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Key Points:8

• Neural networks trained on previous Arctic campaigns predict surface turbulent9

fluxes from MOSAiC more accurately than bulk methods.10

• Updated parametrizations using the MOSAiC data have been developed and im-11

plemented in Fortran for deployment in weather/climate models.12

• Modest performance gains (up to +7% R2) from recalibration on MOSAiC indi-13

cate good generalizability to the pan-Arctic sea ice domain.14
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Abstract15

Reliable boundary-layer turbulence parametrizations for polar conditions are needed to16

reduce uncertainty in projections of Arctic sea ice melting rate and its potential global17

repercussions. Surface turbulent fluxes of sensible and latent heat are typically repre-18

sented in weather/climate models using bulk formulae based on the Monin-Obukhov Sim-19

ilarity Theory (MOST), sometimes finely tuned to high stability conditions and the po-20

tential presence of sea ice. In this study, we test the performance of new, machine-learning21

(ML) flux parametrizations, using an advanced polar-specific bulk algorithm as a base-22

line. Neural networks, trained on observations from previous Arctic campaigns, are used23

to predict surface turbulent fluxes measured over sea ice as part of the recent MOSAiC24

expedition. The ML parametrizations outperform the bulk at the MOSAiC sites, with25

RMSE reductions of up to 70 percent. We provide a plug-in Fortran implementation of26

the neural networks for use in models.27

Plain Language Summary28

Heat can make its way into or out of sea ice via unpredictable air movements, known29

as turbulence, near the sea surface. In order to predict how quickly Arctic sea ice will30

melt in the future, we need to know how much heat the turbulence can transport in dif-31

ferent weather conditions. Traditionally, turbulence calculations have been performed32

using sophisticated mathematical formulae from physics. In this study, we test an alter-33

native method for predicting turbulent heat exchange: a computer algorithm known as34

an artificial neural network. By showing turbulence data, measured in the Arctic dur-35

ing previous scientific expeditions, to the network, it can be “trained” to make predic-36

tions in a process known as machine learning. We compare turbulence measurements,37

taken above sea ice in the recent MOSAiC expedition, with predictions from trained neu-38

ral networks. We find that the neural networks are better than the traditional physics39

at predicting what the scientists at MOSAiC observed. The trained neural networks have40

been made publicly available so that they can be used by scientists for predicting climate41

change.42
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1 Introduction43

The polar regions, in particular the Arctic, are on the front line of the climate cri-44

sis. In recent decades, the rate of surface warming in the Arctic has been two to four times45

higher than the global mean (Rantanen et al., 2022), a phenomenon known as Arctic am-46

plification (e.g., Serreze & Francis, 2006; Graversen et al., 2008; Serreze & Barry, 2011).47

Alongside rising temperatures have occurred losses of around 50 percent in both thick-48

ness and extent of Arctic sea ice at the end of summer since satellite records began (Gascard49

et al., 2019). The rate of Arctic sea ice loss in the coming decades remains highly un-50

certain (Bonan, Lehner, & Holland, 2021; Bonan, Schneider, et al., 2021), however the51

consequences are expected to be severe: for local ecosystems (Kovacs et al., 2011; Post52

et al., 2013; Tynan, 2015); for indigenous peoples (Meier et al., 2014); and, potentially,53

for lower-latitude climate (Cohen et al., 2014; Jung et al., 2015; Cohen et al., 2020; Liu54

et al., 2022). Heat exchanges between sea ice and the atmosphere are a key driver of the55

Arctic amplification (e.g., Serreze et al., 2009; Lesins et al., 2012; Previdi et al., 2021)56

and determine the sea ice melting rate (e.g., Rothrock et al., 1999; Screen & Simmonds,57

2010).58

Turbulent exchanges of heat and momentum in the planetary boundary layer are59

not directly simulated in weather/climate models, but are instead represented through60

parametrizations, typically bulk formulae based on the Monin-Obukhov Similarity The-61

ory (MOST, Monin & Obukhov, 1954; Garratt, 1994). Such parametrizations are semi-62

empirical: although the MOST provides dimensionless relationships, their final forms can-63

not be determined without recourse to observational data (e.g., calibration of roughness64

models and stability functions). The polar boundary layer is influenced by the presence65

of sea ice and is characterized by high stability and often intermittent turbulence (e.g.,66

Andreas, 1998). Polar-specific stability functions have been proposed (Grachev et al.,67

2007), as well as formulations of surface roughness (e.g., Andreas, 1987; Andreas, Pers-68

son, et al., 2010; Andreas, 2011). More recently, parametrizations have been developed69

that account for form drag arising from alternating sea ice floes and leads (e.g., Lüpkes70

et al., 2012; Lüpkes & Gryanik, 2015; Elvidge et al., 2016). Use of polar-specific turbu-71

lence parametrizations has been found to reduce biases in atmospheric models (Renfrew72

et al., 2019; Elvidge et al., 2023), however adoption of these advanced parametrizations73

in climate models has until recently been limited. The historic scarcity of observations74

in the Arctic likely goes some way to explaining modelers’ caution, yet there are also long-75
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standing unresolved problems with modeling even homogeneous stable boundary layers76

(e.g., the GABLS experiments, Cuxart et al., 2006; Svensson et al., 2011; Bosveld et al.,77

2014).78

Outside the polar regions, where observations have historically been more readily79

available, machine learning (ML) has emerged in recent years as an alternative strategy80

for parametrizing boundary-layer processes (Pal & Sharma, 2021). The basic idea of the81

ML or data-driven approach is that, given sufficient observational data, statistical al-82

gorithms can be used to directly infer empirical relationships between quantities of in-83

terest, such as surface turbulent fluxes, and mean meteorological variables such as tem-84

perature, humidity, etc. Recent studies have found that ML parametrizations, based on85

artifical neural networks (ANNs), can predict surface turbulent fluxes measured at me-86

teorological towers in extra-polar regions with greater accuracy than bulk algorithms based87

on the MOST (Leufen & Schädler, 2019; McCandless et al., 2022; Wulfmeyer et al., 2022).88

These findings were extended to the Arctic by Cummins et al. (2023), hereafter C23, who89

showed that, even with the relatively small volume of data collected in previous Arctic90

campaigns, it is nevertheless possible to train ANNs that can outperform a polar-specific91

bulk algorithm.92

The present study is motivated by the recent publication of surface turbulent flux93

observations collected at the Multidisciplinary drifting Observatory for the Study of Arc-94

tic Climate (MOSAiC, Shupe et al., 2022). The MOSAiC dataset provides a unique op-95

portunity to test the hypothesis, motivated by the encouraging results of C23, that ML96

parametrizations trained on data with limited spatiotemporal scope in the data-sparse97

Arctic are broadly applicable to the pan-Arctic sea ice domain. In this paper, we em-98

ploy the MOSAiC data first to validate the performance of the ANNs of C23, using a99

MOST-based bulk algorithm as a baseline. We then incorporate the MOSAiC data into100

the ANN training set to generate an improved set of flux parametrizations for use in po-101

lar conditions (see Code Availability Statement). The remainder of this paper is orga-102

nized as follows. Section 2 briefly recaps the datasets used in C23 and introduces the new103

MOSAiC data. Section 3 describes the ML and bulk algorithm flux parametrizations used104

in this study and the statistical methods used to evaluate their performance. Section 4105

presents the results. Conclusions and recommendations for modelers are given in Sec-106

tion 5.107

–4–



manuscript submitted to Geophysical Research Letters

2 Data108

2.1 Pre-MOSAiC observational campaigns109

C23 trained and validated ANN models using surface turbulent flux measurements110

from four observational campaigns conducted over Arctic sea ice: Surface Heat Budget111

of the Arctic Ocean (SHEBA, Andreas et al., 1999; Persson et al., 2002; Uttal et al., 2002);112

Aerosol-Cloud Coupling and Climate Interactions in the Arctic (ACCACIA, Elvidge et113

al., 2016); Arctic Cloud in Summer Experiment (ACSE, Sotiropoulou et al., 2016; Pry-114

therch et al., 2017); and Arctic Ocean 2016 (AO16, Tjernström & Jakobsson, 2021; Sri-115

vastava et al., 2022). These datasets sample a range of seasons and meteorological con-116

ditions in the Arctic. The sea ice varies in concentration (between zero and one), as well117

as in its morphology. For example, the ice surrounding the year-long SHEBA camp was118

compact and snow-covered in winter (Andreas, Persson, et al., 2010), but littered with119

deep melt ponds and leads in summer (Andreas, Horst, et al., 2010). It should be noted120

that C23 omitted from the training set observations in ACCACIA that were collected121

at heights > 30 m above the surface. Surface turbulent fluxes in climate models are typ-122

ically calculated much closer to the surface (e.g., ∼ 10 m in CNRM-CM6-1, Voldoire123

et al., 2019; Roehrig et al., 2020). Satellite estimates of sea ice concentration were ob-124

tained from the National Snow and Ice Data Center (NSIDC, Meier et al., 2021).125

2.2 MOSAiC126

For the MOSAiC expedition, the icebreaker RV Polarstern was frozen into the Arc-127

tic sea ice and drifted with it for most of a year between Oct 2019 and Oct 2020. The128

original ice floe, on which the MOSAiC camp was established in Oct 2019, exited into129

the North Atlantic in late July 2020. Polarstern then repositioned near the North Pole130

at a new ice floe for August and September 2020. Various scientific research sites were131

established on the ice surrounding the ship, in a fashion similar to SHEBA although on132

a larger scale. As part of MOSAiC, extensive measurements were taken of the Arctic at-133

mospheric system (Shupe et al., 2022). Surface turbulent fluxes of momentum, sensible134

heat and latent heat were computed at multiple locations using eddy-covariance tech-135

niques together with high-frequency (sampling rates of 10-20 Hz) observations from ul-136

trasonic anemometers. Eddy covariances were computed over 10-minute sampling pe-137

riods. Turbulence measurements were made at a meteorological tower with sensors at138
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2, 6 and 10 m above the initial snow/ice surface. Data from all three tower levels were139

used in this study. Flux measurements were also taken at 3.8 m at the three Atmospheric140

Surface Flux Stations (ASFS), analogous to the Portable Automated Mesonet (PAM)141

stations in SHEBA. ASFS 30/40 were deployed at ∼ 13 km from the tower and ASFS50142

at ∼ 23 km. Note that, due to accumulation and ablation of snow, the actual measure-143

ment heights varied over time. MOSAiC data used in this study were subject to Level3.4144

quality control (see Data Availability Statement). MOSAiC increased the size of the C23145

flux database by a factor of five for momentum and sensible heat and four for latent heat.146

3 Methods147

Surface turbulent fluxes are typically computed in climate models through bulk al-148

gorithms using wind, temperature and humidity at the single model level closest to the149

surface (e.g., in the SURFEX module in CNRM-CM6-1, Voldoire et al., 2019). The MOST,150

or a simplified version thereof, may then be used to extrapolate the vertical profiles of151

meteorological variables in the surface layer (Geleyn, 1988). Flux parametrizations in152

this study have been developed as plug-in replacements for bulk algorithms and there-153

fore expect similar inputs. For the MOSAiC ASFS data, the wind and temperature/humidity154

measurements were made at different heights above the snow/ice surface (3.86 and 2.13/1.84155

m respectively). While this doesn’t preclude a direct application of the bulk approach156

(since the MOST does not require measurements of those variables at the same height),157

it means that some pre-processing is required before the ANNs of C23 can be used. The158

wind speed, measured at a single height, was not interpolated. Instead, the temperature/humidity159

measurements were linearly extrapolated to 3.86 m, using the observed gradient between160

the surface and the measurement height. Surface specific humidity was computed from161

temperature and pressure using the meteolib Python library (see Code Availability State-162

ment). More sophisticated alternatives include a logarithmic extrapolation, or one based163

on the full MOST. However, our own numerical tests, conducted using equivalent mea-164

surements at 2 and 6 m on the meteorological tower, found the linear extrapolation to165

outperform the logarithmic in a root-mean-square error (RMSE) sense. Using the MOST166

approach would naturally introduce a bias in favour of that methodology. Different sen-167

sors were also mounted at slightly different heights around the nominal height of each168

tower level. Taking the heights of different sensors as the measurement height was found169

to have a small impact on the accuracy of flux predictions (±10% RMSE). In the final170
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analysis, it was decided to use the nominal heights of the tower levels, corrected for snow171

thickness, which is consistent with how C23 treated data from the meteorological tower172

of the SHEBA campaign.173

C23 developed ML flux parametrizations based on single-layer, feed-forward ANNs174

with four nodes in the hidden layer. For a high-level introduction to statistical model-175

ing with neural networks, see Hastie et al. (2009) or Kuhn and Johnson (2013). These176

models are general-purpose non-linear functions (Hornik et al., 1989), permitting a high177

degree of variable interaction, and containing 37 tuneable parameters. Each ANN takes178

seven mean meteorological variables as inputs: the measurement height z; absolute hor-179

izontal windspeed u(z); potential temperatures θ(z), θs of the air and at the surface re-180

spectively; specific humidities q(z), qs; and the sea ice concentration Ci, determined over181

a 25×25 km2 domain. The relative importance of the different inputs to the bulk and182

ANN methods was explored by C23, who found that the ANNs depend less critically on183

the vertical gradients. The models were trained on the pre-MOSAiC data using the nnet184

library for the statistical programming language R (Venables & Ripley, 2002; R Core Team,185

2021). A weight decay of λ = 0.01 was used for regularization and the networks were186

fitted in ensembles of 100 models to reduce variability due to random parameter initial-187

ization (Ripley, 1996). The fitted ANNs output turbulent fluxes of momentum u2
⋆, sen-188

sible heat u⋆θ⋆ and latent heat u⋆q⋆. Predicted fluxes are returned in kinematic units,189

i.e. in the same units as the measured eddy covariances, and hence are written here in190

terms of the MOST scaling parameters u⋆, θ⋆, q⋆.191

The polar-specific bulk algorithm, used in this study as a baseline against which192

to compare the ANNs, is the same as that described in C23. Over open water, the it-193

erative COARE 3.0 algorithm is used (Fairall et al., 2003; Edson et al., 2013), with sta-194

bility functions from Grachev et al. (2000) in unstable conditions and from Beljaars and195

Holtslag (1991) in stable conditions. The COARE 3.0 algorithm has been well tested over196

the years and is currently in use in large-scale climate models, including CNRM-CM6-197

1. Bulk transfer coefficients are initialized using a non-iterative estimate of the stabil-198

ity (Grachev & Fairall, 1997). Over sea ice, the stability function from Grachev et al.199

(2007) is used in stable conditions, as well as the scalar roughness model of Andreas (1987)200

and the aerodynamic roughness model of Andreas, Persson, et al. (2010). For partial sea201

ice concentrations, we use the mosaic approach (e.g., Vihma, 1995), whereby we take a202

weighted average of fluxes computed over open water and over sea ice, with the weight-203
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ing given by the sea ice concentration. An additional form drag contribution is included204

when computing the momentum flux, to account for the influence of intermittent sea ice205

coverage (Lüpkes & Gryanik, 2015). Intermittent ice coverage is associated with verti-206

cal ice surfaces that tend to increase turbulence. This bulk algorithm is available for down-207

load as a Python library (see Code Availability Statement). Compared against estimates208

from unmodified COARE 3.0, momentum flux estimates from our bulk algorithm have209

lower RMSE at the MOSAiC sites (up to a 16% reduction). The polar-specific compo-210

nents have less impact on the heat fluxes: there is a 99% correlation between our heat211

fluxes and those from COARE 3.0. The results of our comparison with ML in Section212

4 are robust to the use / non-use of polar-specific components in the bulk algorithm.213

In C23, the ML and bulk algorithm flux parametrizations were tested using a campaign-214

wise cross-validation scheme. Each campaign (or measurement site in the case of SHEBA)215

was left out of the training set in turn and the trained models validated on that cam-216

paign. Flux predictions from the two methods, together with measured eddy covariances,217

were used to compute performance metrics, such as RMSE, mean absolute error (MAE)218

and Pearson correlation. Since the MOSAiC data were not involved in the calibration219

of either parametrization, they constitute an independent test set and are therefore ideal220

for model validation and comparison. Mean meteorological variables, measured at each221

of the MOSAiC sites, were supplied as input variables and predicted fluxes calculated.222

In addition to these truly out-of-sample predictions, further flux estimates were obtained223

from ANNs fitted to MOSAiC-augmented training sets: for each site in MOSAiC, an ANN224

model was fitted to a training set comprising the pre-MOSAiC data plus all MOSAiC225

data not observed at that site. Iterating over the MOSAiC sites then gives a complete226

set of out-of-sample predictions, which allows us to quantify any gains in predictive power227

obtained from the MOSAiC data.228

4 Results229

Performance metrics, computed for the bulk algorithm and ANN parametrizations230

at each of the MOSAiC sites, are given in Table 1. Figures 1-3 show two-dimensional231

histograms of predicted fluxes against measured eddy covariances at each site. Note that232

results at the meteorological tower do not differ qualitatively between tower levels in terms233

of patterns/biases, however there is a small dependence of predictive accuracy on mea-234

surement height. Specifically, both the bulk algorithm and neural network methods have235
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slightly lower RMSE (∼ 10%) when applied at 10 m compared with 2 m. This is as ex-236

pected: the 10-m differences of the meteorological variables are larger than the corre-237

sponding 2 m differences, so if the measurement errors at the different levels are simi-238

lar in magnitude then the 10-m differences should have lower relative error. Any inac-239

curacies in the estimated measurement heights should also be proportionally smaller at240

10 m. Overall, the results are encouraging, with the ANN parametrizations consistently241

delivering performance improvements over the bulk algorithm, particularly in the sta-242

ble conditions which predominate in MOSAiC.243

Both methods produce similar estimates of the momentum flux u2
⋆ and the two-244

dimensional histograms in Figure 1 share common features, such as a conservative bias245

(systematic underprediction of larger fluxes). However, the ANNs achieve a lower RMSE246

at all the MOSAiC sites: a result which is robust under bootstrap resampling (Davison247

& Hinkley, 1997). The conservative bias of the ANNs was noted by C23 and is a known248

property of the models. In short, the ANNs have an inbuilt reluctance to extrapolate when249

faced with a combination of inputs not seen in training. That the bulk algorithm also250

underpredicts u2
⋆ is unexpected and warrants investigation (see final paragraph of this251

section). Augmenting the ANN training set with data from MOSAiC reduces the RMSE252

of the ANNs at all sites and produces a visible attenuation of the conservative bias for253

larger fluxes. This result indicates that the conditions conducive to large u2
⋆ were con-254

sistent across the MOSAiC sites.255

The ANN parametrization outperforms the bulk algorithm as an estimator of the256

sensible heat flux u⋆θ⋆, with RMSE 10-40 percent lower across the sites. It can be seen257

from Figure 2 that the improvements over the bulk are particularly apparent at the ASFS30258

and ASFS40 stations. As was the case for u2
⋆, the prediction errors of the two u⋆θ⋆ parametriza-259

tions share common features, including some clearly non-random deviations from the line260

y = x. In particular, there is a long tail in the panels for the met. tower in Figure 2,261

comprised of large upwards fluxes (negative eddy covariance) whose magnitude was un-262

derestimated by both the bulk and ANN parametrizations. These fluxes occurred in near-263

neutral conditions, defined by Högström (1988) as |ζ| < 0.1 where ζ is the Obukhov264

stability parameter. There was little temperature gradient in the surface layer and it is265

possible that non-local turbulence played a role. Large prediction errors also occurred266

when there was a strong surface-layer gradient but observed fluxes were small, again in267

near-neutral conditions. Including MOSAiC data from other sites in the ANN training268
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Figure 1. Predicted momentum fluxes u2
⋆ at the MOSAiC sites plotted against observed

eddy covariances. To the left are estimates obtained from a polar-specific bulk algorithm based

on the Monin-Obukhov Similarity Theory; in the centre, estimates from the neural networks of

Cummins et al. (2023); to the right, estimates from neural networks trained using MOSAiC-

augmented data. The diagonal line y = x would represent a perfect fit.
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Figure 2. Predicted sensible heat fluxes u⋆θ⋆ at the MOSAiC sites plotted against observed

eddy covariances. See Figure 1 caption for details.
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set produces clear improvements at three of the four sites, with several systematic fea-269

tures in the residuals disappearing. The predictions at the ASFS50 site, however, became270

worse. Prediction errors at ASFS50 are the lowest for u2
⋆ and u⋆θ⋆, so it doesn’t neces-271

sarily follow that the site is at fault. There may be locally varying factors, not included272

in the set of input variables, which affect the fluxes (see final paragraph of this section).273

Identifying such variables has the potential to deliver further performance gains, espe-274

cially in near-neutral conditions where performance of both algorithms is worse.275

Latent heat flux u⋆q⋆ is by far the most difficult of the three fluxes to predict: u⋆q⋆276

was generally small in magnitude at the MOSAiC measurement sites, suggesting a low277

signal-to-noise ratio. The ANNs are also disadvantaged here by a small training set from278

previous campaigns, comprised mainly of very small fluxes (C23). Results for u⋆q⋆ are279

therefore unsurprising: to the extent that the measured fluxes are small in magnitude,280

the ANNs perform well. For larger fluxes, the ANNs exhibit a strong conservative bias.281

Conversely, the bulk algorithm tends to overpredict the magnitude of u⋆q⋆. It is because282

of these contrasting biases that the bulk achieves a higher correlation at the ASFS30 and283

ASFS50 stations, while at the same time the ANNs give RMSE reductions at those sites284

of about 70 and 10 percent respectively. At the MOSAiC tower, the bulk algorithm per-285

forms better, achieving a 10-percent lower RMSE. The ANNs trained on the MOSAiC-286

augmented data perform better at the ASFS50 site and the tower, but slightly worse at287

ASFS30. From Figure 3 it can be seen that the underestimation bias, while still present,288

is improved by training with MOSAiC data.289

It should be noted that the biases, visible in the MOSAiC-augmented ANN pre-290

dictions in Figures 1-3, should be further reduced by the next step, which is to incor-291

porate all the MOSAiC data in the ANN training set. As more observations become avail-292

able, we would expect the as-yet-unsampled regions of the input space to diminish, along293

with the associated biases. That is not to say that all biases can be resolved through more294

training data. As mentioned above, omission of important predictor variables has the295

potential to induce biases that will persist regardless of the volume of training data. For296

example, the upwards and downwards radiation terms are known to contribute signfi-297

cant explanatory power (e.g., Wulfmeyer et al., 2022). These radiation terms are nev-298

ertheless unsuitable for use as parametrization inputs, because the radiative fluxes in GCMs299

are themselves the output of complex parametrizations with their own errors and un-300

certainties. The surface characteristics may also be an important missing variable. In301
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Figure 3. Predicted latent heat fluxes u⋆q⋆ at the MOSAiC sites plotted against observed

eddy covariances. See Figure 1 caption for details.
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MOSAiC, the winter sea ice may have been generally aerodynamically rougher than that302

seen in the SHEBA campaign. This could potentially explain the underestimation of u2
⋆303

by both the ANN and bulk algorithm parametrizations (see Figure 1). Finally, turbu-304

lent heat fluxes over sea ice are known to be influenced by lead width (e.g., Marcq & Weiss,305

2012), although the exact nature of the dependency is a topic of ongoing research (Gryschka306

et al., 2023). Including the lead-width distribution as an input to the ANNs could shed307

additional light on this question.308

5 Conclusions309

Accurate representation in climate models of turbulent heat exchanges between the310

surface and atmosphere in polar regions is essential for constraining predictions of fu-311

ture climate change, locally and potentially globally. Surface turbulent fluxes in the po-312

lar boundary layer are currently parametrized using the traditional MOST, although al-313

ternative ML parametrizations based on ANNs have recently been proposed (C23). The314

wealth of new flux observations collected in the Arctic during the MOSAiC campaign315

has provided an excellent opportunity to validate and calibrate these alternative parametriza-316

tions.317

In this study, the MOSAiC data have been used to validate ANN parametrizations318

of momentum, sensible heat and latent heat fluxes, that were originally trained on data319

from previous Arctic campaigns. The ANNs have been found to generalize well to the320

new data, particularly for momentum and sensible heat, yielding substantial reductions321

in error metrics such as RMSE when compared against a polar-specific bulk algorithm322

based on the MOST. Although the ANNs performed well at predicting small latent heat323

fluxes, limitations of the training data resulted in systematic underprediction of larger324

fluxes.325

The ANN parametrizations, developed in C23 and validated in this study, have been326

recalibrated on an augmented training dataset that incorporates the observations from327

MOSAiC. The largest increase in variance explained (R2) after recalibration was only328

seven percent, despite the training set growing by a factor of 4-5, indicating that a high329

level of generalizability has already been achieved. These updated parametrizations have330

been implemented as a Fortran subroutine, suitable for deployment in weather/climate331

models as a plug-in replacement for bulk algorithms (see Code Availability Statement).332
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An important next step will be to perform sensitivity studies with these new parametriza-333

tions in a climate model. In this way, the implications for the polar atmosphere and melt-334

ing of Arctic sea ice can be assessed.335

Open Research336

Code Availability Statement337

The following publicly available software tools can be used to reproduce the results338

presented in this study:339

• The Python library CDlib (Guemas, 2023a) provides functions to compute trans-340

fer coefficients and related variables (zeta, stability functions, aerodynamic and341

scalar roughness etc.), as well as to apply the bulk algorithm parametrizations used342

in this study.343

• The Python library meteolib (Guemas, 2023b) provides functions to estimate me-344

teorological parameters (humidity, latent heat as a function of temperature etc.).345

• The Fortran subroutine PolarFlux (Cummins, 2023) implements the neural net-346

work flux parametrizations developed in this study. The networks have been trained347

on all available datasets, including MOSAiC.348

Neural network ensembles were fitted using the R package caret (Kuhn & John-349

son, 2013), which itself depends on the R package nnet (Venables & Ripley, 2002) to fit350

the underlying models. Bootstrapping of model performance metrics was performed us-351

ing the R package boot (Canty & Ripley, 2022).352

Data Availability Statement353

MOSAiC campaign sites354

The MOSAiC data used in this study are available from the National Science Foun-355

dation Arctic Data Center: met. tower (Cox, Gallagher, Shupe, Persson, Blomquist, et356

al., 2023); ASFS30 (Cox, Gallagher, Shupe, Persson, Grachev, et al., 2023a); ASFS40357

(Cox, Gallagher, Shupe, Persson, Grachev, et al., 2023b), ASFS50 (Cox, Gallagher, Shupe,358

Persson, Grachev, et al., 2023c).359
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Pre-MOSAiC observational campaigns360

The SHEBA data are available from the NCAR Earth Observing Laboratory: met.361

tower (Andreas et al., 2007); PAM stations (Andreas et al., 2012). The ACCACIA flight362

data are available from the CEDA archive: MASIN (British Antarctic Survey (BAS),363

2014); FAAM (Facility for Airborne Atmospheric Measurements et al., 2015). The ACSE364

cruise data are available from the CEDA archive (Brooks et al., 2022a). The AO16 cruise365

data are available from the CEDA archive (Brooks et al., 2022b). The NSIDC sea ice366

concentration data are available from the NSIDC archive (Meier et al., 2021).367
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