ponding in the fractures is proposed. 7 

4. The model is numerically consistent, and its physical applicability is showcased in two-8 

dimensional simulations. 9 
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ABSTRACT 17 

In this paper, we present a model for saturated-unsaturated flow in fractured soils using 18 

an explicit representation of the fractures. The model is based on Richards’ equation in the 19 

matrix and hydrostatic equilibrium in the fractures. While the first modeling choice is standard, 20 

the latter is motivated by the difference in flow regimes between matrix and fractures, i.e., the 21 

water velocity inside the fractures is considerably larger than in the soil even under saturated 22 

conditions. On matrix/fracture interfaces, the model permits water exchange between matrix and 23 

fractures only when the capillary barrier offered by the presence of air inside the fractures is 24 

overcome. Thus, depending on the wetting conditions, fractures can either act as impervious 25 

barriers or as paths for rapid water flow. Since in numerical simulations each fracture face in the 26 

computational grid is a potential seepage face, solving the resulting system of non-linear 27 

equations is a non-trivial task. Here, we propose a general framework based on a discrete-28 

fracture matrix approach, a finite volume discretization of the equations, and a practical iterative 29 

technique to solve the conditional flow at the interfaces. Numerical examples support the 30 

mathematical validity and the physical applicability of the model. 31 

Keywords: Richards' equation, unsaturated fractured flow, capillary barrier, discrete fracture 32 

matrix, mixed-dimensional geometry.  33 
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1 INTRODUCTION 34 

Improving our understanding of how water flows in the vadose zone is highly relevant for 35 

a wide variety of processes such as water management, support of plants via evapotranspiration, 36 

transport of nutrients, soil remediation, and nuclear waste disposal (Šimůnek & Bradford, 2008). 37 

The simultaneous flow of water and air in the unsaturated zone is usually modeled by Richards’ 38 

equation (Richards, 1931), where the air is considered inviscid and its pressure equal to the 39 

atmospheric pressure, thus only the equations corresponding to the water phase have to be taken 40 

into account (Pinder & Celia, 2006). 41 

Although Richards' equation has been extensively studied for non-fractured domains 42 

(Farthing & Ogden, 2017), models for unsaturated fractured flow are far less developed. In fact, 43 

much of the understanding of unsaturated fractured systems took place in the late 1970s and 44 

early 1980s, when the US Department of Energy began to consider the possibility of storing 45 

spent nuclear fuel and high-level radioactive waste in the Yucca Mountain in southern Nevada 46 

(Macfarlane & Ewing, 2006). 47 

In their seminal paper, Wang and Narasimhan (1985) provide an insightful description of 48 

the hydrological mechanisms that govern unsaturated fractured flow. In these systems, the 49 

presence of air in the fractures completely changes the flow dynamics relative to the fully 50 

saturated case since the continuity of the liquid phase at the matrix/fracture interface is either 51 

partially or entirely lost. Indeed, continuity is preserved only in regions of small fracture 52 

aperture, where capillary forces can still “hold” the liquid phase, providing a connection of 53 

reduced contact area between the adjacent matrix blocks. However, in regions of large aperture, 54 
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this no longer occurs, and the non-wetting phase acts as an impervious barrier to liquid flow in 55 

the direction parallel to the fracture. This barrier is often referred to as a capillary barrier. 56 

Two approaches are commonly employed for representing fractures in mathematical 57 

models (Berre et al., 2019; Formaggia et al., 2021): (1) equivalent continuum-type models, and 58 

(2) models explicitly representing fractures. In the first approach, matrix and fracture are 59 

represented as a single continuum or, alternatively, as multiple continua coupled through transfer 60 

terms. In the second approach, fractures are represented as separate objects embedded in the 61 

matrix. Fracture and matrix are then linked through coupling conditions. Prototypical examples 62 

of continuum models include the dual porosity and dual permeability models, whereas models 63 

representing the fractures explicitly include the Discrete Fracture Matrix (DFM) and Discrete 64 

Fracture Network (DFN) models. Referring to the unsaturated case, both types of representations 65 

have been proven useful. See, for example (Brouyère, 2006; Chen et al., 2022; Kordilla et al., 66 

2012; Kuráž et al., 2010; Robineau et al., 2018; Spiridonov et al., 2020) for continuum-type 67 

models, and (Koohbor et al., 2020; Li & Li, 2019; Therrien & Sudicky, 1996; Tran & Matthai, 68 

2021) for models explicitly representing the fractures. 69 

Most current models for saturated-unsaturated fractured flow are based on the hypothesis 70 

that the continuity of the liquid phase is preserved (at least in some average sense) and employ a 71 

Richards-like process to describe the flow inside the fracture. Experimental evidence suggests, 72 

however, that for fractures of sufficiently large aperture, water moves downward in the form of 73 

thin films due to the action of the gravity (Dragila & Wheatcraft, 2001; Tokunaga & Wan, 1997; 74 

Tokunaga et al., 2000; Wang et al., 2013). More importantly, the average downward velocity of 75 

such films usually surpasses the velocity in the matrix under saturated conditions (Su et al., 76 

2003; White, 2006).   77 
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Motivated by these experimental observations, we consider the limiting case where 78 

fractures are considered infinitely conductive and propose a model where water ponds 79 

instantaneously rather than traveling with finite speed inside the fractures. This idealization is 80 

justifiable for short fractures (where there is a short travel time) with large apertures embedded 81 

in soils of low conductivity (thus the contrast between regimes is large). We remark that a 82 

similar type of model was derived using formal and rigorous upscaling. See, in particular, the 83 

Effective Model III obtained by List et al. (2020) and the Effective Model VIII from Kumar et al. 84 

(2020). 85 

Below, we make precise our modeling principles based on an DFM representation of the 86 

fractures: 87 

MP1.  In the matrix, the flow of water is governed by Richards' equation.  88 

MP2.  Any amount of water entering a fracture (or fracture network) travel downward 89 

without resistance and is instantaneously in hydrostatic equilibrium. 90 

MP3. Flow of water across the fracture/matrix interface can only occur if the capillary 91 

barrier is overcome. Otherwise, the fracture/matrix interface is impervious to water flow. 92 

Based on these modeling principles, our proposed model can be mathematically classified 93 

as a PDE/ODE system of equations with variational inequalities. The PDE part is related to 94 

Richards' equation in the matrix (MP1), the ODE part is related to the volume balance in the 95 

fractures (MP2), and the variational inequalities consider the conditional flow due to the 96 

presence of capillary barriers (MP3). 97 

Thus far, we have only discussed the effect of a single isolated fracture. However, 98 
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fractures can be interconnected as part of a fracture network. Naturally, this poses an additional 99 

layer of complexity in terms of modeling and implementation since we must consider the water 100 

redistribution problem inside the network. Our aim is to show that this challenge can be tackled 101 

with a robust description of the fracture networks based on a mixed-dimensional decomposition 102 

(Boon et al., 2021; Boon et al., 2018), an appropriate choice of primary variables, and the 103 

application of iterative solution strategies. 104 

The rest of the paper is organized as follows: In Section 2, we introduce the model 105 

problem for the case of a single vertical embedded in a matrix. In Section 3, we extend the single 106 

fracture model to account for networks of fractures and briefly discussed the solution strategy. 107 

Finally, in Section 4, we present our numerical examples, and in Section 5 draw our conclusions. 108 

2 THE MODEL FOR A SINGLE FRACTURE 109 

 In this section, we derive the model based on physical principles for the case of a single 110 

fracture embedded in a matrix. Throughout this paper, we use 𝒙 = [𝑥, 𝑧] ∈ ℝ!, to denote the 111 

vector of spatial coordinates, with 𝑧 referring to the vertical coordinate, which is taken positively 112 

with an upward-pointing direction. Moreover, we let 𝑡 denote the time, with 𝑇 > 0 representing 113 

the final time, and (0, 𝑇) the time interval of interest. Central to our vocabulary is the concept of 114 

hydraulic head: ℎ = 𝜓 + 𝜁, with 𝜓 denoting the pressure head, and 𝜁 the elevation head (Pinder 115 

& Celia, 2006). For the sake of simplicity, here, we assume 𝜁 = 𝑧. 116 

Let us now consider a domain 𝑌 ⊂ ℝ! decomposed into a matrix Ω" and a single fully 117 

embedded vertical fracture Ω# such that 𝑌 = Ω# ⊔ Ω", as depicted in the left panel of Figure 1. 118 

We let Γ$ and Γ% be the interfaces between Ω" and the left and right sides of Ω#, respectively 119 
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(see the center panel of Figure 1). Finally, we introduce the internal boundaries 𝜕$Ω" and 𝜕%Ω" 120 

(see the right panel of Figure 1), which are defined to spatially coincide with Γ$ and Γ%. 121 

2.1 Governing equations in the matrix 122 

We start by presenting the governing equations in the matrix, where we consider that the 123 

water flow can be described by Richards' equation following MP1. The set of governing 124 

equations in Ω" then reads: 125 

 𝜕𝜃"
𝜕𝑡 + 𝛁 ⋅ 𝒒" = Ψ" ,  in	Ω" × (0, 𝑇), (1) 

 𝒒" = −𝑲"𝑘"&'(𝛁ℎ" ,  in	Ω" × (0, 𝑇), (2) 
 𝒒" ⋅ 𝒏" = 𝜆±,  on	𝜕±Ω" × (0, 𝑇), (3) 
 𝒒" ⋅ 𝒏" = 𝑔*," ,  on	𝜕*Ω" × (0, 𝑇), (4) 
 ℎ" = 𝑔,," ,  on	𝜕,Ω" × (0, 𝑇), (5) 
 ℎ" = 𝑔-," ,  in	Ω" × {0}. (6) 

Here, (1) is the mass conservation equation, where 𝜃" ≔ 𝜃(𝜓") is the matrix water content, 𝒒" 126 

is the matrix Darcy’s flux, and Ψ" is an external volumetric source (or sink) of water. The flux 127 

Figure 1: Geometric entities. Left: A one-dimensional fracture 𝛺# fully embedded in the two-
dimensional matrix 𝛺". Center: Interfaces 𝛤$ and 𝛤% establish the link between 𝛺#	and 𝛺". 
Right: Internal (𝜕$𝛺" and 𝜕%𝛺") and external (𝜕,𝛺" and 𝜕*𝛺") boundaries. Note that in 
practice 𝜕$𝛺", 𝛤$, 𝛺#,	𝛤%,	and 𝜕%𝛺", all coincide spatially. For illustrative purposes, however, 
they are drawn in different locations. 
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𝒒" is given by the multiphase version of Darcy’s law (2), where 𝑲" is the hydraulic conductivity 128 

tensor under saturated conditions, ℎ" is the matrix hydraulic head, and 	𝑘"&'( ≔ 𝑘&'((𝜓") is the 129 

water relative permeability. We precisely define 𝜃" and 	𝑘"&'( in Section 2.4. 130 

Equations (3) enforce normal fluxes on the internal boundaries to match the interface 131 

fluxes 𝜆±, which are included as additional unknowns and will be defined later. By construction, 132 

we require the normal vectors 𝒏" on internal boundaries pointing from Ω" to Ω# (see the left 133 

panel of Figure 1). Moreover, (4) and (5) impose flux and constant head boundary conditions, 134 

where 𝑔*," is a prescribed outer normal flux across 𝜕*Ω", and 𝑔,," is a prescribed hydraulic 135 

head on 𝜕,Ω". Finally, (6) establishes an initial hydraulic head distribution. 136 

2.2 Volume balance in the fracture 137 

Following our assumption of instantaneous hydrostatic equilibration (MP2), the equations 138 

in the fracture are given by the following initial value problem: 139 

 
d𝑉#
d𝑡 = R (𝜆$ + 𝜆%)	d𝒙

.!
+R Ψ#

.!
d𝒙,  in	Ω# × (0, 𝑇), (7) 

 ℎ# = 𝑔-,# ,  in	Ω# × {0}. (8) 

Equation (7) describes the volumetric changes of water in Ω#. It requires the rate of change of 140 

water volume 𝑉# = 𝑉Sℎ#T in Ω# to balance the water exchanged with Ω" via the interface fluxes 141 

𝜆± plus external sources (or sinks) of water Ψ#. The term Ψ# can be employed to mimic direct 142 

infiltration or evaporation in the fractures. The precise relationship between 𝑉# and the hydraulic 143 

head in the fracture ℎ# will be given in Section 2.4. Finally, in (8), we specify an initial hydraulic 144 

head in the fracture. 145 
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2.3 Interface fluxes 146 

On the interfaces Γ±, we consider that the interface fluxes 𝜆± depend on the hydraulic 147 

heads of the fracture ℎ# and the surrounding matrix ℎ". Thus, extending upon the work of Martin 148 

et al. (2005) and Ahmed et al. (2017) to account for the conditional flow due to the capillary 149 

barriers (MP2), the interface fluxes are given by: 150 

 𝜆± = −𝛾±
2𝜅±
𝑎#

𝑘±&'(Sℎ# − ℎ"T	, 
 

on	Γ± × (0, 𝑇), (9) 

 𝜆± = 𝜆-,±,  on	Γ± × {0}. (10) 

In (9), 𝜅± are the normal hydraulic conductivities under saturated conditions, 𝑎# is the fracture’s 151 

aperture, 𝛾± are threshold functions that allow (or prevent) the flux across the interfaces based on 152 

neighboring wetting conditions, and 𝑘±&'( are the relative permeabilities on the interfaces. In 153 

Section 2.4, we make 𝛾± and 𝑘±&'( precise. Finally, (10) establishes initial interface fluxes. 154 

2.4 Constitutive relationships and closure conditions 155 

 To close the system of equations, we need constitutive relationships for the matrix, 156 

fracture, and interfaces. As is accustomed for the vadose zone, we employ the van Genuchten-157 

Mualem relations (Mualem, 1976; Van Genuchten, 1980): 158 

𝜃(𝜓) = Y𝜃&'/ + (𝜃/01 − 𝜃&'/)[1 + (𝛼23|𝜓|4"#	)]
5
4"#

%5	,
𝜃/01,

		 𝜓 < 0,
𝜓 ≥ 0, (11) 

Θ(𝜓) =
𝜃(𝜓) − 𝜃&'/

𝜃/01 − 𝜃&'/ , 
(12) 

𝑘&'((𝜓) = `Θ(𝜓)	a1 − bS1 − Θ(𝜓)T
4"#

4"#%5cd
!

. (13) 

Here, 𝑎23, and 𝑛23 are model parameters that depend on the type of soil, 𝜃&'/ and 𝜃/01 are, 159 

respectively, the water content under residual and saturated conditions, and Θ is the effective 160 
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saturation. 161 

In the fracture, we need to relate the water volume 𝑉# with the hydraulic head ℎ#. In the 162 

most general case where the aperture can vary in space, this relationship is given by the 163 

following volume integral: 164 

𝑉# = R 𝑎#	d𝒙.!
789!

. (14) 

Let us now focus on the interfaces. We note that the interface fluxes 𝜆± must be zero 165 

unless the capillary barrier is exceeded. This motivates defining the Heaviside functions 𝛾± as: 166 

𝛾±S𝜓" , 𝜓# , 𝜓:T = Y
1,
1,
0,
	
𝜓" >	𝜓:
𝜓# > 𝜓:
otherwise

, 	 on	Γ± × (0, 𝑇), (15) 

where 𝜓: is the pressure threshold, i.e., the minimum pressure head necessary to break the 167 

capillary barrier. Although there exists experimental evidence suggesting 𝜓: < 0 (Tokunaga & 168 

Wan, 2001) for different types of soils, in this paper, we require reaching saturation conditions to 169 

break the capillary barrier. Thus, from this point forward, we assume 𝜓: = 0. 170 

Finally, a concrete value for 𝑘±&'( can be obtained via a semi-discrete inter-dimensional 171 

potential-based upstream weighting (Chen et al., 2006): 172 

Equations (1) to (16) represent a closed system of non-linear differential equations with 173 

ℎ", ℎ#, and 𝜆± as primary variables. 174 

3 GENERAL MODEL AND SOLUTION STRATEGY 175 

𝑘±&'(S𝜓" , 𝜓#T = m
𝑘&'((𝜓"),
𝑘&'(S𝜓#T,

		
𝜓" > 𝜓#
𝜓" ≤ 𝜓#

, 	 on	Γ± × (0, 𝑇). (16) 
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The aim of this section is to generalize the single fracture model to account for networks 176 

of fractures. The extension is non-trivial, as it requires modeling of fluid transport within the 177 

fracture network accounting for fracture intersections. Key to the modeling is a description of the 178 

mixed-dimensional decomposition of the domain, which we present in a general form whereupon 179 

we write the general model. Finally, we briefly discuss some aspects related to the solution 180 

strategy. 181 

3.1 Mixed-dimensional geometric decomposition 182 

To extend the model of a single fracture to a more general setting, we first need to 183 

introduce the mixed-dimensional geometric decomposition of the domain. The formulation 184 

follows the one originally proposed by Boon et al. (2018) and more closely the one recently 185 

employed by Varela et al. (2022). First, consider a domain 𝑌 ⊂ ℝ!, decomposed into 𝑚 186 

subdomains Ω; of dimension 𝑑; = 𝑑(𝑖) so that 𝑌 =	∪;∈= Ω;, with 𝐼 = 1,… ,𝑚. We assume that 187 

all subdomains of dimensions 𝑑; are disjoint. In practice, 𝑑; = 2 represents the soil, 𝑑; = 1	the 188 

fractures, and 𝑑; = 0 the intersection between fractures. 189 

Having seen the utility of defining a distinct object to pose equations at both sides of the 190 

fracture, now, we generalize it by allowing subdomains one-dimension-apart to be coupled via 191 

interfaces Γ>, for 𝑗 ∈ 𝐽, where 𝐽 = 1,… ,𝑀, with 𝑀 denoting the total number of interfaces. More 192 

precisely, for a given interface Γ>, we use Ω?̂ for 𝚥̂ ∈ 𝐼 and Ω?̌ for 𝚥̌ ∈ 𝐼, to denote its higher- and 193 

lower-dimensional neighboring subdomain. The internal boundary of 𝜕>Ω?̂ of Ω?̂ is defined such 194 

that it coincides with Γ>; which, in turn, matches with the lower-dimensional neighbor Ω?̌. 195 
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Unlike the model with a single fracture, now a different number of interfaces can be 196 

linked to a single subdomain. Thus, to establish the communication between subdomains and 197 

interfaces in a more general way, we introduce the index sets 𝑆|; and 𝑆};, containing the indices of 198 

the higher- and lower-dimensional neighboring interfaces of Ω;, respectively. To provide 199 

concrete examples of such sets, consider Figure 2, where we show the mixed-dimensional 200 

decomposition for the case of three fractures embedded in a matrix which intersect in a common 201 

point. If we take, for example, the subdomain ΩB, it is straightforward to see that 𝑆|B = {4, 5}, 202 

whereas 𝑆}B = {3}.  203 

Finally, we consider the decomposition of the boundaries of Ω into its Dirichlet, 204 

Neumann, and internal parts: 𝜕Ω = 𝜕,Ω ∪ ∂*Ω ∪ ∂ℐΩ, where 𝜕,Ω =∪;∈= 𝜕,Ω;, 𝜕*Ω =205 

∪;∈= 𝜕*Ω;, and 𝜕ℐΩ =∪;∈=∪>∈DE% 𝜕>Ω; . 206 

3.2 The general model 207 

Extending the single-fracture model to account for a fracture network is now 208 

Figure 2: Mixed-dimensional geometric decomposition showing subdomains, interfaces, and 
boundaries for the case of a matrix 𝛺F hosting three fractures (𝛺!, 𝛺G, 𝛺B) intersecting in a 
common point 𝛺5. 
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straightforward up to the treatment of intersections, which will be devoted special attention. 209 

Below, we make precise the complete set of equations valid for all subdomains Ω; with 𝑖 ∈ 𝐼, 210 

and all interfaces Γ> with 𝑗 ∈ 𝐽. 211 

3.2.1 Conservation laws 212 

The conservation laws on subdomains can be summarized by the following equations: 213 

 
𝜕𝜃;
𝜕𝑡 + 𝛁 ⋅ 𝒒; −Ψ; = 0,  in	Ω; × (0, 𝑇),  𝑑; = 2, (17) 

 
d𝑉;
d𝑡 − R �𝜆> 	d𝒙

>∈DE%

−R Ψ;
.%

d𝒙 = 0,
.%

  in	Ω; × (0, 𝑇),  𝑑; = 1, (18) 

 �𝜆> = 0
>∈DE%

,  in	Ω; × (0, 𝑇),  𝑑; = 0. (19) 

Equation (17) has the same form as (1), with the exception that we now allow for more than one 214 

matrix subdomain. Equation (18) governs the volume balance in each fracture and thus 215 

generalizes (7). Finally, (19) requires all fluxes entering an intersection point to match the fluxes 216 

leaving the same intersection point. Due to the negligible volume associated with points, we do 217 

not associate any volume to them and thus explicitly remove accumulation and source terms 218 

from (19). Note, however, that there is still a well-defined hydraulic head associated to zero-219 

dimensional subdomains. 220 

3.2.2 Darcy-type laws 221 

The constitutive laws relating fluxes with changes in hydraulic heads are given by: 222 

 𝒒; +	𝑲;𝑘;&'(𝛁ℎ; = 0,  in	Ω; × (0, 𝑇),  𝑑; = 2, (20) 

 𝜆> + 𝛾>
2𝜅>
𝑎?̌
𝑘>&'(Sℎ?̌ − ℎ?̂T = 0,  on	Γ> × (0, 𝑇),  𝑑> = 1, (21) 

 𝜆> + 𝛾>𝜅HSℎ?̌ − ℎ?̂T = 0,  on	Γ> × (0, 𝑇),  𝑑> = 0. (22) 
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Equation (20) has again the same form as (2). Similarly, but for interfaces, (21) has the same 223 

form as (9). The zero-dimensional interface fluxes are given by (22). Note that these fluxes are 224 

the ones entering the conservation law (19). 225 

The hydrostatic equilibrium condition (MP2) now applies to the whole fracture network 226 

rather than to individual fractures. In a continuous sense, this implies that the interface fluxes 𝜆> 227 

in (22) must transfer water from fractures of high elevation to connected branches of lower 228 

elevation infinitely fast (e.g., from Ω! to ΩG and ΩB referring to Figure 2). Otherwise, we would 229 

have “floating” water columns sitting on top of intersection points, which is clearly unphysical. 230 

In practice, however, we only need to guarantee hydrostatic equilibrium in-between time steps. 231 

This can be achieved by ensuring sufficiently large values of 𝜆> with the computational 232 

parameter 𝜅H. We discuss this implementational aspect with more detail in Section 3.3. 233 

3.2.3 Boundary and initial conditions 234 

The model is completed by providing internal and external boundary conditions together 235 

with initial conditions: 236 

Naturally, the model should also be complemented with the closure relations from Section 2.4, 237 

which are still valid for the case of fracture networks. 238 

3.3 Solution strategy 239 

 𝒒?̂ ⋅ 𝒏?̂ − 𝜆> = 0,  on	𝜕>Ω?̂ × (0, 𝑇),  𝑑> = 1,	 (23) 
 𝒒; ⋅ 𝒏; − 𝑔*,; = 0,  on	𝜕*Ω; × (0, 𝑇),  𝑑; = 2, (24) 
 ℎ; − 𝑔,,; = 0,  on	𝜕,Ω; × (0, 𝑇),  𝑑; = 2, (25) 
 ℎ; − 𝑔-,; = 0,  on	Ω; × {0},  𝑑; = 0, 1, 2, (26) 
 𝜆> − 𝜆-,> = 0,  on	Γ> × {0},  𝑑> = 0, 1. (27) 



 

 15 

The set of equations (17) to (27) is discretized using backward Euler in time and cell-240 

centered finite volumes in space. More precisely, we employ the multipoint flux approximation 241 

MPFA-O method. We refer the reader to (Aavatsmark, 2002; Nordbotten & Keilegavlen, 2021) 242 

for the details on the MPFA method.  For linearizing the set of non-linear equations, we employ 243 

the modified Picard iteration (Celia et al., 1990) in the matrix and the Newton method in the 244 

fractures. For a thorough review on linearization techniques for Richards’ equation, we refer to 245 

(List & Radu, 2016). 246 

To solve the conditional flow on the interfaces, that is, to obtain 𝛾>, we use an iterative 247 

approach like those employed in seepage analysis (Scudeler et al., 2017). The algorithm is 248 

simple: At a given time level, we set 𝛾> = 0 for all interface cells (recall that this makes the cells 249 

impervious to flow). Then, we proceed to solve the system of equations until convergence and 250 

review if the pressure head in some of the interface cells is greater than 0. If so, the interface cell 251 

is assigned 𝛾> = 1, and the solution is recomputed with the updated conditions.  Otherwise, we 252 

directly proceed to the next time level. In Figure 3, we show the possible flow scenarios during a 253 

hypothetical irrigation process. Instead of employing an iterative approach, one can use 254 

regularization techniques (Trémolières et al., 2011), where the Heaviside function 𝛾> from (15) is 255 

replaced by a smooth function (Chan & Vese, 2001), which admits a derivative. This technique 256 

allows for solving the set of equations fully implicitly. However, one must carefully select the 257 

regularization parameter to avoid nonphysical results, e.g., water leakage into the fracture below 258 

the pressure threshold. 259 

As we mentioned in Section 3.2.2, in the case of fracture networks, we need to ensure 260 

zero-dimensional interface fluxes (e.g., 𝜆> from Eq. (22)) to be sufficiently large so that 261 
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hydrostatic is achieved in the whole fracture network before proceeding to the next time step 𝜏. 262 

To this aim, we employ the computational parameter 𝜅H to control the magnitude of 𝜆>. The 263 

precise value of 𝜅H is not important, and any 𝜅H ≫ 𝜏%5 will suffice as an approximation of the 264 

equilibrium condition. The importance of equations (19) and (22) for the general model is 265 

therefore two-fold: (a) it ensures hydrostatic equilibrium in the fracture network, and (b) it 266 

distributes water among connected branches based on the difference in hydraulic heads. 267 

Alternatively, one could omit (19) and (22) altogether, use zero-dimensional subdomains as 268 

bifurcation (or mixing) points, and explicitly enforce hydrostatic equilibrium using a water re-269 

distribution algorithm in an extra equilibration step. Both approaches should result in the same 270 

hydraulic states. 271 

Finally, the large gradients in hydraulic head during infiltration (either from the soil 272 

surface or across the fracture faces) poses severe computational restrictions. The situation is only 273 

exacerbated in heterogeneous and layered soils. To deal with this challenge, we rely heavily on 274 

λ+

= 0
λ+ = 0

λ− > 0

λ+ < 0

− = 0

λ− > 0

λ− = 0

λ− < 0

λ+ = 0

Figure 3: Possible flow scenarios during a hypothetical irrigation process for an initially dry 
fracture. Left: The flow across the interfaces is zero since the capillary barrier (gray) has not 
been exceeded. Center: On the green portion of the negative side of the interface, the capillary 
barrier is overcome, resulting in water entering the fracture and ponding instantaneously. Right: 
A pond was formed (turquoise), and water can now escape via the orange portions at both sides 
of the fracture. Note that imbibition still takes place through the green portion. The green and 
orange portions of 𝛤± correspond to 𝛾± = 1, whereas the gray portions to 𝛾± = 0.  
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an iteration-based time-stepping algorithm. The algorithm closely resembles the one employed in 275 

HYDRUS-1D (Šimůnek et al., 2005) and is provided in Appendix B. 276 

4 NUMERICAL EXAMPLES 277 

In this section, we present numerical examples that showcase the validity and 278 

applicability of the proposed model. The examples include a numerical convergence analysis and 279 

two simulations mimicking irrigation scenarios. All examples are implemented in the open-280 

source software PorePy (Keilegavlen et al., 2021) using the extension package unsat-frac 281 

(Varela, 2023). Material parameters used in Sections 4.2 and 4.3 are given in Table 1. Unless 282 

otherwise stated, the aperture for all fractures is assumed constant and equal to 0.1	[cm]. 283 

Table 1: Physical parameters used for the soils used in the numerical examples. 284 

aRetrieved from Celia et al. (1990).  285 
bRetrieved from Carsel and Parrish (1988). 286 

4.1 Convergence analysis 287 

For our first numerical example, we perform a convergence analysis for the case of a 288 

single vertical line Ω5 fully embedded in a unit square Ω!, coupled via the interfaces Γ5 and Γ! to 289 

the left and right of the fracture, respectively. 290 

 Following closely Varela et al. (2022), we assume the existence of a piecewise hydraulic 291 

Soil 𝑲	[𝐜𝐦	𝐡%𝟏] 𝜽𝐬𝐚𝐭	[−] 𝜽𝐫𝐞𝐬[−] 𝜶𝐯𝐆	[𝐜𝐦%𝟏] 𝒏𝐯𝐆	[−] 

Sanda 33.19 0.368 0.102 0.0335 2.00 

Sandy clayb 0.12 0.380 0.100 0.0270 1.23 

Sandy loamb 4.42 0.41 0.065 0.075 1.89 

Sandy clay loamb 1.31 0.39 0.100 0.059 1.48 

Loamy sandb 14.59 0.41 0.057 0.124 2.28 
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head distribution in the bulk ℎ! (we refer to Appendix C for the derivation of all relevant 292 

quantities for this analysis), from where all other variables of interest can be derived. In the left 293 

panel of Figure 4, we show the geometric setup and the exact solution hydraulic head distribution 294 

in the matrix for the final simulation time. 295 

Assuming initially dry conditions for the fracture, the choice of ℎ! implies that for 𝑡 > 0,  296 

both interfaces are conductive (i.e., 𝛾5 = 𝛾! = 1), with water moving from the matrix to the 297 

fracture. For this analysis, we study the time interval (0, 𝑇) = (0, 0.5) employing a constant time 298 

step of 0.015625. In space, we employ five levels of refinement, with target mesh sizes equal to 299 

0.05, 0.025, 0.0125, 0.00625, and 0.003125. We investigate convergence rates of primary 300 

(i.e., ℎ!, ℎ5, 𝜆5, λ!) and secondary variables (i.e., 𝒒!, 𝑉5) using the discrete relative 𝐿!-norms used 301 

in (Varela et al., 2021). 302 

In the right panel of Figure 4, we show the errors as a function of the inverse of the mesh 303 

size. A general asymptotic first order convergence tendency is reported for all variables. This 304 

follows from the use of a first-order upwind scheme for discretizing the fluxes and is in 305 
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Figure 4: Exact hydraulic head in the bulk for the final simulation time (left) and convergence 
rates for primary and secondary variables (right). First order convergence is reported for all 
variables. 
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agreement with previously reported rates with MPFA in simplicial grids for non-fractured 306 

domains (Klausen et al., 2008). 307 

4.2 Infiltration into a soil with a single vertical fracture 308 

Our second example consists of a single-one dimensional vertical fracture embedded in a 309 

squared domain as shown in the left panel of Figure 5. The yellow region corresponds to a soil 310 

sample from a New Mexico’s field. A block of sandy clay (green square) is artificially located 311 

next to the fracture to enforce water accumulation on top of the block and help breaking the 312 

capillary barrier. The final simulation time is 4800	[s]. The soil is initially at moderate dry 313 

conditions with 𝑔-,! = (−500 + 𝑧!)		[cm]. All external boundaries are assumed to be no-flow, 314 

except for the top-left portion, where a constant head is imposed. 315 

Figure 6 shows the hydraulic head distribution in the matrix for three different times, i.e., 316 

336, 1680, and 3168 seconds. Water enters the domain from the top-left part of the boundary 317 

due to the difference in hydraulic heads. The wetting front is diverted by the block of sandy clay, 318 

and, as time progresses, the hydraulic head is sufficiently large to break the capillary barrier 319 

Figure 5: Geometric setup and boundary conditions for the numerical example of Section 4.2 
(left) and water evolution inside the fracture (right) showcasing four distinct hydraulic stages. 
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offered by the air in the fracture. Thus, at approximately 300	[s], water enters the fracture 320 

through the faces located on top of the sandy clay block (marked by the “imbibition” label). This 321 

provides a fast-flowing path for water to travel downward. Water exchange now takes place 322 

through the bottom part of the fracture and the matrix, which, until this point, remained at dry 323 

conditions. At 𝑡 = 1680	[s], water exchange keeps progressing through the bottom of the 324 

fracture, and, eventually, the two wetting fronts merge. Finally, at 𝑡 = 3168	[s], almost all the 325 

domain has become saturated. Global equilibrium (not shown in the figure) is achieved at around 326 

4800	[s] where the entire domain reaches the imposed boundary hydraulic head value of 327 

102.5	[cm]. 328 

 The right panel of Figure 6 shows the water volume evolution inside the fracture. We 329 

recognize four distinct stages. In stage I, the fracture remains at dry conditions. In stage II, water 330 

exchange takes place through the bottom of the fracture. During this stage, the volume oscillates 331 

with an amplitude of ~	0.1	[cmG] due to the intermittent dry/wet states of the bottom ghost 332 

fracture cell (see also Figure A.1). A more refined fracture ghost grid will result in oscillations of 333 

smaller amplitude. In stage III, the water column inside the fracture smoothly increases as a 334 

Figure 6: Simulation snapshots for three different times for the numerical example of an 
irrigation scenario in a soil containing a single vertical fracture. 
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response of the saturated conditions in the neighboring matrix. Finally, in stage IV, the fracture is 335 

entirely filled with water. Note, however, that the fracture hydraulic head might still increase 336 

e.g., due to an increase in water pressure above the fracture level. This behavior is naturally 337 

captured by our model thanks to the choice of hydraulic head (and not the water volume) as 338 

primary variable for the fracture subdomains.  339 

4.3 Infiltration into a soil with a fracture network  340 

Our final example considers the case of a fracture network with a junction as shown in 341 

the left panel of Figure 7. The domain is stratified with three types of loam, i.e., sandy loam 342 

(top), sandy clay loam (middle), and loamy sand (bottom). We set all external boundaries of the 343 

domain as impervious, except the top boundary where a constant infiltration velocity of 344 

0.05	[cm/s] is prescribed. Initially, the top layer is at almost saturated conditions with 𝑔-,F =345 

(−5 + 𝑧F)	[cm], whereas the middle and bottom layers are at moderate dry conditions with 346 

𝑔-,F = (−500 + 𝑧F)	[cm] + 𝑧F. All fractures are initially dry, and the final simulation time is 347 

1130	[s]. 348 

Figure 7: Geometric setup and boundary conditions for the numerical example of Section 4.3 
(left) and water volume evolution inside the facture network (right). 
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In Figure 8, we show the hydraulic head distributions for three times, namely 60, 384, 349 

and 1115 [s]. At approximately 60	[s], imbibition starts taking place from both sides of the part 350 

of ΩB embedded in the top layer of ΩF. The amount of water that enters, travels downward 351 

(circumventing the resistance of the sandy clay loam) and ponds instantaneously to the bottom of 352 

ΩB and then distributes between Ω! and ΩG. At 𝑡 = 384	[s], more water has traveled from the 353 

upper part of ΩB to the bottom of Ω! and ΩG, and as such, larger parts of ΩF become wet. The 354 

irrigation front also developed significantly, saturating the top and middle layers. Finally, at 𝑡 =355 

1115	[s], the wetting fronts merge and most of the domain becomes saturated.  356 

In the right panel of Figure 7, we show the water evolution in each fracture of the fracture 357 

network. The water volumes in Ω! and ΩG consistently increase in response to larger parts of the 358 

domain becoming saturated. The fracture Ω! is fully filled at around 890 [s], whereas ΩG is filled 359 

at around 950	[s]. Only after this point, the volume of water in ΩB increases. Since there is no-360 

longer water redistribution inside the network, the volume increases quite rapidly, until it reaches 361 

its maximum value at around 1110 [s]. 362 

Figure 8: Hydraulic head distributions in the matrix for three different times. Water enters the 
top fracture through the sandy loam layer, ponds, and bifurcate through the left and right 
branches of the fracture network. In this case, we have employed a water distribution algorithm 
that equally distributes water from 𝛺! to 𝛺G and 𝛺B. 
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CONCLUSION 363 

In this paper, we have presented a new model for saturated-unsaturated flow in the 364 

presence of fractures acting as capillary barriers. The proposed model serves as a practical tool to 365 

assess the rapid movement of water through fracture networks when the capillary barrier 366 

imposed by the air inside the fractures is exceeded, which are otherwise impervious to the water 367 

flow (i.e., in the strictly unsaturated case). 368 

A convergence analysis confirmed the numerical correctness of the model, whereas 369 

simulations have produced physically coherent results. Accounting for a more accurate 370 

description of the water flow inside the fracture network (e.g., water film flow) together with its 371 

generalization to three dimensions are natural extensions to the current model. 372 

ACKNOWLEDGMENTS 373 

Jhabriel Varela was funded by VISTA – a basic research program in collaboration 374 

between The Norwegian Academy of Science and Letters, and Equinor. 375 

CONFLICT OF INTEREST 376 

 The authors declare no conflict of interest. 377 

ORCID 378 

 Jhabriel Varela: 0000-0003-2220-2204, Eirik Keilegavlen: 0000-0002-0333-9507, Jan M. 379 

Nordbotten: 0000-0003-1455-5704, Florin A. Radu: 0000-0002-2577-5684. 380 

381 



 

 24 

 APPENDIX A: FINITE VOLUME DISCRETIZATION  382 

This appendix deals with the discrete setting of the model. We start by introducing the 383 

partitions of the domain and then the discretized version of the equations using MPFA.  384 

A.1 Partitions of the domain 385 

Let 𝒯.& and 𝒯Q' be partitions of the subdomain Ω; for 𝑖 ∈ 𝐼 and the interface Γ> for 𝑗 ∈ 𝐽, 386 

such that Ω�; = ⋃ 𝐾R∈𝒯(%  and Γ�> = ⋃ 𝐾R∈𝒯)' , where all subdomain elements 𝐾 ∈ 𝒯.%of dimension 387 

𝑑R = 2, 1, 0, and all interface elements 𝐾 ∈ 𝒯Q' of dimension 𝑑R = 1, 0, are required to be 388 

strictly non-overlapping simplices (see left panel of Figure A.1). We use 𝜕𝐾 to denote the 389 

boundary of 𝐾 ∈ 𝒯.%, and 𝑒 to denote an edge from the set of edges ℰR of 𝜕𝐾. 390 

Since the governing equations in the fractures are given by an ODE, strictly speaking, we 391 

do not need to partition the fracture subdomains. However, since the discrete version of the 392 

interface fluxes depends on the difference between neighboring hydraulic heads, we will benefit 393 

from introducing a partition for the fractures. We will call such partition a ghost grid. A ghost 394 

fracture grid will allow us to associate a hydraulic head value to different heights, and thus 395 

distinguishing between “dry” and “wet” cells.  396 

A.2 Discretization 397 

Let us now focus on the discretization of general model problem. As mentioned in 398 

Section 3.3, we employ backward Euler to discretize the accumulation terms and MPFA-O for 399 

the spatial discretization. 400 
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A.2.1 Discrete matrix equations 401 

Let us begin with the discretization of the matrix equations. We start by integrating (17) 402 

locally: 403 

R
𝜕𝜃;
𝜕𝑡 	d𝒙R

+R𝛁 ⋅ 𝒒;
R

d𝒙 − RΨ; 	𝑑𝒙
R

= 0,	 ∀𝐾 ∈ 𝒯.% , 𝑖 ∈ 𝐼, 𝑑; = 𝑛. (A1) 

The first term of (A1) can be approximated by: 404 

R
𝜕𝜃;
𝜕𝑡 	d𝒙R

≈
|𝐾|
𝜏𝓃 �𝜃;,R

𝓃$5,𝓂 + 𝐶;,R
𝓃$5,𝓂Sℎ;,R

𝓃$5,𝓂$5 − ℎ;,R
𝓃$5,𝓂T − 𝜃;,R𝓃 �, (A2) 

where 𝓃 and 𝓂 refer, respectively, to the time and iteration levels, 𝜏 is the time step, |𝐾| is the 405 

volume of the grid cell, and 𝐶 ≔ d𝜃/d𝜓 is the specific moisture capacity (Pinder & Celia, 406 

2006). 407 

Equation (A2) was obtained by first applying backward Euler and then Taylor-expanding 408 

𝜃;,R
𝓃$5,𝓂$5 as a function of 𝜓. This linearization procedure is known as modified Picard iteration, 409 

and it was proposed by Celia et al. (1990) as a technique to ensure mass conservation. Note that 410 

TΓjTΩ̂ TΩ̌ TΩ̌

dry cell

dry cell

wet cell

Figure A.1: Grid partitions and ghost fracture grids. Left: Coupling between a matrix grid 𝒯V*+	, 
an interface grid 𝒯W', and a ghost fracture grid 𝒯V*, . Right: Ghost fracture cells are employed to 
distinguish between dry and wet cells. We use green dots to designate the cell centers. 
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other linearization techniques are also possible, see e.g., (List & Radu, 2016). The reader is 411 

referred to (Varela et al., 2021) for a more detailed derivation of (A2) in the context of fixed-412 

dimensional domains. 413 

Applying the divergence theorem and introducing the discrete version of Darcy's law, the 414 

second term of (A1) can be estimated as 415 

R𝛁 ⋅ 𝒒;
R

d𝒙 = R 𝒒; ⋅ 𝒏;
XR

d𝑆 = � 𝒒;,R,Y ⋅ 𝒏;,R,Y 	𝐴Y
Y∈ℰ-

= � 𝑄;,R,Y
Y∈ℰ-

 

≈ � ¤𝑘;,R,Y
&'(,𝓃$5,𝓂 � 𝑡R.,Y

R.∈ℱ-,0

ℎ;,R.
𝓃$5,𝓂$5¥

Y∈ℰ-

, 
(A3) 

where 𝐴Y is the area of the edge 𝑒, 𝑄;,R,Y 	are the exact fluxes across the edges 𝑒 of 𝐾, and 𝑡R.,Y 416 

are the transmissibility coefficients (Aavatsmark, 2002) of the edge 𝑒 associated with the 417 

neighboring cell 𝐾\	from the set of neighboring cells ℱR,Y. 418 

Finally, the third term of (A1) can be estimated as: 419 

RΨ; 	𝑑𝒙
R

≈ |𝐾|Ψ;,R𝓃$5 = 𝐹;,R𝓃$5, (A4) 

where 𝐹;,R𝓃$5 are the approximated integrated source terms. 420 

A.2.2 Discrete fracture equations 421 

Let us now focus on the discrete version of the fracture equations. The first term of (18) 422 

can be directly approximated using backward Euler: 423 

d𝑉;
d𝑡 ≈

𝑉;
𝓃$5,𝓂$5 − 𝑉;𝓃

𝜏𝓃 . (A5) 

Note that we use 𝑉; (not 𝑉;,R), since this is the approximated volume of water associated with the 424 

physical domain Ω; (not a ghost cell 𝐾 ∈ 𝒯.%). 425 
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For the second term of (18), we exploit the fact that Ω; = Γ> for 𝑗 ∈ 𝑆|;, to obtain: 426 

R �𝜆>
>∈DE%

.%
d𝒙 = �R 𝜆>

.%>∈DE%

d𝒙 ≈ � � |𝐾|𝜆>,R
𝓃$5,𝓂$5 =

R∈𝒯)'>∈DE%

� � Λ>,R
𝓃$5,𝓂$5

R∈𝒯)'

,
>∈DE%

 (A6) 

where Λ>,R
𝓃$5,𝓂$5 are the integrated mortar fluxes. Finally, the third term of (18) can be 427 

approximated via: 428 

R Ψ;
.%

	d𝒙 ≈ |Ω;|Ψ;𝓃$5 = 𝐹;𝓃$5, (A7) 

where 𝐹;𝓃$5 is an integrated source over the subdomain Ω;. A positive value represents irrigation 429 

whereas a negative value evaporation. 430 

A.2.3 Discrete interface equations 431 

Let us now deal with the discrete version of the interface law. As usual, we start 432 

integrating both sides of  (21) over each interface cell: 433 

R𝜆>
R

d𝒙 = −R𝛾>
R

2𝜅>
𝑎?̌
𝑘>&'(Sℎ?̌ − ℎ?̂T	d𝒙,	 ∀𝐾 ∈ 𝒯Q' , 𝑑> = 𝑛 − 1. (A8) 

The left-hand side can be estimated as: 434 

whereas the right-hand side is given by: 435 

−R𝛾>
R

2𝜅>
𝑎?̌
𝑘>&'(Sℎ?̌ − ℎ?̌T	d𝒙 = 𝛾>,R𝒦>,R𝑘>,R

&'(,𝓃$5,𝓂Sℎ?̌,R
𝓃$5,𝓂$5 − ℎ?̂,R

𝓃$5,𝓂$5T, (A10) 

where 𝒦>,R = −2|𝐾|𝜅>,R𝑎?̌,R
%5, and ℎ?̌,R

𝓃$5,𝓂$5 and ℎ?̂,R
𝓃$5,𝓂$5 are the fracture hydraulic heads from 436 

the ghost fracture grid and the adjacent matrix, respectively. 437 

The ghost hydraulic heads are related to the physical hydraulic head such that: 438 

R𝜆>
R

d𝒙 ≈ Λ>,R
𝓃$5,𝓂$5, (A9) 
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ℎ?̌,R
𝓃$5,𝓂$5 = mℎ?̌

𝓃$5,𝓂$5,
𝑧?̌,R ,

	 	ℎ?̌
𝓃$5,𝓂$5 − 𝑧?̌

]^_ > 𝑧?̌,R
otherwise

, 	 ∀𝐾 ∈ 𝒯.%.  (A11) 

The relation (A11) establishes that if the height of the water column (given by the difference 439 

between the hydraulic head of the fracture ℎ?̌
𝓃$5,𝓂$5 and the fractures' datum 𝑧?̌

]^_) exceeds the 440 

cell center height of the ghost cell 𝑧?̌,R, then the ghost cell is considered “wet”, and the hydraulic 441 

head corresponds to the hydraulic head of the fracture. Otherwise, the ghost cell is “dry”, and its 442 

hydraulic head can be taken as the elevation head (note that here we use 𝜓?̌,R = 0). A schematic 443 

representation of such cases is shown in the right panel of Figure A.1. 444 

Since the discrete equations for zero-dimensional subdomains and interfaces can be 445 

trivially obtained, we do not include them here. Finally, the set of equations (A1) – (A11) must 446 

be complemented with the discretized version of the boundary conditions. Neumann (24) and 447 

Dirichlet (25) boundary conditions are treated in the classical way. For the internal boundary 448 

conditions (23), we require the integrated fluxes on the internal boundaries to match the 449 

integrated interface fluxes.  450 

APPENDIX B: TIME-STEPPING ALGORITHM 451 

 The time-stepping algorithm follows closely the one from HYDRUS-1D (Šimůnek et al., 452 

2005) and employed in (Varela et al., 2021). In Figure B.1, we show the complete flowchart as it 453 

is implemented in PorePy. The main idea is to select the time step based on the number of 454 

iterations needed to reach convergence in the previous time level. If the number of iterations is 455 

lower than a prescribed value iter_low, the time step can be relaxed by multiplying it by an 456 

overrelaxation factor over_relax_factor > 1. On the other hand, if the number of iterations 457 
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is larger than a prescribed value iter_upp, the time step is restricted by multiplying it by an 458 

underrelaxation factor under_relax_factor < 1. If the number of iterations lies between 459 

iter_low and iter_upp, the time step remains the same. 460 

The time step is constrained between a prescribed range [dt_min, dt_max]. Moreover, 461 

we allow for the possibility of re-computing the solution for a given time level with a smaller 462 

Figure B.1: Flowchart of the time-stepping algorithm employed to solve the discretized system 
of non-linear algebraic equations. 

iter
recomp_sol

time >= final_time?Yes

No

recomp_sol ?recomps <= 
max_recomps ?NoRaise error

Yes

constant_dt ?Yes

No

Yes recomps = 0No

iter < iter_low?
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dt *= over_relax_factor

iter > iter_upp?

No

Yes
dt *= under_relax_factor
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dt = dt

time -= dt

dt *= recomp_factor

recomps += 1

dt < dt_min ?Yesdt = dt_min

No
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dt = None
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Simulation finished
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Flowchart of the Time-Stepping Control Algorithm
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time step. This is done by multiplying the time step by a re-computation factor recomp_factor 463 

< 1. In our context, this functionality is used when convergence is achieved but a non-physical 464 

solution is obtained, e.g., negative volume is encountered for a given time step or when the 465 

solution diverges. 466 

APPENDIX C: EXACT SOLUTIONS FOR THE CONVERGENCE ANALYSIS 467 

To derive the manufactured solution from Section 4.1, we follow closely the procedure 468 

presented by Varela et al. (2022). The mixed-dimensional domain consists of a matrix and a 469 

single vertical fracture of length 0.5 fully embedded in the middle of the domain. First, we divide 470 

the bulk subdomain Ω! into three parts, namely Ω! = Ω!`a1 ∪ Ω!]^b ∪ Ω!
1ac, such that: 471 

Ω!`a1 ≔ {𝒙 ∈ Ω!: 𝑧 < 0.25}, (C1) 

Ω!]^b ≔ {𝒙 ∈ Ω!: 0.25 ≤ 𝑧 ≤ 0.75}, (C2)  

Ω!
1ac ≔ {𝒙 ∈ Ω!: 𝑧 > 0.75}. (C3)  

Let us now define the spatial function 𝛿(𝒙) measuring the shortest distance from any 472 

point in the matrix to the fracture: 473 

𝛿(𝒙) ≔ ¬
[(𝑥 − 0.5)! + (𝑧 − 0.25)!]-.F,

[(𝑥 − 0.5)!]-.F,
[(𝑥 − 0.5)! + (𝑧 − 0.75)!]-.F,

	
𝒙 ∈ Ω!`a1

𝒙 ∈ Ω!]^b

𝒙 ∈ Ω!
1ac
	.  (C4) 

Furthermore, consider the bubble function 𝜔(𝒙) defined for all 𝒙 ∈ Ω!]^b and given by 474 

𝜔(𝒙) ≔ (𝑧 − 0.25)!(𝑧 − 0.75)!.  (C5) 

Now, we define the hydraulic head in the bulk ℎ!(𝒙, 𝑡) for all 𝑡 ∈ (0, 𝑇) = (0, 0.5) as: 475 

ℎ"(𝒙, 𝑡) ≔ a 𝑡𝛿!.F + 0.75,
𝑡(𝛿!.F + 𝜔𝛿) + 0.75,

	
𝒙 ∈ Ω" ∖ Ω"]^b

𝒙 ∈ Ω"]^b
	,  (C6)  
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This choice of hydraulic head distribution in the bulk ensures saturated conditions in Ω!]^b during 476 

the simulation time. Now, the pressure head can be easily computed via: 477 

𝜓!(𝒙, 𝑡) = ℎ!(𝒙, 𝑡) − 𝑧. (C7) 

For the sake of simplicity, we do not employ the van Genuchten-Mualem relations. 478 

Instead, we define simpler expressions similar to those employed by Radu and Wang (2014): 479 

𝜃"(𝒙, 𝑡) = a(1 − 𝜓")
%5,

1, 	 𝜓" < 0
𝜓" ≥ 0	, (C8) 

𝑘"&'((𝒙, 𝑡) = ¯exp(𝜓")
1

	 𝜓" < 0
𝜓" ≥ 0 . (C9)  

By setting 𝑲" = 𝑰 and using (C7) and (C9) , the Darcy flux 𝒒"(𝒙, 𝑡) is set via Eq. (2). Moreover, 480 

by computing the accumulation term 𝜕𝜃"/𝜕𝑡 using (C8) and applying the mass conservation 481 

equation (1), we obtain the source term in the matrix Ψ!(𝒙, 𝑡). 482 

With 𝒒"(𝒙, 𝑡) available, it can be checked via (3) that the interface fluxes at each side of 483 

the fracture satisfy: 484 

𝜆>(𝑧, 𝑡) = 𝑡𝜔(𝑧), 	 𝑗 = {1, 2}. (C10) 

The interface fluxes are positive for 𝑡 > 0, resulting in imbibition of water in the fracture. Recall 485 

that the choice of ℎ! ensures 𝛾5 = 𝛾! = 1 at all times. 486 

Setting 𝑎# = 0.01, the normal permeabilities 𝜅5 and 𝜅! on the interfaces are constrained 487 

via (9) and given by: 488 

𝜅>(𝑧, 𝑡) = 0.005𝑡
𝜔(𝑧)

(0.75 − 𝑧)	 , 	 𝑗 = {1, 2}. (C11) 

The fact that the normal permeability is time-dependent is a mathematical consequence of the 489 

manufactured solution and is not the case for the physical model. 490 



 

 32 

Without external sources and assuming an initially dry fracture, the volume of water 491 

𝑉5(𝑡) can be obtained by solving the initial value problem (7) — (8) exactly: 492 

𝑉5(𝑡) = 𝑡! ∫ 𝜔(𝑧)	d𝓏-.eF
-.!F , 	 𝑉5(0) = 0.  (C12) 

The hydraulic head in the fracture ℎ5(𝑡) can now be obtained by inverting the volume 493 

integral (14), which in the case of constant aperture is simply given by: 494 

ℎ#(𝑡) = 𝑎#%5𝑉#(𝑡) + 0.25.  (C13)  

The first term of (C13)  represents the height of the local water column, whereas the 495 

second term considers the correction based on the fractures’ datum. Finally, we require initial 496 

interface fluxes to satisfy (C10) and initial and boundary hydraulic heads to satisfy (C7) with 497 

Dirichlet conditions. 498 
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