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Abstract

Changes in the seasonal sea level cycle (SSLC) can modulate the flooding risk along coastlines. Here, we use harmonic analysis

to quantify changes in the amplitude and phase of the annual component of the sea level cycle at 663 tide gauge locations along

the global coastline where long records are available. We identify coastal hotspots by applying clustering methods revealing

coherent regions with similar patterns of variability in the annual sea level cycle (ASLC). Results show that for most tide gauges

the annual amplitude reached its maximum after 1970 and its peak typically occurs during the fall season of the respective

hemisphere. Many tide gauges exhibit non-stationarity in the annual cycle in terms of amplitude and/or phase. For example,

at 125 tide gauges we find significant trends in the amplitude (either increasing or decreasing) while several sites (36 in total),

mostly in the Mediterranean and around Pacific islands, experienced phase changes leading to shifts in the timing of the peak

of the annual cycle by more than a month. Our results highlight the importance of accounting for potential non-stationarity in

seasonal mean sea level (MSL) cycles along coastlines.
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Key Points: 24 

• The annual sea level cycle is non-stationary and has changed by up to more than a month 25 

across multiple locations.  26 

• There are well-defined regional clusters of tide gauges where the annual sea level cycle 27 

exhibits similar variability patterns.  28 

• Changes in the annual sea level cycle are linked to dominant modes of climate variability. 29 

 30 

Abstract 31 

Changes in the seasonal sea level cycle (SSLC) can modulate the flooding risk along coastlines. 32 

Here, we use harmonic analysis to quantify changes in the amplitude and phase of the annual 33 

component of the sea level cycle at 663 tide gauge locations along the global coastline where 34 

long records are available. We identify coastal hotspots by applying clustering methods revealing 35 

coherent regions with similar patterns of variability in the annual sea level cycle (ASLC). Results 36 

show that for most tide gauges the annual amplitude reached its maximum after 1970 and its 37 

peak typically occurs during the fall season of the respective hemisphere. Many tide gauges 38 

exhibit non-stationarity in the annual cycle in terms of amplitude and/or phase. For example, at 39 

125 tide gauges we find significant trends in the amplitude (either increasing or decreasing) 40 

while several sites (36 in total), mostly in the Mediterranean and around Pacific islands, 41 

experienced phase changes leading to shifts in the timing of the peak of the annual cycle by more 42 

than a month. Our results highlight the importance of accounting for potential non-stationarity in 43 

seasonal mean sea level (MSL) cycles along coastlines. 44 

Plain Language Summary 45 



The seasonal sea level cycle (SSLC) is the pattern of high and low mean sea level (MSL) 46 

observed throughout the year at a given location. Shifts in the timing of the maximum sea level 47 

impact coastlines with increased risk of flooding if the higher MSL occurs at a time of year when 48 

other factors like storms or high tides are also at their peak. To understand changes in the SSLC, 49 

we focus on the annual sea level cycle (ASLC) by decomposing the MSL at 663 locations into 50 

amplitude and phase components which describe the variability and timing of the MSL annual 51 

peak, respectively. We find that MSL amplitude typically reaches its maximum during the fall in 52 

each hemisphere. Coastal hotspots in the North Atlantic have been identified with coherent 53 

regions showing similar patterns in their ASLC variability. We find 125 locations with significant 54 

trends in amplitude and 36 locations where the MSL peak has changed by more than a month 55 

throughout the record. Additionally, we find significant relationships between the MSL annual 56 

amplitudes and climate indices characterizing regional-scale climate phenomena. Our results 57 

provide a comprehensive description of changes in the ASLC along portions of the global 58 

coastline with tide gauges. 59 

 60 

1. Introduction 61 

Many coastal locations worldwide have experienced the impacts of sea level change. This 62 

includes saltwater intrusion, freshwater resource contamination, ecosystem disruptions, surge 63 

propagation, coastal infrastructure damage, and other socio-economic impacts related to 64 

flooding, which are especially observable in low-lying areas (IPCC, 2023). In addition to 65 

projections of sea level changes, it is important to understand modulations of regular and 66 

predictable cycles of mean sea level (MSL). These can coincide with other natural climate 67 

processes or with components of extreme sea level, such as storm surge, to heighten the resulting 68 



total sea level at a particular location (Wahl et al., 2014). For example, when the maximum MSL 69 

for a given year aligns with a region’s seasonal maximum of storm activity or with the seasonal 70 

high tides (often referred to as king tides), the likelihood for flooding is relatively higher as 71 

opposed to when the MSL peaks occur out of phase.    72 

The seasonal sea level cycle (SSLC) describes the sea level pattern observed annually due to the 73 

regional climate characteristics of a location. It can be represented by the sum of annual and 74 

semi-annual harmonics with amplitudes and phases that correspond to the magnitude and timing 75 

of monthly MSL maxima and minima. Changes in the amplitude over time lead to larger 76 

differences between the troughs and peaks, while shifts in the phase can move the peak closer to 77 

or away from the storm surge season. The SSLC is often assumed to be stationary in time and is 78 

removed in studies considering sea level variability, but non-stationarity of the SSLC has been 79 

found to play a significant role in contributing to coastal sea level variations (Feng et al. 2015). 80 

The SSLC has been studied previously at the global scale (e.g., Gill & Niller 1973; Pattullo et al. 81 

1955; Pugh & Woodworth, 2014; Vinogradov et al., 2008) and across specific regions worldwide 82 

(e.g., Amiruddin et al., 2015; Barbosa et al., 2008; Barbosa & Silva, 2009; Calafat et al., 2018; 83 

Dangendorf et al., 2012; 2013; Feng et al., 2015; Hünicke & Zorita, 2008; Marcos & Tsimplis, 84 

2007; Plag & Tsimplis, 1999; Torres & Tsimplis, 2012; Wahl et al., 2014).  85 

However, these studies either focused on the mean SSLC or assessed changes in individual 86 

regions; changes of the SSLC over time in terms of amplitude and phase have not been 87 

comprehensively assessed on a global scale. Here, our central aim is to analyze how the annual 88 

component of the SSLC, hereafter referred to as the annual sea level cycle (ASLC), observed by 89 

tide gauges globally has varied in space and time. We extend previous analyses (e.g., Wahl et al., 90 

2014; Calafat et al., 2018) to a broader scope of the global coastline and add investigations of the 91 



annual phase component. We assess how much the amplitude and phase of the annual cycle has 92 

fluctuated around the mean in the past and identify recent trends. In this context, we also identify 93 

clusters of coherent variability in the annual amplitude for the North Atlantic coastlines, as an 94 

example, where we have a dense network of tide gauges. Finally, we compare relevant climate 95 

indices to the annual amplitudes to detect whether any significant relationships exist. By doing 96 

this, we provide a comprehensive description of spatiotemporal variability in the ASLC along 97 

gauged portions of the global coastline. 98 

  99 

2. Data 100 

Monthly MSL data measured by tide gauges was obtained from the Permanent Service for Mean 101 

Sea Level (PSMSL) database (Woodworth & Player, 2003; Holgate et al., 2013). The tide gauge 102 

data used are the revised local reference (RLR) subset. A total of 737 tide gauges located across 103 

the globe were chosen initially according to a minimum record length of 30 years. Since the 104 

focus of this study is on changes in the ASLC along the global coasts, 26 tide gauges were 105 

discarded based on locations in lakes, rivers, or near glaciers where the seasonal cycles of water 106 

levels are heavily influenced by different processes than the coastal ASLC (Amiruddin et al., 107 

2015; Tsimplis & Woodworth, 1994) and hence outside the scope of this study. An additional 48 108 

tide gauges were discarded after performing sensitivity analyses which revealed questionable 109 

data records (see Methods). This resulted in the final set of 663 tide gauges that are used to 110 

analyze the ASLC and its changes over time (see Figure 1 for the locations and record lengths). 111 

Additionally, climate indices were downloaded from the National Oceanic and Atmospheric 112 

Administration’s Physical Sciences Laboratory (NOAA PSL). The indices used are: El Niño 3.4, 113 



North Atlantic Oscillation (NAO), Atlantic Multidecadal Oscillation (AMO), and the Pacific 114 

Decadal Oscillation (PDO) because of their large-scale influence on climate.   115 

 116 

Figure 1. Number of years of monthly MSL data available from 663 tide gauges. Records longer 117 

than 100 years (72 tide gauges) are all shown in yellow.   118 

 119 

3. Methods 120 

3.1 Harmonic Analysis 121 

Following Wahl et al. (2014), we perform a harmonic analysis to deconstruct the MSL into the 122 

components of interest. We fit a regression model to moving 5-year windows with no more than 123 

two years of missing data (also see Section 3.2) of the monthly MSL time series and shift the 124 

window by one month each time step, as has been done in previous studies (Tsimplis & 125 

Woodworth, 1994; Plag & Tsimplis, 1999; Amiruddin et al., 2015): 126 

𝑀𝑆𝐿(𝑡) = 𝑀𝑆𝐿 + 𝑎𝑡 + 𝐴 cos 2𝜋(𝑡 − 𝑝 ) + 𝐴 cos . (𝑡 − 𝑝 )  (1) 127 



Equation 1 shows how the time changing MSL(t) is decomposed into six parameters: the MSL0 128 

(constant mean value) for the respective time window (where t is the time in years), a linear trend 129 

a, the annual and semi-annual amplitudes, 𝐴  and 𝐴 , and the annual and semi-annual phase, 𝑝  130 

and 𝑝 . The harmonic constituents are estimated at the central month of each 5-year time 131 

window (i.e., 30th month). Therefore, there are no values during the first and last 30 months. The 132 

phases are extracted from the model and calculated based on trigonometric theory (Eq. 2) in 133 

reference to a fixed time frame, so that the degrees can be interpreted as months of the year. 134 

January is the starting point at 0 degrees. Each calendar month of the year increases by 30 135 

degrees for the annual phase, reaching a total of 360 degrees by the end of December.  136 

Annual phase degree: 𝑝 = ( )(  )  (2) 137 

3.2 Sensitivity Analysis 138 

To assure robustness of our results, we perform different sensitivity tests. We compare Ordinary 139 

Least Squares (OLS) estimation to robust fit for deriving regression coefficients and we contrast 140 

the results against the Bayesian approach by Calafat et al. (2018) at select sites. We also apply 141 

jackknife resampling of the 5-year moving windows to assess how missing data (e.g., individual 142 

extreme years) can influence the results. Lastly, we test the precision of the phase estimates since 143 

our model returns phase degree values of daily resolution from monthly data.  144 

3.2.1 Models: Ordinary Least Squares Estimation vs. Robust Fit 145 

 We compared OLS and robust fit to estimate regression parameters and found that the models 146 

produce different results in some locations. In most places results are similar, but to identify tide 147 

gauges where data inconsistencies could lead to larger differences and influence our results, we 148 

select locations with maximum RMSE > 0.8 cm between models and a difference > 3 cm in the 149 



annual amplitude estimates. For some tide gauges where those thresholds are exceeded, we find 150 

vertical shifts due to earthquakes, e.g., in locations around Japan. We identify the change points 151 

and remove the years before or after datum shifts; if less than 30 years of consistent data are left, 152 

the tide gauges are discarded. In other places like the Baltic Sea, we also find several locations 153 

with > 3 cm differences in the amplitude estimates, but there are no notable discrepancies in the 154 

tide gauge records, many of which have been used in previous studies of the SSLC (e.g., 155 

Hunicke & Zorita, 2008; Barbosa et al., 2016); after carefully assessing the data quality those 156 

tide gauges were retained.  This process leads to a final set of 663 tide gauges, for which we use 157 

the results from the robust fit approach for further analysis.  158 

Calafat et al. (2018) studied the SSLC in the US Gulf and Atlantic coasts proposing a Bayesian 159 

method as an alternative to a harmonic analysis. Under certain conditions, the Bayesian method 160 

is more robust in capturing fluctuations, but it is also much more computationally demanding, 161 

especially for our global tide gauge analysis. After testing it for several stations, we find that the 162 

differences in the results are small (not shown) and do not affect our overall conclusions and 163 

hence we proceed with the simpler regression method.   164 

3.2.2 Jackknife Resampling 165 

The next sensitivity test we apply is jackknife resampling on the 5-year moving windows. For 166 

each 5-year window we remove data from one year and fit the model, then remove the next 167 

year’s data and fit the model, and so on, until all 5 years in the window were discarded. This 168 

gives for each time step five different estimates of the amplitudes and phases. At each tide gauge, 169 

we quantify the spread of the resampling results by calculating the range between the five 170 

different estimates of all model components. From this, we obtain a resampling-range value for 171 

each time step (i.e., every month). Next, we find the median resampling-range value for each tide 172 



gauge over time. For the annual amplitude component, we find that the median range of 173 

resampling results varies from 8 mm to 56 mm across tide gauge locations, with a median value 174 

of 18 mm and a standard deviation of 9 mm. From these results and previous literature (Tsimplis 175 

& Woodworth, 1994; Plag & Tsimplis, 1999; Amiruddin et al., 2015), we confirm that choosing a 176 

5-year time window for the harmonic analysis is a reasonable choice.       177 

3.2.3 Phase Precision Testing 178 

We produce 700 synthetic 5-year-long time series (to hypothetically represent 700 different tide 179 

gauge locations) of daily values of an annual sinusoid with known randomized phase. Then, we 180 

compute monthly averages from the daily values. We apply the harmonic analysis to these 181 

monthly time series to determine a phase estimate. To compute the error in estimation we take 182 

the difference between the estimated phase and the true phase that was initially input to create 183 

the synthetic data. From the distribution of 700 time series we incur an error in the phase 184 

estimates between 0 and 1.2 degrees different than the true phases. This shows that our model 185 

reliably estimates the phases at daily resolution despite the monthly resolution of the input data.  186 

         187 

3.3 Quantifying Changes in Amplitude 188 

From the moving harmonic analysis, we obtain time series of the MSL annual and semi-annual 189 

amplitudes. In this study we focus solely on changes in the annual amplitude because it is the 190 

dominant factor in most locations, apart from the tropics and a few sites in Antarctica where 191 

there are relatively fewer tide gauges (Vinogradov et al., 2008). Previous regional studies of the 192 

SSLC (e.g., Wahl et al., 2014; Calafat et al., 2018) also emphasized the annual component rather 193 

than the semi-annual, and in line with those studies the following discussions of amplitude and 194 



phase all refer to the annual component. In a first assessment, we derive the value of the 195 

maximum amplitude at all tide gauge locations and identify in which year it occurred. We do this 196 

for two time periods: the entire record of the respective tide gauge (for all 663 tide gauges), and 197 

the period post-1970 (for 636 tide gauges with data after 1970). We further quantify the relative 198 

variability in annual amplitude by deriving the standard deviation and the ratio between the mean 199 

amplitude and the maximum amplitude.   200 

To assess long-term changes, we fit a linear trend to the annual amplitude time series of that 201 

same subset focusing on the post-1970 period to derive comparable results across sites. The 202 

significance of the trends is assessed with a noise experiment. We run the harmonic analysis on 203 

synthetic time series generated from a stationary seasonal cycle (using the mean at each tide 204 

gauge) and non-seasonal MSL variability representative of each tide gauge location. The latter is 205 

derived by fitting a first-order autoregressive (AR1) model to the detrended and de-seasoned 206 

MSL time series. We generate 500 synthetic time series which are all combined with the same 207 

stationary seasonal cycle. Then, the 5-year running harmonic analysis is performed and 500 trend 208 

estimates are derived for each tide gauge, from which we obtain 5-95% confidence levels and 209 

assess whether the trend from the actual data falls outside that range.  This quantifies whether the 210 

estimates obtained could have occurred by chance from a random red-noise process (representing 211 

the non-seasonal variability) and an invariant seasonal cycle.  212 

Finally, following Calafat et al. (2018), we also assess changes in the number of 95th percentile 213 

threshold exceedances of the amplitude. In combination with the linear trend analysis and the 214 

assessment of when the maximum amplitude occurred, this provides additional insights about 215 

amplitude changes. We compare the difference between the number of 95th percentile threshold 216 

exceedances that occur in the last decade of the record to the number of exceedances in the first 217 



decade post-1970 at tide gauges with at least 20 years of data after 1970 and no more than 10 218 

years of continuous data gaps in that time period (559 tide gauges).  219 

 220 

3.4 Changes in Phase 221 

To identify changes in the phase we use circular statistics (Berens, 2009). This method has been 222 

used in previous studies to measure the seasonality of flooding (Villarini, 2016; Veatch & 223 

Villarini, 2020) and across other scientific fields that apply periodic data such as phases of the 224 

moon, wind direction, animal migration paths, neuroscience, criminology, and more (Bowers et 225 

al., 2000; Gao et al., 2006; Cochran et al., 2004, etc.). In our study, the phase describes when 226 

during the year MSL reaches its maximum. Quantifying phase over different 5-year windows 227 

allows us to evaluate whether the peaks of the ASLC for a location have shifted over time. 228 

Circular statistics allow the phase to vary continuously across 0 (360) degrees into the next year. 229 

For example, in some locations, the ASLC generally peaks between August to September (phase 230 

of 210-270 degrees), whereas in others the range spans across calendar years, for instance, 231 

November to January (300-30 degrees). 232 

Considering the angular nature of the data, to accurately reflect instances where the range may 233 

cross over 0 degrees, we compute the circular standard deviation defined as: 234 

𝑠 =  √−2𝑙𝑛𝑅      (3) 235 

where R is the resultant vector length (Berens, 2009). R gives a value from 0 to 1 describing a 236 

uniform dispersion (0) throughout the polar circle plane, or concentration in one direction (1). In 237 

this application, a phase concentrated in one direction (with an R value near 1) implies a stronger 238 



seasonality, meaning the seasonal pattern is more evident of distinct monthly fluctuations, 239 

instead of dispersed throughout the months of the year.  240 

 241 

3.5 Regional Coherence and Links to Climate Modes 242 

To identify spatial coherence across locations, we apply a clustering algorithm to group tide 243 

gauges according to their patterns of ASLC amplitude changes (Li et al., 2021). We use the k-244 

means Dynamic Time Warping (DTW) approach via Python’s “tslearn” package (Tavenard et al., 245 

2020). k-means partitions the data into k number of clusters, or groups, based on their similarity 246 

(MacQueen, 1967). The similarity is commonly measured by the squared Euclidean distance of 247 

the data points, but in this study, we instead use a modification of k-means where we apply DTW 248 

as the similarity measure because it detects similar patterns in the time series regardless of 249 

whether those features are contemporaneous (Aghabozorgi et al., 2015). DTW warps the path 250 

between time series by choosing the closest points between the time series based on the 251 

Levenshtein distance calculation (Petitjean et al., 2011). Cluster centroids are computed for each 252 

resulting group of time series, where the centroid represents an average sequence that is followed 253 

by the rest of the time series within the respective cluster via DTW barycenter averaging (DBA). 254 

The amplitude time series are scaled to have zero mean and unit variance to disregard the 255 

magnitude of the changes, since our goal is to identify regions where relatively high or low 256 

values occur (near-)simultaneously. This approach captures flexible similarities and focuses on 257 

similar trajectories between the time series, allowing us to cluster according to the shape of the 258 

time series rather than the range of the data.   259 



We focus on clustering tide gauges within the North Atlantic basin because of its dense network 260 

of tide gauges with long overlapping periods, and thus, we satisfy the requirement of the 261 

algorithm to use a consistent time frame across tide gauges. For this analysis, we select the 262 

period from 1990 to 2009 to retain a relatively large number of tide gauges with overlapping 263 

records and reasonable coverage of the entire North Atlantic coast. To determine the optimal 264 

number of clusters we use the elbow curve method as guidance (Camus et al., 2011), where we 265 

compute the standard deviation across time series in a cluster as a function of varying numbers of 266 

clusters, and we check the tipping point of the curve. For each cluster we compute the percent 267 

variance explained (PVE) by the mean time series of the cluster (Rashid et al., 2019). This shows 268 

how much of the variability in amplitude is explained by the cluster mean. Here we take the 269 

variance of the amplitude time series for each tide gauge in a cluster (scaled with unit variance = 270 

1), subtract the cluster mean from each individual time series, and compute the variance again. 271 

The difference between the initial variance and the resulting variance after removing the cluster 272 

mean reveals what portion of the variability in amplitude was contributed by the cluster mean. 273 

We multiply this value by 100 to obtain the PVE.  274 

Lastly, we perform a correlation analysis of the annual amplitudes from individual tide gauges 275 

with anomalies of relevant climate indices during overlapping time periods at tide gauges with 276 

records at least 30 years complete after accounting for data gaps. The time series of the climate 277 

indices are smoothed with a 5-year running average in order to compare with the results of the 278 

harmonic analysis. The significance of the correlation coefficient is assessed at the 90% 279 

confidence level by the effective sample size considering autocorrelation (He & Guan 2013; 280 

Rashid et al., 2019). 281 

 282 



4. Results 283 

4.1 Changes in Amplitude 284 

In agreement with Pugh & Woodworth (2014), the highest mean annual amplitudes, exceeding 285 

20 cm, are found mainly in East Asia and northern Australia (Figure 2a). Small mean amplitude 286 

values below 6 cm are distributed throughout the globe including along the east coast of Canada, 287 

the west coast of South America, Pacific Islands, and South Africa (Figure 2a). About 95% of the 288 

663 tide gauges analyzed have a mean amplitude below 17 cm, and only 1% above 20 cm. 289 

However, approximately 10% reach a maximum amplitude above 20 cm at some point 290 

throughout their record, when accounting for non-stationarity. As shown in Figure 2b, these 291 

larger maximum amplitudes are located across the Northern Hemisphere and a few in northern 292 

Australia.  293 

294 
Figure 2. Global maps of annual MSL amplitudes for 663 tide gauges. (a) Mean annual 295 

amplitude of MSL (cm). The colorbar is cut off at 18 cm where 26 tide gauges above 18 cm are 296 



shown in yellow. (b) Maximum annual amplitude of MSL (cm) of the entire record where 111 297 

tide gauges with values above 18 cm are shown in yellow. (c) The standard deviation of the 298 

annual amplitude. The color bar is cut off at 3 standard deviations where 59 tide gauges with a 299 

standard deviation above 3 are shown in yellow. (d) The ratio of the mean annual amplitude to 300 

the maximum annual amplitude for each respective tide gauge.  301 

 302 

We find that over 75% of the 663 tide gauges’ annual amplitudes peak after 1970. When 303 

considering only the post-1970 period, over half of the 636 tide gauges with records past that 304 

time frame peak after 1990 (Figure 3), and over half in the North American region peak during 305 

the most recent decade (after 2010). In northern Europe there is a concentration of peak 306 

amplitudes that occur before 1990, while the earliest peaks (1970s) occur in the northern Russian 307 

coast and at several other locations around the globe. 308 

 309 

Figure 3. Year when the annual amplitude of MSL peaks for the period post-1970 for 636 tide 310 

gauges.  311 



 312 

We consider a subset of 559 tide gauges for the trend analysis (Figure 4a). The subset is 313 

composed of tide gauge records that fulfill the following criteria: they cover the period 1970 314 

onwards, include more than 20 years of data after 1970, and they have no more than 10 years of 315 

continuous data gaps. Significant trends in annual amplitude at the 95% confidence level 316 

(according to the noise experiment described in Section 3.3) occur at a total of 125 locations. Out 317 

of those, 62 are positive and 63 are negative across the globe. Over 90% of the tide gauges with 318 

significant trends show amplitude changes at a rate greater than +/- 0.5 mm/year, and 66 tide 319 

gauges greater than +/- 1 mm/year (Figure 4a). 320 

At 60 tide gauges, we find that the 95th percentile of the amplitude is exceeded more often during 321 

the most recent decade of the records than during the first decade post-1970. In 34 locations, 322 

there are more exceedances during the first decade post-1970, and there is no change of 323 

exceedances in 31 tide gauges (Figure 4b). Taking Key West as an example, over its entire 324 

record, there are 61 out of 1225 months when the annual amplitude exceeds its 95th percentile of 325 

about 10 cm; these exceedances all occurred after the year 2000, and 45 of those between 2007 326 

and 2011. Neighboring tide gauge stations throughout Florida, Georgia, and the Carolinas also 327 

exhibit annual amplitudes exceeding their 95th percentiles during the last decade, but none at the 328 

beginning of their records. In Florida, for example, half the tide gauges have over 25 monthly 329 

exceedances more during the last decade of available data; the other half show no difference in 330 

exceedances between the two periods. 331 

Globally (across all regions where tide gauge data are available), the largest difference between 332 

the number of exceedances is found along the Gulf of Mexico and east coast of the US with 28 333 

more monthly exceedances of the 95th percentile occurring during the most recent decade than 334 



during the 1970s. In contrast, the Baltic experienced higher amplitudes during the 1970s (up to 335 

24 more months exceeding the 95th percentile in Kalix, Sweden) than during the most recent 336 

decade in most of their tide gauges. This corresponds with the negative amplitude trends 337 

observed in the Baltic. Note that these locations still exhibit significant trends in amplitude over 338 

the continuous portion of the record post-1970, although the change is not captured in comparing 339 

merely the first and last decades of the post-1970 record. Strong values in both the trend (Figure 340 

4a) and the difference of 95th percentile exceedances (Figure 4b) indicate a continuous trend 341 

post-1970, whereas a small trend with a large difference of exceedances between the first and 342 

last decades indicates a relatively flat curve (i.e., small trend) with a recent sharp increase (i.e., 343 

large difference in 95th percentile exceedances). On the other hand, a strong trend with small 344 

difference in exceedances would indicate a continuous increase over much of the record but a 345 

recent decline.  346 



347 
Figure 4. (a) Trends in annual amplitude (mm/year) shown for tide gauges with records at least 348 

20 years long for the period after 1970. Results are shown for 125 tide gauges where trends are 349 

significant at the 95% confidence level estimated by the noise experiment. For illustration 350 

purposes the color bar is cut off at 2 mm (15 tide gauges have trends with a magnitude over 2 351 

mm). (b) Difference in the number of times (months) that the annual amplitude exceeds its 95th 352 

percentile between two time periods: the last decade of the tide gauge record and the first decade 353 

of data post-1970. If the difference is positive, it indicates that the annual amplitude exceeded its 354 



95th percentile more often during the last decade of the record than during the first decade post-355 

1970.  356 

4.2 Changes in Phase 357 

Globally, the mean annual phases for most tide gauge locations (431 out of 663) indicate an 358 

ASLC peak during the fall season of the respective hemisphere, following the time integral of 359 

solar heating (September to November for the Northern Hemisphere; March to May for the 360 

Southern Hemisphere) (Figure 5a). For the rest of the sites, it peaks during summer in 159 tide 361 

gauges, 62 in winter, and 11 in spring. In addition to the mean of the phase, we also assess its 362 

variability (Figure 5b) to quantify how dispersed the peaks are during the year. 363 



 364 

Figure 5. (a) Global map of circular mean annual phase (degrees) where each calendar month is 365 

represented by 30-degree increments (b) Circular standard deviation of phase (degrees). The 366 

color bar is cut off at 30 degrees where 36 tide gauges with a circular standard deviation above 367 

30 degrees (1 month) are shown in yellow. 368 



 369 

Recalling that 30 degrees represent approximately one month, regions such as the Mediterranean, 370 

Baltic Sea, and the northeast coast of North America are some hotspots where the phase vary 371 

most over time (> 30 degrees). For example, Brest (France) has a circular standard deviation 372 

value of 23 degrees, and in the Baltic Sea the tide gauge of Swinoujscie (Poland) has a circular 373 

standard deviation of 34 degrees. In contrast, the region around Japan exhibits small values 374 

between 0 to 5 degrees, indicating that the peak of the annual cycle always occurs around the 375 

same time.   376 

 377 



 378 

Figure 6. (a) De-trended monthly MSL plotted for each month of the year (grey) for the length 379 

of the respective tide gauge record. The black line represents the long-term mean and the blue 380 

line represents the median. (b) The month in which the annual phase (degrees) occurs over time. 381 

Color bar represents the time step of the record in years. The radius of each circle on the polar 382 



plot represents the annual amplitude (cm). Months in red font represent the summer season and 383 

blue font represents the winter season of the respective hemisphere.  384 

 385 

In Key West (Florida), the circular standard deviation is also small (8 degrees). At this location, 386 

the ASLC peaks between September and October (Figure 6a), and the greater amplitude values 387 

(above 10 cm) start to occur after 1993 (Figure 6b). Similarly, in St. Petersburg (western 388 

Florida), the phase indicates that the ASLC peaks have shifted from the month of August to 389 

September in recent years. Similar results for St. Petersburg were reported in Wahl et al. (2014). 390 

Brest (France), on the other hand, typically peaks between October and December, although in 391 

recent years, some peaks occurred in January. At the tide gauge of Swinjouscie (Poland), the 392 

annual cycle peaks mostly between July to October, but with high variability including peaks 393 

across all months of the year (Figure 6c). 394 

 395 

4.3 Regional Coherence of Amplitude Changes 396 

The geographic clustering of the time-variable ASLC amplitudes is performed separately for the 397 

northwestern and northeastern Atlantic basins, following similar regionalization boundaries as in 398 

Enriquez et al. (2020). For this analysis, we use tide gauge records covering the period from 399 

1990 to 2009, resulting in 49 tide gauges in the northwestern and 115 tide gauges in the 400 

northeastern Atlantic regions, respectively. As mentioned in Methods, the analysis is restricted to 401 

this time period in order to retain the maximum amount of tide gauges with overlapping records 402 

and data completeness, while achieving reasonable coverage of the coastline. Note that we 403 

include the Mediterranean Sea, but we omit tide gauges located in the Black Sea. After testing 404 



several numbers of clusters suggested by the elbow curve (see Methods), we chose to use 4 405 

clusters for the northwestern and 8 clusters for the northeastern Atlantic regions.  406 

Tide gauges in the northwestern Atlantic region show spatial coherence in the ASLC amplitude 407 

time series, especially in the southeastern US and Gulf of Mexico coastlines (Cluster 3 in Figure 408 

7). Similarly, tide gauges north of Cape Hatteras are distinguished as a separate cluster (Cluster 409 

1). Both clusters exhibit an upwards tendency, particularly after 1996. Meanwhile, the amplitude 410 

time series of the northernmost tide gauges in Canada (Cluster 4) are less resemblant to their 411 

cluster mean (red time series in Figure 7b). In addition to the complexity of the region’s bay 412 

systems and bathymetry, this is a limitation of the algorithm because it forces every time series to 413 

be part of one of the clusters even if it doesn’t match the other cluster members well.   414 

415 

Figure 7. Clustering (k-means DTW) annual amplitude time series from the period of 1990 to 416 

2009. (a) Map of 49 tide gauges in the Northwest Atlantic region and the clusters they were 417 

assigned. (b) Annual amplitude time series of the individual records within clusters (grey) and 418 

the mean cluster time series (red).  419 



In the northeastern Atlantic region (Figure 8), Cluster 4 (green) in the Baltic along the Gulf of 420 

Bothnia and Cluster 3 (red) along the Norwegian Sea share similar patterns in their mean cluster 421 

time series (Pearson correlation of 0.58); with the northern Baltic gauges (Cluster 4) having more 422 

pronounced fluctuations. Cluster 3 (red) coherently groups the ASLC patterns of tide gauges 423 

along Norway and the east coast of the United Kingdom (UK). However, three tide gauges 424 

grouped into this cluster (orange dots in Figure 9a) are located elsewhere (Vigo and Ceuta in 425 

Spain, and Khios in Turkey). Other geographic clusters comprise tide gauges along the southern 426 

North Sea (Netherlands, Belgium, France) (Cluster 6), and the complex Skagerrak (Cluster 5) 427 

and Kattegat regions (Cluster 2). Cluster 1 is most dispersed geographically (Figure 9a) and in 428 

terms of the differences of the time series within the cluster (Figure 9b); it includes tide gauges 429 

from the northwestern UK, English Channel, northern Spain, and Adriatic Sea, which may show 430 

some similarities within sub-regions but do not fit well into any of the other clusters. Cluster 8 431 

includes a very small number of tide gauges. 432 

 433 



Figure 8. Clustering (k-means DTW) annual amplitude time series from the period of 1990 to 434 

2009. (a) Map of 115 tide gauges in the Northeast Atlantic region (Europe) and the clusters they 435 

were assigned. (b) Annual amplitude time series of the individual records within clusters (grey) 436 

and the mean cluster time series (red). 437 

 438 

The percent variance explained (PVE) by each cluster's mean time series (Figure 9) shows how 439 

well the cluster mean describes the overall amplitude pattern of the individual tide gauges 440 

pertaining to the cluster. Low, near-zero percentages indicate that for certain outlier tide gauges, 441 

the mean time series of the cluster (red time series in Figures 7 & 8) does not explain the 442 

amplitude variability at those locations. In the Northwest Atlantic the median PVE of Cluster 1 443 

(north of Cape Hatteras) is the highest (92%), as the mean cluster time series explains 67% to 444 

97% of the variance of the individual time series in the cluster. Cluster 4 has the lowest median 445 

value (52%) and only explains between 0% to 65% of the variability of the individual time 446 

series. 447 



 448 

Figure 9. Boxplots of the percent variance explained (PVE) by the mean time series of each 449 

cluster. The colors of the boxes match the cluster to which it pertains on the maps in Figures 7a 450 

and 8a; the horizontal red lines are the medians, the red crosses (+) are outliers, and the bottom 451 

and top edges of each box represent the 25th and 75th percentiles. 452 

 453 

For the Northeast Atlantic, clusters 2, 4, and 7 all have high median values and a small spread, 454 

indicating that the variability of all time series within the clusters is well explained by the mean 455 

cluster time series. Cluster 6 also has a relatively high median but a wider spread, whereas 456 

Cluster 8 has a low median value but also a low spread (likely due to the small number of tide 457 

gauges in this cluster). Clusters 1, 3, and 5 all show a very large spread, while the median values 458 

are also relatively high, especially for cluster 5.   459 



 460 

Figure 10. Correlation of annual amplitude to anomalies of climate indices for the overlapping 461 

time periods with at least 30 years of full data coverage. Smaller dots represent tide gauges 462 

whose correlation was not significant at the 90% confidence level according to the effective 463 

sample size and autocorrelation (He & Guan 2013). For illustration purposes, the color bar cuts 464 

off correlations with a magnitude greater than 0.5. 465 

 466 

In order to link the ASLC amplitude variability to large scale climate variations, we perform 467 

comparisons to anomalies of relevant climate indices (smoothed with a 5-year running mean for 468 

comparison with the results of the running harmonic analysis) by computing the correlation 469 

coefficient for overlapping time periods when those are at least 30 years long (Figure 9). The El 470 

Niño 3.4 Index correlates significantly with the ASLC amplitude changes at 36 out of the 423 471 



tide gauges. In the northeastern Pacific there is strong positive correlation (up to 0.5 correlation 472 

coefficient) with tide gauges on the western US coast. The NAO, AMO, and PDO show 473 

significant correlations at 24 out of 326, 27 out of 328, and 36 out of 328 tide gauges, 474 

respectively. The NAO and AMO correlate positively with the annual amplitudes at tide gauges 475 

in the western coast of North America. The AMO also correlates positively with tide gauges on 476 

the eastern coast of the US, and negatively with those in the Baltic Sea. The PDO shows coherent 477 

positive correlation along the coast of the Norwegian Sea.  478 

 479 

5. Discussion 480 

Previous literature has documented the amplitude of the seasonal cycle in MSL for different parts 481 

of the world. This analysis goes further (focusing on the ASLC) to investigate those changes over 482 

time for the entire global coast where tide gauge data is available. From assessing the mean 483 

SSLC globally, Pugh & Woodworth (2014) display comparable amplitude and phase outputs 484 

resulting from a harmonic analysis of tide gauges in the same dataset (PSMSL) that we use in the 485 

present study. Vinogradov et al. (2008) studied the SSLC’s amplitudes and phases globally 486 

including the open oceans using satellite data; they focused on the climatological means of a 13-487 

year period. Their estimates differ slightly from ours; for example, most amplitude values they 488 

found were < 10 cm, (in a few cases reaching 15 cm), whereas we find that 95% of the tide 489 

gauges have mean amplitudes of 17 cm or more (with several locations over 20 cm). This 490 

indicates that altimetry data may underestimate the SSLC amplitudes along the coast, especially 491 

because their study does not consider barometric pressure effects and the inverted barometer. Our 492 

data still retain air pressure effects, which may explain some of the differences, particularly at 493 

higher latitudes (Ponte, 2006). However, the general spatial patterns are consistent in that we 494 



observe relatively higher amplitude values in the Western Pacific, specifically in regions like 495 

East Asia and Northern Australia.  496 

Wahl et al. (2014) used the same approach as we do here to assess non-stationarity for the US 497 

Gulf Coast where they compared the amplitude changes pre- and post-1990s. In our study we 498 

highlight the time periods of the first decade containing data post-1970 and the last decade of 499 

each respective tide gauge record. For the South China Sea, Amiruddin et al. (2015) explored the 500 

temporal variability in the SSLC and found some high variability in the annual amplitudes, 501 

which coincides with our results showing that some locations in this region can reach up to 2.8 502 

standard deviations from their annual amplitude. Annual amplitudes have varied over time at 503 

most of our study locations. At over 75% of all the tide gauges analyzed, the maximum 504 

amplitudes occurred after 1970, with a tendency to peak during the most recent decade in North 505 

America. Small ratios of mean to maximum ASLC values reveal locations where amplitude 506 

changes are more apparent. For example, the smallest ratios are found in Alexandroupolis within 507 

the Mediterranean Sea, Pago Pago, Midway Island and La Libertad II in the Pacific, and Dikson 508 

and Fedorova in Russia where we speculate influences by changes in seasonal ice cover (Ruiz 509 

Etcheverry et al., 2014).  510 

Our estimates of circular mean annual phase indicate that for most of the tide gauges in our 511 

global analysis, the ASLC peaks during the fall season, which overlaps with the most active 512 

storm seasons in the Pacific and Atlantic basins (Oey et al., 2016; Roustan et al., 2022). To 513 

identify where the phase deviates from its mean over time, we map the circular standard 514 

deviation of the phase (Figure 5b). We notice several regions that exhibit a high circular standard 515 

deviation such as the Mediterranean, Baltic, some Pacific Islands, and the northeastern coast of 516 

North America. The latter region includes several tide gauges located in river mouths or 517 



(complex) bay systems where river runoff can influence the seasonal cycle (Pugh & Woodworth, 518 

2014). For instance, the tide gauge at Bar Harbor in Frenchman Bay, Maine (circular standard 519 

deviation of 32.3 degrees) exhibits a phase shift from May to October in the beginning of the 520 

record but is more concentrated from June to August past the 1980s and has remained between 521 

July and August after the late 1990s. This region of high deviation is one of comparatively low 522 

mean amplitude values (around 6 cm or less).  523 

Another extreme example with a very dispersed phase (circular standard deviation of 34 degrees) 524 

is Swinoujscie, Poland, where peaks have occurred during every month of the year at some point 525 

in the record; although most of those peaks are observed during July, August, and September. In 526 

general, we find that locations with a higher circular standard deviation of the phase have a less 527 

pronounced seasonal cycle (Dunne et al., 2012) and contain more interannual variability in the 528 

ASLC amplitude. Locations with a more discernable seasonal pattern (e.g., Japan, Key West, 529 

etc.) have less deviation in their phase. For example, locations where the ASLC is not very 530 

pronounced are found in the Mediterranean, specifically in Greece, and also in the Pacific Island 531 

of Pago Pago, and South Africa. Locations of high standard deviation (where the phase spreads 532 

out around a month or more) are scattered around the globe but most commonly found in (semi-533 

)enclosed basins, Pacific Islands, and near bays. Large circular standard deviation values are also 534 

found in Russia, which is a distinct region due to its proximity to the poles. 535 

From our cluster analysis (Figure 8), tide gauge stations along the southeast US coast (Cluster 3) 536 

and those north of Cape Hatteras (Cluster 1) show increasing ASLC amplitudes after the 1990s, 537 

with trends of 0.5 mm/year or more. For example, in Key West FL, the amplitude values did not 538 

surpass 10 cm until 1993. For the southeast US similar results were reported in Calafat et al. 539 

(2018). More than 90% of the 125 tide gauges with significant trends post-1970 show amplitude 540 



changes at a rate of +/- 0.5 mm/year or more. Figure 4a shows strong negative trends for 541 

locations in the Baltic Sea where the annual amplitude is decreasing more than 2 mm/year in 542 

some parts. Hunicke and Zorita (2008) find increasing trends in the amplitude in their study of 543 

the Baltic Sea, but they analyzed the entire 20th century whereas our trend analysis takes data 544 

from the 1970s onwards, including more recent data than was available at the time of their study. 545 

While annual amplitudes in the Baltic have followed an increasing centennial trend, it turned 546 

negative for the last several decades. Although the amplitude was found to have changed over 547 

time, the phase has remained relatively stable in the Baltic. That is, as reported by Hunicke and 548 

Zorita (2008), low peaks occur in spring months and high peaks in winter which aligns with our 549 

findings. They also point out the Gulf of Bothnia (our Cluster 4 in the European region shown in 550 

Figure 9) as having higher interannual and decadal variability than the rest of the Baltic, which 551 

explains the more distinct fluctuations in the Cluster 4 amplitude time series as compared to the 552 

southern Baltic gauges belonging to Cluster 7. Tide gauges in the Baltic showed no significant 553 

correlation in their annual amplitudes related to the rest of the climate indices tested except for 554 

significant negative correlation to the AMO.  555 

When clustering the northwestern Atlantic region post-1990, we find strong regional coherence 556 

among Cluster 1 and Cluster 3, located to the north and south of Cape Hatteras, respectively. 557 

Their cluster means explain over 95% of the variances in the annual amplitude time series of the 558 

tide gauges clustered. While both show increasing amplitudes, the variability is different, as also 559 

reported by Calafat et al. (2018). Cape Hatteras is the point where the Gulf Stream detaches from 560 

the coast, and Woodworth et al. (2014), for example, suggest wind-forcing and the Atlantic 561 

Meridional Overturning Circulation (AMOC) to play a role in the distinction of MSL variability 562 

in the regions north and south of Cape Hatteras on decadal timescales. Notably, the AMO Index 563 



reached a positive phase after the 1990s, indicating anomalously higher sea surface temperatures 564 

in the North Atlantic basin during the time period of our clustering, which affects thermal 565 

expansion of the water column in the region and could be a possible contributor to the ASLC 566 

changes we find. Along the North Atlantic coast of the US we find positive correlations between 567 

the annual amplitudes and the AMO index, while in the Baltic Sea we find negative correlations 568 

during the overlapping time periods. A more detailed attribution of the observed changes to 569 

physical processes is beyond the scope of this study.  570 

 571 

6. Conclusions 572 

We performed a global coastal ASLC analysis. Using a harmonic regression and clustering 573 

methods, we assessed mean values for the ASLC components and quantified changes over time, 574 

identifying hotspots where either amplitude or phase changes were most pronounced. Globally, 575 

we find higher mean annual amplitudes along the coasts of the Pacific and Indian Ocean. In such 576 

places, the ASLC plays a significant role in local seasonal sea level variability. Changes in the 577 

ASLC amplitude feature spatial variability across the globe, but when focusing on the North 578 

Atlantic we find coherent variations in individual regions especially on the east coast of the US. 579 

Changes in the annual amplitude over time were significant (according to a noise experiment) in 580 

125 locations, with both negative and positive trends.  581 

In addition to the annual amplitudes, we also assessed the variability in the annual phases and 582 

found that the peaks in sea level tend to occur during the fall season of the year for the respective 583 

hemispheres, but some tide gauge locations exhibit strong variability or long-term changes in the 584 

phase over time. For example, tide gauge sites in the Pacific Islands and in the Mediterranean 585 

have phases dispersed throughout many months of the year. Both changes reported here in terms 586 



of annual amplitude and phase can lead to higher base water levels on which storm surges or 587 

extreme waves can be superimposed, thereby leading to increased flooding risk. Finally, we also 588 

link changes in the ASLC amplitudes to climate indices such as the AMO which is negatively 589 

correlated with tide gauges in the Baltic Sea. ASLC variations in the deep ocean differ from 590 

those in shallow water (Pugh & Woodworth, 2014) analyzed here. Therefore, it is of interest to 591 

extend our analysis of the ASLC beyond coastal tide gauges by incorporating satellite altimetry 592 

and ocean model data to fully capture the global behavior of the ASLC. Based on the results 593 

presented and discussed here, future research steps could include (1) using model experiments to 594 

identify the underlying mechanisms of ASLC variation; (2) incorporating offshore locations in 595 

understanding ASLC patterns and their seasonal changes globally; (3) linking the MSL 596 

seasonality patterns to the other extreme sea level oceanographic components such as ocean 597 

wave and storm surge events (Reinert et al., 2021); and (4) linking ASLC and extreme sea level 598 

variability to atmospheric patterns and drivers at multiple timescales.  599 
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