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Key Points:  11 

 APCC, which combines all the information from different ensemble prediction systems, 12 

recently faced challenges in hindcast period issues 13 

 The proposed solution leads to an increase in the number of models contributing to MME 14 

prediction, particularly recently developed models 15 

 It shows improved skills for both temperature and precipitation predictions over most of 16 

the globe and seasons 17 



 

Abstract  18 

Seasonal forecasts are commonly issued in the form of anomalies, which are departures from the 19 

average over a specified multiyear reference period (climatology). The model climatology is 20 

estimated as the average of the retrospective forecasts over the hindcast period. However, 21 

different operational centers that provide seasonal ensemble predictions use different hindcast 22 

periods based on their model climatology. Additionally, the hindcast periods of recently 23 

developed and upgraded newer models have shifted in the recent years. In this paper, we discuss 24 

the recent challenges faced by APCC multi-model ensemble (MME) operations, especially 25 

changes in the hindcast period for individual models. Based on the results of various experiments 26 

for MME prediction, we propose changing the hindcast period, which is the most appropriate 27 

solution for APCC operation. This makes the newly developed models join the MME and 28 

increases the total number of participating models, which facilitates the skill improvement of the 29 

MME prediction.  30 

 31 

Plain Language Summary  32 

In seasonal forecasting, it is well known that the MME, which combines different single-model 33 

predictions from various operational and research centers, is a more effective way to improve 34 

forecast skill. Since 2005, the APCC has provided the MME seasonal forecasts, and the models 35 

participating in the APCC MME operations have been continuously changing. In particular, as 36 

the hindcast periods of newly developed models shift to the latest, they cannot participate in 37 

operational MME forecasts because of climatological discrepancies. However, over time, as the 38 

number of new models expected to provide skillful forecasts gradually increases, the APCC 39 

faces the challenge of continuously reducing the number of participating models or changing the 40 

hindcast period to more recent years. Considering various aspects such as the number of 41 

participating models, skills, and climatology period, we selected the most appropriate method for 42 

APCC operation. Thus, the MME prediction skill has improved over most of the globe and 43 

seasons because of the increase in the number of participating models, particularly the inclusion 44 

of newer models.  45 



 

1 Introduction 46 

Seasonal forecasts are commonly expressed in terms of anomalies, as departures from the 47 

climatological mean and/or probabilities of an event occurring with respect to a climatological 48 

distribution (usually, tercile-based categorical forecasts). This allows users to see whether the 49 

predicted seasonal mean variables are anomalously positive or negative with respect to 50 

climatological means, and/or what probability of the events (e.g., above, near, or below-normal 51 

category) is expected. Therefore, climatology is used as a benchmark or reference against which 52 

the expected conditions are likely to be experienced. It also provides a way to remove systematic 53 

biases in forecasts from dynamical prediction systems by subtracting model climatology, because 54 

they are not perfect representations of the real world (Stockdale, 1997; Kumar et al., 2012). The 55 

model climatology is estimated using retrospective forecasts (hindcasts) over a specified long-56 

term reference period.  57 

World Meteorological Organization (WMO) recommends climatology (normals) to be 58 

estimated as 30-year averages computed for the most-recent 30-year period finishing in a year 59 

ending with 0 (WMO, 2007), i.e., 1991-2020 at present. National Meteorological and 60 

Hydrological Services (NMHSs) estimate forecasts as departures from these 30-year normals in 61 

their locations. However, different operational and research centers have different hindcast 62 

periods resulting in the use of different climatology periods for model climatology. Furthermore, 63 

the hindcast periods of recently developed and improved climate models, particularly beginning 64 

of the hindcast period, tend to shift to recent years. The Asia-Pacific Economic Cooperation 65 

(APEC) Climate Center (APCC) is one of the major operational centers providing well-validated 66 

multi-model ensemble (MME) seasonal forecasts. Since its establishment in 2005, APCC has 67 

collected dynamical ensemble forecasts through multi-institutional cooperation and coordinated 68 

MME predictions. At present, 15 leading operational and research institutes from 11 countries 69 

are involved in APCC operational MME prediction. MME operational centers, such as APCC 70 

(Min et al., 2014, 2017), WMO Lead Center for Long-Range Forecast (WMO LC-LRF; Kim et 71 

al., 2021), North American MME (NMME; Becker et al., 2014; Kirtman et al., 2014), and 72 

Copernicus Climate Change Service (C3S; Manazanas et al., 2019) use a common hindcast 73 

period for all participating models, which results in a relatively short period compared to that of 74 

single-model prediction systems. For example, APCC used the hindcast period in the early 20 75 



 

years covering from early-1980s to the mid-2000s and extended it to 28 years in 2019, 1983-76 

2010. 77 

As the hindcast periods for recently developed newer models have gradually shifted to 78 

later years, the full range of hindcast periods for the dynamical models routinely running in 79 

operational centers has widened, from early-1980s to late-2010s nowadays. However, the 80 

common hindcast period is rather short because of shift in the newer models’ hindcast periods 81 

beginning in the early 1990s. This raised a new issue at APCC, which combines all the 82 

information from different climate prediction systems, particularly in 2019. This is because some 83 

of the models included in the operational APCC MME prediction were expected to change to 84 

their upgraded versions in 2020, and their hindcast periods shifted to more recent years. That is, 85 

with the implementation of new models, if the common hindcast period, 1983-2010, were 86 

maintained, the number of participating models in the MME would have been reduced and 87 

would be gradually reduced in the future because recently developed models that are expected to 88 

have better skills do not match this common hindcast period. This may lead to deterioration of 89 

the MME prediction skill. Therefore, APCC has come to consider the issue of the hindcast 90 

period, which could affect the number of participating models in the MME and eventually the 91 

MME skill. This study discusses the challenges faced by MME operations caused by upgrading 92 

participating models. In particular, we focus on the decrease in the number of participating 93 

models in MME prediction with a shift to the later years of the hindcast periods of recently 94 

developed models. We suggest the most appropriate solution for the APCC operation based on 95 

several experiments with the different hindcast periods and different numbers of participating 96 

models in the MME. 97 

 98 

2 Data and Method 99 

2.1 Forecast data  100 

With the most recent joining of System 8 from Met France (METFR; http://www.umr-101 

cnrm.fr/IMG/pdf/system8-technical.pdf), APCC currently collects ensemble predictions from 15 102 

state-of-the-art climate models, and the models are being continuously improved with great 103 

efforts from their own operational and research centers. The MME prediction system largely 104 



 

depends on operational changes for the modeling centers, and the participating models in the 105 

MME operation for each year and season differ slightly depending on the operational situation at 106 

that time. The collected models through the APCC multi-institutional cooperation for research 107 

and operation purposes in 2019 and 2020 are listed in Table 1. In 2019, the operational MME 108 

prediction comprised eight models from APCC (SCoPS; Ham et al., 2019), BOM (POAMA; 109 

Cottrill et al., 2013), CWB (GFST119; Paek et al., 2015), JMA (MRI-CPS2; Takaya et al., 2018), 110 

MSC/ECCC (CanSIP; Merryfield et al., 2013), NASA (GEOS-S2S-2; Molod et al., 2015), NCEP 111 

(CFSv2; Saha et al., 2014), and PNU (CGCMv1.0; Ahn & Kim, 2013) that matched with the 112 

common hindcast period of 1983-2010. The remaining six models could not be included in the 113 

MME because of different hindcast periods, although some were recently upgraded, for example, 114 

KMA (GloSea5GC2; Ham et al., 2019) and UKMO (GloSea5; MachLachlan et al., 2015). 115 

Furthermore, several models were scheduled to be changed to their upgraded versions in 2020 116 

(e.g., POAMA to ACCESS-S (Hudson et al., 2017) in BOM, SPSv2 to SPSv3 (Sanna et al., 117 

2017) in CMCC, and CanSIP to CanSIPv2 (Lin et al., 2020) in MSC/ECCC). To test sensitivity 118 

in terms of predictability as the participating models in MME change due to their improvements, 119 

we performed several experiments with varying reference periods and participating models in the 120 

MME, where the MME forecast is a simple average of individual models with equal weights.  121 

 122 

2.2 Verification data and Metrics  123 

We focus on 1-month lead 3-month mean (seasonal) MME forecasts of 2m temperature 124 

and precipitation over the globe (GL; 90oS-90oN) and sub-regions: Northern Extratropics (NE; 125 

20oN-90oN), Southern Extratropics (SE; 20oS-90oS), Tropics (TR; 20oN-20oS), East Asia (EAs; 126 

75oE-150oE, 15oN-60oN), South Asia (SAs; 60oE-140oE, 10oS-35oN), North America (NAm; 127 

190oE-310oE, 10oN-75oN), South America (SAm; 270E-330E, 60oS-10oN), Australia (Aus; 128 

110E-180E, 50oS-0oN), and Northern Eurasia (NEu; 25oE-190oE, 40oN-80oN). For skill 129 

assessment, we use the National Center for Environmental Prediction (NCEP)-Department of 130 

Energy (DOE) Reanalysis 2 data (Kanamitsu et al., 2002) for temperature and the Climate 131 

Anomaly System and Outgoing Longwave Radiation Prediction Index data (CAMS-OPI, 132 

Janowiak & Xie, 1999) for precipitation. For Nino 3.4 index, we use the optimum interpolation 133 



 

(OI) version 2 monthly mean SST (Reynolds et al. 2002), obtained from the Climate Diagnostics 134 

Center of National Oceanic and Atmospheric Administration. 135 

All model forecasts and observations were interpolated onto a 2.5 x 2.5 common grid. 136 

We used the anomaly pattern correlation coefficient (ACC) and temporal correlation coefficient 137 

(TCC) to assess the prediction skill. We used the ACC-based relative skill difference to assess 138 

the prediction skill improvement and deterioration of the MME forecasts with another model set 139 

compared to the reference model set. The statistical robustness of the skill difference was 140 

verified using a bootstrap resampling method with 500 Montel-Carlo simulations. This method 141 

involves estimating the distribution of a statistic by randomly resampling and using it to evaluate 142 

statistical significane (Wilks, 1995, 1997; Stephenson and Doblas-Reyes, 2000; Min et al. 2017). 143 

Student’s t-test and the Mann-Kendall test (Mann, 1945; Kendall, 1975) were used to assess the 144 

statistical significance of the difference between means and trends of observations and 145 

predictions. All forecast data from individual models are expressed in the form of anomalies as 146 

departures from the model climatology. As verification data, we used observed anomalies to 147 

represent deviations from the observed climatology. Consequently, model bias does not affect 148 

forecast skill. However, the use of anomalies, which implies bias correction, enhances the role of 149 

the correct estimation of model and observed climatologies.  150 

 151 

Table 1. Collected models through APCC multi-institutional cooperation in 2019 and 2020 152 

 2019 2020 
Institute Model Hindcast Period Model Hindcast Period 
APCC SCoPS 1982-2013 SCoPS 1982-2013 
BCC CSM_1.1m 1991-2015 CSM_1.1m 1991-2015 
BOM POAMA 1983-2011 ACCESS-S 1990-2012 

CMCC SPSv2 1993-2016 SPSv3 1993-2016 
CWB GFST119 1982-2011 GFST119 1982-2011 
HMC SL-AV 1985-2010 SL-AV 1985-2010 
JMA MRI-CPS2 1979-2014 MRI-CPS2 1979-2014 
KMA GloSea5GC2 1991-2010 GloSea5GC2 1991-2016 
MGO MGOAM-2 1979-2004 MGOAM-2 1979-2004 

MSC/ECCC CanSIP 1981-2010 CanSIPv2 1981-2010 
NASA GEOS-S2S-2 1981-2016 GEOS-S2S-2 1981-2016 
NCEP CFSv2 1982-2010 CFSv2 1982-2010 



 

PNU CGCMv1.0 1980-2018 CGCMv1.0 1980-2019 
UKMO GloSea5 1993-2016 GloSea5 1993-2016 

The bold text in 2019 indicates the models that participated in the operational APCC MME 153 

prediction based on 1983-2010 climatology.  154 

 155 

3 Results 156 

More than two decades have passed since dynamical prediction systems have been 157 

operationally exploited for seasonal forecasting. Operational long-range forecasting centers make 158 

essential efforts to improve climate prediction systems. In particular, they tend to extend the 159 

period of hindcasts over which climatology is estimated and move it to more recent years. As 160 

shown in Fig. 1, the number of models providing ensemble forecasts to APCC and the number of 161 

models participating in the operational MME prediction vary from year to year, depending on the 162 

operational situations at the time. The proportion of models not included as part of the 163 

operational MME prediction has been gradually increasing and was expected to increase to 164 

nearly 50% by 2020 (red line in Fig. 1). Recently, the reason why some of the models could not 165 

participate in the MME has been mainly due to inconsistencies with the common hindcast period, 166 

and the proportion of these models has gradually increased over time (black line in Fig. 1). In 167 

other words, model developers continue to improve their model by gradually shifting their 168 

hindcast periods to more recent years. However, if the current common hindcast period for the 169 

APCC MME does not change, the number of models participating in APCC MME operation will 170 

gradually decrease. A more important issue is the MME skill, which is affected by the mean skill 171 

of individual models and models’ diversity (Yoo & Kang, 2005; Alessandri et al., 2018). If the 172 

number of participating models in the MME prediction continues to decrease, particularly by 173 

excluding recently developed and improved newer models, it may lead to a decrease in MME 174 

skill.  175 

When faced with this issue in 2019, APCC examined changes in MME skills if the 176 

common hindcast period was maintained, considering expected model changes scheduled for 177 

2020. As shown in Table 1, under the condition of the current 28-year hindcast period, the 178 

BOM’s new model with a recent hindcast period (1990-2012), ACCESS-S, was expected to be 179 

unable to participate in the MME operation in 2020, and in the case of MSC/ECCC, CanSIP was 180 



 

scheduled to be upgraded to CanSIPv2 with the 1981-2010 hindcast period. Therefore, it was 181 

expected that CanSIPv2 would continue to participate in MME operations. To examine 182 

differences in MME skill due to model changes, we compared the expected MME hindcast skill 183 

with seven models in the 2020 version, considering BOM’s and MSC/ECCC’s model changes 184 

(experiment), to the MME hindcast skill with eight models in the 2019 version (reference: APCC, 185 

BOM, CWB, JMA, MSC/ECCC, NASA, NCEP, and PNU) for the common 28-year hindcast 186 

period (1983-2010). We were able to perform the hindcasts of the new models scheduled to be 187 

changed in 2020 because APCC collects a new version of the hindcast before the newer model is 188 

applied to the MME operation and prepares various aspects from an operational perspective. Fig. 189 

2 shows the relative skill difference of the experimental MME hindcast compared with that of 190 

the reference MME hindcast. The ACC-based relative skill difference (%) was estimated as the 191 

difference between the ACCs of the experimental and reference forecasts, divided by the ACC of 192 

the reference forecasts. The relative skill difference is mainly negative, which indicates a 193 

deterioration in the MME skill caused by the expected models’ changes for 2020. The skill of 194 

experimental forecasts for both global temperature and precipitation decreased across almost all 195 

seasons. This is also true for the sub-regions in terms of 12-season averages (annual means), with 196 

the exception of temperature in South America. That is, it was clearly expected that if the 28-197 

year hindcast period was maintained in 2020, the MME prediction skill would ultimately 198 

decrease owing to a decrease in the number of participating models (from eight to seven), despite 199 

the MSC ECCC’s model being replaced by CanSIPv2, which has a higher prediction skill than 200 

its previous version, CanSIP (Fig. 3). These results served as the motivation for the various 201 

considerations and experiments in this study to increase the number of participating models and 202 

consequently improve the MME prediction skill.  203 

 204 



 

  205 

Figure 1. Changes in the number of models providing their seasonal forecasts to APCC (grey 206 

bar; A) and the number of models participating in the operational APCC MME prediction 207 

(yellow bar; B) in 2012-2020. Red lines indicate the proportion of models not participating in the 208 

operational MME prediction to the total models ((A-B)/A). Black lines represent the proportion 209 

of models not participating in MME due to inconsistency of common hindcast period to not 210 

participating models in MME. The values for 2020 refer to the expected changes if the 28-year 211 

(1983-2010) hindcast period for MME prediction continues in 2020.  212 

 213 

 214 



 

 215 

Figure 2. (a) Relative skill difference of the experimental MME hindcasts in 2020 to the 216 

reference MME hindcasts in 2019 of 3-month (seasonal) mean temperature and precipitation 217 

forecasts over the globe and (b) 12-season averaged (annual mean) forecasts for several sub-218 

regions for the common period of 1983-2010. 219 

 220 



 

 221 

Figure 3. Anomaly pattern correlation coefficients (ACCs) for seasonal mean temperature and 222 

precipitation forecasts over the globe of CanSIP and CanSIPv2 for the common period of 1983-223 

2010. The annual mean ACCs for each model are shown in parentheses. 224 

 225 

APCC considered several solutions to solve this hindcast issue and took advantage of a 226 

large set of models participating in the MME prediction. The first solution would be the use of 227 

forecast anomalies with respect to climatologies estimated over the models’ own hindcast 228 

periods, which vary among the groups producing the model forecast, such as the IRI ENSO 229 

forecast (http://iri.columbia.edu/our-expertise/climate/forecasts/enso/current/?enso-sst_table). 230 

That is, all models can participate in MME prediction by using forecast anomalies with respect to 231 

different base periods and, consequently, to the different climatologies. However, discrepancies 232 

may arise if the climatologies differs significantly. We assessed the significance of the difference 233 

between climatologies estimated over two periods, 1983-2010 and 1993-2016, which covered the 234 

common hindcast period and the most recent hindcast period of the 14 models in the 2019 235 

version, at a 10% significance level based on the Student’s t-test. The results showed that the 236 

differences between the two climatologies of seasonal mean temperature in the observation were 237 

statistically significant in many regions (Fig. 4). The most significant differences were evident in 238 

the high latitudes of the Northern and Southern Hemispheres throughout all seasons. In these 239 

regions, global warming has significantly accelerated in recent years. This is also evident in the 240 

South Indian Ocean in MAM and JJA and in the Western Pacific in SON and DJF. Furthermore, 241 

for the model with the longest hindcast period spanning from the early 1980s to the most recent 242 

years, the differences between climatologies from the periods 1983-2010 and 1993-2016 were 243 



 

also statistically significant (not shown). Thus, the first solution may cause another issue in 244 

forecast anomalies because of the significant differences in climatologies due to the different 245 

reference (hindcast) periods of individual models, and eventually in the MME prediction that 246 

combines the forecast anomalies of individual models (Wallace & Arribas, 2012). Furthermore, 247 

this solution is not suitable for users who utilize our seasonal forecasts, such as, NMHSs. Users 248 

formulate their local forecasts in terms of anomalies with respect to their local normals estimated 249 

over the 30-year period appointed/defined by WMO. As a rule, for their local area of interest, 250 

they perform corrections to MME forecasts to account for the difference between the normals 251 

estimated over, e.g., 1991-2020 and MME climatology estimated over, e.g., 1983-2010. 252 

However, this solution does not provide a reference for the MME climatology period, which may 253 

confuse users performing regional/local corrections.  254 

The second solution would be to separate the models into two groups, with hindcast 255 

periods specific to each group, and the difference in climatology between the two groups should 256 

not be significant. Climatology-I is specified for the current common hindcast period (1983-257 

2010) covered by most models so far. The common hindcast period covered by the newer models 258 

(1993-2010) is specified as Climatology-II. As shown in Fig. 4, the difference between 259 

Climatology-I and II is not statistically significant most of the globe and seasons. This indicates 260 

that the newly developed and recently upgraded models may participate in MME prediction 261 

using Climatology-II. This is slightly different from the first solution, as the difference between 262 

the two climatologies is not statistically significant, which can reduce some of the confusion in 263 

the user’s post-processing and interpretation of our forecasts. However, another issue arises as to 264 

which a reference period should be applied to observations to assess the MME forecasts 265 

combined with two groups of models using different climatologies.  266 

 267 



 

 268 

Figure 4. Differences between two climatologies over the period 1983-2010 and 1993-2016 269 

(black dashed line) and trends of observed seasonal mean temperature for the entire 34-year 270 

period 1983-2016 (shading). Differences and trends were only displayed at a 10% significance 271 

level using Student’s t-test and Mann-Kendall test. The green lines represent statistically 272 

significant differences in the climatology between the 1983-2010 and 1993-2010 periods.  273 

 274 

In this situation, we suggest an alternative solution that is to change the current hindcast 275 

period to a unified 1991-2010, for which almost all models could be included. Models of CMCC 276 

and UKMO, starting with data from 1993, were treated as missing values for 1991-1992 to allow 277 

more models to participate in the MME and extend the hindcast period by at least 20 years. 278 

According to the guidelines for objective seasonal forecasting by WMO (2020), hindcast periods 279 

shorter than about 20 years may suffer from inadequate sample sizes to allow a robust estimation 280 

of skill. In addition, it was mentioned that a shorter hindcast period impacts the merging of 281 

information coming from different models using different hindcast periods, especially for MME 282 

approaches, because the anomalies and forecast quality are calculated with respect to the 283 

hindcast period. Additionally, in terms of prediction skill, increasing the number of participating 284 

models, by treating the 2-year period as missing for both models, had a positive effect on 285 



 

improving the MME hindcast skill (not shown). To estimate the forecast skill according to the 286 

changes in the number of participating models as the hindcast period for MME climatology 287 

changes to unified 1991-2010, we further examined the skill of the MME hindcast in three 288 

different model combinations within the model suites of the 2020 version in Table 1. Table 2 289 

shows detailed descriptions of the three different model sets of the MME experiments. Here, 7M 290 

was composed of the same models as the experimental MME hindcast results based on the 28-291 

year climatology shown in Fig. 2. However, in this experiment, the 20-year climatology was 292 

used to compare the MME prediction skill with all models, including the newly joined models 293 

owing to the change in the hindcast period to 1991-2010. 294 

  295 

Table 2. Description of three different model suites of MME hindcasts in the 2020 version. 296 

Experiment Description 
7M 7 models expected to continuously participate in MME for 2020 if the current 

1983-2010 hindcast period is maintained (APCC, CWB, JMA, MSC/ECCC, 
NASA, NCEP, PNU) 

+6M Additional 6 models expected to newly participate in MME for 2020 by 
changing the hindcast period to unified 1991-2010 (BCC, BOM, CMCC, 
HMC, KMA, UKMO) 

13M All 13 models expected to participate in MME for 2020 by changing the 
hindcast period to unified 1991-2010  

 297 

Under the condition of the 1991-2010 hindcast period, the diagrams shown in Fig. 5a and 298 

b demonstrate that the skills of the MMEs based on 7M (MME_7M) and +6M (MME_+6M) 299 

were comparable, showing ACC=0.36 (0.44) for annual mean temperature (precipitation) for 300 

both MMEs. By changing the hindcast period to 1991-2010, the MME consisting of all 13 301 

models (MME_13M) clearly outperformed MME_7M and MME_+6M for both temperature and 302 

precipitation over all 12 seasons. The skill improvement of MME_13M forecasts compared with 303 

that of MME_7M for both annual mean temperature and precipitation appears not only in the 304 

oceans but also on land, with the exception of precipitation in the Arctic region (Fig. 6), where 305 

the precipitation is relatively low, and there is significant uncertainty in observations. 306 

Consequenctly, the decrease in forecasting skill for precipitation in this region was not 307 

considered a significant concern in the paper. Most of these skill improvements in terms of 308 



 

temporal correlation coefficients demonstrated statistical robustness at the 10% significance level 309 

in a bootstrap test with 500 Monte-Carlo simulations, particularly evident in regions where the 310 

prediction skills are relatively low.  311 

To conduct a detailed examination across seasons and regions, we calculated the ACC-312 

based relative skill difference between the MME_13M and MME_7M for each season and 313 

region (Fig. 7). Our analysis revealed a notable enhancement in the forecast skill of MME_13M 314 

for temperature during boreal winter seasons, demonstrating its statistical robustness. Notable 315 

from a regional perspective, improvements beyond the tropical Pacific are significant, for 316 

example, North America for temperature and East Asia, South America and Australia for 317 

precipitation. There is variation in skill improvement across seasons and variables. Although the 318 

details of this finding are beyond the scope of this study, a potential explanation lines in the 319 

inclusion of three models within +6M: UKMO’s GloSea5, KMA’s GloSea5GC2, and BOM’s 320 

ACCESS-S, the latter two being developed based on UKMO’s GloSea5. It is widely recognized 321 

that Glosea5-based models exhibit similar overall model biases and prediction skills. Notably, 322 

these models demonstrate high performance in predicting Northern extratropical atmospheric 323 

circulation (e.g., Kang et al., 2014; MacLachlan et al., 2015; Scaife et al., 2014; Ham and Jeong, 324 

2021) and the associated temperatures (e.g., Kryjov & Min, 2016; Lim et al., 2019). These 325 

findings significantly enhance the forecast skill of MME_13M for boreal winter temperature. 326 

However, the improvement in MME_13M prediction skill for summer temperatures was minimal 327 

compared to winter, as +6M showed limited improvement in predicting summer temperatures. 328 

Conversely, improvements in precipitation were robust across most seasons, with particularly 329 

significant enhancements observed during boreal summer seasons. For precipitation, the greatest 330 

variability is observed in tropical regions, where it is closely linked to convective activity 331 

influenced by ENSO conditions (e.g., Ropelewski and Halpert, 1987; Collins et al., 2010). 332 

Consequently, the largest model errors typically occur during spring and summer, particularly 333 

when SST forcing is weak or during the ENSO transition phase (e.g., Jin et al. 2008; Wang et al., 334 

2009; Min et al., 2017). In contrast, the strong manifestation of ENSO conditions tends to occur 335 

during winter, leading to already commendable accuracy in winter precipitation forecasts, even 336 

with older models. In such situation, when the precipitation forecasting skill of +6M is moderate 337 

across all seasons, the improvement in precipitation of MME_13M appears to be more 338 



 

significant during the boreal summer seasons, when prediction skill is relatively lower, compared 339 

to winter.  340 

Consequently, these skill improvements of MME_13M were mainly due to the higher 341 

mean skill of the newly participating models (+6M; mostly recently developed/upgraded models) 342 

to MME by changing the hindcast period, compared to the mean skill of the originally 343 

participating models (7M) for both temperature and precipitation across all seasons (Fig. 5c, d). 344 

In addition, MME_13M, which represents a moderate level when averaging the skills of all 13 345 

models, showed the highest skill because of the increase in the number of models and the 346 

corresponding increase in the diversity of the contributing models (Yoo & Kang, 2005; 347 

Alessandri et al., 2018). In other words, by changing the hindcast period to the unified 1991-348 

2010, models with relatively high skill can contribute to the MME, which can increase the total 349 

number of participating models in the MME and ultimately improve the MME efficiency, 350 

thereby improving the prediction skill of MME_13M compared to MME_7M.  351 

Based on the results of the hindcast experiments, we changed the common base period to 352 

1991-2010 for APCC MME operation from 2020, which is covered by almost all the models 353 

(Oper). Finally, we assessed the MME skills of real-time forecasts from 2020JFM to 2023JAS 354 

using the most recently updated observations. Real-time forecast verification is important for 355 

operational centers to assess whether skill improvement exists in real-time forecasts as well as in 356 

hindcasts, although this period is too short for the collection of a sufficient number of real-time 357 

forecasts to obtain well-grounded conclusions. We first assessed Oper’s forecast skill for both 358 

variables, indicating a strong dependence on ENSO strength, which reaches its peak in boreal 359 

winter and serves as one of the key sources of predictability for seasonal forecasts (Fig. 8a; 360 

Wang et al. 2009; Barnston et al. 2010; Min et al. 2017). For example, relatively high levels of 361 

the forecast skills were observed during the boreal autumn and winter seasons of 2020/21 and 362 

2021/22, coinciding with moderate La Nina events. Towards mid-2023, a strong El Nino was 363 

developing, accompanied by an improvement in forecasting skill. Meanwhile, in 2022 the strong 364 

negative Nino 3.4 SST anomaly persisted into spring, summer, and autumn, providing strong 365 

persistent forcing that governed skillful seasonal forecast. Conversely, the relatively low skills 366 

were observed during the transition and/or ENSO-neutral phases of 2020, 2021 and 2023. For 367 

comparison, we produced MME forecasts for the same periods as the models that would have 368 

participated in the MME if the 1983-2010 hindcast period had not changed (Exp). By changing 369 



 

the hindcast period to 1991-2010, the number of participating models in the real-time MME 370 

operations in 2020JFM-2023JAS increased by 100%, and the difference between Oper and Exp 371 

gradually widened (Fig. 8b). The improvement or degradation in forecast skill by Oper fluctuates 372 

across seasons and years under limited data set conditions. However, an encouraging finding for 373 

real-time forecasts is the significant enhancement in Oper manifested from mid-2022, coinciding 374 

with a widening disparity in the number of participating models between Oper and Exp. That is, 375 

as the models continued to improve, along with the hindcast period shifted, it was clear that if the 376 

1983-2010 hindcast period had been maintained, the number of participating models in the MME 377 

operations would have gradually decreased, leading to a subsequent decline in forecast skill. As a 378 

result, from the preliminary results of the real-time forecasts, substantial improvements in 379 

temperature over the globe have been observed in recent years;  however, the prediction of 380 

precipitation still remains a difficult problem, with little change on a global scale (Fig. 8c). Given 381 

that the assessment for real-time forecast has been based on limited data, more detailed analysis 382 

is needed to determine the causes of the improvement and decrease in forecast skill for further 383 

study as more data become available. Based on the results from hindcasts and real-time forecasts, 384 

the change in the common hindcast period to 1991-2010 for MME prediction in 2020 was an 385 

appropriate action for APCC operation from a long-term perspective. 386 



 

 387 

Figure 5. (a, b) ACCs of MME hindcasts (1991-2010) with different model combinations 388 

(MME_7M, MME_+6M, and MME_13M) and (c, d) average ACCs of the participating models 389 

for each combination (7M, +6M, and 13M), for seasonal mean temperature and precipitation 390 

forecasts over the globe. The annual mean ACCs for each MME and the average of models’ 391 

skills are shown in parentheses. 392 

 393 



 

 394 

Figure 6. Spatial distributions of annual mean temporal correlation coefficients (TCCs) for the 395 

MME hindcast (1991-2010) with 7 models (MME_7M) and 13 models (MME_13) of seasonal 396 

mean temperature and precipitation. The contour lines enclose the areas in which the TCCs are 397 

statistically significant at the 5% level using a two-tailed Student’s t-test. The skill differences 398 

(DIFF) indicate the differences between the two MMEs (MME_13M minus MME_7M), with the 399 

skill difference being statistically robust at the 10% significance level in a bootstrap test with 500 400 

Monte-Carlo simulations.  401 

 402 



 

 403 

Figure 7. (a) ACC-based relative skill difference of MME_13M hindcasts to MME_7M 404 

hindcasts of seasonal mean temperature and precipitation forecasts over the globe and (b) annual 405 

mean forecasts for several sub-regions for the period of 1991-2010. The black and red crosses 406 

mark the seasons and regions for which the relative skill difference is statistically robust at the 407 

10% significance level in a bootstrap test with 500 Monte-Carlo simulations. 408 



 

 409 

Figure 8. (a) ACCs of real-time operational MME forecasts (Oper) for global temperature and 410 

precipitation for 2020JFM-2023JAS. The grey line indicates the amplitude (absolute value) of 3-411 

month mean Nino 3.4 Index. (b) Number of participating models in Oper and experimental 412 

forecasts (Exp) and (c) Relative skill difference of ACCs from Exp to Oper for global 413 

temperature and precipitation.  414 

 415 

4 Conclusions 416 

The construction of the MME is a compromise between the number of participating 417 

models and the length of the common hindcast period. An increase in the number of participating 418 



 

models with sufficient model diversity decreases random and model formulation errors in MME 419 

forecasts (e.g., DelSole et al., 2014; Yang et al., 2016). On the other hand, an increase in the 420 

length of the common hindcast period decreases errors in climatology but increase random and 421 

model formulation errors because of a decrease in the number of participating models in the 422 

MME prediction (e.g., Shi et al., 2015). In this situation, as the hindcast periods of recently 423 

developed and improved models have shifted to the latest, APCC faced new challenges in 2019 424 

while continuing to maintain a common hindcast period for many years. As a result, the 425 

proportion of models that could not participate in operational MME prediction was expected to 426 

be approximately 50% by 2020 because their hindcast periods started in the mid-1980s to early 427 

1990s. Based on the results of several experiments, we proposed a solution to change the 428 

common hindcast period to a unified 1991-2010, which is the most appropriate method for 429 

APCC operation, reflecting recently developed models. That is, by changing the reference period 430 

for MME prediction, APCC provides opportunities for participation in operational MME 431 

prediction for newly developed/upgraded models, resulting in a double increase in the number of 432 

participating models and improvement in the MME prediction skill.  433 

However, some questions remain regarding whether the 20-year hindcast period is 434 

sufficient to represent the climatological means. Because the operational MME center 435 

incorporates predictions from various models, it is inevitable that the hindcast period for the 436 

MME is shorter than that for individual models. The suggested 20-year climatology is 437 

comparable to the climatologies of other MME groups for seasonal forecasting (e.g., WMO LC-438 

LRF (1993-2009; 17 years) and C3S (1993-2016; 24 years)). Although WMO recommends that 439 

the hindcast period should be as long as possible (WMO, 2019) and that a short period may 440 

affect the estimation of anomalies and forecast skill of MME, especially those that integrate 441 

predictions from various models, even the WMO LC-LRF currently uses a common 17-year 442 

hindcast period in performing MME by integrating outputs from 16 Global Producing Centres’ 443 

(GPC) models. That is, there are still realistic limitations or gaps in the hindcast period of 444 

producing centers that match the WMO recommendation. The differences in hindcast periods for 445 

each model mainly stem from when the models were developed and the production schedule for 446 

its operation. For example, the hindcast period of recently developed models has shifted to more 447 

recent years, whereas the hindcast period of models that were developed relatively early and 448 

have continued to be maintained mostly covers the hindcast period of 1980s to mid-to-late 2010s. 449 



 

Moreover, in terms of the production schedules, some systems follow a so-called “on the fly” 450 

approach, generating a new set of hindcasts every time a new forecast is produced (e.g., PNU). 451 

In some models, fixed hindcasts are produced before the system becomes operational and remain 452 

unchanged throughout its operational lifetime (e.g., NCEP). Each method has its own advantages, 453 

and each modeling center produces hindcasts in a manner that is appropriate for their operational 454 

situation. This issue can be fundamentally solved by making further efforts to extend or shift the 455 

hindcast period at each modeling center, along with improvements in other modeling 456 

components. As part of these efforts, APCC, as one of the MME model providers, is currently 457 

working to expand the period for the APCC’s in-house model, SCoPS, to mid to late 2010s. 458 

Another aspect of the APCC’s efforts as an MME center is to encourage MME model providers 459 

to expand the hindcast period to the latest through regularly held APCC MME Model Providers’ 460 

Meetings. However, these problems cannot be solved in a short time and may not be feasible on 461 

the operational situation of each modeling center. In this situation, this study is significant in that 462 

we addressed the critical and practical challenges recently faced by operational MME centers 463 

due to the hindcast issue and provided various approaches that MME groups can consider to 464 

solve these problems.  465 

Finally, although not within the scope of this study, the most important issue in recent 466 

years is that since late 2021, NMHSs worldwide have used the WMO recommended 1991-2020 467 

normals (https://www.wmo.int/edistrib_exped/grp_prs/_en/08791-2019-CLW-CLPA-DMA-468 

CLIN8110_en.pdf). However, there are still some limitations to matching with the WMO-469 

recommended normal period; currently no climate center providing MME seasonal forecasts to 470 

the NHMSs uses a climatology matching with the WMO references. In particular, the recent 471 

period in which the difference between the model climatology (e.g., 1991-2010) and the WMO 472 

normal (e.g., 1991-2020) appears is the period when global warming is accelerating. Therefore, 473 

forecast anomalies based on a more recent reference climate may be more relevant in the context 474 

of climate change (WMO, 2020). It is more difficult to make seasonal forecasts during periods of 475 

strong climate trends, and the warming trends are important effects that should not be discarded. 476 

Therefore, further studies needed on the methodologies for adjusting and correcting (or 477 

calibrating) the climatology in models to the WMO normal, including recent periods.  478 

 479 
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