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Abstract

We study the temporal evolution of solute dispersion in three-dimensional porous rocks of different heterogeneity and pore

structure. To this end, we perform direct numerical simulations of pore-scale flow and transport in a sand-like medium, which

exhibits mild heterogeneity, and a Berea sandstone, which is characterized by strong heterogeneity as measured by the variance

of the logarithm of the flow velocity. Solute dispersion is quantified by effective and ensemble dispersion coefficients. The former

is a measure for the typical width of the plume, the latter for the deformation, that is, the spread of the mixing front. Both

dispersion coefficients evolve from the molecular diffusion coefficients toward a common finite asymptotic value. Their evolution

is governed by the interplay between diffusion, pore-scale velocity fluctuations and the medium structure, which determine the

characteristic diffusion and advection time scales. Dispersion in the sand-like medium evolves on the transverse diffusion time

across a characteristic streamtube diameter, which is the mechanism by which pore-scale flow variability is sampled by the

solute. Dispersion in the Berea sandstone in contrast is governed by both the diffusion time across a typical streamtube, and

the diffusion time along a pore conduit. These insights shed light on the evolution of mixing fronts in porous rocks, with

implications for the understanding and modeling of transport phenomena of microbes and reactive solutes in porous media.

1



manuscript submitted to Water Resources Research

Temporal evolution of solute dispersion in1

three-dimensional porous rocks2

Alexandre Puyguiraud1, Philippe Gouze2, and Marco Dentz3
3
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Abstract14

We study the temporal evolution of solute dispersion in three-dimensional porous rocks15

of different heterogeneity and pore structure. To this end, we perform direct numerical16

simulations of pore-scale flow and transport in a sand-like medium, which exhibits mild17

heterogeneity, and a Berea sandstone, which is characterized by strong heterogeneity as18

measured by the variance of the logarithm of the flow velocity. Solute dispersion is quan-19

tified by effective and ensemble dispersion coefficients. The former is a measure for the20

typical width of the plume, the latter for the deformation, that is, the spread of the mix-21

ing front. Both dispersion coefficients evolve from the molecular diffusion coefficients to-22

ward a common finite asymptotic value. Their evolution is governed by the interplay be-23

tween diffusion, pore-scale velocity fluctuations and the medium structure, which deter-24

mine the characteristic diffusion and advection time scales. Dispersion in the sand-like25

medium evolves on the transverse diffusion time across a characteristic streamtube di-26

ameter, which is the mechanism by which pore-scale flow variability is sampled by the27

solute. Dispersion in the Berea sandstone in contrast is governed by both the diffusion28

time across a typical streamtube, and the diffusion time along a pore conduit. These in-29

sights shed light on the evolution of mixing fronts in porous rocks, with implications for30

the understanding and modeling of transport phenomena of microbes and reactive so-31

lutes in porous media.32

1 Introduction33

The transport of solutes in porous media is driven by the phenomenon of disper-34

sion, which results from the interplay between advective spreading and diffusion. The35

former is triggered by the spatial variability of the fluid speed which is controlled by the36

geometry of the connected pore network (Datta et al., 2013; Alim et al., 2017; Valocchi37

et al., 2018; Puyguiraud et al., 2021) while the later is ubiquitously controlled by the con-38

centration gradients. The heterogeneity of the porous medium that triggers the flow speed39

distribution is therefore a primary parameter that controls dispersion from pre-asymptotic40

to Fickian regime (Dentz et al., 2004; Sherman et al., 2021). Transport in porous me-41

dia is considered in many fields of academic and industrial applications from materials42

science, engineering and medicine to groundwater hydrology, environmental technolo-43

gies and petroleum engineering, and at many scales from microfluidic applications to ground-44

water management. Beside being necessary for understanding and predicting the spread-45

ing of chemicals such as pollutants or bionutrients, modeling dispersion is required also46

to understand and predict solute-solute and solute-minerals reactions that can produce47

new solute species and trigger mineral dissolution and precipitation features, for instance.48

Dispersion in porous media has been extensively studied from the pore to the re-49

gional scale for decades (Saffman, 1959; Whitaker, 1967; Gelhar & Axness, 1983; Dagan,50

1990; Dentz et al., 2023). Here we focus on hydrodynamic dispersion due velocity fluc-51

tuations caused by the heterogeneity of the pore space. A main challenge concerns how52

continuum-scale solute transport can be modeled by macroscopic parameters, such as53

the dispersion coefficient, that can be inferred experimentally, by using direct pore scale54

simulations or upscaling methods such as volume averaging or stochastic modeling (Brenner,55

1980; Ahmadi et al., 1998; Koch & Brady, 1985; Scheven, 2013; Bijeljic & Blunt, 2006;56

Le Borgne et al., 2011; Souzy et al., 2020; Puyguiraud et al., 2021). Similar challenges57

are encountered for reactive transport that is controlled by the time resolved distribu-58

tion of the solutes and their mixing. If the reaction thermodynamics and kinetics are known,59

then the goal is to be able to model the local reaction rate from knowing dispersion prop-60

erties (Battiato et al., 2009; Battiato & Tartakovsky, 2011). However, it is well known61

that the advection-dispersion equation parameterized by constant asymptotic dispersion62

coefficients are not suited to evaluate the effective reaction rates, because it assumes full63

mixing whereas incomplete mixing is the rule during the pre-asymptotic (non-Fickian)64

dispersion regimes (Rolle et al., 2009; Le Borgne et al., 2010; Dentz et al., 2011; Le Borgne65
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et al., 2011; Puyguiraud et al., 2021). Nevertheless, diffusion and transverse mixing tend66

to homogenize concentration and full mixing can be expected in the asymptotic regime,67

as long as the characteristic length of heterogeneity is finite. Clearly, the convergence68

rate toward asymptotic dispersion and full mixing depend on the medium heterogene-69

ity, but characterizing the relationship is still challenging and requires investigating both70

mixing and spreading mechanisms at all scales.71

Solute dispersion and its pre-asymptotic behavior have been analyzed in terms of72

breakthrough curves, the time evolution of the spatial variance of concentration or par-73

ticle distributions, or directly from particle velocities, using experiments and direct nu-74

merical pore scale simulations (Hulin & Plona, 1989; Khrapitchev & Callaghan, 2003;75

Bijeljic et al., 2004; Gouze et al., 2021; Puyguiraud et al., 2021; Gouze et al., 2023). These76

studies, accounting for the heterogeneity as a whole, show that the pore structure shapes77

the evolution of dispersion during the pre-asymptotic regime and then determine the asymp-78

totic value. Hulin and Plona (1989) and Khrapitchev and Callaghan (2003) study the79

reversibility of pore-scale dispersion upon flow reversal, which addresses the issue of un-80

der which conditions hydrodynamic dispersion describes solute mixing or advective so-81

lute spreading. As mentioned above, the fundamental mechanisms of hydrodynamic dis-82

persion are pore-scale velocity fluctuations and diffusion. The former mechanism is re-83

versible in the Stokes regime, which holds for typical applications in groundwater resources.84

Irreversibility, or actual solute mixing is induced by the interaction of spatial velocity85

fluctuations and molecular diffusion (Dentz et al., 2023). Consider for example a solute86

that evolves from an extended areal source. At early times, the solute front deforms due87

to velocity variability within the source distribution, which leads to a complex concen-88

tration distribution, which nevertheless is partially reversible. Hydrodynamic dispersion89

coefficients that are defined in terms of the spatial variance of the global solute distri-90

bution, measure at pre-asymtotic this advective spreading rather than actual solute mix-91

ing.92

This issue was recognized by Kitanidis (1988) in the context of solute dispersion93

in heterogeneous porous formations, and Bouchaud and Georges (1990) in the context94

of random walks in quenched disordered media. These authors propose to define disper-95

sion coefficients from the second-centered moments of the solute or particle distributions96

that evolve from a point-like initial condition. In the absence of local scale dispersion97

or molecular diffusion, these dispersion coefficients are exactly zero. In the following, we98

refer to this concept as effective dispersion. The dispersion concept based on the spa-99

tial variance of the solute concentration evolving from an extended areal or line source,100

is called ensemble dispersion in the following. As outlined above, at preasymptotic times101

ensemble dispersion measures advective solute spreading rather than mixing. In fact, it102

measures the center of mass fluctuations of the partial plume that evolves from the point103

injections that constitute the spatially extended initial distribution (Bouchaud & Georges,104

1990). Several authors studied these dispersion concept in the context of mixing and dis-105

persion in porous media on the continuum scale characterized by spatially variable hy-106

draulic conductivity (Attinger et al., 1999; Dentz et al., 2000; Fiori, 2001; Fiori & Da-107

gan, 2000; Vanderborght, 2001; Dentz & de Barros, 2015; De Barros et al., 2015; de Bar-108

ros & Dentz, 2016). Dentz et al. (2000) analyzed the time evolution of the effective and109

ensemble dispersion coefficients. They showed that the time resolved ensemble disper-110

sion coefficient is usually larger than the effective dispersion until the effective disper-111

sion growth rate increases due transverse local dispersion and diffusion and eventually112

converges with the ensemble dispersion coefficient. This increase of the effective disper-113

sion value denotes the convergence of average local mixing toward macroscopic mixing114

that accounts for heterogeneity as a whole. Because it is a quantitative way to discrim-115

inate mixing from spreading, the notion of effective dispersion has been discussed and116

used by several authors for the modeling of experimental and numerical reactive trans-117

port data (Cirpka, 2002; Jose et al., 2004; Perez et al., 2019, 2020; Puyguiraud et al., 2020).118

As discussed above, most works that analyze effective and ensemble dispersion to quan-119
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tify the impact of spatial heterogeneity on solute mixing and spreading consider contin-120

uum scale fluctuations of the hydraulic conductivity. To the best of our knowledge, the121

concept of effective dispersion has not been studied for transport in three-dimensional122

porous media despite its potential to explain the overestimation of pore-scale mixing and123

reaction by constant asymptotic hydrodynamic dispersion coefficients (Kapoor et al., 1998;124

Gramling et al., 2002; Perez et al., 2019).125

In the present communication we investigate in detail the temporal evolution of mix-126

ing and spreading mechanisms occurring in porous media, in order to evaluate the dif-127

ferent regimes in relation with the porous media structure. To this end, we perform three-128

dimensional direct numerical simulations of pore-scale flow and solute transport in a sand-129

pack medium and in a Berea sandstone of distinctly different heterogeneity levels, that130

can be measured, for instance, by the variance the logarithm of the flow velocity distri-131

bution. Solute dispersion is quantified by the temporal evolution of the effective and of132

the ensemble dispersion coefficients. This paper is organized as follows: the methodol-133

ogy used to calculate flow and transport and measure dispersion are presented in Sec-134

tion 2. In Section 3, we present the analyze of the dispersion behavior in the sand pack135

and Berea samples and discuss how these information can help us depicting the differ-136

ent dispersion stages in relation with the porous media structure. Section 4 presents the137

conclusions of the study.138

2 Methodology139

2.1 Pore-scale flow and transport140

Flow in three-dimensional porous media, described as dual solid-void structures,141

is described by the Stokes equation together with the continuity equation (Leal, 2007),142

∇2u(x) = − 1

µ
∇p(x), ∇ · u(x) = 0, (1)143

144

where µ is the dynamic viscosity, u(x) is the Eulerian velocity and p(x) is the fluid pres-145

sure at position x = (x1, x2, x3). Here, flow is driven by the macroscopic pressure gra-146

dient, which is aligned with the x-axis of the coordinated system. Zero-flux boundary147

conditions are set at the solid-void interface and at the lateral domain boundaries.148

Transport of solutes is described by the advection-diffusion equation (ADE) for the149

solute concentration c(x, t)150

∂c(x, t)

∂t
+∇ · [u(x)−D∇] c(x, t) = 0, (2)151

152

where c(x, t) is the solute concentration at position x and time t, and D is the molec-153

ular diffusion coefficient. The advection-diffusion equation (2) is equivalent to the Langevin154

equation (Risken, 1996)155

dx(t)

dt
= u[x(t)] +

√
2Dξ(t), (3)156

157

where ξ(t) is a Gaussian white noise with mean 〈ξi〉 = 0 and covariance 〈ξj(t)ξk(t)〉 =158

δjkδ(t− t′); δjk is the Kronecker delta.159

The average pore length `0, the mean streamwise flow velocity 〈v〉 = 〈|v(x)|〉 and160

the diffusion coefficient D set the advection time τv = `0/〈v〉 and the characteristic dif-161

fusion time τD = `20/D. The two time scales are compared by the Péclet number Pe =162

τD/τv = 〈v〉`0/D.163

–4–



manuscript submitted to Water Resources Research

2.2 Mixing versus spreading164

In this section, we discuss plume mixing versus spreading in terms of effective and165

ensemble dispersion coefficients. Then, we pose an approximate model based on the con-166

cept of effective dispersion to upscale pore-scale mixing to the continuum scale.167

We analyze the mixing and dispersion of a solute by considering the concentration168

distribution c(x, t) for the normalized plane source169

c(x, t = 0) = ρ(x) = φ−1δ(x1)
I(x ∈ Ωf )

wh
, (4)170

171

where Ωf denotes the fluid domain and I(·) is the indicator function, which is one if its172

argument is true and zero else. w and h denote the width and height of the medium and173

φ is porosity. The injection plane is large enough such that174 ∫
Ω

dxρ(x) = φ, (5)175

where Ω denotes the bulk domain, that is, the union of fluid domain and solid domain.176

The solute distribution can be decomposed into partial plumes g(x, t|x′) that satisfy Eq. (2)177

for the initial conditions178

g(x, t = 0|x′) = δ(x− x′)I(x′ ∈ Ωf ). (6)179
180

Then, we can write the concentration distribution c(x, t) as181

c(x, t) =

∫
Ω

dx′ρ(x′)g(x, t|x′). (7)182

Note that g(x, t|y′, z′) is the Green function of the transport problem. In the following,183

we define a surrogate model for the Green function using the concept of effective disper-184

sion.185

2.2.1 Effective and ensemble dispersion coefficients186

In order to define effective and ensemble dispersion coefficients, we consider the mo-187

ments of the Green function g(x, t|x′) and the concentration distribution c(x, t). The first188

and second moments of g(x, t|x′) are defined by189

mi(t; x
′) =

∫
dxxig(x, t|x′), (8)190

mij(t; x
′) =

∫
dxxixjg(x, t|x′). (9)191

192

The first moments mi(t; x
′) determine the center of mass position of g(x, t|x′). The sec-193

ond centered moments194

κij(t; x
′) = m

(2)
ij (t; x′)−m(1)

i (t; x′)m
(1)
j (t; x′) (10)195

196

are measures for the spatial extension of the Green function. The average of κij(t; x
′)197

over all Green functions defines the effective second centered moment198

κeff
ij (t) =

∫
dx′ρ(x′)κij(t; x

′). (11)199

200

It is a measure for the average width of the Green function. The temporal rate of growth201

of κeff
ij (t) is given by the effective dispersion coefficients202

Deff
ij (t) =

1

2

d

dt
κeij(t), (12)203

204

–5–



manuscript submitted to Water Resources Research

The effective dispersion coefficient measures the rate of growth of the spatial variance205

of a concentration distribution that evolves from a point-like initial condition.206

In full analogy, we define the first and second moments of c(x, t) as207

mi(t) =

∫
dxxic(x, t) =

∫
dx′ρ(x′)mi(t; x

′), (13)208

mij(t) =

∫
dxxixjc(x, t) =

∫
dx′ρ(x′)mij(t; x

′). (14)209

210

As per the second equality signs, the moments are determined by taking ensemble av-211

erages over the moments of the set of Green functions and as such are named the ensem-212

ble moments in the following. The second centered ensemble moments are defined by213

κens
ij (t) = mij(t)−mi(t)mj(t). (15)214

215

They are measures for the spatial extension of the concentration distribution, or equiv-216

alently for the ensemble of Green functions. The temporal rate of growth of the second217

centered ensemble moments is measured by the ensemble dispersion coefficients218

Dens
ij (t) =

1

2

d

dt
κens
ij (t). (16)219

220

The difference between the ensemble and effective variances,221

δκmij (t) =

∫
dx′ρ(x′)

[
m

(1)
i (t; x′)−m(1)

i (t)
] [
m

(1)
j (t; x′)−m(1)

j (t)
]
, (17)222

223

quantifies the variance of the center of mass fluctuations of the Green functions that con-224

stitute the solute plume. Along the same lines, the difference between the ensemble and225

effective dispersion coefficients measures the dispersion of the center of mass positions226

of the Green functions that constitute the solute plume227

δDm
ij (t) =

1

2

d

dt
δκmij (t). (18)228

229

In the following, we study the effective and ensemble dispersion coefficients as well as230

the center of mass fluctuations in streamwise direction, that is, for i = j = 1.231

2.3 Numerical simulations232

In the following, we describe the studied porous media, the numerical solution of233

the pore-scale flow problem and of the transport problem using random walk particle234

tracking.235

2.3.1 Porous media and fluid flow236

We study two three-dimensional porous media of different complexity, (i) a Berea237

sandstone sample and (ii) a sand pack sample illustrated in Figure 1 The Berea sample238

displays a complex pore structure with a porosity of φ = 0.18, see also (Puyguiraud et239

al., 2021). This type of porous rock is considered to be a pertinent large-scale homoge-240

neous proxy of high permeability sedimentary reservoirs (Churcher et al., 1991). The sand241

pack sample has a high porosity of φ = 0.37 with a more regular structure of the pore242

space. The sand-pack image (Sand Pack LV60C) was obtained from the Imperial Col-243

lege image repository (Imperial College Consortium on Pore-scale Imaging and Modelling,244

2014). It is a compact packing of irregular quartz grains of variable size that is a proxy245

of sub-surface aquifers (Di Palma et al., 2019). The difference between the two porous246

medium samples can be illustrated by the distribution of flow speeds (Alhashmi et al.,247

2016) shown in Figure 1. The flow heterogeneity is measured by the variance σ2
f of the248
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10−6

10−4

10−2

100

102

104

10−7 10−6 10−5 10−4 10−3 10−2 10−1 100 101

pd
f

v/〈v〉

Sand pack
Berea

Figure 1. Eulerian velocity pdfs for the sand pack (blue circles) and the Berea sandstone (red

squares). Inlay: The three-dimensional pore geometry of (left) the sand pack sample (5mm3) and

of (right) the Berea sandstone (1mm3). The grey and blue colors represent the pore space and

the solid phase, respectively.
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natural logarithm f = ln v of the flow speed v. For the Berea sandstone sample, we ob-249

tain σ2
f = 10, for the sand pack sample σ2

f = 2, that is, the Berea sample is signifi-250

cantly more heterogeneous. The characteristic pore length scale is `0 = 1.5 × 10−6 m251

both for the Berea and sand pack samples.252

Both pore geometries are based on X-Ray microtomography images. The geome-253

tries are meshed using regular hexahedron cells (voxels). This type of mesh has two ma-254

jor advantages. Firstly, it perfectly fits the voxels of the X-Ray tomography images, and255

secondly, it allows for a simple and computationally efficient velocity interpolation scheme,256

which is required for the transport simulation based on random walk particle tracking (Mostaghimi257

et al., 2012). Each of the images is decomposed in 9003 voxels of length lm = 1.060 ·258

10−6m for the Berea sandstone and lm = 5.001 · 10−6m for the sand pack.259

Fluid flow in the pore space is solved numerically using the SIMPLE algorithm im-260

plemented in OpenFOAM (Weller et al., 1998). Pressure boundary conditions are set261

at the inlet (x=0) and outlet (x = 900lm) of the domains. No-slip boundary conditions262

are prescribed at the void-solid interface and at the lateral boundaries of the domain.263

Once the solver has converged, the flow velocities are extracted at the centers of the in-264

terfaces of the mesh (that is, at the six faces of each of the regular hexahedra that form265

the mesh) in the normal direction to the face.266

The ratio between the mean flow speed 〈v〉 and the mean flow velocity 〈u〉 in stream-267

wise direction defines the advective tortuosity χ = 〈v〉/〈u〉. For the Berea sample, we268

find χ = 1.64, and for the sand pack χ = 1.32. Since for Stokes flow, the flow veloci-269

ties scale with the pressure gradient, the flow field is determined for a unit gradient and270

then scaled for the Péclet scenario under consideration. For example, for Pe = 200, the271

mean flow speeds are 〈v〉 = 2.67 × 10−3 m/s. The mean streamwise velocities can be272

obtained from the respective tortuosity values.273

2.3.2 Random walk particle tracking274

Solute transport is modeled using random walk particle tracking (Noetinger et al.,275

2016). The numerical simulation is based on the discretized version of the Langevin equa-276

tion (3),277

x(t+ ∆t) = x(t) + u[x(t)]∆t+
√

2D∆tζ(t), (19)278
279

where ζ = (ζ1, ζ2, ζ3). The ζi are independent random variables that are uniformly dis-280

tributed in [−
√

3,
√

3]. The central limit theorem ensures that the sum of these uniform281

random variables is Gaussian distributed with zero mean and unit variance. The par-282

ticle velocities u[x(t)] are interpolated from the velocities at the voxel faces using the283

algorithm of Mostaghimi et al. (2012), which implements a quadratic interpolation in284

the void voxels that are in contact with the solid and thus guarantees an accurate rep-285

resentation of the flow field in the vicinity of the solid-void interface. The time step is286

variable and chosen such that the particle displacement at a given step is shorter than287

or equal to the side length of a voxel. The time step varies from ∆t = 10−8 s at early288

times to get an accurate resolution of the moments to ∆t = 10−3s at late times to en-289

sure faster simulations. The diffusion coefficient is set to D = 10−9 m2/s.290

To investigate the effective and ensemble dispersion coefficients, 1.5× 107 parti-291

cles are uniformly placed at a plane perpendicular to the mean flow direction, see Fig-292

ure 2 for the Berea sandstone. A similar setup is used for the sand-pack. We consider293

this scenario for Pe = 200 and Pe = 2000.294

3 Dispersion behavior295

In this section, we analyze the dispersion behavior in the sand pack and Berea sam-296

ples. Figure 2 displays three snapshots of the concentration distribution for the Berea297

–8–
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Figure 2. Snapshots of the conservative simulation for the Berea sandstone for Pe = 2000 at

three different times t = 0.15τv, t = 0.8τv and t = 5τv. The density of particles represents the

concentration.

sandstone at Pe = 2000. The concentration distribution is heterogeneous and charac-298

terized by fast solute transport along preferential flow paths and retention in slow flow-299

ing regions. In the following, we discuss the evolution of the mean displacement, and the300

longitudinal effective and ensemble dispersion coefficients defined in Section 2.2 for the301

sand pack and the Berea sandstone samples. In the following figures, time is non-dimensionalized302

by the advection time τv.303

3.1 Center of mass304

Figure 3 shows the evolution of the streamwise center of mass position m1(t) of the305

global solute distribution c(x, t) in the top panels. The bottom panels show the rate of306

change δDm
11(t) of the variance of the center of mass positions m1(t|x′) of partial plumes307

g(x, t|x′) defined by (18). The center of mass of the global plume moves with the mean308

flow velocity 〈u〉, while the center of mass velocities of the partial plumes evolve from309

the velocities at the respective injection points toward the mean flow velocity. At short310

times t� τv, that is, travel distances shorter than the average pore size, the center of311

mass velocities are approximately constant, which implies m1(t; x′) = u1(x′)t and there-312

fore313

δDm
11(t) = σ2

0t, (20)314
315

where σ2
0 denotes the initial velocity variability. The initial particle velocities persist un-316

til the plume starts sampling the flow field by transverse diffusion across streamlines, and317

by advection along the streamlines. This ballistic early time regime is observed for both318

the sand pack and Berea samples.319

3.1.1 Sand pack sample320

The evolution of δDm
11(t) for the sand pack sample is characterized by two regimes.321

The early time ballistic regime, and a sharp decay after a maximum that is assumed on322

the advective time scale τv. This is at first counter-intuitive because transverse diffusion323

is the only mechanisms that makes the partial plume sample the flow heterogeneity such324

that the differences between the center of mass positions of different partial plumes de-325

crease. Thus, one would expect that the relevant time scale is set by the characteristic326

pore length and diffusion, that is, by the diffusion time τD. Sampling occurs indeed by327

diffusion in transverse direction. However, the distance `c to sample a new velocity de-328

pends on the flow rate because streamtubes in low velocity regions are wider than in high329

velocity regions. Since the flow rate is constant in a streamtube, Qc = `2c〈v〉, with Qc330
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Figure 3. Temporal evolution of the center of mass position of the (black solid line) global

plume, and (orange dashed lines) selected partial plumes for the sand-pack with (top left)

Pe = 200 and (top right) Pe = 2000, and the Berea sample with (bottom left) Pe = 200

and (bottom right) Pe = 2000. The dashed vertical lines denote (black) the advection time scale

τv, (yellow and orange) the respective diffusion time scales τD.

a characteristic flow rate, the decorrelation length becomes `c =
√
Qc/〈v〉. Thus, the331

time scale at which particles decorrelate is332

τc =
`2c
D

=
Qc
D`0

τv. (21)333

334

From Figure 3, we observe that τc ≈ τv, which means that the characteristic flow rate335

is Qc ≈ D`0.336

3.1.2 Berea sandstone sample337

For the Berea sample, we observe three different regimes for δDm
11(t). The early time338

regime is ballistic as discussed above. The start of the second regime is marked by the339

advective time scale τv as observed for the sand pack. Here, however, δDm
11(t) does not340

assume a maximum on the advective time scale and then decays, but keeps increasing341

until the diffusion time τD, where it reaches maximum and then shows a rapid decay.342

The behavior in the second time regime is characterized by the transverse velocity sam-343

pling of particles that are initialized at moderate to high flow velocities on the one hand344

and the persistence of particles in low velocity conducts on the other hand, which gives345

rise to the observed sub-linear increase of δDm
11(t). These low velocities are eliminated346

on the time scale τD, which sets the maximum transition time along a conduct. In other347

words, transition times of particles that move a low velocities along a conduct are cut-348

off at the diffusion time scale (Puyguiraud et al., 2021).349
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In summary, the evolution of the center of mass fluctuations is marked by the ad-350

vection time scale for the sand pack sample, and by the advection and diffusion time scales351

for the Berea sample. The fact that the intermediate regime is not present for the sand352

pack sample can be explained by the spatial medium structures of the two samples shown353

in Figure 1. The structure of the Berea sample can be seen as a connected network of354

conducts, while the sand pack is more a connected network of pore bodies. These dif-355

ferences are also reflected in the evolutions of the effective and ensemble dispersion co-356

efficients discussed in the next section.357

3.2 Ensemble and effective dispersion358

Figures 4 and 5 show the evolution of the effective and ensemble dispersion coef-359

ficients for the sand pack and Berea samples. One observes a marked difference between360

the ensemble and effective dispersion coefficients at short and intermediate times. At early361

times t < τ0 = D/〈v〉2 = Pe−1τv, diffusion dominates over advection, and both the362

ensemble and effective dispersion coefficients are equal to the molecular diffusion coef-363

ficient D. For τ0 < t < τv, advection starts dominating over diffusion. As outlined in364

the previous section, particles are transported at their initial velocities that persist over365

the characteristic length scale `0. Thus, the ensemble dispersion coefficients evolve bal-366

listically in this regime367

Dens
11 (t) = σ2

0t, (22)368
369

where σ2
0 is the initial velocity variance. It behaves in the same way as ∆Dm

11(t), see Eq. (20).370

371

This effect of the center of mass fluctuations between partial plumes is removed by372

the definition of the effective dispersion coefficients as the average dispersion coefficient373

of the partial plumes. For τ0 < t < τv, a partial plume is translated by its initial ve-374

locity. As its size increases by diffusion, the plume gets sheared by the transverse veloc-375

ity contrast. Therefore, the effective dispersion coefficients Deff
11 (t) first remain at the value376

of the molecular diffusion coefficient and then increase steeply due to shear dispersion.377

Figures 4b and 5b show that the increase of the effective dispersion coefficients occurs378

for high Pe at earlier non-dimensional times than for low Pe. This indicates that the379

shear rate does not scale linearly with 〈u〉. In fact, a typical shear rate can be written380

as381

γ =
〈v〉
`γ
, (23)382

383

where `γ is the scale of transverse velocity contrast. The latter is proportional to the typ-384

ical streamtube size. That is, as `2γ〈v〉 = constant, we have `γ ∼ 〈v〉−1/2. The char-385

acteristic shear length scale decreases with increasing flow rate, and thus the shear rate386

scales as γ ∼ 〈u〉3/2. Thus, the characteristic shear time scale τγ = γ−1 ∝ τv/〈v〉1/2.387

This dependence explains the differences in the time behaviors of the effective disper-388

sion coefficients for different Pe.389

The early time ballistic and shear dispersion behaviors for t < τv are observed for390

both the sand pack and Berea samples. For t > τv the dispersion behaviors are differ-391

ent.392

3.2.1 Sand pack sample393

Figures 4a–d show the evolution of the ensemble and effective dispersion coefficients394

for the sand pack sample. For times t > τv, that is for mean travel distances larger than395

the average pore size, particles start sampling different flow velocities along their tra-396

jectories, and the ballistic behavior for the ensemble dispersion coefficients breaks down,397

see Figure 4a.398
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Figure 4. Dispersion coefficients of the sand pack. Top panels: (Black solid lines) Ensemble

and (blue solid lines) effective dispersion coefficients for (a) Pe = 200 and (b) Pe = 2000. Bottom

panels: (c) Ensemble dispersion coefficients for (red solid line) Pe = 2000 and (orange solid line)

Pe = 200 for the sand pack, and (d) corresponding effective dispersion coefficients. The vertical

dashed lines denote the decorrelation time scale τc = τv. The horizontal dash-dotted lines denote

the asymptotic short time and long time values.

–12–



manuscript submitted to Water Resources Research

For purely advective transport, the ensemble dispersion coefficients continue grow-399

ing non-linearly with time, which can be traced back to the broad distribution of tran-400

sition time across pores (Puyguiraud et al., 2019). At finite Pe, the ensemble dispersion401

coefficients first follow the purely advective behavior and eventually cross over toward402

their asymptotic value on the time scale. The effective dispersion coefficients shown in403

Figure 4 cross over toward their asymptotic values, also on the time scale τv. As shown404

in Figures 4c and d, they converge with Dens
11 (t).405

As mentioned in Section 3.1, these behaviors are at first sight counter-intuitive be-406

cause we expect the deviation from the purely advective behavior observed for Dens
11 (t)407

and the convergence of Deff
11 (t) toward Dens

11 (t) to be governed by diffusion. For ensem-408

ble dispersion, diffusion is the mechanism that decorrelates subsequent (low) velocities409

in time and thus leads to the separation of Dens
11 (t) from the (anomalous) purely advec-410

tive behavior. Similarly, the mechanism by which the effective dispersion coefficients con-411

verge toward the ensemble dispersion coefficients is due to decorrelation of the particles412

that start from the same point, which is due to diffusion in transverse direction. Thus413

one would expect that the dispersion coefficients evolve on the diffusion time scale τD.414

As discussed in Section 3.1.1, the decorrelation mechanism is indeed transverse dif-415

fusion across a length scale that is related to a typical streamtube width. Thus, the decor-416

relation time τc is given by Eq. (21), which is proportional to τv. This observation ex-417

plains the temporal evolution of the ensemble and effective dispersion coefficients for t <418

τv.419

3.2.2 Berea sandstone sample420

Figures 5a-d show the evolution of the ensemble and effective dispersion coefficients421

for the Berea sandstone sample. As seen in Figure 5a, the initial ballistic behavior for422

the ensemble dispersion coefficients breaks down on the time scale τv when particles start423

sampling different flow velocities along their trajectories. For purely advective transport,424

we observe anomalous dispersion characterized by a super-linear growth of the ensem-425

ble dispersion coefficients, which can be traced back to broad distributions of advective426

particle transition times (Puyguiraud et al., 2019). Unlike for the sand pack, here the427

cross-over toward the constant asymptotic long time values occurs on the diffusion time428

scale τD. As discussed in Section 3.1.2, here the temporal decorrelation of low velocities429

is due to diffusion along pore channels with the characteristic time scale τD (Puyguiraud430

et al., 2021). Similary, the convergence of the effective dispersion coefficient shown in Fig-431

ure 5b occurs on the time scale τD.432

The cross-over of the effective to the ensemble dispersion coefficients shown in Fig-433

ures 5c and d occurs on the decorrelation time scale τc, see Eq. (21). This time scale is434

set by transverse diffusion across streamtubes, which is the mechanisms by which par-435

ticles that originate at the same initial position start decorrelating and sampling differ-436

ent flow velocities. The independent sampling of flow velocities along trajectories between437

different particles is the ensemble mechanism of dispersion as measured by the ensem-438

ble dispersion coefficients, and therefore effective and ensemble dispersion converge on439

the scale τc.440

4 Conclusions441

We investigate solute dispersion in three-dimensional porous rocks using detailed442

numerical simulations of pore-scale flow and transport. We consider a sand-like medium,443

and a Berea sandstone sample. The two media have quite distinct pore structure, which444

manifests in distinct pore-scale flow variability. The latter is quantified by the distribu-445

tion of Eulerian flow speeds. The degree of flow heterogeneity is measured by the vari-446

ance of the logarithm of the flow speed, which is significantly higher for the Berea sam-447
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Figure 5. Dispersion coefficients for the Berea sandstone sample. Top panels: (a) Ensemble

dispersion coefficients for (red solid line) Pe = 2000 and (orange solid line) Pe = 200, and (b)

corresponding effective dispersion coefficients. The vertical dashed lines denote the corresponding

diffusion time scale τD = τvPe. Bottom panels: (Black solid lines) Ensemble and (blue solid

lines) effective dispersion coefficients for (a) Pe = 200 and (b) Pe = 2000. The vertical black

dashed lines denote the decorrelation time scale τc = τv, the blue dashed lines the respective

diffusion time scales. The horizontal dash-dotted lines denote the asymptotic short time and long

time values.
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ple than for the sand pack sample. Solute dispersion is quantified by effective and en-448

semble dispersion coefficients. The former is defined in terms of the spatial average of449

the second-centered moments of the partial plumes (Green functions) that constitute the450

global solute distribution. Ensemble dispersion coefficients are defined in terms of the451

second centered moments of the global solute plume. Thus, the effective dispersion co-452

efficients can be seen as a measure for the typical width of a mixing front, while the en-453

semble dispersion coefficients are a measure for its deformation due to the flow variabil-454

ity within the initial plume. The mechanisms that cause hydrodynamic dispersion are455

pore-scale flow variability and molecular diffusion, and govern the evolution of both the456

effective and ensemble dispersion coefficients. They eventually converge toward the same457

asymptotic value, which quantifies the impact of spatial heterogeneity on large-scale mix-458

ing.459

The early time behavior of the ensemble coefficient is ballistic as a result of the spa-460

tial persistence of flow velocities in the initial plume. The effective coefficients on the other461

hand are significantly smaller than their ensemble counterparts. Their early time evo-462

lution is dominated by shear dispersion, which results from the velocity gradients within463

the partial plumes, whose lateral extent initially increases by diffusion. The two disper-464

sion coefficients start converging when the lateral extent of the partial plumes is large465

enough for the efficient sampling of the flow heterogeneity, and it is here, where disper-466

sion in the sand pack and Berea sandstone behave differently. For the sand pack, the evo-467

lution of effective dispersion is marked by the characteristic diffusion time across a stream-468

tube, which sets the time for both convergence to ensemble dispersion and its asymp-469

totic behavior. For the Berea sandstone, this time scale marks the time for convergence470

of effective and ensemble dispersion, which, however, still evolve non-linearly with time471

until they assume their asymptotic long time value on the time scale for diffusion over472

a typical pore length. These behaviors can be traced back to the network-like medium473

structure in case of the Berea sample, and the strong connectivity of pores in the sand474

pack. Thus, the evolution of solute dispersion reflects the medium structure, which de-475

termines the microscopic mass transfer mechanisms. While the behavior of ensemble dis-476

persion can be captured by travel-time based approaches like the continuous time ran-477

dom walk in terms of flow variability and medium structure, it is still elusive how to quan-478

tify effective dispersion in these terms.479

We argue that it is first important to realize that solute dispersion evolves in time,480

and on time scales that are relevant for the understanding of transport phenomena of481

reactive solutes and microbes, for example. Second, it is important to realize that there482

is a conceptual and quantitative difference between solute spreading, as quantified by483

ensemble dispersion, and solute mixing, which is represented here by effective dispersion484

because it measures the typical rate of growth of the width of a partial plume that evolves485

from a point-like injection. The temporal evolution of effective dispersion from molec-486

ular diffusion to asymptotic hydrodynamic dispersion sheds light on the evolution of mix-487

ing fronts in porous media, and may explain phenomena of incomplete mixing observed488

for fast chemical reactions in porous media.489
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Abstract14

We study the temporal evolution of solute dispersion in three-dimensional porous rocks15

of different heterogeneity and pore structure. To this end, we perform direct numerical16

simulations of pore-scale flow and transport in a sand-like medium, which exhibits mild17

heterogeneity, and a Berea sandstone, which is characterized by strong heterogeneity as18

measured by the variance of the logarithm of the flow velocity. Solute dispersion is quan-19

tified by effective and ensemble dispersion coefficients. The former is a measure for the20

typical width of the plume, the latter for the deformation, that is, the spread of the mix-21

ing front. Both dispersion coefficients evolve from the molecular diffusion coefficients to-22

ward a common finite asymptotic value. Their evolution is governed by the interplay be-23

tween diffusion, pore-scale velocity fluctuations and the medium structure, which deter-24

mine the characteristic diffusion and advection time scales. Dispersion in the sand-like25

medium evolves on the transverse diffusion time across a characteristic streamtube di-26

ameter, which is the mechanism by which pore-scale flow variability is sampled by the27

solute. Dispersion in the Berea sandstone in contrast is governed by both the diffusion28

time across a typical streamtube, and the diffusion time along a pore conduit. These in-29

sights shed light on the evolution of mixing fronts in porous rocks, with implications for30

the understanding and modeling of transport phenomena of microbes and reactive so-31

lutes in porous media.32

1 Introduction33

The transport of solutes in porous media is driven by the phenomenon of disper-34

sion, which results from the interplay between advective spreading and diffusion. The35

former is triggered by the spatial variability of the fluid speed which is controlled by the36

geometry of the connected pore network (Datta et al., 2013; Alim et al., 2017; Valocchi37

et al., 2018; Puyguiraud et al., 2021) while the later is ubiquitously controlled by the con-38

centration gradients. The heterogeneity of the porous medium that triggers the flow speed39

distribution is therefore a primary parameter that controls dispersion from pre-asymptotic40

to Fickian regime (Dentz et al., 2004; Sherman et al., 2021). Transport in porous me-41

dia is considered in many fields of academic and industrial applications from materials42

science, engineering and medicine to groundwater hydrology, environmental technolo-43

gies and petroleum engineering, and at many scales from microfluidic applications to ground-44

water management. Beside being necessary for understanding and predicting the spread-45

ing of chemicals such as pollutants or bionutrients, modeling dispersion is required also46

to understand and predict solute-solute and solute-minerals reactions that can produce47

new solute species and trigger mineral dissolution and precipitation features, for instance.48

Dispersion in porous media has been extensively studied from the pore to the re-49

gional scale for decades (Saffman, 1959; Whitaker, 1967; Gelhar & Axness, 1983; Dagan,50

1990; Dentz et al., 2023). Here we focus on hydrodynamic dispersion due velocity fluc-51

tuations caused by the heterogeneity of the pore space. A main challenge concerns how52

continuum-scale solute transport can be modeled by macroscopic parameters, such as53

the dispersion coefficient, that can be inferred experimentally, by using direct pore scale54

simulations or upscaling methods such as volume averaging or stochastic modeling (Brenner,55

1980; Ahmadi et al., 1998; Koch & Brady, 1985; Scheven, 2013; Bijeljic & Blunt, 2006;56

Le Borgne et al., 2011; Souzy et al., 2020; Puyguiraud et al., 2021). Similar challenges57

are encountered for reactive transport that is controlled by the time resolved distribu-58

tion of the solutes and their mixing. If the reaction thermodynamics and kinetics are known,59

then the goal is to be able to model the local reaction rate from knowing dispersion prop-60

erties (Battiato et al., 2009; Battiato & Tartakovsky, 2011). However, it is well known61

that the advection-dispersion equation parameterized by constant asymptotic dispersion62

coefficients are not suited to evaluate the effective reaction rates, because it assumes full63

mixing whereas incomplete mixing is the rule during the pre-asymptotic (non-Fickian)64

dispersion regimes (Rolle et al., 2009; Le Borgne et al., 2010; Dentz et al., 2011; Le Borgne65
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et al., 2011; Puyguiraud et al., 2021). Nevertheless, diffusion and transverse mixing tend66

to homogenize concentration and full mixing can be expected in the asymptotic regime,67

as long as the characteristic length of heterogeneity is finite. Clearly, the convergence68

rate toward asymptotic dispersion and full mixing depend on the medium heterogene-69

ity, but characterizing the relationship is still challenging and requires investigating both70

mixing and spreading mechanisms at all scales.71

Solute dispersion and its pre-asymptotic behavior have been analyzed in terms of72

breakthrough curves, the time evolution of the spatial variance of concentration or par-73

ticle distributions, or directly from particle velocities, using experiments and direct nu-74

merical pore scale simulations (Hulin & Plona, 1989; Khrapitchev & Callaghan, 2003;75

Bijeljic et al., 2004; Gouze et al., 2021; Puyguiraud et al., 2021; Gouze et al., 2023). These76

studies, accounting for the heterogeneity as a whole, show that the pore structure shapes77

the evolution of dispersion during the pre-asymptotic regime and then determine the asymp-78

totic value. Hulin and Plona (1989) and Khrapitchev and Callaghan (2003) study the79

reversibility of pore-scale dispersion upon flow reversal, which addresses the issue of un-80

der which conditions hydrodynamic dispersion describes solute mixing or advective so-81

lute spreading. As mentioned above, the fundamental mechanisms of hydrodynamic dis-82

persion are pore-scale velocity fluctuations and diffusion. The former mechanism is re-83

versible in the Stokes regime, which holds for typical applications in groundwater resources.84

Irreversibility, or actual solute mixing is induced by the interaction of spatial velocity85

fluctuations and molecular diffusion (Dentz et al., 2023). Consider for example a solute86

that evolves from an extended areal source. At early times, the solute front deforms due87

to velocity variability within the source distribution, which leads to a complex concen-88

tration distribution, which nevertheless is partially reversible. Hydrodynamic dispersion89

coefficients that are defined in terms of the spatial variance of the global solute distri-90

bution, measure at pre-asymtotic this advective spreading rather than actual solute mix-91

ing.92

This issue was recognized by Kitanidis (1988) in the context of solute dispersion93

in heterogeneous porous formations, and Bouchaud and Georges (1990) in the context94

of random walks in quenched disordered media. These authors propose to define disper-95

sion coefficients from the second-centered moments of the solute or particle distributions96

that evolve from a point-like initial condition. In the absence of local scale dispersion97

or molecular diffusion, these dispersion coefficients are exactly zero. In the following, we98

refer to this concept as effective dispersion. The dispersion concept based on the spa-99

tial variance of the solute concentration evolving from an extended areal or line source,100

is called ensemble dispersion in the following. As outlined above, at preasymptotic times101

ensemble dispersion measures advective solute spreading rather than mixing. In fact, it102

measures the center of mass fluctuations of the partial plume that evolves from the point103

injections that constitute the spatially extended initial distribution (Bouchaud & Georges,104

1990). Several authors studied these dispersion concept in the context of mixing and dis-105

persion in porous media on the continuum scale characterized by spatially variable hy-106

draulic conductivity (Attinger et al., 1999; Dentz et al., 2000; Fiori, 2001; Fiori & Da-107

gan, 2000; Vanderborght, 2001; Dentz & de Barros, 2015; De Barros et al., 2015; de Bar-108

ros & Dentz, 2016). Dentz et al. (2000) analyzed the time evolution of the effective and109

ensemble dispersion coefficients. They showed that the time resolved ensemble disper-110

sion coefficient is usually larger than the effective dispersion until the effective disper-111

sion growth rate increases due transverse local dispersion and diffusion and eventually112

converges with the ensemble dispersion coefficient. This increase of the effective disper-113

sion value denotes the convergence of average local mixing toward macroscopic mixing114

that accounts for heterogeneity as a whole. Because it is a quantitative way to discrim-115

inate mixing from spreading, the notion of effective dispersion has been discussed and116

used by several authors for the modeling of experimental and numerical reactive trans-117

port data (Cirpka, 2002; Jose et al., 2004; Perez et al., 2019, 2020; Puyguiraud et al., 2020).118

As discussed above, most works that analyze effective and ensemble dispersion to quan-119
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tify the impact of spatial heterogeneity on solute mixing and spreading consider contin-120

uum scale fluctuations of the hydraulic conductivity. To the best of our knowledge, the121

concept of effective dispersion has not been studied for transport in three-dimensional122

porous media despite its potential to explain the overestimation of pore-scale mixing and123

reaction by constant asymptotic hydrodynamic dispersion coefficients (Kapoor et al., 1998;124

Gramling et al., 2002; Perez et al., 2019).125

In the present communication we investigate in detail the temporal evolution of mix-126

ing and spreading mechanisms occurring in porous media, in order to evaluate the dif-127

ferent regimes in relation with the porous media structure. To this end, we perform three-128

dimensional direct numerical simulations of pore-scale flow and solute transport in a sand-129

pack medium and in a Berea sandstone of distinctly different heterogeneity levels, that130

can be measured, for instance, by the variance the logarithm of the flow velocity distri-131

bution. Solute dispersion is quantified by the temporal evolution of the effective and of132

the ensemble dispersion coefficients. This paper is organized as follows: the methodol-133

ogy used to calculate flow and transport and measure dispersion are presented in Sec-134

tion 2. In Section 3, we present the analyze of the dispersion behavior in the sand pack135

and Berea samples and discuss how these information can help us depicting the differ-136

ent dispersion stages in relation with the porous media structure. Section 4 presents the137

conclusions of the study.138

2 Methodology139

2.1 Pore-scale flow and transport140

Flow in three-dimensional porous media, described as dual solid-void structures,141

is described by the Stokes equation together with the continuity equation (Leal, 2007),142

∇2u(x) = − 1

µ
∇p(x), ∇ · u(x) = 0, (1)143

144

where µ is the dynamic viscosity, u(x) is the Eulerian velocity and p(x) is the fluid pres-145

sure at position x = (x1, x2, x3). Here, flow is driven by the macroscopic pressure gra-146

dient, which is aligned with the x-axis of the coordinated system. Zero-flux boundary147

conditions are set at the solid-void interface and at the lateral domain boundaries.148

Transport of solutes is described by the advection-diffusion equation (ADE) for the149

solute concentration c(x, t)150

∂c(x, t)

∂t
+∇ · [u(x)−D∇] c(x, t) = 0, (2)151

152

where c(x, t) is the solute concentration at position x and time t, and D is the molec-153

ular diffusion coefficient. The advection-diffusion equation (2) is equivalent to the Langevin154

equation (Risken, 1996)155

dx(t)

dt
= u[x(t)] +

√
2Dξ(t), (3)156

157

where ξ(t) is a Gaussian white noise with mean 〈ξi〉 = 0 and covariance 〈ξj(t)ξk(t)〉 =158

δjkδ(t− t′); δjk is the Kronecker delta.159

The average pore length `0, the mean streamwise flow velocity 〈v〉 = 〈|v(x)|〉 and160

the diffusion coefficient D set the advection time τv = `0/〈v〉 and the characteristic dif-161

fusion time τD = `20/D. The two time scales are compared by the Péclet number Pe =162

τD/τv = 〈v〉`0/D.163
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2.2 Mixing versus spreading164

In this section, we discuss plume mixing versus spreading in terms of effective and165

ensemble dispersion coefficients. Then, we pose an approximate model based on the con-166

cept of effective dispersion to upscale pore-scale mixing to the continuum scale.167

We analyze the mixing and dispersion of a solute by considering the concentration168

distribution c(x, t) for the normalized plane source169

c(x, t = 0) = ρ(x) = φ−1δ(x1)
I(x ∈ Ωf )

wh
, (4)170

171

where Ωf denotes the fluid domain and I(·) is the indicator function, which is one if its172

argument is true and zero else. w and h denote the width and height of the medium and173

φ is porosity. The injection plane is large enough such that174 ∫
Ω

dxρ(x) = φ, (5)175

where Ω denotes the bulk domain, that is, the union of fluid domain and solid domain.176

The solute distribution can be decomposed into partial plumes g(x, t|x′) that satisfy Eq. (2)177

for the initial conditions178

g(x, t = 0|x′) = δ(x− x′)I(x′ ∈ Ωf ). (6)179
180

Then, we can write the concentration distribution c(x, t) as181

c(x, t) =

∫
Ω

dx′ρ(x′)g(x, t|x′). (7)182

Note that g(x, t|y′, z′) is the Green function of the transport problem. In the following,183

we define a surrogate model for the Green function using the concept of effective disper-184

sion.185

2.2.1 Effective and ensemble dispersion coefficients186

In order to define effective and ensemble dispersion coefficients, we consider the mo-187

ments of the Green function g(x, t|x′) and the concentration distribution c(x, t). The first188

and second moments of g(x, t|x′) are defined by189

mi(t; x
′) =

∫
dxxig(x, t|x′), (8)190

mij(t; x
′) =

∫
dxxixjg(x, t|x′). (9)191

192

The first moments mi(t; x
′) determine the center of mass position of g(x, t|x′). The sec-193

ond centered moments194

κij(t; x
′) = m

(2)
ij (t; x′)−m(1)

i (t; x′)m
(1)
j (t; x′) (10)195

196

are measures for the spatial extension of the Green function. The average of κij(t; x
′)197

over all Green functions defines the effective second centered moment198

κeff
ij (t) =

∫
dx′ρ(x′)κij(t; x

′). (11)199

200

It is a measure for the average width of the Green function. The temporal rate of growth201

of κeff
ij (t) is given by the effective dispersion coefficients202

Deff
ij (t) =

1

2

d

dt
κeij(t), (12)203

204
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The effective dispersion coefficient measures the rate of growth of the spatial variance205

of a concentration distribution that evolves from a point-like initial condition.206

In full analogy, we define the first and second moments of c(x, t) as207

mi(t) =

∫
dxxic(x, t) =

∫
dx′ρ(x′)mi(t; x

′), (13)208

mij(t) =

∫
dxxixjc(x, t) =

∫
dx′ρ(x′)mij(t; x

′). (14)209

210

As per the second equality signs, the moments are determined by taking ensemble av-211

erages over the moments of the set of Green functions and as such are named the ensem-212

ble moments in the following. The second centered ensemble moments are defined by213

κens
ij (t) = mij(t)−mi(t)mj(t). (15)214

215

They are measures for the spatial extension of the concentration distribution, or equiv-216

alently for the ensemble of Green functions. The temporal rate of growth of the second217

centered ensemble moments is measured by the ensemble dispersion coefficients218

Dens
ij (t) =

1

2

d

dt
κens
ij (t). (16)219

220

The difference between the ensemble and effective variances,221

δκmij (t) =

∫
dx′ρ(x′)

[
m

(1)
i (t; x′)−m(1)

i (t)
] [
m

(1)
j (t; x′)−m(1)

j (t)
]
, (17)222

223

quantifies the variance of the center of mass fluctuations of the Green functions that con-224

stitute the solute plume. Along the same lines, the difference between the ensemble and225

effective dispersion coefficients measures the dispersion of the center of mass positions226

of the Green functions that constitute the solute plume227

δDm
ij (t) =

1

2

d

dt
δκmij (t). (18)228

229

In the following, we study the effective and ensemble dispersion coefficients as well as230

the center of mass fluctuations in streamwise direction, that is, for i = j = 1.231

2.3 Numerical simulations232

In the following, we describe the studied porous media, the numerical solution of233

the pore-scale flow problem and of the transport problem using random walk particle234

tracking.235

2.3.1 Porous media and fluid flow236

We study two three-dimensional porous media of different complexity, (i) a Berea237

sandstone sample and (ii) a sand pack sample illustrated in Figure 1 The Berea sample238

displays a complex pore structure with a porosity of φ = 0.18, see also (Puyguiraud et239

al., 2021). This type of porous rock is considered to be a pertinent large-scale homoge-240

neous proxy of high permeability sedimentary reservoirs (Churcher et al., 1991). The sand241

pack sample has a high porosity of φ = 0.37 with a more regular structure of the pore242

space. The sand-pack image (Sand Pack LV60C) was obtained from the Imperial Col-243

lege image repository (Imperial College Consortium on Pore-scale Imaging and Modelling,244

2014). It is a compact packing of irregular quartz grains of variable size that is a proxy245

of sub-surface aquifers (Di Palma et al., 2019). The difference between the two porous246

medium samples can be illustrated by the distribution of flow speeds (Alhashmi et al.,247

2016) shown in Figure 1. The flow heterogeneity is measured by the variance σ2
f of the248
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Figure 1. Eulerian velocity pdfs for the sand pack (blue circles) and the Berea sandstone (red

squares). Inlay: The three-dimensional pore geometry of (left) the sand pack sample (5mm3) and

of (right) the Berea sandstone (1mm3). The grey and blue colors represent the pore space and

the solid phase, respectively.
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natural logarithm f = ln v of the flow speed v. For the Berea sandstone sample, we ob-249

tain σ2
f = 10, for the sand pack sample σ2

f = 2, that is, the Berea sample is signifi-250

cantly more heterogeneous. The characteristic pore length scale is `0 = 1.5 × 10−6 m251

both for the Berea and sand pack samples.252

Both pore geometries are based on X-Ray microtomography images. The geome-253

tries are meshed using regular hexahedron cells (voxels). This type of mesh has two ma-254

jor advantages. Firstly, it perfectly fits the voxels of the X-Ray tomography images, and255

secondly, it allows for a simple and computationally efficient velocity interpolation scheme,256

which is required for the transport simulation based on random walk particle tracking (Mostaghimi257

et al., 2012). Each of the images is decomposed in 9003 voxels of length lm = 1.060 ·258

10−6m for the Berea sandstone and lm = 5.001 · 10−6m for the sand pack.259

Fluid flow in the pore space is solved numerically using the SIMPLE algorithm im-260

plemented in OpenFOAM (Weller et al., 1998). Pressure boundary conditions are set261

at the inlet (x=0) and outlet (x = 900lm) of the domains. No-slip boundary conditions262

are prescribed at the void-solid interface and at the lateral boundaries of the domain.263

Once the solver has converged, the flow velocities are extracted at the centers of the in-264

terfaces of the mesh (that is, at the six faces of each of the regular hexahedra that form265

the mesh) in the normal direction to the face.266

The ratio between the mean flow speed 〈v〉 and the mean flow velocity 〈u〉 in stream-267

wise direction defines the advective tortuosity χ = 〈v〉/〈u〉. For the Berea sample, we268

find χ = 1.64, and for the sand pack χ = 1.32. Since for Stokes flow, the flow veloci-269

ties scale with the pressure gradient, the flow field is determined for a unit gradient and270

then scaled for the Péclet scenario under consideration. For example, for Pe = 200, the271

mean flow speeds are 〈v〉 = 2.67 × 10−3 m/s. The mean streamwise velocities can be272

obtained from the respective tortuosity values.273

2.3.2 Random walk particle tracking274

Solute transport is modeled using random walk particle tracking (Noetinger et al.,275

2016). The numerical simulation is based on the discretized version of the Langevin equa-276

tion (3),277

x(t+ ∆t) = x(t) + u[x(t)]∆t+
√

2D∆tζ(t), (19)278
279

where ζ = (ζ1, ζ2, ζ3). The ζi are independent random variables that are uniformly dis-280

tributed in [−
√

3,
√

3]. The central limit theorem ensures that the sum of these uniform281

random variables is Gaussian distributed with zero mean and unit variance. The par-282

ticle velocities u[x(t)] are interpolated from the velocities at the voxel faces using the283

algorithm of Mostaghimi et al. (2012), which implements a quadratic interpolation in284

the void voxels that are in contact with the solid and thus guarantees an accurate rep-285

resentation of the flow field in the vicinity of the solid-void interface. The time step is286

variable and chosen such that the particle displacement at a given step is shorter than287

or equal to the side length of a voxel. The time step varies from ∆t = 10−8 s at early288

times to get an accurate resolution of the moments to ∆t = 10−3s at late times to en-289

sure faster simulations. The diffusion coefficient is set to D = 10−9 m2/s.290

To investigate the effective and ensemble dispersion coefficients, 1.5× 107 parti-291

cles are uniformly placed at a plane perpendicular to the mean flow direction, see Fig-292

ure 2 for the Berea sandstone. A similar setup is used for the sand-pack. We consider293

this scenario for Pe = 200 and Pe = 2000.294

3 Dispersion behavior295

In this section, we analyze the dispersion behavior in the sand pack and Berea sam-296

ples. Figure 2 displays three snapshots of the concentration distribution for the Berea297
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Figure 2. Snapshots of the conservative simulation for the Berea sandstone for Pe = 2000 at

three different times t = 0.15τv, t = 0.8τv and t = 5τv. The density of particles represents the

concentration.

sandstone at Pe = 2000. The concentration distribution is heterogeneous and charac-298

terized by fast solute transport along preferential flow paths and retention in slow flow-299

ing regions. In the following, we discuss the evolution of the mean displacement, and the300

longitudinal effective and ensemble dispersion coefficients defined in Section 2.2 for the301

sand pack and the Berea sandstone samples. In the following figures, time is non-dimensionalized302

by the advection time τv.303

3.1 Center of mass304

Figure 3 shows the evolution of the streamwise center of mass position m1(t) of the305

global solute distribution c(x, t) in the top panels. The bottom panels show the rate of306

change δDm
11(t) of the variance of the center of mass positions m1(t|x′) of partial plumes307

g(x, t|x′) defined by (18). The center of mass of the global plume moves with the mean308

flow velocity 〈u〉, while the center of mass velocities of the partial plumes evolve from309

the velocities at the respective injection points toward the mean flow velocity. At short310

times t� τv, that is, travel distances shorter than the average pore size, the center of311

mass velocities are approximately constant, which implies m1(t; x′) = u1(x′)t and there-312

fore313

δDm
11(t) = σ2

0t, (20)314
315

where σ2
0 denotes the initial velocity variability. The initial particle velocities persist un-316

til the plume starts sampling the flow field by transverse diffusion across streamlines, and317

by advection along the streamlines. This ballistic early time regime is observed for both318

the sand pack and Berea samples.319

3.1.1 Sand pack sample320

The evolution of δDm
11(t) for the sand pack sample is characterized by two regimes.321

The early time ballistic regime, and a sharp decay after a maximum that is assumed on322

the advective time scale τv. This is at first counter-intuitive because transverse diffusion323

is the only mechanisms that makes the partial plume sample the flow heterogeneity such324

that the differences between the center of mass positions of different partial plumes de-325

crease. Thus, one would expect that the relevant time scale is set by the characteristic326

pore length and diffusion, that is, by the diffusion time τD. Sampling occurs indeed by327

diffusion in transverse direction. However, the distance `c to sample a new velocity de-328

pends on the flow rate because streamtubes in low velocity regions are wider than in high329

velocity regions. Since the flow rate is constant in a streamtube, Qc = `2c〈v〉, with Qc330
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Figure 3. Temporal evolution of the center of mass position of the (black solid line) global

plume, and (orange dashed lines) selected partial plumes for the sand-pack with (top left)

Pe = 200 and (top right) Pe = 2000, and the Berea sample with (bottom left) Pe = 200

and (bottom right) Pe = 2000. The dashed vertical lines denote (black) the advection time scale

τv, (yellow and orange) the respective diffusion time scales τD.

a characteristic flow rate, the decorrelation length becomes `c =
√
Qc/〈v〉. Thus, the331

time scale at which particles decorrelate is332

τc =
`2c
D

=
Qc
D`0

τv. (21)333

334

From Figure 3, we observe that τc ≈ τv, which means that the characteristic flow rate335

is Qc ≈ D`0.336

3.1.2 Berea sandstone sample337

For the Berea sample, we observe three different regimes for δDm
11(t). The early time338

regime is ballistic as discussed above. The start of the second regime is marked by the339

advective time scale τv as observed for the sand pack. Here, however, δDm
11(t) does not340

assume a maximum on the advective time scale and then decays, but keeps increasing341

until the diffusion time τD, where it reaches maximum and then shows a rapid decay.342

The behavior in the second time regime is characterized by the transverse velocity sam-343

pling of particles that are initialized at moderate to high flow velocities on the one hand344

and the persistence of particles in low velocity conducts on the other hand, which gives345

rise to the observed sub-linear increase of δDm
11(t). These low velocities are eliminated346

on the time scale τD, which sets the maximum transition time along a conduct. In other347

words, transition times of particles that move a low velocities along a conduct are cut-348

off at the diffusion time scale (Puyguiraud et al., 2021).349
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In summary, the evolution of the center of mass fluctuations is marked by the ad-350

vection time scale for the sand pack sample, and by the advection and diffusion time scales351

for the Berea sample. The fact that the intermediate regime is not present for the sand352

pack sample can be explained by the spatial medium structures of the two samples shown353

in Figure 1. The structure of the Berea sample can be seen as a connected network of354

conducts, while the sand pack is more a connected network of pore bodies. These dif-355

ferences are also reflected in the evolutions of the effective and ensemble dispersion co-356

efficients discussed in the next section.357

3.2 Ensemble and effective dispersion358

Figures 4 and 5 show the evolution of the effective and ensemble dispersion coef-359

ficients for the sand pack and Berea samples. One observes a marked difference between360

the ensemble and effective dispersion coefficients at short and intermediate times. At early361

times t < τ0 = D/〈v〉2 = Pe−1τv, diffusion dominates over advection, and both the362

ensemble and effective dispersion coefficients are equal to the molecular diffusion coef-363

ficient D. For τ0 < t < τv, advection starts dominating over diffusion. As outlined in364

the previous section, particles are transported at their initial velocities that persist over365

the characteristic length scale `0. Thus, the ensemble dispersion coefficients evolve bal-366

listically in this regime367

Dens
11 (t) = σ2

0t, (22)368
369

where σ2
0 is the initial velocity variance. It behaves in the same way as ∆Dm

11(t), see Eq. (20).370

371

This effect of the center of mass fluctuations between partial plumes is removed by372

the definition of the effective dispersion coefficients as the average dispersion coefficient373

of the partial plumes. For τ0 < t < τv, a partial plume is translated by its initial ve-374

locity. As its size increases by diffusion, the plume gets sheared by the transverse veloc-375

ity contrast. Therefore, the effective dispersion coefficients Deff
11 (t) first remain at the value376

of the molecular diffusion coefficient and then increase steeply due to shear dispersion.377

Figures 4b and 5b show that the increase of the effective dispersion coefficients occurs378

for high Pe at earlier non-dimensional times than for low Pe. This indicates that the379

shear rate does not scale linearly with 〈u〉. In fact, a typical shear rate can be written380

as381

γ =
〈v〉
`γ
, (23)382

383

where `γ is the scale of transverse velocity contrast. The latter is proportional to the typ-384

ical streamtube size. That is, as `2γ〈v〉 = constant, we have `γ ∼ 〈v〉−1/2. The char-385

acteristic shear length scale decreases with increasing flow rate, and thus the shear rate386

scales as γ ∼ 〈u〉3/2. Thus, the characteristic shear time scale τγ = γ−1 ∝ τv/〈v〉1/2.387

This dependence explains the differences in the time behaviors of the effective disper-388

sion coefficients for different Pe.389

The early time ballistic and shear dispersion behaviors for t < τv are observed for390

both the sand pack and Berea samples. For t > τv the dispersion behaviors are differ-391

ent.392

3.2.1 Sand pack sample393

Figures 4a–d show the evolution of the ensemble and effective dispersion coefficients394

for the sand pack sample. For times t > τv, that is for mean travel distances larger than395

the average pore size, particles start sampling different flow velocities along their tra-396

jectories, and the ballistic behavior for the ensemble dispersion coefficients breaks down,397

see Figure 4a.398
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Figure 4. Dispersion coefficients of the sand pack. Top panels: (Black solid lines) Ensemble

and (blue solid lines) effective dispersion coefficients for (a) Pe = 200 and (b) Pe = 2000. Bottom

panels: (c) Ensemble dispersion coefficients for (red solid line) Pe = 2000 and (orange solid line)

Pe = 200 for the sand pack, and (d) corresponding effective dispersion coefficients. The vertical

dashed lines denote the decorrelation time scale τc = τv. The horizontal dash-dotted lines denote

the asymptotic short time and long time values.
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For purely advective transport, the ensemble dispersion coefficients continue grow-399

ing non-linearly with time, which can be traced back to the broad distribution of tran-400

sition time across pores (Puyguiraud et al., 2019). At finite Pe, the ensemble dispersion401

coefficients first follow the purely advective behavior and eventually cross over toward402

their asymptotic value on the time scale. The effective dispersion coefficients shown in403

Figure 4 cross over toward their asymptotic values, also on the time scale τv. As shown404

in Figures 4c and d, they converge with Dens
11 (t).405

As mentioned in Section 3.1, these behaviors are at first sight counter-intuitive be-406

cause we expect the deviation from the purely advective behavior observed for Dens
11 (t)407

and the convergence of Deff
11 (t) toward Dens

11 (t) to be governed by diffusion. For ensem-408

ble dispersion, diffusion is the mechanism that decorrelates subsequent (low) velocities409

in time and thus leads to the separation of Dens
11 (t) from the (anomalous) purely advec-410

tive behavior. Similarly, the mechanism by which the effective dispersion coefficients con-411

verge toward the ensemble dispersion coefficients is due to decorrelation of the particles412

that start from the same point, which is due to diffusion in transverse direction. Thus413

one would expect that the dispersion coefficients evolve on the diffusion time scale τD.414

As discussed in Section 3.1.1, the decorrelation mechanism is indeed transverse dif-415

fusion across a length scale that is related to a typical streamtube width. Thus, the decor-416

relation time τc is given by Eq. (21), which is proportional to τv. This observation ex-417

plains the temporal evolution of the ensemble and effective dispersion coefficients for t <418

τv.419

3.2.2 Berea sandstone sample420

Figures 5a-d show the evolution of the ensemble and effective dispersion coefficients421

for the Berea sandstone sample. As seen in Figure 5a, the initial ballistic behavior for422

the ensemble dispersion coefficients breaks down on the time scale τv when particles start423

sampling different flow velocities along their trajectories. For purely advective transport,424

we observe anomalous dispersion characterized by a super-linear growth of the ensem-425

ble dispersion coefficients, which can be traced back to broad distributions of advective426

particle transition times (Puyguiraud et al., 2019). Unlike for the sand pack, here the427

cross-over toward the constant asymptotic long time values occurs on the diffusion time428

scale τD. As discussed in Section 3.1.2, here the temporal decorrelation of low velocities429

is due to diffusion along pore channels with the characteristic time scale τD (Puyguiraud430

et al., 2021). Similary, the convergence of the effective dispersion coefficient shown in Fig-431

ure 5b occurs on the time scale τD.432

The cross-over of the effective to the ensemble dispersion coefficients shown in Fig-433

ures 5c and d occurs on the decorrelation time scale τc, see Eq. (21). This time scale is434

set by transverse diffusion across streamtubes, which is the mechanisms by which par-435

ticles that originate at the same initial position start decorrelating and sampling differ-436

ent flow velocities. The independent sampling of flow velocities along trajectories between437

different particles is the ensemble mechanism of dispersion as measured by the ensem-438

ble dispersion coefficients, and therefore effective and ensemble dispersion converge on439

the scale τc.440

4 Conclusions441

We investigate solute dispersion in three-dimensional porous rocks using detailed442

numerical simulations of pore-scale flow and transport. We consider a sand-like medium,443

and a Berea sandstone sample. The two media have quite distinct pore structure, which444

manifests in distinct pore-scale flow variability. The latter is quantified by the distribu-445

tion of Eulerian flow speeds. The degree of flow heterogeneity is measured by the vari-446

ance of the logarithm of the flow speed, which is significantly higher for the Berea sam-447
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Figure 5. Dispersion coefficients for the Berea sandstone sample. Top panels: (a) Ensemble

dispersion coefficients for (red solid line) Pe = 2000 and (orange solid line) Pe = 200, and (b)

corresponding effective dispersion coefficients. The vertical dashed lines denote the corresponding

diffusion time scale τD = τvPe. Bottom panels: (Black solid lines) Ensemble and (blue solid

lines) effective dispersion coefficients for (a) Pe = 200 and (b) Pe = 2000. The vertical black

dashed lines denote the decorrelation time scale τc = τv, the blue dashed lines the respective

diffusion time scales. The horizontal dash-dotted lines denote the asymptotic short time and long

time values.
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ple than for the sand pack sample. Solute dispersion is quantified by effective and en-448

semble dispersion coefficients. The former is defined in terms of the spatial average of449

the second-centered moments of the partial plumes (Green functions) that constitute the450

global solute distribution. Ensemble dispersion coefficients are defined in terms of the451

second centered moments of the global solute plume. Thus, the effective dispersion co-452

efficients can be seen as a measure for the typical width of a mixing front, while the en-453

semble dispersion coefficients are a measure for its deformation due to the flow variabil-454

ity within the initial plume. The mechanisms that cause hydrodynamic dispersion are455

pore-scale flow variability and molecular diffusion, and govern the evolution of both the456

effective and ensemble dispersion coefficients. They eventually converge toward the same457

asymptotic value, which quantifies the impact of spatial heterogeneity on large-scale mix-458

ing.459

The early time behavior of the ensemble coefficient is ballistic as a result of the spa-460

tial persistence of flow velocities in the initial plume. The effective coefficients on the other461

hand are significantly smaller than their ensemble counterparts. Their early time evo-462

lution is dominated by shear dispersion, which results from the velocity gradients within463

the partial plumes, whose lateral extent initially increases by diffusion. The two disper-464

sion coefficients start converging when the lateral extent of the partial plumes is large465

enough for the efficient sampling of the flow heterogeneity, and it is here, where disper-466

sion in the sand pack and Berea sandstone behave differently. For the sand pack, the evo-467

lution of effective dispersion is marked by the characteristic diffusion time across a stream-468

tube, which sets the time for both convergence to ensemble dispersion and its asymp-469

totic behavior. For the Berea sandstone, this time scale marks the time for convergence470

of effective and ensemble dispersion, which, however, still evolve non-linearly with time471

until they assume their asymptotic long time value on the time scale for diffusion over472

a typical pore length. These behaviors can be traced back to the network-like medium473

structure in case of the Berea sample, and the strong connectivity of pores in the sand474

pack. Thus, the evolution of solute dispersion reflects the medium structure, which de-475

termines the microscopic mass transfer mechanisms. While the behavior of ensemble dis-476

persion can be captured by travel-time based approaches like the continuous time ran-477

dom walk in terms of flow variability and medium structure, it is still elusive how to quan-478

tify effective dispersion in these terms.479

We argue that it is first important to realize that solute dispersion evolves in time,480

and on time scales that are relevant for the understanding of transport phenomena of481

reactive solutes and microbes, for example. Second, it is important to realize that there482

is a conceptual and quantitative difference between solute spreading, as quantified by483

ensemble dispersion, and solute mixing, which is represented here by effective dispersion484

because it measures the typical rate of growth of the width of a partial plume that evolves485

from a point-like injection. The temporal evolution of effective dispersion from molec-486

ular diffusion to asymptotic hydrodynamic dispersion sheds light on the evolution of mix-487

ing fronts in porous media, and may explain phenomena of incomplete mixing observed488

for fast chemical reactions in porous media.489
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Souzy, M., Lhuissier, H., Méheust, Y., Borgne, T. L., & Metzger, B. (2020, March).660

Velocity distributions, dispersion and stretching in three-dimensional porous661

media. Journal of Fluid Mechanics, 891 . Retrieved from https://doi.org/662

–18–

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011WR010457
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011WR010457
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011WR010457
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018WR022730
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018WR022730
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018WR022730
http://www.sciencedirect.com/science/article/pii/S0309170820303006
http://www.sciencedirect.com/science/article/pii/S0309170820303006
http://www.sciencedirect.com/science/article/pii/S0309170820303006
https://www.sciencedirect.com/science/article/pii/S0169772220303235
https://www.sciencedirect.com/science/article/pii/S0169772220303235
https://www.sciencedirect.com/science/article/pii/S0169772220303235
https://doi.org/10.1017/jfm.2020.113
https://doi.org/10.1017/jfm.2020.113
https://doi.org/10.1017/jfm.2020.113


manuscript submitted to Water Resources Research

10.1017/jfm.2020.113 doi: 10.1017/jfm.2020.113663

Valocchi, A. J., Bolster, D., & Werth, C. J. (2018, December). Mixing-limited re-664

actions in porous media. Transport in Porous Media, 130 (1), 157–182. Re-665

trieved from https://doi.org/10.1007/s11242-018-1204-1 doi: 10.1007/666

s11242-018-1204-1667

Vanderborght, J. (2001). Concentration variance and spatial covariance in second-668

order stationary heterogeneous conductivity fields. Water resources research,669

37 (7), 1893–1912.670

Weller, H. G., Tabor, G., Jasak, H., & Fureby, C. (1998). A tensorial approach to671

computational continuum mechanics using object-oriented techniques. Comput.672

Phys., 12 (6), 620-631. doi: 10.1063/1.168744673

Whitaker, S. (1967, 05). Diffusion and dispersion in porous media. AIChE Journal ,674

13 , 420 - 427. doi: 10.1002/aic.690130308675

–19–

https://doi.org/10.1017/jfm.2020.113
https://doi.org/10.1017/jfm.2020.113
https://doi.org/10.1007/s11242-018-1204-1

