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Abstract

In light of the challenges posed by groundwater contamination and the urgent need for accurate and efficient groundwater

contaminated source estimation (GCSE), the present study proposes a novel approach for GCSE using a deep adaptive cycle

generative adversarial neural network (DA-CGAN). Given the equifinality from different parameters (EFDP) often associated

with GCSE, we leveraged a bidirectional adversarial training pattern involving a forward process and a recovery process

to supervise the inverse mapping relationship. Once trained, the forward process can be utilized to provide estimation for

GSCE. This bidirectional-training strategy mitigates EFDP, thereby effectively enhancing the reliability of GCSE. Moreover,

the performance of DA-CGAN is closely related to the quality of the training samples. To address this, we introduced a

significant enhancement through an adaptive sampling strategy. This substantially improves the quality of training samples

and consequently increases the accuracy of the GCSE. Furthermore, the inherent data-driven attribute of the deep cycle GAN

considerably reduces computational costs when conducting GCSE. The research unfolds in the contexts of both hypothetical

and real-world scenarios, with the goal of providing an efficient, precise, and cost-effective solution for GCSE. The results

demonstrate that the DA-CGAN, an innovative model in the hydrogeological domain, exhibits superior performance in both

estimation accuracy (Average Relative Error (ARE) of 4.91% and R of 0.998) and computational efficiency (0.17 seconds per

run). This is particularly notable when compared with typical inverse methods such as the genetic algorithm (GA) and the

ensemble kalman filter (ENKF).
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Abstract 14 

In light of the challenges posed by groundwater contamination and 15 

the urgent need for accurate and efficient groundwater contaminated 16 

source estimation (GCSE), the present study proposes a novel approach 17 

for GCSE using a deep adaptive cycle generative adversarial neural 18 

network (DA-CGAN). Given the equifinality from different parameters 19 

(EFDP) often associated with GCSE, we leveraged a bidirectional 20 

adversarial training pattern involving a forward process and a recovery 21 

process to supervise the inverse mapping relationship. Once trained, the 22 
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forward process can be utilized to provide estimation for GSCE. This 23 

bidirectional-training strategy mitigates EFDP, thereby effectively 24 

enhancing the reliability of GCSE. Moreover, the performance of 25 

DA-CGAN is closely related to the quality of the training samples. To 26 

address this, we introduced a significant enhancement through an 27 

adaptive sampling strategy. This substantially improves the quality of 28 

training samples and consequently increases the accuracy of the GCSE. 29 

Furthermore, the inherent data-driven attribute of the deep cycle GAN 30 

considerably reduces computational costs when conducting GCSE. The 31 

research unfolds in the contexts of both hypothetical and real-world 32 

scenarios, with the goal of providing an efficient, precise, and 33 

cost-effective solution for GCSE. The results demonstrate that the 34 

DA-CGAN, an innovative model in the hydrogeological domain, exhibits 35 

superior performance in both estimation accuracy (Average Relative 36 

Error (ARE) of 4.91% and R of 0.998) and computational efficiency 37 

(0.17 seconds per run). This is particularly notable when compared with 38 

typical inverse methods such as the genetic algorithm (GA) and the 39 

ensemble kalman filter (ENKF).  40 

Key words: Inverse estimation; groundwater contamination; cycle 41 

generative neural network; adaptive sampling; deep learning; 42 

bidirectional adversarial training 43 

Key points 44 
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 First attempt to employ a DA-CGAN as a direct framework, 45 

rather than as a surrogate model, for conducting GCSE 46 

 The bidirectional adversarial design of the DA-CGAN to 47 

mitigate equifinality from different parameters, enhancing the 48 

accuracy of GCSE. 49 

 The adaptive sampling strategy improves the quality of training 50 

samples fed to the DA-CGAN, further increasing the accuracy of 51 

GCSE. 52 

1.Introduction 53 

The issue of groundwater contamination has severe ramifications for 54 

both drinking water quality and the broader ecological environment 55 

(Yang et al., 2020; Zhang et al., 2022; Zhao et al., 2023). The clandestine 56 

nature of groundwater contamination, often discovered with significant 57 

delay, complicates the process of revealing the contamination source (Luo 58 

et al., 2022). Groundwater contaminated source estimation (GCSE) is a 59 

pivotal process in both assessing the risk posed by contamination and 60 

implementing remediation measures (Moghaddam et al., 2021). GCSE 61 

involves matching simulated outputs from a contaminant transport model 62 

with actual observations from monitoring wells (Zhou et al., 2014). Over 63 

recent decades, various methods have emerged to conduct GCSE, which 64 

can be summarized as three categories: simulation-optimization methods 65 

(Ayvaz, 2016; Yeh, 2015), simulation-statistics methods (Chang et al., 66 
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2021; Jiang et al., 2021; Zhou et al., 2018) and simulation- data 67 

assimilation methods (Chen et al., 2018; Jiang et al., 2018). 68 

The simulation-optimization methods focus on establishing an 69 

optimization model, which aims to minimize the discrepancy between 70 

simulated outputs and observed data by adjusting decision variables such 71 

as contamination source information or model parameters (Xing et al., 72 

2019; Zhao et al., 2020). Jiang et al. (2013) proposed an 73 

almost-parameter-free harmony search algorithm for groundwater 74 

pollution source identification and achieved a robust estimation under 75 

conditions of irregular geometry and erroneous monitoring data. Li et al. 76 

(2020) proposed a hybrid particle swarm optimization-extreme learning 77 

machine to estimate the contaminated source considering the uncertainty 78 

of random hydraulic parameters. 79 

The simulation-statistics methods update the state of unknown 80 

variables (including contaminated source information or model 81 

parameters) to maximum the likelihood function which can evaluate the 82 

bias between the simulated outputs and observed data (Wang & Jin, 2013). 83 

Zanini and Woodbury (2016) proposed a Bayesian framework to 84 

reconstruct the release history of a contaminated source. Zhang et al. 85 

(2017) utilized a two-stage Monte Carlo method to evaluate the small 86 

failure probability analysis in groundwater contaminant modelling. An et 87 

al. (2022) utilized an improved Markov Chain Monte Carlo (MCMC) as a 88 
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promising solution to characterize groundwater contaminated sources.  89 

The simulation-data assimilation methods using the covariance 90 

matrix between the unknown variables and the observed data to update 91 

the estimated values of unknown variables (Kurtz et al., 2014; Li et al., 92 

2018). Xu et al. (2021) used an ensemble smoother with multiple data 93 

assimilation to simultaneously estimate a contaminant source and 94 

hydraulic conductivity, presenting superior performance than the restart 95 

ensemble Kalman filter. 96 

While these methods have proven to be effective, they necessitate 97 

multiple iterations of simulation models, resulting in considerable time 98 

consumption, particularly when multiple GCSEs are required. 99 

Furthermore, the accuracy of these approaches may face limitations when 100 

tackling highly nonlinear and intricate groundwater inverse problems, 101 

particularly in the establishment of the inverse mapping relationship. In 102 

light of these limitations, this paper introduces a novel approach that 103 

employs a deep cycle generative adversarial network (CGAN) to rapidly 104 

and accurately conduct GCSE. 105 

Recently, deep learning methods, particularly generative neural 106 

network (GAN), have demonstrated remarkable capabilities in image 107 

recognition and translation tasks (Bond-Taylor et al., 2022; Yinka-Banjo 108 

& Ugot, 2020). GANs, a form of deep learning model, are known for 109 

their ability to generate data that mimic the input data (Goodfellow et al., 110 
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2014). They consist of two neural networks, a generator and a 111 

discriminator, that work in tandem to improve the generalization capacity 112 

for complex system. A myriad of studies demonstrated the potential of 113 

GANs in capturing complex geological input-output relationship. In the 114 

domain of hydrogeology, Laloy et al. (2018) used GANs for 115 

high-dimensional inverse modeling in hydrogeology. The researchers 116 

employed a Wasserstein GAN with a gradient penalty to generate 117 

plausible hydrogeological models that respected the observed data, which 118 

significantly improve the efficiency and reliability of the inversion 119 

process. Sun (2018) proposed a state-parameter identification GAN for 120 

estimating the spatial structure of the hydraulic conductivity and achieved 121 

satisfactory inverse results. Dagasan et al. (2020) applied a conditional 122 

GAN as a forward operator surrogate to characterize the spatial 123 

distribution of the hydraulic conductivity. Our previous work Pan et al. 124 

(2022) has explored the potential of deep convolutional-generative 125 

adversarial neural network for estimating high-dimensional hydraulic 126 

conductivity field. Zheng et al. (2023) utilized a GAN to generate the 127 

training samples for a convolutional neural network surrogate to 128 

efficiently provide estimation of groundwater contaminant source and 129 

hydraulic conductivity.  130 

While numerous past studies have examined the utility of generative 131 

adversarial networks (GANs) for surrogate tasks within the hydrology 132 
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field, the potent capacity of GANs to capture relationships also presents a 133 

promising opportunity for the direct implementation of the GCSE, rather 134 

than solely being deployed for surrogate purposes.  135 

Theoretically, a GAN can realize GCSE via establishing a 136 

single-directional mapping relationship between simulated outputs (SO) 137 

and the groundwater contamination sources and parameters (GCSP). 138 

However, GCSE often exhibits ill-posedness, leading to a scenario where 139 

different combinations of GCSP can produce similar observations, a 140 

phenomenon known as equifinality from different parameters (EFDP) 141 

(Zhao et al., 2020). Given this circumstance, it becomes evident that a 142 

bidirectional mapping pattern is more suitable for conducting GCSE, 143 

compared to the single-directional mapping.  144 

Therefore, in the present study, a variant of the traditional GAN, 145 

known as a cycle GAN (Zhu et al., 2017), was employed to conduct 146 

GCSE. This model incorporates two interconnected GANs working 147 

together, each consisting of a generator and a discriminator (Wang et al., 148 

2022). These GANs work in a cyclical process where one GAN learns to 149 

translate from one data domain to another, and the other GAN learns to 150 

reverse this translation (Liang et al., 2022). This cycle consistency ensures 151 

that the data retains its original characteristics after translation and 152 

re-translation, making it an ideal tool for GCSE. To the best of our 153 

knowledge, no studies to date have implemented a cycle GAN as a direct 154 
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framework, rather than as a surrogate model, for conducting GCSE. 155 

In the context of GCSE, we used one GANs of the deep cycle GAN 156 

to translate the domain of SO derived from the transport model into the 157 

domain of GCSP—a process referred to as “forward mapping”. The other 158 

GAN then reverts the translated GCSP domain back into its original SO 159 

domain—termed as “recovery mapping”. The recovered SO domain 160 

closely resembles the simulated outputs from the transport model. The 161 

unique cycle adversarial training design of the deep cycle GAN can 162 

supervise the mapping from SO to GCSP, thereby mitigating EFDP. This 163 

provides an efficient and precise way to estimate groundwater 164 

contamination sources and parameters, offering a significant 165 

improvement over traditional GCSE methods.  166 

However, the efficacy of deep learning methods also hinges on the 167 

quality of training samples (Sun et al., 2017; Van Horn et al., 2018). In 168 

light of this, an adaptive sampling strategy was implemented to enhance 169 

the quality of training samples for the cycle GAN. This strategy 170 

concentrates computational resources on areas of the GCSP space that 171 

yield more significant information, potentially obtaining more accurate 172 

results with a reduced number of total samples. In particular, we added 173 

one new sample at a time, utilizing all the accumulated information from 174 

updated training samples to determine more informative locations for 175 

generating subsequent samples. This adaptive-sampling strategy can 176 
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effectively enhance the performance of the deep cycle GAN, thereby 177 

further improving the accuracy of GCSE. Furthermore, the inherent 178 

data-driven nature of deep cycle GAN results in a notably faster 179 

computation time compared to commonly used ensemble-based (GCSE) 180 

methods.  181 

In the present study, we proposed a novel deep adaptive cycle GAN 182 

(DA-CGAN) for the estimation of contaminated groundwater sources 183 

using observed concentration data. Unlike conventional standard GANs 184 

typically employed for surrogate purposes, our proposed DA-CGAN 185 

employs a bi-directional training pattern and an adaptive sampling 186 

strategy. This innovative approach significantly improves both the 187 

accuracy and efficiency of GCSE. The performance of this method is 188 

evaluated in two scenarios: a hypothetical scenario and a real-world site 189 

scenario. The key contributions of the proposed method are as follows:  190 

 First attempt to employ a DA-CGAN as a direct framework, 191 

rather than as a surrogate model, for conducting GCSE 192 

 The bidirectional adversarial design of the DA-CGAN to 193 

mitigate equifinality from different parameters, thereby 194 

enhancing the accuracy of GCSE. 195 

 The implementation of an adaptive sampling strategy improves 196 

the quality of training samples fed to the deep cycle GAN, 197 

further increasing the accuracy of GCSE. 198 
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 The inherent data-driven attribute of the deep cycle GAN 199 

considerably reduces computational costs when conducting 200 

GCSE. 201 

2.Methodology 202 

2.1 Numerical simulation model 203 

The transportation of contaminant can be described by two sub 204 

models: a groundwater flow model and solute transport model. The 205 

governing equation of groundwater flow can be expressed as: 206 

 𝐾(𝐻 − 𝑧 ) + 𝐾(𝐻 − 𝑧 ) + 𝑊(𝑥, 𝑦, 𝑡) = 0 (1) 207 

Where 𝑥  and 𝑥  denote the location distances along the respective 208 

Cartesian coordinate axis, 𝐾 represents the hydraulic conductivity, 𝑊 209 

denotes the volumetric flux per unit volume, 𝐻 represents the water 210 

level above the sea level. 𝑧  represents the elevation of the aquifer 211 

bottom above the sea level. 212 

The governing equation of solute transport model can be expressed 213 

as: 214 

 = 𝐷 − (𝑢 𝐶) +  (2) 215 

 𝑢 =  (3) 216 

Where 𝐶  represents the solute concentration, 𝐷  denotes the 217 

hydrodynamic dispersion tensor, 𝑢  represents the average pore 218 

groundwater velocity that satisfies Darcy’s Law, 𝜃 denotes the effective 219 
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porosity, 𝑅 represents the source or sink term. For non-aqueous phase 220 

liquids (NAPLs) transportation, R can be expressed as: 221 

 𝑅 = 𝑅 − 𝑅  (4) 222 

Where 𝑅  represents the rate of hydrocarbon from NAPL to 223 

aqueous phase, 𝑅  represents the rate of hydrocarbon removal by 224 

biodegradation. The numerical simulation models of two scenarios were 225 

calculated using MODFLOW and MT3D/SEAM3D module of 226 

groundwater modeling system. 227 

2.2 Generative adversarial neural network 228 

Generative Adversarial Networks (GANs) constitute a subcategory 229 

of artificial intelligence algorithms designed to discern data distributions 230 

via an adversarial interaction between two unique neural networks: the 231 

generator and the discriminator. The generator strives to formulate data 232 

instances indistinguishable from authentic data, whereas the 233 

discriminator's role involves distinguishing real data instances from those 234 

manufactured by the generator. Both constituents are usually realized as 235 

various forms of neural networks, including but not limited to fully 236 

connected and convolutional neural networks. 237 

The generator 𝐺 utilizes a prior random noise variable, 𝑝 (𝒛), to 238 

convert it into a data distribution, 𝒎. The notation 𝐺(𝒛; 𝜃 ) signifies a 239 

generative/mapping operator to the data space of 𝒎, where 𝜃  are the 240 

parameters of a neural network. In contrast, the discriminator 𝐷 serves 241 
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the function 𝐷(𝒎; 𝜃 ) , signifying the probability of the generated 242 

samples, m, originating from real samples. 𝜃  are the parameters of the 243 

other neural network. The fundamental goal of a GAN is to 244 

simultaneously minimize the generator loss 𝑙𝑜𝑔(1 −  𝐷(𝐺(𝒛)))  and 245 

maximize the discriminator loss  𝑙𝑜𝑔(𝐷(𝒎)) . This objective can be 246 

represented as a two-player minmax game, formulated with the following 247 

value function as described by Goodfellow et al. (2014): 248 

 
( ) ( )

min max ( , ) [log ( )] [1 log ( ( ))]
datap pG D

V D G D D G= + −
x z zx zm zE E  (5) 249 

In other words, the 𝜃  of the generator and the 𝜃  of the 250 

discriminator must be alternately trained with the same objective function 251 

until the adversarial process between them reaches Nash equilibrium, 252 

which means the generator 𝐺 can generate the perfect imitation of 𝑚 253 

that the discriminator 𝐷  cannot distinguish. For GCSE, the 𝑚  254 

represents the real samples of observation data domain, 𝑚  represents 255 

the fake (generated) samples of GCSP data domain derived by the 256 

generator and 𝑚  represents the real samples of GCSP domain (Fig.1). 257 



 

259 

260 

2.3 261 

Cyc262 

274 

diff275 

pro276 

diff277 

map278 

trai279 

of 280 𝐷  281 

sec282 

In p283 

enc284 

and285 

Fig.1 The

Deep ada

cle genera

Howeve

ferent para

oducing si

ferent inp

pping stra

ining two 

a generato

) transla

ond GAN

particular,

courages t

d then reco

e basic top

aptive cycl

ative adver

er, the stan

ameters (E

imilar sam

puts of G

ategy was 

interconn

or and a 

ating from

N ((consist

, the GCS

the genera

over the G

pological s

le generat

rsarial ne

ndard GAN

EFDP). In

mples of 

GCSP. Thu

proposed

ected GAN

discrimina

m SO dom

ts of 𝐺
SP-SO tra

ators to cr

GCSP back

structure o

tive adver

etwork 

Ns might 

n other wo

f observat

us, a cyc

d to mitiga

Ns in a cy

ator, with

main (𝑂)

and 𝐷  )

ansformati

reate estim

k to SO, w

of tradition

rsarial net

suffer from

ords, the g

tion data,

cle GAN

ate EFDP.

yclic mann

h one GAN

to GCSP

) reversin

ion loss u

mated resu

which can b

nal GAN f

twork 

m the equ

enerator n

, despite 

with a b

. This met

ner. Each G

N (consist

P domain

ng this pro

used in the

ults of GC

be express

for GCSE

uifinality fr

network st

being gi

bi-directio

thod invol

GAN cons

ts of 𝐺  

(𝑃), and 

ocess (Fig

e cycle G

CSP from 

sed as: 

13 

 

E 

from 

tarts 

iven 

onal 

lves 

sists 

and 

the 

g.2). 

GAN 

SO 



 

 275 

278 

adv279 𝑂 a280 

 279 

284 

tran285 

in t286 

loss287 𝐺  288 

285 

286 

Ada287 

( ,trans pGL

The tot

versarial lo

and 𝑃, wh

( ,o pG GL

Where 

nsformatio

the presen

s whereas 

can be ut

Fig.2 T

aptive sam

, )o P pG = E

tal trainin

oss of two

hich can b

, , )o pD D = L𝜆  repres

on loss tow

nt study. T

the 𝐷  a

tilized to e

The basic t

mpling-gen

( ) (
datap P pG G



ng loss c

o GANs an

be express

GAN ( ,o oG DL

sents the 

wards the 

The 𝐺  an

and 𝐷  ai

estimate th

topologica

nerated str

1
( ))oG P P−

consists o

nd the tran

ed as: 

G, , )o O P + L

relative 

adversaria

nd 𝐺  aim

im to max

he GCSP f

al structur

rategy 

(1 dataO p
 + E

of three 

nsformatio

GAN ( , ,p pG D

importan

al loss GL

m to mini

ximize the

from the g

re of cycle

( ) ( (O o pG G


compone

on loss of 

, ) trP O λ+ L

nce of th

GAN , which

imize the 

 loss. Onc

given obse

e GAN for

1
( ))O O −   

ents, nam

the genera

( , )rans o pG G

he GCSP-

h is set to “

total train

ce trained,

ervation da

r GCSE 

14 

(6) 

mely, 

ated 

 (7) 

-SO 

“0.5” 

ning 

, the 

ata. 

 



15 
 

Deep learning algorithms, such as a cycle GAN (CGAN), 287 

irrespective of the input, will invariably provide an output. Nonetheless, 288 

to elicit high-quality estimation results, the algorithm must be trained 289 

with superior quality data samples (Xiao et al., 2018). Moreover, adaptive 290 

sampling allows for more focused and efficient use of computational 291 

resources by prioritizing data points that provide the most information or 292 

learning potential (Li et al., 2021; Liu et al., 2018). Therefore, an adaptive 293 

sampling-generated strategy was proposed to provide high-quality 294 

samples for the CGAN. In particular, at the initial step, we used the 295 

pre-trained CGAN to estimate GCSP from the observation data and get an 296 

estimated result, thereby obtaining an initial estimate. Subsequently, by 297 

executing a forward run of the numerical simulation model, an updated 298 

sample was adaptively generated and incorporated into the pre-existing 299 

dataset. The CGAN was then retrained using this augmented dataset. The 300 

iterative process continued until the bias ( 𝐵 ) between the current 301 

estimation result and that of the previous step reached a tolerance value 302 

(𝛿).  303 

 304 

Table 1 Flow of adaptive sampling-generated strategy 
1 INITIALIZATION STEP 

1.1 Set the tolerance 𝛿  and max iteration, define numbers of unknown 
variable: 𝑛 , observation: 𝑛  and number of training samples: 𝑛 , lower 
boundary of GCSP: lb and upper boundary of GCSP: ub 𝑛 = 𝑛 + 𝑛  
1.2 Generate the initial training dataset of GCSP 𝑣 (𝑛 × 𝑛  matrix) and the 
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corresponding SO 𝑜 (𝑛 × 𝑛  matrix), ”lhs”means Latin hypercube sampling. 𝑣  = lb + 𝑙ℎ𝑠(𝑛 , 𝑛 ) ∙ (ub − lb) 
      The total training dataset 𝑇𝑟 consists of 𝑣 and 𝑜. 
2 ITERATIVE LOOP 

While B > 𝛿 and iteration< max iteration do 
2.1 Training the cycle GAN with the initial dataset Tr. 
2.2 Execute GCSE, obtain an estimation result of GCSP.  
2.3 Adaptive Sample generated: forward run the simulation model with the 

estimation result, update the prior dataset. 
2.4 Retrain cycle GAN with the updated dataset. 

loop = loop + 1 
3 TERMINATION Obtain the optimal estimated results of GCSP. 

 305 

 306 

 307 

  308 
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3.Application 309 

3.1 case overview 310 

In this section, the effectiveness and applicability of the proposed 311 

deep adaptive cycle GAN (DA-CGAN) for GCSE were assessed using 312 

two scenarios: a hypothetical scenario and a real-world scenario. The 313 

hypothetical scenario provides reference values, which enable the 314 

comparison of estimated results and actual values, specifically in terms of 315 

the unknown variables (GCSP). The observational data at the monitoring 316 

wells were produced by conducting a forward run of the simulation 317 

model with the reference values of GCSP. Meanwhile, for the real-world 318 

scenario, the actual observational data serve as the sole criterion for 319 

evaluating the proposed DA-CGAN. 320 

3.1.1 Hypothetical scenario 321 

The site of the hypothetical scenario encompasses an unconfined 322 

aquifer, with groundwater flow directed from west to east (2000m ×323 2500m). In term of the groundwater flow boundary, the west and east 324 

boundaries are specific head boundaries while the north and south 325 

boundaries are no-flow boundaries (Fig.3). In terms of solute boundaries, 326 

only the west boundary holds a specific concentration, with other 327 

boundaries manifesting no-flow. The hydraulic conductivity can be 328 

divided into four zones: 𝑘(I), 𝑘(II), 𝑘(III), 𝑘(IV)  Table 2 provides 329 

detailed information regarding the aquifer. Three potential contamination 330 
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sources, situated on the west side of the site, release contaminants into the 331 

aquifer. The release histories of these sources are conceptualized into five 332 

stress periods: 𝑇 ,  𝑇 ,  𝑇 ,  𝑇 ,  𝑇 .  333 

The estimation involves three types of unknown variables: features 334 

of the contamination source, boundary conditions, and hydraulic 335 

parameters. Specifically, contamination source features include the 336 

release intensities of the three potential sources during five stress periods, 337 

labeled as, 𝑆 𝑇 , 𝑖 = 1,2,3, 𝑗 =1,2,3,4,5 (15 dimensions). The boundary 338 

conditions incorporate the contaminant recharge flux on the west 339 

boundary, denoted as 𝐶 . The hydraulic parameters involve the hydraulic 340 

conductivities in four zones (4 dimensions) and the longitudinal 341 

dispersivity 𝐷  (1 dimension). In total, the hypothetical scenario targets 342 

the estimation of 21-dimensional unknown variables. For the calculation 343 

of numerical simulation model, the domain has been discretized by the 344 

grids with the size of 20𝑚 × 20𝑚. 345 

  346 
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Table 2 Prior values/ranges of the aquifer and the contaminated 347 

source (hypothetical scenario) 348 

Parameter Value/Range 
Hydraulic conductivity(m/d) (30,50) 

Contaminant recharge flux 𝐶  (mg/l) (30,90) 
Specific yield 0.24 

Longitudinal dispersivity 𝐷  (m) (20,60) 
Ratio of transverse dispersivity to longitudinal dispersivity 0.1 

Saturated thickness(m) 40 
Grid spacing in x-direction(m) 20 
Grid spacing in y-direction(m) 20 

Stress periods(year) 5 
Fluxes of pollution source during stress period (g/d) (0,52) 

 349 

  350 
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 351 

 352 

 353 

Fig.3 Boundary conditions, hydrogeology conditions and potential 354 

contaminated sources 355 
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3.1.2 Real world scenario 356 

The contaminated site is a chemical plant located in Jilin Province, 357 

China, with a width of 560 m and length of 620 m. According to field 358 

investigation, the plant released Benzene into the aquifer and ten 359 

monitoring wells were set to trace the contaminant. The chemical reaction 360 

and biodegradation reaction were considered. According to the observed 361 

groundwater head, Γ  is generalized as a specific head boundary. Γ  is 362 

the Songhua River, which is conceptualized as the specific boundary. Γ  363 

and Γ  are parallel to the groundwater flow line, thus are generalized as 364 

no-flow boundary. Table 3 provides detailed prior information regarding 365 

the aquifer and the contaminated source. We set ten wells to monitoring 366 

the solute transport of the groundwater. In particular, 367 #1, #2, #3, #4, #5, #6, #7 were allocated for observing both the water 368 

level and contaminant concentration, while wells #8, #9, #10  were 369 

reserved exclusively for water level monitoring. 370 

It must be noted that, some model parameters were selected as 371 

unknown variables through sensitivity analysis. The estimation involves 372 

three types of unknown variables: spatial-temporal features of the 373 

contaminated source, hydraulic parameter and reaction parameter. In 374 

particular, the spatial-temporal features of contaminated source include 375 

the position (𝑥, 𝑦), the initial release concentration (𝐶 ) and dissolved rate 376 

(𝐷 ). The hydraulic parameter involves the hydraulic conductivity (𝐾 ), 377 
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the porosity (𝑃), longitudinal dispersivity (𝐿 ) and the ratio of horizontal 378 

transverse dispersivity to longitudinal dispersivity (𝛼 ). The reaction 379 

parameter includes the initial concentration of dissolved oxygen (𝐷 ). In 380 

total, the real-world scenario targets the estimation of 9-dimensional 381 

unknown variables. For the calculation of numerical simulation model, 382 

the domain has been discretized by the grids with the size of 5m × 5m.  383 

Table 3 Prior values/ranges of the aquifer and the contaminated 384 

source (real world scenario) 385 

Parameter Value/Range 
Position 𝑥 (m) (20,200) 
Position 𝑦 (m) (0,140) 

Initial release concentration 𝐶  (*10E-3 mg/l) (0.8,1.2) 
Dissolve rate (1/d) (0.5,0.8) 

Hydraulic conductivity(m/d) (40,60) 
Porosity 𝑃  (0.2,0.3) 

Longitudinal dispersivity 𝐿  (m) (20,60) 
Ratio of transverse dispersivity to longitudinal dispersivity 𝛼  (0.3,0.5) 

Initial concentration of dissolved oxygen 𝐷  (mg/l) (1.4,3) 
Initial concentration of Fe(II) (mg/l) 0.003 

Microcolony minimum (mg/m3) 0.0055 
Grid spacing in x-direction(m) 5 
Grid spacing in y-direction(m) 5 

 386 

 387 
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are utilized for training purposes, while the remaining 20% serve as the 411 

validation dataset. As the estimation loop initiates (Table 1), the 412 

adaptively generated samples are sequentially fed into the DA-CGAN to 413 

train until the termination of the loop. 414 

Training details 415 

The DA-CGAN has been trained on a PC with Intel Core i7-12700H 416 

CPU i7-12700H processor, GTX3060 GPU, and 16.0 GB RAM. The 417 

important part of DA-CGAN is the design of the two GANs which 418 

involve their own generator and discriminator. For the purpose of 419 

generated data of numerical form, the generators of two GANs were 420 

designed as a designed-friendly fully-connected structure. Figure 5 421 

presents the topological structure of generator, where input_dim 422 

represents the dimensions of input of generator and output_dim 423 

represents the dimensions of output of generator, hidden_dim represents 424 

the dimensions of neurons in the hidden layers. 425 

It must be noted that, the generator 𝐺  and generator 𝐺  possess 426 

identical structures, with hidden_dim of values of “100”. Despite their 427 

analogous structures, differences exist in their weights and biases. This 428 

discrepancy arises from the unique mapping relationships established by 429 

each generator: 𝐺  (SO → GCSP) versus 𝐺  (GCSP → SO). The 430 

experiment was conducted in a Python environment, leveraging the torch 431 

package to construct the network structure. 432 
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Functions such as “nn.Linear()” and “nn.ReLU” were invoked from 433 

the torch package (Paszke et al., 2019). With regard to the optimization 434 

hyperparameters, “Adam” was selected as the optimizer, the “initial 435 

learning rate” is set to “0.002”. This rate linearly declines from 0.002 to 436 

zero over the course of the final 500 epochs. The “batch size” equals the 437 

size of the training dataset, thus accelerating the training process. 438 

Additional details regarding the optimization hyperparameters can be 439 

located in our attached source code. 440 

.  441 

Fig.5 The topological structure of generator 𝐺  and 𝐺   442 

 443 

  444 
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4. Result and discussion 445 

This section assesses the performance of DA-CGAN in terms of 446 

estimation accuracy and computational time cost. For a comprehensive 447 

comparison, we contrast DA-CGAN with three typical indirect methods: 448 

the Genetic Algorithm, Markov Chain Monte Carlo (MCMC), and the 449 

Ensemble Kalman Filter. It must be noted that, the typical indirect 450 

methods required massive realizations of numerical simulation model, 451 

which is high-time cost. The model generalization ability/ estimation 452 

accuracy (can be evaluated through the criterion of the correlation 453 

coefficient (𝑅) and the average relative error (ARE), which can be 454 

expressed as: 455 

 𝑅 = 1 − ∑ (𝑣 (𝑖) − 𝑣 (𝑖)) (𝑣 (𝑖) − 𝑚 )⁄  (8) 456 

 ARE =100%× ∑ (𝑣 (𝑖) − 𝑣 (𝑖))/ 𝑣 (𝑖) (9) 457 

Where 𝑣  represents the true values of GCSP, 𝑣  represents the 458 

estimation values of GCSP, 𝑚  represents the mean values of 𝑣 . It 459 

must be noted that, the generalization ability was assessed using the 460 

validation dataset, while the estimation accuracy was assessed based on 461 

the reference values of GCSP. Theoretically, the reference values of 462 

GCSP can be a subset of the validation dataset.  463 

  464 
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4.1 Hypothetical scenario 465 

Fig.6 shows the trace plot of training loss of 𝐿 (𝐺 , 𝐷 , 𝑃, 𝑂) 466 

(fig.6(a)) 𝐿 (𝐺 , 𝐷 , 𝑂, 𝑃) (fig.6(b)) and 𝐿 (𝐺 , 𝐺 ) (fig.6(c)) as 467 

mentioned before in equation (7). It can be indicated that the CGAN 468 

reached a stable training process till 10,000 th epoch. Figure 6(d) shows 469 

that the implementation of the CGAN model resulted in accurate and 470 

stable estimations of GCSP with the ARE 4.9% and R of 0.9856 when 471 

compared with the validation data. Fig.6(e) illustrates the loss of 472 

discriminators 𝐷  and 𝐷 , which reveals that the discriminators also 473 

improved the ability to distinguish real data and generated data. In 474 

general, both the generators' and discriminators' capabilities have been 475 

enhanced through the adversarial training process. 476 

Moreover, an adaptive-sampling strategy was implemented to 477 

enhance the accuracy of the CGAN. Figure 7 shows that the ARE was 478 

improved from 8.86% to 4.91% whereas the R was improved from 0.948 479 

to 0.998. It was evident that the estimation accuracy of DA-CGAN for 480 

GCSE increased as new training samples were adaptively generated and 481 

used to retrain the DA-CGAN (fig.7). Table 4 presents the comparison of 482 

estimated values and reference values of GCSP. The AREs of the GCSP 483 

were all found to be below 10%, reaching an average value of 4.91%. In 484 

terms of SO, figure 9 presents the comparison between the observed and 485 

simulated contaminant concentrations corresponding to the estimated 486 
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GCSP. DC-CGAN achieved a mean ARE of 4.62% between the observed 487 

and simulated outputs at the monitoring wells. It further substantiates that 488 

the bi-directional strategy ensures the accuracy of GCSP and the 489 

corresponding SO. This suggests that the proposed DA-CGAN achieved 490 

promising accuracy in GCSE. 491 

Furthermore, the performance of DC-CGAN was compared with 492 

traditional methods such as genetic algorithm (GA) and ensemble 493 

Kalman filter (ENKF), where DA-CGAN outperformed these techniques 494 

in terms of estimation accuracy (ARE) and calculated time cost (fig.8). 495 

With regard to the estimation accuracy, the notable performance of the 496 

DA-CGAN (ARE of 4.9%) can be primarily attributed to three techniques: 497 

the unique bi-directional design (BD), the deep generative-adversarial 498 

learning structure (DGAL), and an adaptive-sampling strategy (AS), 499 

respectively. In particular, BD and DGAL enhance the learning capacity 500 

of DA-CGAN, while AS ameliorates the quality of the training samples 501 

used for DA-CGAN. In terms of computational time, the data-driven 502 

nature of the DA-CGAN enables it to execute GCSE rapidly in 0.17 503 

seconds, which is markedly faster than both the ENKF at 10.62 seconds, 504 

and the GA at 40.30 seconds. 505 

It should be emphasized that the Genetic Algorithm (GA) and the 506 

Ensemble Kalman Filter (ENKF) both incorporate a surrogate. This 507 

surrogate role can be served by the recovery process embedded within our 508 
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DA-CGAN. In other words, this recovery process (surrogate) establishes 509 

a mapping relationship from GSCP to SO. This demonstrates that the 510 

DA-CGAN can serve not only as an inverse estimation framework but 511 

also as a surrogate model. 512 

 513 
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Fig.6 Trace of training loss and ARE and R of the CGAN (Hypothetical 514 

scenario) 515 

 516 

Fig.7 Trace plot of ARE and R of DC-CGAN using adaptive-sampling 517 

strategy 518 

 519 

Fig.8 Comparison of performance of GA, ENKF and DA-CGAN 520 

 521 

 522 

 523 

  524 
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Table 4 Comparison of estimated values and reference values of GCSP 525 

(hypothetical scenario) 526 

GCSP Reference values Estimated values ARE(%) 𝐶  63.36 62.20 1.83  𝑆 𝑇  14.14  12.86  9.07  𝑆 𝑇  16.78  17.87  6.46  𝑆 𝑇  47.70  49.10  2.94  𝑆 𝑇  42.72  38.68  9.45  𝑆 𝑇  11.07  9.98  9.88  𝑆 𝑇  39.40  39.62  0.56  𝑆 𝑇  5.05  5.20  2.99  𝑆 𝑇  28.99  26.54  8.45  𝑆 𝑇  23.44  22.26  5.04  𝑆 𝑇  47.89  49.41  3.17  𝑆 𝑇  32.57  33.69  3.41  𝑆 𝑇  36.95  34.71  6.05  𝑆 𝑇  21.93  23.56  7.44  𝑆 𝑇  9.85  10.62  7.90  𝑆 𝑇  8.08  8.33  3.12  𝑘(𝐼) 34.98 31.90 8.81  𝑘(𝐼𝐼) 43.68 46.20 1.19  𝑘(𝐼𝐼𝐼) 45.08 42.42 0.75  𝑘(𝐼𝑉) 48.82 53.21 0.80  𝐷  55.12 60.12 3.63  

  527 
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Fig.9 The comparison between observed and simulated contaminant 528 

concentration corresponding to the estimated GCSP 529 

  530 
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4.2 Real world scenario 531 

The effectiveness of the DA-CGAN was evaluated in the previous 532 

section using a hypothetical scenario. In this section, we applied the 533 

DA-CGAN to perform GCSE in a real-world scenario. Fig.10 shows the 534 

trace plot of training loss and ARE and R of the CGAN in a real-world 535 

scenario.  536 

At the start of training, this loss of 𝐿 (𝐺 , 𝐷 , 𝑃, 𝑂) (fig.10(a)) 537 

and 𝐿 (𝐺 , 𝐷 , 𝑂, 𝑃) (fig.10(b)) were high, given that the generator 538 

initially produces data easily distinguishable from real data. As training 539 

progresses, the generator loss decreased, implying that the generators of 540 𝐺  and 𝐺  were improving their ability to produce data closely 541 

resembling the real data. That is to say, the generators of 𝐺  and 𝐺  can 542 

provide more accurate and stable estimation results of GCSP and SO, 543 

respectively. The The decreasing 𝐿 (𝐺 , 𝐺 )  (fig.10(c)) further 544 

proved that the accuracy of bi-transformation from SO to GCSP is valid. 545 

Fig.10(e) illustrates the loss of discriminators 𝐷  and 𝐷 . It is the 546 

measure of how well the discriminator is able to correctly classify real 547 

and generated data. A higher loss signifies a better ability of the 548 

discriminator to correctly differentiate between real and generated data. 549 

An upward trend in the loss can be observed, indicating that the 550 

discriminators' capacity to distinguish training samples has consistently 551 

improved throughout the adversarial training process. After training, the 552 
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𝐺  can be utilized to perform the GCSE by transforming SO into GCSP. 553 

Fig.10(d) shows that after 20,000 epochs, the CGAN achieved a stable 554 

and reliable estimations of GCSP with ARE of 7.5% and R of 0.95.  555 

It must be noted that, when dealing with a real-world scenario, it is 556 

essential to compare the corresponding SO of the estimated GCSP with 557 

the real observation data. Figure 11 illustrates the trace plot of SO ARE of 558 

DC-CGAN using adaptive-sampling strategy. It demonstrates a distinct 559 

decrease the ARE of the DA-CGAN, stabilizing at 23.06%, as adaptive 560 

samples were sequentially generated and incorporated into the network. 561 

This result validates the effectiveness of the adaptive-sampling strategy. 562 

Figure 12 visualized the comparison of the simulated and observed 563 

contaminated concentrations. Table 5 presents the estimated values of 564 

unknown GCSP in a real-world scenario. The visualization of Estimated 565 

position of the contaminated source can be found in fig.13. 566 

It must be noted that a SO ARE of 23.06% in a real-world scenario 567 

is notably higher than that of 4.62% in the hypothetical scenario. But the 568 

mean GCSP ARE of 7.5% (validation dataset) presents not much 569 

difference form that of 8.86% (validation dataset) in the hypothetical 570 

scenario. This discrepancy of SO may be attributable to the noise present 571 

in the measurement of contaminant concentrations at monitoring wells. 572 

Consequently, exploring denoising techniques would be a potential 573 

direction for future research.  574 
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 575 

 

 

Fig.10 Trace of training loss and ARE and R of the CGAN (real world 576 

scenario) 577 

 578 
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 579 

Fig.11 Trace plot of SO ARE of DC-CGAN using adaptive-sampling 580 

strategy 581 

 582 

 583 

Fig.12 Comparison of the simulated and observed contaminated 584 

concentrations  585 

  586 
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Table 5 Estimated values of unknown GCSP (real world scenario) 587 

Unknown GCSP Prior Range Estimated value 

Position 𝑥 (m) (20,200) 183.637 

Position 𝑦 (m) (0,140) 105.584 

Initial release concentration 𝐶  (*10E-3 mg/l) (0.8,1.2) 1.0 

Dissolve rate (1/d) (0.5,0.8) 0.528 

Hydraulic conductivity(m/d) (40,60) 47.32 

Porosity 𝑃  (0.2,0.3) 0.244 

Longitudinal dispersivity 𝐿  (m) (20,60) 28.898 

Ratio of transverse dispersivity to longitudinal dispersivity 𝛼  (0.3,0.5) 0.341 

Initial concentration of dissolved oxygen 𝐷  (mg/l) (1.4,3) 2.401 

 588 

 589 

Fig.13 Estimated position of the contaminated source 590 

  591 
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5. Conclusion 592 

In the present study, we proposed a deep adaptive cycle generative 593 

adversarial network (DA-CGAN) for the task of groundwater 594 

contaminated source estimation (GCSE). The efficiency and effectiveness 595 

of this DA-CGAN were assessed in both hypothetical and real-world 596 

scenarios. The following conclusions have been drawn from this study: 597 

1. The proposed DA-CGAN proved to be a powerful tool for GCSE. 598 

This model, built on deep learning and adversarial training concepts, 599 

have provided reliable estimations of various parameters, such as 600 

boundary conditions, hydraulic conductivities, and release intensity 601 

and position of contaminated source across diverse GCSE scenarios.  602 

2. The bidirectional design, deep generative-adversarial learning 603 

structure, and adaptive-sampling strategy employed in DA-CGAN 604 

were integral to its performance. In particular, the unique bidirectional 605 

design supervised the mapping from SO to GCSP, mitigating the 606 

phenomenon of EFDP. Moreover, the deep learning structure enhanced 607 

the capacity of DA-CGAN to learn complex mapping relationships 608 

from SO to GCSP. Furthermore, the adaptive-sampling strategy 609 

improved the quality of training samples, leading to better estimation 610 

accuracy for GCSE. 611 

3. Comparisons with traditional methods such as the Genetic Algorithm 612 

(GA) and the Ensemble Kalman Filter (ENKF) showed that 613 
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DA-CGAN outperformed these methods in both estimation accuracy 614 

and computational efficiency. This superiority in performance 615 

underscores the potential of DA-CGAN as a robust and efficient 616 

solution for GCSE. 617 

4. The data-driven nature of DA-CGAN enabled it to rapidly estimate 618 

GCSE, drastically reducing computational time. This time efficiency, 619 

combined with its high accuracy, makes DA-CGAN a promising 620 

framework for real-world applications. 621 

In conclusion, the proposed DA-CGAN has demonstrated promising 622 

potential for accurate and efficient GCSE, exploring a novel potential of 623 

deep generative neural network for advanced applications in the field of 624 

hydrogeology. Our Future work will focus on improving the ability of 625 

model to handle real-world data noise and further refining its adaptive 626 

learning capabilities. 627 
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